Search results for: bod (biological oxygen demand)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6628

Search results for: bod (biological oxygen demand)

3718 Using Automated Agents to Facilitate Instructions in a Large Online Course

Authors: David M Gilstrap

Abstract:

In an online course with a large enrollment, the potential exists for the instructor to become overburdened with having to respond to students’ emails, which consequently decreases the instructor’s efficiency in teaching the course. Repetition of instructions is an effective way of reducing confusion among students, which in turn increases their efficiencies, as well. World of Turf is the largest online course at Michigan State University, which employs Brightspace as its management system (LMS) software. Recently, the LMS upgraded its capabilities to utilize agents, which are auto generated email notifications to students based on certain criteria. Agents are additional tools that can enhance course design. They can be run on-demand or according to a schedule. Agents can be timed to effectively remind students of approaching deadlines. The content of these generated emails can also include reinforced instructions. With a large online course, even a small percentage of students that either do not read or do not comprehend the course syllabus or do not notice instructions on course pages can result in numerous emails to the instructor, often near the deadlines for assignments. Utilizing agents to decrease the number of emails from students has enabled the instructor to efficiently instruct more than one thousand students per semester without any graduate student teaching assistants.

Keywords: agents, Brightspace, large enrollment, learning management system, repetition of instructions

Procedia PDF Downloads 206
3717 Clove Oil Incorporated Biodegradable Film for Active Food Packaging

Authors: Shubham Sharma, Sandra Barkauskaite, Brendan Duffy, Swarna Jaiswal, Amit K. Jaiswal

Abstract:

Food packaging protects food from temperature, light, and humidity; preserves food and guarantees the safety and the integrity of the food. Advancement in packaging research leads to development of active packaging system with numerous properties such as oxygen scavengers, carbon-dioxide generating systems, antimicrobial active packaging, moisture control packaging, ethylene scavengers etc. In the active packaging, several additives such as essential oils, polyphenols etc. are incorporated into packaging film or within the packaging material to achieve the desired properties. This study investigates the effect on the structural, thermal and functional properties of different poly(lactide) – poly (butylene adipate-co-terephthalate) (PLA-PBAT) blend films incorporated with clove essential oil. The PLA-PBAT films were prepared by a solution casting method and then characterized based on their optical, mechanical properties, surface hydrophobicity, chemical composition, antimicrobial activity against S. aureus and E. coli, and inhibition of biofilm formation of E. coli. Results showed that, the developed packaging film containing clove oil has significant UV-blocking property (80%). However, incorporation of clove oil resulted in reduced transparency and tensile strength of the film as the concentration of clove oil increased. The surface hydrophobicity of packaging film was improved with the increasing concentration of essential oil. Similarly, thickness of the clove oil containing films increased from 36.71 µm to 106.67 µm as the concentration increases. The antimicrobial activity and biofilm inhibition study showed that the clove-incorporated PLA-PBAT composite film was effective against tested bacteria E. coli and S. aureus. This study showed that the PLA-PBAT – Clove oil composite film has significant antimicrobial and UV-blocking properties and can be used as an active food packaging film.

Keywords: active packaging, clove oil, poly(butylene adipate-co-terephthalate), poly(lactide)

Procedia PDF Downloads 154
3716 Islamic Banks and the Most Important Contemporary Challenges

Authors: Mahmood Mohammed Abdulsattar Aljumaili

Abstract:

Praise be to Allah and peace and blessings be upon the Messenger of Allah. Islamic banks have not only made a lot of great achievements in a short period, but they imposed themselves in the global market, not to mention the transformation of some conventional interest-based banks to Islamic banks to the large demand on them, this transformation has pushed the Dow Jones Global Foundation to develop a new economic indicator released it (the Dow Jones Islamic market) for those who wish to invest in Islamic financial institutions. The success of Islamic financial institutions today face significant and serious challenges, that embody the serious consequences created by the current events on Islamic banking industry. This modest study, deals with these serious challenges facing the Islamic banking industry, and reflected on the success recorded in the previous period. The study deals with four main topics: The emergence of Islamic banks, the goals of Islamic banks, International challenges facing Islamic banks, internal challenges facing Islamic banks, and finally it touches on, (Basel 1-2) Agreement and its implications for Islamic banks.

Keywords: Islamic banks, Basel 1-2 agreement, most important contemporary challenges, islamic banking industry, Dow Jones Islamic market

Procedia PDF Downloads 505
3715 Development and Implementation of An "Electric Island" Monitoring Infrastructure for Promoting Energy Efficiency in Schools

Authors: Vladislav Grigorovitch, Marina Grigorovitch, David Pearlmutter, Erez Gal

Abstract:

The concept of “electric island” is involved with achieving the balance between the self-power generation ability of each educational institution and energy consumption demand. Photo-Voltaic (PV) solar system installed on the roofs of educational buildings is a common way to absorb the available solar energy and generate electricity for self-consumption and even for returning to the grid. The main objective of this research is to develop and implement an “electric island” monitoring infrastructure for promoting energy efficiency in educational buildings. A microscale monitoring methodology will be developed to provide a platform to estimate energy consumption performance classified by rooms and subspaces rather than the more common macroscale monitoring of the whole building. The monitoring platform will be established on the experimental sites, enabling an estimation and further analysis of the variety of environmental and physical conditions. For each building, separate measurement configurations will be applied taking into account the specific requirements, restrictions, location and infrastructure issues. The direct results of the measurements will be analyzed to provide deeper understanding of the impact of environmental conditions and sustainability construction standards, not only on the energy demand of public building, but also on the energy consumption habits of the children that study in those schools and the educational and administrative staff that is responsible for providing the thermal comfort conditions and healthy studying atmosphere for the children. A monitoring methodology being developed in this research is providing online access to real-time data of Interferential Therapy (IFTs) from any mobile phone or computer by simply browsing the dedicated website, providing powerful tools for policy makers for better decision making while developing PV production infrastructure to achieve “electric islands” in educational buildings. A detailed measurement configuration was technically designed based on the specific conditions and restriction of each of the pilot buildings. A monitoring and analysis methodology includes a large variety of environmental parameters inside and outside the schools to investigate the impact of environmental conditions both on the energy performance of the school and educational abilities of the children. Indoor measurements are mandatory to acquire the energy consumption data, temperature, humidity, carbon dioxide and other air quality conditions in different parts of the building. In addition to that, we aim to study the awareness of the users to the energy consideration and thus the impact on their energy consumption habits. The monitoring of outdoor conditions is vital for proper design of the off-grid energy supply system and validation of its sufficient capacity. The suggested outcomes of this research include: 1. both experimental sites are designed to have PV production and storage capabilities; 2. Developing an online information feedback platform. The platform will provide consumer dedicated information to academic researchers, municipality officials and educational staff and students; 3. Designing an environmental work path for educational staff regarding optimal conditions and efficient hours for operating air conditioning, natural ventilation, closing of blinds, etc.

Keywords: sustainability, electric island, IOT, smart building

Procedia PDF Downloads 181
3714 Cognitive eTransformation Framework for Education Sector

Authors: A. Hol

Abstract:

21st century brought waves of business and industry eTransformations. The impact of change is also being seen in education. To identify the extent of this, scenario analysis methodology was utilised with the aim to assess business transformations across industry sectors ranging from craftsmanship, medicine, finance and manufacture to innovations and adoptions of new technologies and business models. Firstly, scenarios were drafted based on the current eTransformation models and its dimensions. Following this, eTransformation framework was utilised with the aim to derive the key eTransformation parameters, the essential characteristics that have enabled eTransformations across the sectors. Following this, identified key parameters were mapped to the transforming domain-education. The mapping assisted in deriving a cognitive eTransformation framework for education sector. The framework highlights the importance of context and the notion that education today needs not only to deliver content to students but it also needs to be able to meet the dynamically changing demands of specific student and industry groups. Furthermore, it pinpoints that for such processes to be supported, specific technology is required, so that instant, on demand and periodic feedback as well as flexible, dynamically expanding study content can be sought and received via multiple education mediums.

Keywords: education sector, business transformation, eTransformation model, cognitive model, cognitive systems, eTransformation

Procedia PDF Downloads 140
3713 China's Middle East Policy and the Competition with the United States

Authors: Shabnam Dadparvar, Laijin Shen

Abstract:

This paper focuses on China’s policy in the Middle East and the rivalry with the U.S. The question is that what are the main factors on China’s Middle East policy and its competition with the U.S? The hypothesis regards to three effective factors: 'China’s energy dependency' on the Middle East, 'economy' and support for 'stability' in the Middle East. What is important in China’s competition with the U.S regarding to its Middle East policy is the substantial difference in ways of treating the countries of the region; China is committed to Westphalia model based on non-interference in internal affairs of the countries and respect the sovereignty of the governments. However, after 9/11, the U.S is seeking a balance between stability and change through intervention in the international affairs and in some cases is looking for a regime change. From the other hand, China, due to its dependency on the region’s energy welcomes America’s military presence in the region for providing stability. The authors by using a descriptive analytical method try to explain the situation of rivalry between China and the United States in Middle East. China is an 'emerging power' with high economic growth and in demand of more energy supply. The problem is that a rising power in the region is often a source of concern for hegemony.

Keywords: China's foreign policy, energy, hegemony, the Middle East

Procedia PDF Downloads 356
3712 Development of an Integrated System for the Treatment of Rural Domestic Wastewater: Emphasis on Nutrient Removal

Authors: Prangya Ranjan Rout, Puspendu Bhunia, Rajesh Roshan Dash

Abstract:

In a developing country like India, providing reliable and affordable wastewater treatment facilities in rural areas is a huge challenge. With the aim of enhancing the nutrient removal from rural domestic wastewater while reducing the cost of treatment process, a novel, integrated treatment system consisting of a multistage bio-filter with drop aeration and a post positioned attached growth carbonaceous denitrifying-bioreactor was designed and developed in this work. The bio-filter was packed with ‘dolochar’, a sponge iron industry waste, as an adsorbent mainly for phosphate removal through physiochemical approach. The Denitrifying bio-reactor was packed with many waste organic solid substances (WOSS) as carbon sources and substrates for biomass attachment, mainly to remove nitrate in biological denitrification process. The performance of the modular system, treating real domestic wastewater was monitored for a period of about 60 days and the average removal efficiencies during the period were as follows: phosphate, 97.37%; nitrate, 85.91%, ammonia, 87.85%, with mean final effluent concentration of 0.73, 9.86, and 9.46 mg/L, respectively. The multistage bio-filter played an important role in ammonium oxidation and phosphate adsorption. The multilevel drop aeration with increasing oxygenation, and the special media used, consisting of certain oxides were likely beneficial for nitrification and phosphorus removal, respectively, whereas the nitrate was effectively reduced by biological denitrification in the carbonaceous bioreactor. This treatment system would allow multipurpose reuse of the final effluent. Moreover, the saturated dolochar can be used as nutrient suppliers in agricultural practices and the partially degraded carbonaceous substances can be subjected to composting, and subsequently used as an organic fertilizer. Thus, the system displays immense potential for treating domestic wastewater significantly decreasing the concentrations of nutrients and more importantly, facilitating the conversion of the waste materials into usable ones.

Keywords: nutrient removal, denitrifying bioreactor, multi-stage bio-filter, dolochar, waste organic solid substances

Procedia PDF Downloads 383
3711 Motherhood Managerial in Health Services: Need Eustress Internalization

Authors: Retty Ratnawati, Santi Sri Wulandari, Tulus Sabrina

Abstract:

Feminine and masculine gender role stress could occur in some work situation. Being manager in health services that is known to be more women’ role in Indonesia, has expected to have feminine stereotype role. In the communities, this has been done in the program kesejahteraan keluarga (welfare family program) since the 1970s, for example through family planning program. The aim of the study was to explore the experience of being a motherhood managerial in health services. Our auto ethnographic study has revealed that motherhood managerial, even though running by a woman, could have some stress conditions whether she has realized or has not. The challenge would occur when the manager did not realize that she needed the eustress. The autonomy concept for a woman to be a manager could be a complex cycle that needs open communication continually and understanding the four elements surround her life. In conclusion, there is a demand to have the eustress when the manager does not realize that she has to be an autonomy person. However, it does not need eustress when the manager understands about how to deal with the complex cycle of being autonomy.

Keywords: motherhood managerial, eustress, feminine gender role stress, masculine gender role stress, autonomy concept in women

Procedia PDF Downloads 277
3710 Combination of Modelling and Environmental Life Cycle Assessment Approach for Demand Driven Biogas Production

Authors: Juan A. Arzate, Funda C. Ertem, M. Nicolas Cruz-Bournazou, Peter Neubauer, Stefan Junne

Abstract:

— One of the biggest challenges the world faces today is global warming that is caused by greenhouse gases (GHGs) coming from the combustion of fossil fuels for energy generation. In order to mitigate climate change, the European Union has committed to reducing GHG emissions to 80–95% below the level of the 1990s by the year 2050. Renewable technologies are vital to diminish energy-related GHG emissions. Since water and biomass are limited resources, the largest contributions to renewable energy (RE) systems will have to come from wind and solar power. Nevertheless, high proportions of fluctuating RE will present a number of challenges, especially regarding the need to balance the variable energy demand with the weather dependent fluctuation of energy supply. Therefore, biogas plants in this content would play an important role, since they are easily adaptable. Feedstock availability varies locally or seasonally; however there is a lack of knowledge in how biogas plants should be operated in a stable manner by local feedstock. This problem may be prevented through suitable control strategies. Such strategies require the development of convenient mathematical models, which fairly describe the main processes. Modelling allows us to predict the system behavior of biogas plants when different feedstocks are used with different loading rates. Life cycle assessment (LCA) is a technique for analyzing several sides from evolution of a product till its disposal in an environmental point of view. It is highly recommend to use as a decision making tool. In order to achieve suitable strategies, the combination of a flexible energy generation provided by biogas plants, a secure production process and the maximization of the environmental benefits can be obtained by the combination of process modelling and LCA approaches. For this reason, this study focuses on the biogas plant which flexibly generates required energy from the co-digestion of maize, grass and cattle manure, while emitting the lowest amount of GHG´s. To achieve this goal AMOCO model was combined with LCA. The program was structured in Matlab to simulate any biogas process based on the AMOCO model and combined with the equations necessary to obtain climate change, acidification and eutrophication potentials of the whole production system based on ReCiPe midpoint v.1.06 methodology. Developed simulation was optimized based on real data from operating biogas plants and existing literature research. The results prove that AMOCO model can successfully imitate the system behavior of biogas plants and the necessary time required for the process to adapt in order to generate demanded energy from available feedstock. Combination with LCA approach provided opportunity to keep the resulting emissions from operation at the lowest possible level. This would allow for a prediction of the process, when the feedstock utilization supports the establishment of closed material circles within a smart bio-production grid – under the constraint of minimal drawbacks for the environment and maximal sustainability.

Keywords: AMOCO model, GHG emissions, life cycle assessment, modelling

Procedia PDF Downloads 192
3709 Petrologic and Geochemical Characteristics of Marine Sand Strip in the Proterozoic Chuanlinggou Formation of the North China

Authors: Yue Feng, Chun-jiang Wang, Zhi-long Huang

Abstract:

The study of the sedimentary environment of Mesoproterozoic marine deposits in North China has attracted special attention in recent years. It is not clear that the sedimentary environment and the cause of formation of the sandstone strip and its internal carbonate cements and pyrite in the Mesoproterozoic Chuanlinggou Formation in North China. In this study, drilling core samples in North China were identified by microscopy, and their petrological characteristics such as mineral composition and structure were identified. The geochemical data of carbon and oxygen isotopes, total organic carbon (TOC) contents and total sulfur (TS) contents were obtained by processing and analyzing the samples. The samples are mainly quartz particles with low compositional maturity, combined with low value of TOC, it shows that the sedimentary environment of the sandy clastic is a sandy littoral sedimentary environment with relative strong hydrodynamic force, and then the sandstone strip in black shale are formed by the deposition of gravity flow. Analysis of TS values reflect sandstone bands formed in hypoxic environments. The carbonate cements and the pyrite in the sandstone belt are authigenic. The carbon isotope values of authigenic carbonate cements are negatively biased in comparison with the carbonate isotope of carbonate rocks in the same period, but it is more biased than the carbon isotopic values of anaerobic oxidation of methane (AOM) genetic carbonate rocks. Authigenic pyrite may be mainly due to the formation of HS- by the action of bacterial sulfate reduction (BSR) and Fe²⁺, their causes are in contact. This indicates that authigenic carbonate cements are mainly carbonate precipitates formed but are significantly affected by the effects of AOM. Summary, the sedimentary environment of the sandstone zone in the Chuanlinggou Formation in the North China is a shallow sea facies with iron rich and anoxic.

Keywords: sandstone strip, sedimentary environment, authigenic carbonate cements, authigenic pyrite, The Chuanlinggou group, North China

Procedia PDF Downloads 145
3708 Properties Modification of Fiber Metal Laminates by Nanofillers

Authors: R. Eslami-Farsani, S. M. S. Mousavi Bafrouyi

Abstract:

During past decades, increasing demand of modified Fiber Metal Laminates (FMLs) has stimulated a strong trend towards the development of these structures. FMLs contain several thin layers of metal bonded with composite materials. Characteristics of FMLs such as low specific mass, high bearing strength, impact resistance, corrosion resistance and high fatigue life are attractive. Nowadays, increasing development can be observed to promote the properties of polymer-based composites by nanofillers. By dispersing strong, nanofillers in polymer matrix, modified composites can be developed and tailored to individual applications. On the other hand, the synergic effects of nanoparticles such as graphene and carbon nanotube can significantly improve the mechanical, electrical and thermal properties of nanocomposites. In present paper, the modifying of FMLs by nanofillers and the dispersing of nanoparticles in the polymers matrix are discussed. The evaluations have revealed that this approach is acceptable. Finally, a prospect is presented. This paper will lead to further work on these modified FML species.

Keywords: fiber metal laminate, nanofiller, polymer matrix, property modification

Procedia PDF Downloads 208
3707 Expression of Micro RNAs in the Liver Tissue of Mice Generated through in vitro Embryo Culture and Embryo Transfer

Authors: Göksel Doğan, Murat Öztürk, Didar Tuğçe Karakulak, Mehmet Nurullah Orman, Nicolas Sylvius, Matthew Blades, Mustafa Sandıkçı, Cengiz Ünsal, Mehtap Kılıç Eren, Funda Kıral, Levent Karagenç

Abstract:

Assisted reproduction is associated with impaired glucose metabolism in adulthood. miRNAs are key regulators of glucose metabolism. Whether embryo culture and/or transfer alters the expression of miRNAs and to what extent this process affects glucose metabolism remain largely unknown. The purpose of the present study was to examine the expression of miRNAs in the liver in mice obtained by the transfer of blastocysts. The study was comprised of an experimental (EG) and a control group (CG). EG was generated by embryo transfer to pseudo-pregnant females. Mice born from naturally ovulating females were used as the CG. Differential expression of miRNAs, blood glucose, plasma insulin, liver glycogen, and activities of some of the rate-limiting enzymes involved in glucose metabolism were determined at ten weeks of age. Blood glucose, plasma insulin, and glycogen concentrations were similar between the groups in both sexes. Activities of enzymes were similar among females. EG males had significantly less glucokinase and phosphofructokinase activity compared to CG males. None of the miRNAs were differentially expressed in males. On the other hand, miR-143-3p expression was upregulated in EG females. Expression of none of the genes targeted by miR143-3p differed between the groups. These results demonstrate that miR143-3p, a novel regulator of type 2 diabetes, is upregulated in mice generated by assisted reproduction in a sexually-dimorphic manner with no apparent effect on glucose and insulin levels at ten weeks of age. It remains to be determined if this process is associated with impaired glucose homeostasis in the long term.

Keywords: assisted reproduction, blastocyst, embryo culture, glucose metabolism, miR143-3p, oxygen

Procedia PDF Downloads 190
3706 Influence of Radio Frequency Identification Technology at Cost of Supply Chain as a Driver for the Generation of Competitive Advantage

Authors: Mona Baniahmadi, Saied Haghanifar

Abstract:

Radio Frequency Identification (RFID) is regarded as a promising technology for the optimization of supply chain processes since it improves manufacturing and retail operations from forecasting demand for planning, managing inventory, and distribution. This study precisely aims at learning to know the RFID technology and at explaining how it can concretely be used for supply chain management and how it can help improving it in the case of Hejrat Company which is located in Iran and works on the distribution of medical drugs and cosmetics. This study uses some statistical analysis to calculate the expected benefits of an integrated RFID system on supply chain obtained through competitive advantages increases with decreasing cost factor. The study investigates how the cost of storage process, labor cost, the cost of missing goods, inventory management optimization, on-time delivery, order cost, lost sales and supply process optimization affect the performance of the integrated RFID supply chain regarding cost factors and provides a competitive advantage.

Keywords: cost, competitive advantage, radio frequency identification, supply chain

Procedia PDF Downloads 279
3705 Diffusion Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Detecting Malignancy in Maxillofacial Lesions

Authors: Mohamed Khalifa Zayet, Salma Belal Eiid, Mushira Mohamed Dahaba

Abstract:

Introduction: Malignant tumors may not be easily detected by traditional radiographic techniques especially in an anatomically complex area like maxillofacial region. At the same time, the advent of biological functional MRI was a significant footstep in the diagnostic imaging field. Objective: The purpose of this study was to define the malignant metabolic profile of maxillofacial lesions using diffusion MRI and magnetic resonance spectroscopy, as adjunctive aids for diagnosing of such lesions. Subjects and Methods: Twenty-one patients with twenty-two lesions were enrolled in this study. Both morphological and functional MRI scans were performed, where T1, T2 weighted images, diffusion-weighted MRI with four apparent diffusion coefficient (ADC) maps were constructed for analysis, and magnetic resonance spectroscopy with qualitative and semi-quantitative analyses of choline and lactate peaks were applied. Then, all patients underwent incisional or excisional biopsies within two weeks from MR scans. Results: Statistical analysis revealed that not all the parameters had the same diagnostic performance, where lactate had the highest areas under the curve (AUC) of 0.9 and choline was the lowest with insignificant diagnostic value. The best cut-off value suggested for lactate was 0.125, where any lesion above this value is supposed to be malignant with 90 % sensitivity and 83.3 % specificity. Despite that ADC maps had comparable AUCs still, the statistical measure that had the final say was the interpretation of likelihood ratio. As expected, lactate again showed the best combination of positive and negative likelihood ratios, whereas for the maps, ADC map with 500 and 1000 b-values showed the best realistic combination of likelihood ratios, however, with lower sensitivity and specificity than lactate. Conclusion: Diffusion weighted imaging and magnetic resonance spectroscopy are state-of-art in the diagnostic arena and they manifested themselves as key players in the differentiation process of orofacial tumors. The complete biological profile of malignancy can be decoded as low ADC values, high choline and/or high lactate, whereas that of benign entities can be translated as high ADC values, low choline and no lactate.

Keywords: diffusion magnetic resonance imaging, magnetic resonance spectroscopy, malignant tumors, maxillofacial

Procedia PDF Downloads 175
3704 Enhancing Animal Protection: Topical RNAi with Polymer Carriers for Sustainable Animal Health in Australian Sheep Flystrike

Authors: Yunjia Yang, Yakun Yan, Peng Li, Gordon Xu, Timothy Mahony, Neena Mitter, Karishma Mody

Abstract:

Sheep flystrike is one of the most economically important diseases affecting the Australian sheep and wool industry (>356M/annually). Currently, control of Lucillia cuprina relies almost exclusively on chemicals controls and the parasite has developed resistance to nearly all control chemicals used in the past. It is therefore critical to develop an alternative solution for the sustainable control and management of flystrike. RNA interference (RNAi) technologies have been successfully explored in multiple animal industries for developing parasites controls. This research project aims to develop a RNAi based biological control for sheep blowfly. Double-stranded RNA (dsRNA) has already proven successful against viruses, fungi and insects. However, the environmental instability of dsRNA is a major bottleneck with a protection window only lasting 5-7 days. Bentonite polymer (BenPol) technology can overcome this problem, as it can be tuned for controlled release of the dsRNA in the gut challenging pH environment of the blowfly larvae, prolonging its exposure time to and uptake by target cells. We have investigated four different BenPol carriers for their dsRNA loading capabilities of which three of them were able to afford dsRNA stability under multiple temperatures (4°C, 22°C, 40°C, 55°C) in the sheep serum. Based on stability results, we further tested dsRNA from potential targeted genes loaded with BenPol carrier in larvae feeding assay, and get three knockdowns. Our results, establish that the dsRNA when loaded on BenPol particles is stable unlike naked dsRNA which is rapidly degraded in the sheep serum. A stable nanoparticles delivery system that can protect and increase the inherent stability of the dsRNA molecules at higher temperatures in a complex biological fluid like serum, offers a great deal of promise for the future use of this approach for enhancing animal protection.

Keywords: RNA interference, Lucillia cuprina, polymer carriers, polymer stability

Procedia PDF Downloads 85
3703 The Military and Motherhood: Identity and Role Expectation within Two Greedy Institutions

Authors: Maureen Montalban

Abstract:

The military is a predominantly male-dominated organisation that has entrenched hierarchical and patriarchal norms. Since 1975, women have been allowed to continue active service in the Australian Defence Force during pregnancy and after the birth of a child; prior to this time, pregnancy was grounds for automatic termination. The military and family, as institutions, make great demands on individuals with respect to their commitment, loyalty, time and energy. This research explores what it means to serve in the Australian Army as a woman through a gender lens, overlaid during a specific time period of their service; that is, during pregnancy, birth, and being a mother. It investigates the external demands faced by servicewomen who are mothers, whether it be from society, the Army, their teammates, their partners, or their children; and how they internally make sense of that with respect to their own identity and role as a mother, servicewoman, partner and as an individual. It also seeks to uncover how Australian Army servicewomen who are also mothers attempt to manage the dilemma of serving two greedy institutions when both expect and demand so much and whether this is, in fact, an impossible dilemma.

Keywords: women's health, gender studies, military culture, identity

Procedia PDF Downloads 108
3702 From Ritual City to Modern City: The City Space Transformation of Xi’an in the Early 20th Century

Authors: Zhang Bian, Zhao Jijun

Abstract:

The urban layout of Xi’an city (the capital Chang’an in the Tang dynasty) was shaped by feudal etiquette, but this dominant factor was replaced by modern city planning during the period of the Republic of China. This makes Xi’an a representative case to explore the transformation process of Chinese cities in the early 20th century. By analyzing the contrast and connection between the historical texts of city planning and the realistic construction activities recorded by the maps and images, this paper reviews the transformation process of the urban space of Xi’an in the early 20th century and divides it into four phases according to important events that significantly impacted planning and construction activities. Based on this, the entire transformation of Xi’an’s city planning and practices can be characterized by three aspects: 1) the dominant force of the city plan and construction changed with the establishment of modern city administrations; 2) the layout of the city was continuously broadened to meet the demand of modern economy and city life; and, 3) the ritual space was transformed into practical space for commercial and recreational activities.

Keywords: city space, the early 20th century, transformation, Xi’an city

Procedia PDF Downloads 168
3701 A Comparison of Sulfur Mustard Cytotoxic Effects on the Two Human Lung Origin Cell Lines

Authors: P. Jost, L. Muckova, M. Matula, J. Pejchal, D. Jun, R. Stetina

Abstract:

Sulfur mustard (bis(2-chlorethyl) sulfide) is highly toxic, chemical warfare agent that has been used in the past in several armed conflicts. Except for the skin, respiratory tract is one of the important routes of exposure. The elucidation and understanding of the mechanism of toxicity of SM have been effort intensive research. The multiple targets character of SM caused cellular damage resulted in activation of many different mechanisms which contribute to cellular response and participate in the final cytopathology effect. In our present work, we compared time-dependent changes in sulfur mustard exposed adult human lung fibroblasts NHLF and lung epithelial alveolar cell line A-549. Cell viability (MTT assay, Calcein-AM assay, and xCELLigence - real-time cell analysis), apoptosis (flow cytometry), mitochondrial membrane potential (Δψm, flow cytometry), reactive oxygen species induction (DC and cell cycle distribution (flow cytometry) were studied. We observed significantly decreased mitochondrial membrane potential and subsequent induction of apoptosis correlating with decreased cellular viability in the sulfur mustard exposed cells. In low concentrations, sulfur mustard-induced S-phase cell cycle arrest, on the other hand, high concentrations, cell cycle phase distribution of sulfur mustard exposed cells resembled cell cycle phase distribution of control group, which implies nonspecific cell cycle inhibition. Epithelial cells A-549 was found as more sensible to sulfur mustard toxicity. Acknowledgements: This work was supported by a long-term organization development plan Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health Sciences, University of Defence.

Keywords: apoptosis, cell cycle, cytotoxicity, sulfur mustard

Procedia PDF Downloads 196
3700 Cratoxy Formosum (Jack) Dyer Leaf Extract-Induced Human Breast and Liver Cancer Cells Death

Authors: Benjaporn Buranrat, Nootchanat Mairuae

Abstract:

Cratoxylum formosum (Jack) Dyer (CF) has been used for the traditional medicines in South East Asian and Thailand. Normally, northeast Thai vegetables have proven cytotoxic to many cancer cells. Therefore, the present study aims to explore the molecular mechanisms underlying CF-induced cancer cell death and apoptosis on breast and liver cancer cells. The cytotoxicity and antiproliferative effects of CF on the human breast MCF-7 and liver HepG2 cancer cell lines were evaluated using sulforhodamine B assay and colony formation assay. Cell migration assay was measured using wound healing assay. The apoptosis induction mechanisms were investigated through reactive oxygen species formation, caspase 3 activity, and JC-1 activity. Gene expression by real-time PCR and apoptosis related protein levels by Western blot analysis. CF induced MCF-7 and HepG2 cell death by time- and dose-dependent manner. Furthermore, CF had the greater cytotoxic potency on MCF-7 more than HepG2 cells with IC50 values of 85.70+4.52 μM and 219.03±9.96 μM respectively, at 24 h. Treatment with CF also caused a dose-dependent decrease in colony forming ability and cell migration, especially on MCF-7 cells. CF induced ROS formation, increased caspase 3 activities, and decreased the mitochondrial membrane potential, and causing apoptotic body production and DNA fragmentation. CF significantly decreased expression of the cell cycle regulatory protein RAC1 and downstream proteins, cdk6. Additionally, CF enhanced p21 and reduced cyclin D1 protein levels. CF leaf extract induced cell death, apoptosis, antimigration in both of MCF-7 and HepG2 cells. CF could be useful for developing to anticancer drug candidate for breast and liver cancer therapy.

Keywords: cratoxylum formosum (jack) dyer, breast cancer, liver cancer, cell death

Procedia PDF Downloads 213
3699 Analysis of Secondary Peak in Hα Emission Profile during Gas Puffing in Aditya Tokamak

Authors: Harshita Raj, Joydeep Ghosh, Rakesh L. Tanna, Prabal K. Chattopadhyay, K. A. Jadeja, Sharvil Patel, Kaushal M. Patel, Narendra C. Patel, S. B. Bhatt, V. K. Panchal, Chhaya Chavda, C. N. Gupta, D. Raju, S. K. Jha, J. Raval, S. Joisa, S. Purohit, C. V. S. Rao, P. K. Atrey, Umesh Nagora, R. Manchanda, M. B. Chowdhuri, Nilam Ramaiya, S. Banerjee, Y. C. Saxena

Abstract:

Efficient gas fueling is a critical aspect that needs to be mastered in order to maintain plasma density, to carry out fusion. This requires a fair understanding of fuel recycling in order to optimize the gas fueling. In Aditya tokamak, multiple gas puffs are used in a precise and controlled manner, for hydrogen fueling during the flat top of plasma discharge which has been instrumental in achieving discharges with enhanced density as well as energy confinement time. Following each gas puff, we observe peaks in temporal profile of Hα emission, Soft X-ray (SXR) and chord averaged electron density in a number of discharges, indicating efficient gas fueling. Interestingly, Hα temporal profile exhibited an additional peak following the peak corresponding to each gas puff. These additional peak Hα appeared in between the two gas puffs, indicating the presence of a secondary hydrogen source apart from the gas puffs. A thorough investigation revealed that these secondary Hα peaks coincide with Hard X- ray bursts which come from the interaction of runaway electrons with vessel limiters. This leads to consider that the runaway electrons (REs), which hit the wall, in turn, bring out the absorbed hydrogen and oxygen from the wall and makes the interaction of REs with limiter a secondary hydrogen source. These observations suggest that runaway electron induced recycling should also be included in recycling particle source in the particle balance calculations in tokamaks. Observation of two Hα peaks associated with one gas puff and their roles in enhancing and maintaining plasma density in Aditya tokamak will be discussed in this paper.

Keywords: fusion, gas fueling, recycling, Tokamak, Aditya

Procedia PDF Downloads 406
3698 Economic Forecasting Analysis for Solar Photovoltaic Application

Authors: Enas R. Shouman

Abstract:

Economic development with population growth is leading to a continuous increase in energy demand. At the same time, growing global concern for the environment is driving to decrease the use of conventional energy sources and to increase the use of renewable energy sources. The objective of this study is to present the market trends of solar energy photovoltaic technology over the world and to represent economics methods for PV financial analyzes on the basis of expectations for the expansion of PV in many applications. In the course of this study, detailed information about the current PV market was gathered and analyzed to find factors influencing the penetration of PV energy. The paper methodology depended on five relevant economic financial analysis methods that are often used for investment decisions maker. These methods are payback analysis, net benefit analysis, saving-to-investment ratio, adjusted internal rate of return, and life-cycle cost. The results of this study may be considered as a marketing guide that helps diffusion of using PV Energy. The study showed that PV cost is economically reliable. The consumers will pay higher purchase prices for PV system installation but will get lower electricity bill.

Keywords: photovoltaic, financial methods, solar energy, economics, PV panel

Procedia PDF Downloads 113
3697 Cementing Efficiency of Low Calcium Fly Ash in Fly Ash Concretes

Authors: T. D. Gunneswara Rao, Mudimby Andal

Abstract:

Research on the utilization of fly ash will no longer refer the fly ash as a waste material of thermal power plants. Use of fly ash in concrete making, makes the concrete economical as well as durable. The fly ash is being added to the concrete in three ways namely, as partial replacement to cement, partial replacement to fine aggregates and admixture. Addition of fly ash to the concrete in each one of the form mentioned above, makes the concrete more workable and durable than the conventional concrete. Studies on fly ash as partial replacement to cement gained momentum as such replacement makes the concrete economical. In the present study, an attempt has been made to understand the effects of fly ash on the workability characteristics and strength aspects of fly ash concretes. In India, major number of thermal power plants are producing low calcium fly ash. Hence, in the present investigation, low calcium fly ash has been used. Fly ash in concrete was considered for the partial replacement of cement. The percentage replacement of cement by fly ash varied from 0% to 40% at regular intervals of 10%. Moreover the fine aggregate to coarse aggregate ratio also has been varied as 1:1, 1:2, and 1:3. The workability tests revealed that up to 30% replacement of cement by fly ash in concrete mixes water demand for reduces and beyond 30% replacement of cement by fly ash demanded more water content for constant workability.

Keywords: cementing efficiency, compressive strength, low calcium fly ash, workability

Procedia PDF Downloads 488
3696 Development of Cobalt Doped Alumina Hybrids for Adsorption of Textile Effluents

Authors: Uzaira Rafique, Kousar Parveen

Abstract:

The discharge volume and composition of Textile effluents gains scientific concern due to its hazards and biotoxcity of azo dyes. Azo dyes are non-biodegradable due to its complex molecular structure and recalcitrant nature. Serious attempts have been made to synthesize and develop new materials to combat the environmental problems. The present study is designed for removal of a range of azo dyes (Methyl orange, Congo red and Basic fuchsine) from synthetic aqueous solutions and real textile effluents. For this purpose, Metal (cobalt) doped alumina hybrids are synthesized and applied as adsorbents in the batch experiment. Two different aluminium precursor (aluminium nitrate and spent aluminium foil) and glucose are mixed following sol gel method to get hybrids. The synthesized materials are characterized for surface and bulk properties using FTIR, SEM-EDX and XRD techniques. The characterization of materials under FTIR revealed that –OH (3487-3504 cm-1), C-H (2935-2985 cm-1), Al-O (~ 800 cm-1), Al-O-C (~1380 cm-1), Al-O-Al (659-669 cm-1) groups participates in the binding of dyes onto the surface of hybrids. Amorphous shaped particles and elemental composition of carbon (23%-44%), aluminium (29%-395%), and oxygen (11%-20%) is demonstrated in SEM-EDX micrograph. Time-dependent batch-experiments under identical experimental parameters showed 74% congo red, 68% methyl orange and 85% maximum removal of basic fuchsine onto the surface of cobalt doped alumina hybrids probably through the ion-exchange mechanism. The experimental data when treated with adsorption models is found to have good agreement with pseudo second order kinetic and freundlich isotherm for adsorption process. The present study concludes the successful synthesis of novel and efficient cobalt doped alumina hybrids providing environmental friendly and economical alternative to the commercial adsorbents for the treatment of industrial effluents.

Keywords: alumina hybrid, adsorption, dopant, isotherm, kinetic

Procedia PDF Downloads 197
3695 Rapid Detection of the Etiology of Infection as Bacterial or Viral Using Infrared Spectroscopy of White Blood Cells

Authors: Uraib Sharaha, Guy Beck, Joseph Kapelushnik, Adam H. Agbaria, Itshak Lapidot, Shaul Mordechai, Ahmad Salman, Mahmoud Huleihel

Abstract:

Infectious diseases cause a significant burden on the public health and the economic stability of societies all over the world for several centuries. A reliable detection of the causative agent of infection is not possible based on clinical features, since some of these infections have similar symptoms, including fever, sneezing, inflammation, vomiting, diarrhea, and fatigue. Moreover, physicians usually encounter difficulties in distinguishing between viral and bacterial infections based on symptoms. Therefore, there is an ongoing need for sensitive, specific, and rapid methods for identification of the etiology of the infection. This intricate issue perplex doctors and researchers since it has serious repercussions. In this study, we evaluated the potential of the mid-infrared spectroscopic method for rapid and reliable identification of bacterial and viral infections based on simple peripheral blood samples. Fourier transform infrared (FTIR) spectroscopy is considered a successful diagnostic method in the biological and medical fields. Many studies confirmed the great potential of the combination of FTIR spectroscopy and machine learning as a powerful diagnostic tool in medicine since it is a very sensitive method, which can detect and monitor the molecular and biochemical changes in biological samples. We believed that this method would play a major role in improving the health situation, raising the level of health in the community, and reducing the economic burdens in the health sector resulting from the indiscriminate use of antibiotics. We collected peripheral blood samples from young 364 patients, of which 93 were controls, 126 had bacterial infections, and 145 had viral infections, with ages lower than18 years old, limited to those who were diagnosed with fever-producing illness. Our preliminary results showed that it is possible to determine the infectious agent with high success rates of 82% for sensitivity and 80% for specificity, based on the WBC data.

Keywords: infectious diseases, (FTIR) spectroscopy, viral infections, bacterial infections.

Procedia PDF Downloads 142
3694 Implications of Oxidative Stress for Monoterpenoid Oxindole Alkaloid Production in Uncaria tomentosa Cultures

Authors: Ana C. Ramos Valdivia, Ileana Vera-Reyes, Ariana A. Huerta-Heredia

Abstract:

The conditions of biotic and abiotic stress in plants can lead to the generation of high amounts of reactive oxygen species (ROS), which leads through a signaling cascade and second messengers to different antioxidant defense responses including the production of secondary metabolites. A limited number of species of plants like Uncaria tomentosa (cat claw) typical of the Amazon region produce monoterpenoid oxindole alkaloids (MOA) such as isopteropodine, mitraphylline, rhynchophylline and its isomers. Moreover, in cultivated roots, the glucoindole alkaloid 3α-dihydrocadambine (DHC) is also accumulated. Several studies have demonstrated that MAO has antioxidant properties and possess important pharmacological activities such as antitumor and immunostimulant while DHC, has hypotensive and hypolipidemic effects. In order the study the regulatory concerns operating in MAO production, the links between oxidative stress and antioxidant alkaloid production in U. tomentosa root cultures were examined. Different amount of hydrogen peroxide between 0.2 -1.0 mM was added to 12 days old roots cultures showing that, this substance had a differential effect on the production of DHC and MOA whereas the viability remained in 80% after six days. Addition of 0.2 mM hydrogen peroxide increased approximately 65% MAO and DHC production (0,540 ± 0.018 and 0.618 ± 0.029 mg per g dry weight, respectively) relative to the control. On contrast, after the addition of 0.6 mM and 1 mM hydrogen peroxide, DHC accumulation into the roots gradually decreased to 53% and 93% respectively, without changes in MAO concentration, which was in relation to a twice increase of the intracellular hydrogen peroxide content. On the other hand, concentrations of DHC (0.1, 0.5 and 1.0 mM in methanol) demonstrated free-radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. The calculated IC50 for all tested concentrations was 0.180 mg per ml (0.33 mM) while the calculated TE50 was 276 minutes. Our results suggest that U. tomentosa root cultures both MAO and DHC have antioxidant capacities and respond to oxidative stress with a stimulation of their production; however, in presence of a higher concentration of ROS into the roots, DHC could be oxidized.

Keywords: monoterpenoid indole alkaloid, oxidative stress, root cultures, uncaria tomentosa

Procedia PDF Downloads 184
3693 Hydraulic Resources Management under Imperfect Competition with Thermal Plants in the Wholesale Electricity Market

Authors: Abdessalem Abbassi, Ahlem Dakhlaoui, Lota D. Tamini

Abstract:

In this paper, we analyze infinite discrete-time games between hydraulic and thermal power operators in the wholesale electricity market under Cournot competition. We consider a deregulated electrical industry where certain demand is satisfied by hydraulic and thermal technologies. The hydraulic operator decides the production in each season of each period that maximizes the sum of expected profits from power generation with respect to the stochastic dynamic constraint on the water stored in the dam, the environmental constraint and the non-negative output constraint. In contrast, the thermal plant is operated with quadratic cost function, with respect to the capacity production constraint and the non-negativity output constraint. We show that under imperfect competition, the hydraulic operator has a strategic storage of water in the peak season. Then, we quantify the strategic inter-annual and intra-annual water transfer and compare the numerical results. Finally, we show that the thermal operator can restrict the hydraulic output without compensation.

Keywords: asymmetric risk aversion, electricity wholesale market, hydropower dams, imperfect competition

Procedia PDF Downloads 363
3692 The Effects of Ellagic Acid on Rat Heart Induced Tobacco Smoke

Authors: Nalan Kaya, D. Ozlem Dabak, Gonca Ozan, Elif Erdem, Enver Ozan

Abstract:

One of the common causes of cardiovascular disease (CVD) is smoking. Moreover, tobacco smoke decreases the amount of oxygen that the blood can carry and increases the tendency for blood clots. Ellagic acid is a powerful antioxidant found especially in red fruits. It was shown to block atherosclerotic process suppressing oxidative stress and inflammation. The aim of this study was to examine the protective effects of ellagic acid against oxidative damage on heart tissues of rats induced by tobacco smoke. Twenty-four male adult (8 weeks old) Spraque-Dawley rats were divided randomly into 4 equal groups: group I (Control), group II (Tobacco smoke), group III (Tobacco smoke + corn oil) and group IV (Tobacco smoke + ellagic acid). The rats in group II, III and IV, were exposed to tobacco smoke 1 hour twice a day for 12 weeks. In addition to tobacco smoke exposure, 12 mg/kg ellagic acid (dissolved in corn oil), was applied to the rats in group IV by oral gavage. An equal amount of corn oil used in solving ellagic acid was applied to the rats by oral gavage in group III. At the end of the experimental period, rats were decapitated. Heart tissues and blood samples were taken. Histological and biochemical analyzes were performed. Vascular congestion, hyperemic areas, inflammatory cell infiltration and increased connective tissue in the perivascular area were observed in tobacco smoke and tobacco smoke + corn oil groups. Increased connective tissue in the perivascular area, hemorrhage and inflammatory cell infiltration were decreased in tobacco smoke + EA group. Group-II GSH level was not changed (significantly), CAT, SOD, GPx activities were significantly higher than group-I. Compared to group-II, group-IV GSH, SOD, CAT, GPx activities were increased, and MDA level was decreased significantly. Group-II and Group-III levels were similar. The results indicate that ellagic acid could protect the heart tissue from the tobacco smoke harmful effects.

Keywords: ellagic acid, heart, rat, tobacco smoke

Procedia PDF Downloads 229
3691 Reliability Verification of the Performance Evaluation of Multiphase Pump

Authors: Joon-Hyung Kim, Him-Chan Lee, Jin-Hyuk Kim, Yong-Kab Lee, Young-Seok Choi

Abstract:

The crude oil in an oil well exists in various phases such as gas, seawater, and sand, as well as oil. Therefore, a phase separator is needed at the front of a single-phase pump for pressurization and transfer. On the other hand, the application of a multiphase pump can provide such advantages as simplification of the equipment structure and cost savings, because there is no need for a phase separation process. Therefore, the crude oil transfer method using a multiphase pump is being applied to recently developed oil wells. Due to this increase in demand, technical demands for the development of multiphase pumps are sharply increasing, but the progress of research into related technologies is insufficient, due to the nature of multiphase pumps that require high levels of skills. This study was conducted to verify the reliability of pump performance evaluation using numerical analysis, which is the basis of the development of a multiphase pump. For this study, a model was designed by selecting the specifications of the pump under study. The performance of the designed model was evaluated through numerical analysis and experiment, and the results of the performance evaluation were compared to verify the reliability of the result using numerical analysis.

Keywords: multiphase pump, numerical analysis, experiment, performance evaluation, reliability verification

Procedia PDF Downloads 440
3690 Carbon Sequestering and Structural Capabilities of Eucalyptus Cloeziana

Authors: Holly Sandberg, Christina McCoy, Khaled Mansy

Abstract:

Eucalyptus Cloeziana, commonly known as Gympie Messmate, is a fast-growing hardwood native to Australia. Its quick growth makes it advantageous for carbon sequestering, while its strength class lends itself to structural applications. Market research shows that the demand for timber is growing, especially mass timber. An environmental product declaration, or EPD, for eucalyptus Cloeziana in the Australian market has been evaluated and compared to the EPD’s of steel and Douglas fir of the same region. An EPD follows a product throughout its life cycle, stating values for global warming potential, ozone depletion potential, acidification potential, eutrophication potential, photochemical ozone creation potential, and abiotic depletion potential. This paper highlights the market potential, as well as the environmental benefits and challenges to using Gympie Messmate as a structural building material. In addition, a case study is performed to compare steel, Douglas fir, and eucalyptus in terms of embodied carbon and structural weight within a single structural bay. Comparisons among the three materials highlight both the differences in structural capabilities as well as environmental impact.

Keywords: eucalyptus, timber, construction, structural, material

Procedia PDF Downloads 189
3689 Modified Bat Algorithm for Economic Load Dispatch Problem

Authors: Daljinder Singh, J.S.Dhillon, Balraj Singh

Abstract:

According to no free lunch theorem, a single search technique cannot perform best in all conditions. Optimization method can be attractive choice to solve optimization problem that may have exclusive advantages like robust and reliable performance, global search capability, little information requirement, ease of implementation, parallelism, no requirement of differentiable and continuous objective function. In order to synergize between exploration and exploitation and to further enhance the performance of Bat algorithm, the paper proposed a modified bat algorithm that adds additional search procedure based on bat’s previous experience. The proposed algorithm is used for solving the economic load dispatch (ELD) problem. The practical constraint such valve-point loading along with power balance constraints and generator limit are undertaken. To take care of power demand constraint variable elimination method is exploited. The proposed algorithm is tested on various ELD problems. The results obtained show that the proposed algorithm is capable of performing better in majority of ELD problems considered and is at par with existing algorithms for some of problems.

Keywords: bat algorithm, economic load dispatch, penalty method, variable elimination method

Procedia PDF Downloads 464