Search results for: poly(methacrylic acid)
458 Study on Accumulation of Heavy Metals in Sweet Potato, Grown in Industrially Polluted Regions
Authors: Violina Angelova, Galina Pevicharova
Abstract:
A comparative research had been carried out to allow us to determine the quantities and the centers of accumulation of Pb, Cu, Zn and Cd in the vegetative and reproductive organs of the sweet potatoes and to ascertain the possibilities for growing them on soils, polluted with heavy metals. The experiments were performed on agricultural fields contaminated by the (1) Non-Ferrous-Metal Works near Plovdiv, (2) Lead and Zinc Complex near Kardjali and (3) a copper smelter near Pirdop, Bulgaria. The soils used in this experiment were characterized by acid, neutral and slightly alkaline reaction, loamy texture and a moderate content of organic matter. The total content of Zn, Pb, and Cd was high and exceeded the limit value in agriculture soils. Sweet potatoes were in a 2-year rotation scheme on three blocks in the experimental field. On reaching commercial ripeness the sweet potatoes were gathered and the contents of heavy metals in their different parts – root, tuber (peel and core), leaves and stems, were determined after microwave mineralization. The quantitative measurements were carried out with inductively coupled plasma atomic emission spectroscopy. The contamination of the sweet potatoes was due mainly to the presence of heavy metals in the soil, which entered the plants through their root system, as well as by diffusion through the peel. Pb, Cu, Zn, and Cd were selectively accumulated in the underground parts of the sweet potatoes, and most of all in the root system and the peel. Heavy metals have an impact on the development and productivity of the sweet potatoes. The high anthropogenic contamination leads to an increased assimilation of heavy metals which reduces the yield and the quality of the production of sweet potatoes, as well as leads to decrease of the absolute dry substance and the quantity of sugars in sweet potatoes. Sweet potatoes could be grown on soils, which are light to medium polluted with lead, zinc, and cadmium, as they do not accumulate these elements. On heavily polluted soils, however, (Pb – 1504 mg/kg, Zn – 3322 mg/kg, Cd – 47 mg/kg) the growing of sweet potatoes is not allowed, as the accumulation of Pb and Cd in the core of the potatoes exceeds the Maximum Acceptable Concentration. Acknowledgment: The authors gratefully acknowledge the financial support by the Bulgarian National Science Fund (Project DFNI DH04/9).Keywords: heavy metals, polluted soils, sweet potatoes, uptake
Procedia PDF Downloads 211457 Effect of Supplementing Different Sources and Levels of Phytase Enzyme to Diets on Productive Performance for Broiler Chickens
Authors: Sunbul Jassim Hamodi, Muna Khalid Khudayer, Firas Muzahem Hussein
Abstract:
The experiment was conducted to study the effect of supplement sources of Phytase enzyme (bacterial, fungal, enzymes mixture) using levels (250, 500, 750) FTY/ kg feed to diets compared with control on the performance for one thousand fifty broiler chicks (Ross 308) from 1day old with initial weight 39.78 gm till 42 days. The study involved 10 treatments, three replicates per treatment (35 chicks/replicate). Treatments were as follows: T1: control diet (without any addition). T2: added bacterial phytase enzyme 250FTY/ kg feed. T3: added bacterial phytase enzyme 500FTY/ kg feed. T4: added bacterial phytase enzyme 750FTY/ kg feed. T5: added fungal phytase enzyme 250FTY/ kg feed. T6: added fungal phytase enzyme 500FTY/ kg feed. T7: added fungal phytase enzyme 750FTY/ kg feed. T8 added enzymes mixture 250U/ kg feed. T9: added enzymes mixture 500U/ kg feed. T10: added enzymes mixture 750U/ kg feed. The results revealed that supplementing 750 U from enzymes mixture to broiler diet increased significantly (p <0.05) body weight compared with (250 FTY bacterial phytase/Kgfeed), (750 FTY bacterial phytase/Kg feed), (750FTY fungal phytase/Kgfeed) at 6 weeks, also supplemented different sources and levels from phytase enzyme improved a cumulative weight gain for (500 FTY bacterial phytase/Kgfeed), (250FTY fungal phytase/Kgfeed), (500FTY fungal phytase/Kgfeed), (250 Uenzymes mixture/Kgfeed), (500 Uenzymes mixture/Kgfeed) and (750 U enzymes mixture/Kgfeed) treatments compared with (750 FTY fungal phytase/Kgfeed)treatment, about accumulative feed consumption (500 FTY fungal phytase/Kgfeed) and (250 Uenzymes mixture/Kgfeed) increased significantly compared with control group and (750FTY fungal phytase/Kgfeed) during 1-6 weeks. There were significantly improved in cumulative feed conversion for (500U enzymes mixture/Kgfeed) compared with the worse feed conversion ratio that recorded in (250 FTY bacterial phytase/Kgfeed). No significant differences between treatments in internal organs relative weights, carcass cuts, dressing percentage and production index. Mortality was increased in (750FTY fungal phytase/Kgfeed) compared with other treatments.Keywords: phytase, phytic acid, broiler, productive performance
Procedia PDF Downloads 301456 Peat Soil Stabilization by Using Sugarcane Bagasse Ash (SCBA)
Authors: Mohd. Khaidir Abu Talib, Noriyuki Yasufuku, Ryohei Ishikura
Abstract:
It is well recognized that peat can impede the proper hydration of cement because of high organic content, presence of humic acid and less solid particles. That means the large amount of cement is required in order to neutralize the acids or otherwise the process of the peat stabilization remains retarded. Nevertheless, adding a great quantity of cement into the peat is absolutely an unfriendly and uneconomical solution. Sugarcane production is world number one commodities and produced a lot of bagasse. Bagasse is burnt to generate power required for diverse activities in the factory and leave bagasse ash as a waste. Increasing concern of disposal of bagasse residual creates interest to explore the potential application of this material. The objective of this study is to develop alternative binders that are environment friendly and contribute towards sustainable management by utilizing sugarcane bagasse ash (SCBA) in the stabilization of peat soil. Alongside SCBA, Ordinary Portland Cement (OPC), calcium chloride (CaCl2) and silica sand (K7) were used as additives to stabilize the peat that sampled from Hokkaido, Japan. In obtaining the optimal mix design, specimens of stabilized peat were tested in unconfined compression. It was found that stabilized peat comprising 20% and 5% (PCB1-20 and PCB2-5) partial replacement of OPC with SCBA 1 and SCBA 2 attain the maximum unconfined compressive strength (UCS) and discovered greater than untreated soil (P) and UCS of peat-cement (PC) specimen. At the optimal mix design, the UCS of the stabilized peat specimens increased with increasing of curing time, preloading during curing, OPC dosage and K7 dosage. For PCB1-20 mixture, inclusion of a minimum OPC dosage of 300 kg/m3 and K7 dosage of 500 kg/m3 along with curing under 20kPa pressure is recommendable for the peat stabilization to be effective. However for PCB2-5 mixture, it suggested to use more OPC and K7 dosage or alternatively increase the preloading during curing to 40kPa in order to achieve minimum strength target. It can be concluded that SCBA 1 has better quality than SCBA 2 in peat stabilization especially the contribution made by its fine particle size.Keywords: peat stabilization, sugarcane bagasse ash utilization, partial cement replacement, unconfined strength
Procedia PDF Downloads 532455 Molecular Characterisation and Expression of Glutathione S-Transferase of Fasciola Gigantica
Authors: J. Adeppa, S. Samanta, O. K. Raina
Abstract:
Fasciolosis is a widespread economically important parasitic infection throughout the world caused by Fasciola hepatica and F. gigantica. In order to identify novel immunogen conferring significant protection against fasciolosis, currently, research has been focused on the defined antigens viz. glutathione S-transferase, fatty acid binding protein, cathepsin-L, fluke hemoglobin, paramyosin, myosin and F. hepatica- Kunitz Type Molecule. Among various antigens, GST which plays a crucial role in detoxification processes, i.e. phase II defense mechanism of this parasite, has a unique position as a novel vaccine candidate and a drug target in the control of this disease. For producing the antigens in large quantities and their purification to complete homogeneity, the recombinant DNA technology has become an important tool to achieve this milestone. RT- PCR was carried out using F. gigantica total RNA as template, and an amplicon of 657 bp GST gene was obtained. TA cloning vector was used for cloning of this gene, and the presence of insert was confirmed by blue-white selection for recombinant colonies. Sequence analysis of the present isolate showed 99.1% sequence homology with the published sequence of the F. gigantica GST gene of cattle origin (accession no. AF112657), with six nucleotide changes at 72, 74, 423, 513, 549 and 627th bp found in the present isolate, causing an overall change of 4 amino acids. The 657 bp GST gene was cloned at BamH1 and HindIII restriction sites of the prokaryotic expression vector pPROEXHTb in frame with six histidine residues and expressed in E. coli DH5α. Recombinant protein was purified from the bacterial lysate under non-denaturing conditions by the process of sonication after lysozyme treatment and subjecting the soluble fraction of the bacterial lysate to Ni-NTA affinity chromatography. Western blotting with rabbit hyper-immune serum showed immuno-reactivity with 25 kDa recombinant GST. Recombinant protein detected F. gigantica experimental as well as field infection in buffaloes by dot-ELISA. However, cross-reactivity studies on Fasciola gigantica GST antigen are needed to evaluate the utility of this protein in the serodiagnosis of fasciolosis.Keywords: fasciola gigantic, fasciola hepatica, GST, RT- PCR
Procedia PDF Downloads 184454 Transition in Protein Profile, Maillard Reaction Products and Lipid Oxidation of Flavored Ultra High Temperature Treated Milk
Authors: Muhammad Ajmal
Abstract:
- Thermal processing and subsequent storage of ultra-heat treated (UHT) milk leads to alteration in protein profile, Maillard reaction and lipid oxidation. Concentration of carbohydrates in normal and flavored version of UHT milk is considerably different. Transition in protein profile, Maillard reaction and lipid oxidation in UHT flavored milk was determined for 90 days at ambient conditions and analyzed at 0, 45 and 90 days of storage. Protein profile, hydroxymethyl furfural, furosine, Nε-carboxymethyl-l-lysine, fatty acid profile, free fatty acids, peroxide value and sensory characteristics were determined. After 90 days of storage, fat, protein, total solids contents and pH were significantly less than the initial values determined at 0 day. As compared to protein profile normal UHT milk, more pronounced changes were recorded in different fractions of protein in UHT milk at 45 and 90 days of storage. Tyrosine content of flavored UHT milk at 0, 45 and 90 days of storage were 3.5, 6.9 and 15.2 µg tyrosine/ml. After 45 days of storage, the decline in αs1-casein, αs2-casein, β-casein, κ-casein, β-lactoglobulin, α-lactalbumin, immunoglobulin and bovine serum albumin were 3.35%, 10.5%, 7.89%, 18.8%, 53.6%, 20.1%, 26.9 and 37.5%. After 90 days of storage, the decline in αs1-casein, αs2-casein, β-casein, κ-casein, β-lactoglobulin, α-lactalbumin, immunoglobulin and bovine serum albumin were 11.2%, 34.8%, 14.3%, 33.9%, 56.9%, 24.8%, 36.5% and 43.1%. Hydroxy methyl furfural content of UHT milk at 0, 45 and 90 days of storage were 1.56, 4.18 and 7.61 (µmol/L). Furosine content of flavored UHT milk at 0, 45 and 90 days of storage intervals were 278, 392 and 561 mg/100g protein. Nε-carboxymethyl-l-lysine content of UHT flavored milk at 0, 45 and 90 days of storage were 67, 135 and 343mg/kg protein. After 90 days of storage of flavored UHT milk, the loss of unsaturated fatty acids 45.7% from the initial values. At 0, 45 and 90 days of storage, free fatty acids of flavored UHT milk were 0.08%, 0.11% and 0.16% (p<0.05). Peroxide value of flavored UHT milk at 0, 45 and 90 days of storage was 0.22, 0.65 and 2.88 (MeqO²/kg). Sensory analysis of flavored UHT milk after 90 days indicated that appearance, flavor and mouth feel score significantly decreased from the initial values recorded at 0 day. Findings of this investigation evidenced that in flavored UHT milk more pronounced changes take place in protein profile, Maillard reaction products and lipid oxidation as compared to normal UHT milk.Keywords: UHT flavored milk , hydroxymethyl furfural, lipid oxidation, sensory properties
Procedia PDF Downloads 196453 Gadolinium-Based Polymer Nanostructures as Magnetic Resonance Imaging Contrast Agents
Authors: Franca De Sarno, Alfonso Maria Ponsiglione, Enza Torino
Abstract:
Recent advances in diagnostic imaging technology have significantly contributed to a better understanding of specific changes associated with diseases progression. Among different imaging modalities, Magnetic Resonance Imaging (MRI) represents a noninvasive medical diagnostic technique, which shows low sensitivity and long acquisition time and it can discriminate between healthy and diseased tissues by providing 3D data. In order to improve the enhancement of MRI signals, some imaging exams require intravenous administration of contrast agents (CAs). Recently, emerging research reports a progressive deposition of these drugs, in particular, gadolinium-based contrast agents (GBCAs), in the body many years after multiple MRI scans. These discoveries confirm the need to have a biocompatible system able to boost a clinical relevant Gd-chelate. To this aim, several approaches based on engineered nanostructures have been proposed to overcome the common limitations of conventional CAs, such as the insufficient signal-to-noise ratios due to relaxivity and poor safety profile. In particular, nanocarriers, labeling or loading with CAs, capable of carrying high payloads of CAs have been developed. Currently, there’s no a comprehensive understanding of the thermodynamic contributions enable of boosting the efficacy of conventional CAs by using biopolymers matrix. Thus, considering the importance of MRI in diagnosing diseases, here it is reported a successful example of the next generation of these drugs where the commercial gadolinium chelate is incorporate into a biopolymer nanostructure, formed by cross-linked hyaluronic acid (HA), with improved relaxation properties. In addition, they are highlighted the basic principles ruling biopolymer-CA interactions in the perspective of their influence on the relaxometric properties of the CA by adopting a multidisciplinary experimental approach. On the basis of these discoveries, it is clear that the main point consists in increasing the rigidification of readily-available Gd-CAs within the biopolymer matrix by controlling the water dynamics, the physicochemical interactions, and the polymer conformations. In the end, the acquired knowledge about polymer-CA systems has been applied to develop of Gd-based HA nanoparticles with enhanced relaxometric properties.Keywords: biopolymers, MRI, nanoparticles, contrast agent
Procedia PDF Downloads 148452 The Importance of Oral Mucosal Biopsy Selection Site in Areas of Field Change: A Case Report
Authors: Timmis W., Simms M., Thomas C.
Abstract:
This case discusses the management of two floors of mouth (FOM) Squamous Cell Carcinomas (SCC) not identified upon initial biopsy. A 51 year-old male presented with right FOM erythroleukoplakia. Relevant medical history included alcoholic dependence syndrome and alcoholic liver disease. Relevant drug therapy encompassed acamprosate, folic acid, hydroxocobalamin and thiamine. The patient had a 55.5 pack-year smoking history and alcohol dependence from age 14, drinking 16 units/day. FOM incisional biopsy and histopathological analysis diagnosed Carcinoma in situ. Treatment involved wide local excision. Specimen analysis revealed two separate foci of pT1 moderately differentiated SCCs. Carcinoma staging scans revealed no pathological lymphadenopathy, no local invasion or metastasis. SCCs had been excised in completion with narrow margins. MDT discussion concluded that in view of the field changes it would be difficult to identify specific areas needing further excision, although techniques such as Lugol’s Iodine were considered. Further surgical resection, surgical neck management and sentinel lymph node biopsy was offered. The patient declined intervention, primary management involved close monitoring alongside alcohol and smoking cessation referral. Narrow excisional margins can increase carcinoma recurrence risk. Biopsy failed to identify SCCs, despite sampling an area of clinical concern. For gross field change multiple incisional biopsies should be considered to increase chance of accurate diagnosis and appropriate treatment. Coupling of tobacco and alcohol has a synergistic effect, exponentially increasing the relative risk of oral carcinoma development. Tobacco and alcoholic control is fundamental in reducing treatment‑related side effects, recurrence risk and second primary cancer development.Keywords: alcohol dependence, biopsy, oral carcinoma, tobacco
Procedia PDF Downloads 111451 Citrullinated Myelin Basic Protein Mediated Inflammation in Astrocytes
Authors: Lali Shanshiashvili, Marika Chikviladze, Nino Mamulashvili, Maia Sepashvili, Nana Narmania, David Mikeladze
Abstract:
Purpose: During demyelinating inflammatory diseases and after the damage of the myelin sheet, myelin-derived proteins, including myelin basic protein (MBP), are secreted into the extracellular space. MBP shows extensive post-translational modifications, including the deimination of arginine residues. Deiminated MBP is structurally less ordered, susceptible to proteolytic attack, and more immunogenic than the unmodified one. It is hypothesized that MBP could change the inflammatory response in astrocytes. Methods: MBP was isolated and purified from bovine brain white matter. Primary astrocyte cultures were prepared from whole brains of 2-day-old Wistar rats. For evaluation of glutamate uptake/release in astrocytes following treatment of cells with MBP charge isomers, Glutamate Assay Kit was used. The expression of EAAT-2 (excitatory amino acid transporters), peroxisome proliferator-activated receptor gamma (PPAR- γ), inhibitor of nuclear factor kappa B (IkB), and high mobility group protein B1 (HMGB1) in astrocytes were assayed by Western Blot analysis. Results: This study investigated the action of deiminated isomer (C8) on the cultured primary astrocytes and compared its effects with the effects of unmodified C1 isomers. The study found that C8 and C1 MBP differently act on the uptake and release of glutamate in astrocytes: nonmodified C1 MBP increases the uptake of glutamate and does not change the release, whereas C8 decreases the release of glutamate but does not alter the uptake. Nevertheless, both isomers increased the expression of PPAR-γ and EAAT2 in the same intensity. However, immunostaining and Western Blots of cell lysates showed a decrease of IkB and increased expression of HMGB1 after the treatment of astrocytes by C8. Moreover, in the presence of C8, astrocytes release more nitric oxide than unmodified C1 isomers. Conclusion: These data suggest that the deiminated isomer of MBP evokes an inflammatory response and enhances the ability of astrocytes to release proinflammatory mediators through activation of NF-kB after the breakdown of myelin sheets. Acknowledgment: This research was supported by the SRNSF Georgia RF17_534 grant.Keywords: myelin basic protein, glutamate, deimination, astrocytes, inflammation
Procedia PDF Downloads 203450 Reactive Transport Modeling in Carbonate Rocks: A Single Pore Model
Authors: Priyanka Agrawal, Janou Koskamp, Amir Raoof, Mariette Wolthers
Abstract:
Calcite is the main mineral found in carbonate rocks, which form significant hydrocarbon reservoirs and subsurface repositories for CO2 sequestration. The injected CO2 mixes with the reservoir fluid and disturbs the geochemical equilibrium, triggering calcite dissolution. Different combinations of fluid chemistry and injection rate may therefore result in different evolution of porosity, permeability and dissolution patterns. To model the changes in porosity and permeability Kozeny-Carman equation K∝〖(∅)〗^n is used, where K is permeability and ∅ is porosity. The value of n is mostly based on experimental data or pore network models. In pore network models, this derivation is based on accuracy of relation used for conductivity and pore volume change. In fact, at a single pore scale, this relationship is the result of the pore shape development due to dissolution. We have prepared a new reactive transport model for a single pore which simulates the complex chemical reaction of carbonic-acid induced calcite dissolution and subsequent pore-geometry evolution at a single pore scale. We use COMSOL Multiphysics package 5.3 for the simulation. COMSOL utilizes the arbitary-Lagrangian Eulerian (ALE) method for the free-moving domain boundary. We examined the effect of flow rate on the evolution of single pore shape profiles due to calcite dissolution. We used three flow rates to cover diffusion dominated and advection-dominated transport regimes. The fluid in diffusion dominated flow (Pe number 0.037 and 0.37) becomes less reactive along the pore length and thus produced non-uniform pore shapes. However, for the advection-dominated flow (Pe number 3.75), the fast velocity of the fluid keeps the fluid relatively more reactive towards the end of the pore length, thus yielding uniform pore shape. Different pore shapes in terms of inlet opening vs overall pore opening will have an impact on the relation between changing volumes and conductivity. We have related the shape of pore with the Pe number which controls the transport regimes. For every Pe number, we have derived the relation between conductivity and porosity. These relations will be used in the pore network model to get the porosity and permeability variation.Keywords: single pore, reactive transport, calcite system, moving boundary
Procedia PDF Downloads 373449 Positive Interactions among Plants in Pinegroves over Quarzitic Sands
Authors: Enrique González Pendás, Vidal Pérez Hernández, Jorge Ferro Díaz, Nelson Careaga Pendás
Abstract:
The investigation is carried out on the Protected Area of San Ubaldo, toward the interior of an open pinegrove with palm trees in a dry plainness of quar zitic sands, belonging to the Floristic Managed Reservation San Ubaldo-Sabanalamar, Guane, Pinar del Río, Cuba. This area is characterized by drastic seasonal variations, high temperatures and water evaporation, strong solar radiation, with sandy soils of almost pure quartz, which are very acid and poor in nutrients. The objective of the present work is to determine evidence of facilitation and its relationship with the structure and composition of plant communities in these peculiar ecosystems. For this study six lineal parallel transepts of 100 m are traced, in those, a general recording of the flora is carried out. To establish which plants act as nurses, is taken into account a height over 1 meter, canopy over 1.5 meter and the occurrence of several species under it. Covering was recorded using the line intercept method; the medium values of species richness for the taxa under nurses is compared with those that are located in open spaces among them. Then, it is determined which plants are better recruiter of other species (better nurses). An experiment is made to measure and compare some parameters in pine seedlings under the canopy of the Byrsonima crassifolia (L.) Kunth. and in open spaces, also the number of individuals is counted by species to calculate the frequency and total abundance in the study area. As a result, it is offered an up-to-date floristic list, a phylogenetic tree of the plant community showing a high phylodiversity, it is proven that the medium values of species richness and abundance of species under the nurses, is significantly superior to those occurring in open spaces. Furthermore, by means of phylogenetic trees it is shown that the species which cohabit under the nurses are not phylogenetically related. The former results are cited evidences of facilitation among plants, as well as it is one more time shown the importance of the nurse effect in preserving plant diversity on extreme environments.Keywords: facilitation, nurse plants, positive interactions, quarzitic sands
Procedia PDF Downloads 340448 Survival of Micro-Encapsulated Probiotic Lactic Acid Bacteria in Mutton Nuggets and Their Assessments in Simulated Gastro-Intestinal Conditions
Authors: Rehana Akhter, Sajad A. Rather, F. A. Masoodi, Adil Gani, S. M. Wani
Abstract:
During recent years probiotic food products receive market interest as health-promoting, functional foods, which are believed to contribute health benefits. In order to deliver the health benefits by probiotic bacteria, it has been recommended that they must be present at a minimum level of 106 CFU/g to 107 CFU/g at point of delivery or be eaten in sufficient amounts to yield a daily intake of 108 CFU. However a major challenge in relation to the application of probiotic cultures in food matrix is the maintenance of viability during processing which might lead to important losses in viability as probiotic cultures are very often thermally labile and sensitive to acidity, oxygen or other food constituents for example, salts. In this study Lactobacillus plantarum and Lactobacillus casei were encapsulated in calcium alginate beads with the objective of enhancing their survivability and preventing exposure to the adverse conditions of the gastrointestinal tract and where then inoculated in mutton nuggets. Micro encapsulated Lactobacillus plantarum and Lactobacillus casei were resistant to simulated gastric conditions (pH 2, 2h) and bile solution (3%, 2 h) resulting in significantly (p ≤ 0.05) improved survivability when compared with free cell counterparts. A high encapsulation yield was found due to the encapsulation procedure. After incubation at low pH-values, micro encapsulation yielded higher survival rates compared to non-encapsulated probiotic cells. The viable cell numbers of encapsulated Lactobacillus plantarum and Lactobacillus casei were 107-108 CFU/g higher compared to free cells after 90 min incubation at pH 2.5. The viable encapsulated cells were inoculated into mutton nuggets at the rate of 108 to 1010 CFU/g. The micro encapsulated Lactobacillus plantarum and Lactobacillus casei achieved higher survival counts (105-107 CFU/g) than the free cell counterparts (102-104 CFU/g). Thus micro encapsulation offers an effective means of delivery of viable probiotic bacterial cells to the colon and maintaining their survival during simulated gastric, intestinal juice and processing conditions during nugget preparation.Keywords: survival, Lactobacillus plantarum, Lactobacillus casei, micro-encapsulation, nugget
Procedia PDF Downloads 278447 Zinc Sorption by Six Agricultural Soils Amended with Municipal Biosolids
Authors: Antoine Karam, Lotfi Khiari, Bruno Breton, Alfred Jaouich
Abstract:
Anthropogenic sources of zinc (Zn), including industrial emissions and effluents, Zn–rich fertilizer materials and pesticides containing Zn, can contribute to increasing the concentration of soluble Zn at levels toxic to plants in acid sandy soils. The application of municipal sewage sludge or biosolids (MBS) which contain metal immobilizing agents on coarse-textured soils could improve the metal sorption capacity of the low-CEC soils. The purpose of this experiment was to evaluate the sorption of Zn in surface samples (0-15 cm) of six Quebec (Canada) soils amended with MBS (pH 6.9) from Val d’Or (Quebec, Canada). Soil samples amended with increasing amounts (0 to 20%) of MBS were equilibrated with various amounts of Zn as ZnCl2 in 0.01 M CaCl2 for 48 hours at room temperature. Sorbed Zn was calculated from the difference between the initial and final Zn concentration in solution. Zn sorption data conformed to the linear form of Freundlich equation. The amount of sorbed Zn increased considerably with increasing MBS rate. Analysis of variance revealed a highly significant effect (p ≤ 0.001) of soil texture and MBS rate on the amount of sorbed Zn. The average values of the Zn-sorption capacity of MBS-amended coarse-textured soils were lower than those of MBS-amended fine textured soils. The two sandy soils (86-99% sand) amended with MBS retained 2- to 5-fold Zn than those without MBS (control). Significant Pearson correlation coefficients between the Zn sorption isotherm parameter, i.e. the Freundlich sorption isotherm (KF), and commonly measured physical and chemical entities were obtained. Among all the soil properties measured, soil pH gave the best significant correlation coefficients (p ≤ 0.001) for soils receiving 0, 5 and 10% MBS. Furthermore, KF values were positively correlated with soil clay content, exchangeable basic cations (Ca, Mg or K), CEC and clay content to CEC ratio. From these results, it can be concluded that (i) municipal biosolids provide sorption sites that have a strong affinity for Zn, (ii) both soil texture, especially clay content, and soil pH are the main factors controlling anthropogenic Zn sorption in the municipal biosolids-amended soils, and (iii) the effect of municipal biosolids on Zn sorption will be more pronounced for a sandy soil than for a clay soil.Keywords: metal, recycling, sewage sludge, trace element
Procedia PDF Downloads 282446 Improved Intracellular Protein Degradation System for Rapid Screening and Quantitative Study of Essential Fungal Proteins in Biopharmaceutical Development
Authors: Patarasuda Chaisupa, R. Clay Wright
Abstract:
The selection of appropriate biomolecular targets is a crucial aspect of biopharmaceutical development. The Auxin-Inducible Degron Degradation (AID) technology has demonstrated remarkable potential in efficiently and rapidly degrading target proteins, thereby enabling the identification and acquisition of drug targets. The AID system also offers a viable method to deplete specific proteins, particularly in cases where the degradation pathway has not been exploited or when the adaptation of proteins, including the cell environment, occurs to compensate for the mutation or gene knockout. In this study, we have engineered an improved AID system tailored to deplete proteins of interest. This AID construct combines the auxin-responsive E3 ubiquitin ligase binding domain, AFB2, and the substrate degron, IAA17, fused to the target genes. Essential genes of fungi with the lowest percent amino acid similarity to human and plant orthologs, according to the Basic Local Alignment Search Tool (BLAST), were cloned into the AID construct in S. cerevisiae (AID-tagged strains) using a modular yeast cloning toolkit for multipart assembly and direct genetic modification. Each E3 ubiquitin ligase and IAA17 degron was fused to a fluorescence protein, allowing for real-time monitoring of protein levels in response to different auxin doses via cytometry. Our AID system exhibited high sensitivity, with an EC50 value of 0.040 µM (SE = 0.016) for AFB2, enabling the specific promotion of IAA17::target protein degradation. Furthermore, we demonstrate how this improved AID system enhances quantitative functional studies of various proteins in fungi. The advancements made in auxin-inducible protein degradation in this study offer a powerful approach to investigating critical target protein viability in fungi, screening protein targets for drugs, and regulating intracellular protein abundance, thus revolutionizing the study of protein function underlying a diverse range of biological processes.Keywords: synthetic biology, bioengineering, molecular biology, biotechnology
Procedia PDF Downloads 90445 Sustainable Development Change within Our Environs
Authors: Akinwale Adeyinka
Abstract:
Critical natural resources such as clean ground water, fertile topsoil, and biodiversity are diminishing at an exponential rate, orders of magnitude above that at which they can be regenerated. Based on news on world population record, over 6 billion people on earth, and almost a quarter million added each day, the scale of human activity and environmental impact is unprecedented. Soaring human population growth over the past century has created a visible challenge to earth’s life support systems. In addition, the world faces an onslaught of other environmental threats including degenerated global climate change, global warming, intensified acid rain, stratospheric ozone depletion and health threatening pollution. Overpopulation and the use of deleterious technologies combine to increase the scale of human activities to a level that underlies these entire problems. These intensifying trends cannot continue indefinitely, hopefully, through increased understanding and valuation of ecosystems and their services, earth’s basic life-support system will be protected for the future.To say the fact, human civilization is now the dominant cause of change in the global environment. Now that our relationship to the earth has change so utterly, we have to see that change and understand its implication. These are actually 2 aspects to the challenges which we should believe. The first is to realize that our power to harm the earth can indeed have global and even permanent effects. Second is to realize that the only way to understand our new role as a co-architect of nature is to see ourselves as part of a complex system that does operate according to the same simple rules of cause and effect we are used to. So understanding the physical/biological dimension of earth system is an important precondition for making sensible policy to protect our environment. Because we believe Sustainable Development Is a matter of reconciling respect for the environment, social equity and economic profitability. Also, we strongly believe that environmental protection is naturally about reducing air and water pollution, but it also includes the improvement of the environmental performance of existing process. That is why we should always have it at the heart of our business that the environmental problem is not our effect on the environment so much as our relationship with the environment. We should always think of being environmental friendly in our operation.Keywords: Stratospheric ozone depletion ion , Climate Change, global warming, social equity and economic profitability
Procedia PDF Downloads 336444 Transformation of ectA Gene From Halomonas elongata in Tomato Plant
Authors: Narayan Moger, Divya B., Preethi Jambagi, Krishnaveni C. K., Apsana M. R., B. R. Patil, Basvaraj Bagewadi
Abstract:
Salinity is one of the major threats to world food security. Considering the requirement for salt tolerant crop plants in the present study was undertaken to clone and transferred the salt tolerant ectA gene from marine ecosystem into agriculture crop system to impart salinity tolerance. Ectoine is the compatible solute which accumulates in the cell membrane, is known to be involved in salt tolerance activity in most of the Halophiles. The present situation is insisting to development of salt tolerant transgenic lines to combat abiotic stress. In this background, the investigation was conducted to develop transgenic tomato lines by cloning and transferring of ectA gene is an ectoine derivative capable of enzymatic action for the production of acetyl-diaminobutyric acid. The gene ectA is involved in maintaining the osmotic balance of plants. The PCR amplified ectA gene (579bp) was cloned into T/A cloning vector (pTZ57R/T). The construct pDBJ26 containing ectA gene was sequenced by using gene specific forward and reverse primers. Sequence was analyzed using BLAST algorithm to check similarity of ectA gene with other isolates. Highest homology of 99.66 per cent was found with ectA gene sequences of isolates Halomonas elongata with the available sequence information in NCBI database. The ectA gene was further sub cloned into pRI101-AN plant expression vector and transferred into E. coli DH5α for its maintenance. Further pDNM27 was mobilized into A. tumefaciens LBA4404 through tri-parental mating system. The recombinant Agrobacterium containing pDNM27 was transferred into tomato plants through In planta plant transformation method. Out of 300 seedlings, co-cultivated only twenty-seven plants were able to well establish under the greenhouse condition. Among twenty-seven transformants only twelve plants showed amplification with gene specific primers. Further work must be extended to evaluate the transformants at T1 and T2 generations for ectoine accumulation, salinity tolerance, plant growth and development and yield.Keywords: salinity, computable solutes, ectA, transgenic, in planta transformation
Procedia PDF Downloads 80443 A Single-Use Endoscopy System for Identification of Abnormalities in the Distal Oesophagus of Individuals with Chronic Reflux
Authors: Nafiseh Mirabdolhosseini, Jerry Zhou, Vincent Ho
Abstract:
The dramatic global rise in acid reflux has also led to oesophageal adenocarcinoma (OAC) becoming the fastest-growing cancer in developed countries. While gastroscopy with biopsy is used to diagnose OAC patients, this labour-intensive and expensive process is not suitable for population screening. This study aims to design, develop, and implement a minimally invasive system to capture optical data of the distal oesophagus for rapid screening of potential abnormalities. To develop the system and understand user requirements, a user-centric approach was employed by utilising co-design strategies. Target users’ segments were identified, and 38 patients and 14 health providers were interviewed. Next, the technical requirements were developed based on consultations with the industry. A minimally invasive optical system was designed and developed considering patient comfort. This system consists of the sensing catheter, controller unit, and analysis program. Its procedure only takes 10 minutes to perform and does not require cleaning afterward since it has a single-use catheter. A prototype system was evaluated for safety and efficacy for both laboratory and clinical performance. This prototype performed successfully when submerged in simulated gastric fluid without showing evidence of erosion after 24 hours. The system effectively recorded a video of the mid-distal oesophagus of a healthy volunteer (34-year-old male). The recorded images were used to develop an automated program to identify abnormalities in the distal oesophagus. Further data from a larger clinical study will be used to train the automated program. This system allows for quick visual assessment of the lower oesophagus in primary care settings and can serve as a screening tool for oesophageal adenocarcinoma. In addition, this system is able to be coupled with 24hr ambulatory pH monitoring to better correlate oesophageal physiological changes with reflux symptoms. It also can provide additional information on lower oesophageal sphincter functions such as opening times and bolus retention.Keywords: endoscopy, MedTech, oesophageal adenocarcinoma, optical system, screening tool
Procedia PDF Downloads 86442 Black Soybeans Show Acute and Chronic Liver Protective Functions against CCl4 Induced Liver Damage
Authors: Cheng-Kuang Hsu, Chih-Hsiang Chang, Chi-Chih Wang
Abstract:
Black soybeans contain high amount of antioxidants including polyphenols, anthocyanins and flavones. The protective function of black soybean against CCl4 (a strong oxidant) induced acute and chronic liver damage was investigated in vivo using SD rats or ICR mouse. The evaluation of CCl4 induced oxidative stress in the liver tissues included the measurements of the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the concentration of thiobarbituric acid reactive substances (TBARS), the activities of antioxidant enzymes (superoxide dismutase SOD, catalase, and glutathione peroxidase GPx), as well as the level of histological lesion in the liver tissues. For chronic experiment, a decoction at the concentration of 100 or 1000 mg/kg of body weight, produced by baking black soybean at 130°C for 5 min and followed by immerging in 100°C hot water for 20 min, showed the inhibitory effect against CCl4 induced liver damage in SD rats. Hot-water extract (80 °C for 30 min) from un-preheated black soybean at the concentration of 200 mg/kg of body weight could not reduce ALT and AST levels in CCl4 treated SD rats, but the hot-water extract from preheated black soybean did enhance antioxidant enzymes activities, decline ALT and AST levels. Specially, the hot-water extract from the seed cost of black soybean had the highest liver protective function since it can reduce vacuolization and necrosis in the liver tissues. For acute experiment, the hot-water extracts from black soybean and the seed coat, as well as pure cyanidin-3-glucoside (C3G) could reduce ALT and AST levels of CCl4 induced ICR mouse. The decoction and hot-water extract from the seed coat of black soybean had higher total polyphenols, anthocyanins and flavones contents than those extracts from whole black soybean. Such results agreed with high liver protective function in the decoction and hot-water from the seed coat of black soybean. Black soybean showed protective function only after preheating process (baking at 130°C for 5 to 10 min) because preheating treatment damaged the cell wall and made the extraction of the antioxidants more effectively.Keywords: black soybean, liver protective function, antioxidant, antioxidative stress
Procedia PDF Downloads 479441 Additional Method for the Purification of Lanthanide-Labeled Peptide Compounds Pre-Purified by Weak Cation Exchange Cartridge
Authors: K. Eryilmaz, G. Mercanoglu
Abstract:
Aim: Purification of the final product, which is the last step in the synthesis of lanthanide-labeled peptide compounds, can be accomplished by different methods. Among these methods, the two most commonly used methods are C18 solid phase extraction (SPE) and weak cation exchanger cartridge elution. SPE C18 solid phase extraction method yields high purity final product, while elution from the weak cation exchanger cartridge is pH dependent and ineffective in removing colloidal impurities. The aim of this work is to develop an additional purification method for the lanthanide-labeled peptide compound in cases where the desired radionuclidic and radiochemical purity of the final product can not be achieved because of pH problem or colloidal impurity. Material and Methods: For colloidal impurity formation, 3 mL of water for injection (WFI) was added to 30 mCi of 177LuCl3 solution and allowed to stand for 1 day. 177Lu-DOTATATE was synthesized using EZAG ML-EAZY module (10 mCi/mL). After synthesis, the final product was mixed with the colloidal impurity solution (total volume:13 mL, total activity: 40 mCi). The resulting mixture was trapped in SPE-C18 cartridge. The cartridge was washed with 10 ml saline to remove impurities to the waste vial. The product trapped in the cartridge was eluted with 2 ml of 50% ethanol and collected to the final product vial via passing through a 0.22μm filter. The final product was diluted with 10 mL of saline. Radiochemical purity before and after purification was analysed by HPLC method. (column: ACE C18-100A. 3µm. 150 x 3.0mm, mobile phase: Water-Acetonitrile-Trifluoro acetic acid (75:25:1), flow rate: 0.6 mL/min). Results: UV and radioactivity detector results in HPLC analysis showed that colloidal impurities were completely removed from the 177Lu-DOTATATE/ colloidal impurity mixture by purification method. Conclusion: The improved purification method can be used as an additional method to remove impurities that may result from the lanthanide-peptide synthesis in which the weak cation exchange purification technique is used as the last step. The purification of the final product and the GMP compliance (the final aseptic filtration and the sterile disposable system components) are two major advantages.Keywords: lanthanide, peptide, labeling, purification, radionuclide, radiopharmaceutical, synthesis
Procedia PDF Downloads 159440 Structure-Reactivity Relationship of Some Rhᴵᴵᴵ and Osᴵᴵᴵ Complexes with N-Inert Ligands in Ionic Liquids
Authors: Jovana Bogojeski, Dusan Cocic, Nenad Jankovic, Angelina Petrovic
Abstract:
Kinetically-inert transition metal complexes, such as Rh(III) and Os(III) complexes, attract increasing attention as leading scaffolds for the development of potential pharmacological agents due to their inertness and stability. Therefore, we have designed and fully characterized a few novel rhodium(III) and osmium(III) complexes with a tridentate nitrogen−donor chelate system. For some complexes, the crystal X-ray structure analysis was performed. Reactivity of the newly synthesized complexes towards small biomolecules, such as L-methionine (L-Met), guanosine-5’-monophosphate (5’-GMP), and glutathione (GSH) has been examined. Also, the reactivity of these complexes towards the DNA/RNA (Ribonucleic acid) duplexes was investigated. Obtained results show that the newly synthesized complexes exhibit good affinity towards the studied ligands. Results also show that the complexes react faster with the RNA duplex than with the DNA and that in the DNA duplex reaction is faster with 15mer GG than with the 22mer GG. The UV-Vis (Ultraviolet-visible spectroscopy) is absorption spectroscopy, and the EB (Ethidium bromide) displacement studies were used to examine the interaction of these complexes with CT-DNA and BSA (Bovine serum albumin). All studied complex showed good interaction ability with both the DNA and BSA. Furthermore, the DFT (Density-functional theory) calculation and docking studies were performed. The impact of the metal complex on the cytotoxicity was tested by MTT assay (a colorimetric assay for assessing cell metabolic activity) on HCT-116 lines (human colon cancer cell line). In addition, all these tests were repeated in the presence of several water-soluble biologically active ionic liquids. Attained results indicate that the ionic liquids increase the activity of the investigated complexes. All obtained results in this study imply that the introduction of different spectator ligand can be used to improve the reactivity of rhodium(III) and osmium(III) complexes. Finally, these results indicate that the examined complexes show reactivity characteristics needed for potential anti-tumor agents, with possible targets being both the DNA and proteins. Every new contribution in this field is highly warranted due to the current lack of clinically used Metallo-based alternatives to cisplatin.Keywords: biomolecules, ionic liquids, osmium(III), rhodium(III)
Procedia PDF Downloads 150439 Immobilizing Quorum Sensing Inhibitors on Biomaterial Surfaces
Authors: Aditi Taunk, George Iskander, Kitty Ka Kit Ho, Mark Willcox, Naresh Kumar
Abstract:
Bacterial infections on biomaterial implants and medical devices accounts for 60-70% of all hospital acquired infections (HAIs). Treatment or removal of these infected devices results in high patient mortality and morbidity along with increased hospital expenses. In addition, with no effective strategies currently available and rapid development of antibacterial resistance has made device-related infections extremely difficult to treat. Therefore, in this project we have developed biomaterial surfaces using antibacterial compounds that inhibit biofilm formation by interfering with the bacterial communication mechanism known as quorum sensing (QS). This study focuses on covalent attachment of potent quorum sensing (QS) inhibiting compounds, halogenated furanones (FUs) and dihydropyrrol-2-ones (DHPs), onto glass surfaces. The FUs were attached by photoactivating the azide groups on the surface, and the acid functionalized DHPs were immobilized on amine surface via EDC/NHS coupling. The modified surfaces were tested in vitro against pathogenic organisms such as Staphylococcus aureus and Pseudomonas aeruginosa using confocal laser scanning microscopy (CLSM). Successful attachment of compounds on the substrates was confirmed by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The antibacterial efficacy was assessed, and significant reduction in bacterial adhesion and biofilm formation was observed on the FU and DHP coated surfaces. The activity of the coating was dependent upon the type of substituent present on the phenyl group of the DHP compound. For example, the ortho-fluorophenyl DHP (DHP-2) exhibited 79% reduction in bacterial adhesion against S. aureus and para-fluorophenyl DHP (DHP-3) exhibited 70% reduction against P. aeruginosa. The results were found to be comparable to DHP coated surfaces prepared in earlier study via Michael addition reaction. FUs and DHPs were able to retain their in vitro antibacterial efficacy after covalent attachment via azide chemistry. This approach is a promising strategy to develop efficient antibacterial biomaterials to reduce device related infections.Keywords: antibacterial biomaterials, biomedical device-related infections, quorum sensing, surface functionalization
Procedia PDF Downloads 267438 Anti-Colitic and Anti-Inflammatory Effects of Lactobacillus sakei K040706 in Mice with Ulcerative Colitis
Authors: Seunghwan Seo, Woo-Seok Lee, Ji-Sun Shin, Young Kyoung Rhee, Chang-Won Cho, Hee-Do Hong, Kyung-Tae Lee
Abstract:
Doenjang, known as traditional Korean food, is product of a natural mixed fermentation process carried out by lactic acid bacteria (LAB). Lactobacillus sakei K040706 (K040706) has been accepted as the most populous LAB in over ripened doenjang. Recently, we reported the immunostimulatory effects of K040706 in RAW 264.7 macrophages and in a cyclophosphamide-induced mouse model. In this study, we investigated the ameliorative effects of K040706 in a dextran sulfate sodium (DSS)-induced colitis mouse model. We induced colitis using DSS in 5-week-ICR mice over 14 days with or without 0.1, 1 g/kg/day K040706 orally. The body weight, stool consistency, and gross bleeding were recorded for determination of the disease activity index (DAI). At the end of treatment, animals were sacrificed and colonic tissues were collected and subjected to histological experiments and myeloperoxidase (MPO) accumulation, cytokine determination, qRT-PCR and Western blot analysis. Results showed that K040706 significantly attenuated DSS-induced DAI score, shortening of colon length, enlargement of spleen and immune cell infiltrations into colonic tissues. Histological examinations indicated that K040706 suppressed edema, mucosal damage, and the loss of crypts induced by DSS. These results were correlated with the restoration of tight junction protein expression, such as, ZO-1 and occludin in K040706-treated mice. Moreover, K040706 reduced the abnormal secretions and mRNA expressions of pro-inflammatory mediators, such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). DSS-induced mRNA expression of intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM) in colonic tissues was also downregulated by K040706 treatment. Furthermore, K040706 suppressed the protein and mRNA expression of toll-like receptor 4 (TLR4) and phosphorylation of NF-κB and signal transducer and activator of transcription 3 (STAT3). These results suggest that K040706 has an anti-colitic effect by inhibition of intestinal inflammatory responses in DSS-induced colitic mice.Keywords: Lactobacillus sakei, NF-κB, STAT3, ulcerative colitis
Procedia PDF Downloads 324437 Efficiently Dispersed MnOx on Mesoporous 3D Cubic Support for Cyclohexene Epoxidation
Authors: G. Imran, A. Pandurangan
Abstract:
Epoxides constitute important intermediates for the production of fine and bulk chemicals as well as valuable building blocks for the synthesis of a variety of bioactive molecules. Manganese oxides are used as selective catalyst for various redox type reactions and also effectively used in the field of catalytic disposal of pollutants. Non-toxic, cost efficient factor and more over existence of wide range of oxidation state (+2 to +7) makes catalyst more interesting for both academic research and industrial applications. However, the serious drawback lying is the lower surface area. Exceedingly dispersed manganese oxide grafted over mesoporous solid material KIT-6 through ALD (Atomic Layer Deposition) technique effectively catalyze cyclohexene with H2O2 (30% in water) to corresponding epoxides. Highly selective epoxide >99% with 55.7% conversion of cyclohexene was achieved using huge dispersed active sites of MnOx species containing catalysts. Various weight percent such as (1, 3, 5, 7 & 10 wt %) of manganese (II) acetylacetonate complex was employed as Mn source to post-graft via active silanol groups of KIT-6 and are designated as (Mn-G-KIT-6). XRD, N2 sorption, HR-TEM, DRS-UV-VIS, EPR and H2-TPR were employed for structural and textural properties. Immense Mn species of about 95% proportion on silica matrix obtained was evident from ICP-OES.The resulting materials exhibited Type IV adsorption isotherms indiacting mesopore in nanorange. Si-KIT-6 and Mn-G-KIT-6 materials exhibited surface area of 519-289 m2/g and with decrease in pore volume of 0.96-0.49 cm3/g with pore diameter ranging 7.9- 7.2 with increase in wt%. DRS-UV-VIS spectroscopy and EPR studies reveal that manganese coexists as Mn2+/3+ species as extra-framework sites and frame-work sites that result in dispersion on surface of silica matrix of KIT-6 and incorporated manganese sites with silanol groups along with small sized MnO cluster, evident from HR-TEM which increase with Mn content. Conventional production of epoxides by the intramolecular etherification of chlorohydrins formed by the reaction of alkenes with hypochlorous acid is the major drawbacks obtained recently. The most efficient synthesis of oxiranes (epoxides) is obtained by mesoporous catalysts (Mn-G-KIT-6) are presented here and discussed.Keywords: ALD, epoxidation, mesoporous, MnOx
Procedia PDF Downloads 182436 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana
Authors: Ayesha Sanjana Kawser Parsha
Abstract:
S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score
Procedia PDF Downloads 72435 Gossypol Extraction from Cotton Seed and Evaluation of Cotton Seed and Boll-cotton-pol Extract on Treatment of Cutaneous Leishmaniasis Resistant to Drugs
Authors: M. Mirmohammadi, S. Taghdisi, F. Anali
Abstract:
Gossypol is a yellow anti-nutritional compound found in the cotton plant. This substance exists in the cottonseed and other parts of the cotton plant, such as bark, leaves, and stems. Chemically, gossypol is a very active polyphenolic aldehyde compound, and due to this polyphenolic structure, it has antioxidant and therapeutic properties. On the other hand, this compound, especially in free form, has many toxic effects, that its excessive consumption can be very dangerous for humans and animals. In this study, gossypol was extracted as a derivative compound of gossypol acetic acid from cottonseed using the n-hexane solvent with an efficiency of 0.84 ± 0.04, which compared to the Gossypol extracted from cottonseed oil with the same method (cold press) showed a significant difference with its efficiency of 1.14 ± 0.06. Therefore, it can be suggested to use cottonseed oil to extract this valuable compound. In the other part of this research, cottonseed extracts and cotton bolls extracts were obtained by two methods of soaking and Soxhlet with hydroalcoholic solvent taken with a ratio of (25:75), then by using extracts and corn starch powder, four herbal medicine code was created and after receiving the code of ethics (IR.SSU.REC.1398.136) the therapeutic effect of each one on the Cutaneous leishmaniasis resistant to drugs (caused by the leishmaniasis parasite) was investigated in real patients and its results was compared with the common drug glucantime (local ampoule) (n = 36). Statistical studies showed that the use of herbal medicines prepared with cottonseed extract and cotton bolls extract has a significant positive effect on the treatment of the disease’s wounds (p-value > 0.05) compared to the control group (only ethanol). Also, by comparing the average diameter of the wounds after a two-month treatment period, no significant difference was found between the use of ointment containing extracts and local glucantime ampoules (p-value < 0.05). Bolls extract extracted with the Soxhlet method showed the best therapeutic effects, although there was no significant difference between them (p-value < 0.05). Therefore, there is acceptable reliability to recommend this medicine for the treatment of Cutaneous leishmaniasis resistant to drugs without the side effects of the chemical drug glucantime and the pain of injecting the ampoule.Keywords: cottonseed oil, gossypol, cotton boll, cutaneous leishmaniasis
Procedia PDF Downloads 94434 Detecting Impact of Allowance Trading Behaviors on Distribution of NOx Emission Reductions under the Clean Air Interstate Rule
Authors: Yuanxiaoyue Yang
Abstract:
Emissions trading, or ‘cap-and-trade', has been long promoted by economists as a more cost-effective pollution control approach than traditional performance standard approaches. While there is a large body of empirical evidence for the overall effectiveness of emissions trading, relatively little attention has been paid to other unintended consequences brought by emissions trading. One important consequence is that cap-and-trade could introduce the risk of creating high-level emission concentrations in areas where emitting facilities purchase a large number of emission allowances, which may cause an unequal distribution of environmental benefits. This study will contribute to the current environmental policy literature by linking trading activity with environmental injustice concerns and empirically analyzing the causal relationship between trading activity and emissions reduction under a cap-and-trade program for the first time. To investigate the potential environmental injustice concern in cap-and-trade, this paper uses a differences-in-differences (DID) with instrumental variable method to identify the causal effect of allowance trading behaviors on emission reduction levels under the clean air interstate rule (CAIR), a cap-and-trade program targeting on the power sector in the eastern US. The major data source is the facility-year level emissions and allowance transaction data collected from US EPA air market databases. While polluting facilities from CAIR are the treatment group under our DID identification, we use non-CAIR facilities from the Acid Rain Program - another NOx control program without a trading scheme – as the control group. To isolate the causal effects of trading behaviors on emissions reduction, we also use eligibility for CAIR participation as the instrumental variable. The DID results indicate that the CAIR program was able to reduce NOx emissions from affected facilities by about 10% more than facilities who did not participate in the CAIR program. Therefore, CAIR achieves excellent overall performance in emissions reduction. The IV regression results also indicate that compared with non-CAIR facilities, purchasing emission permits still decreases a CAIR participating facility’s emissions level significantly. This result implies that even buyers under the cap-and-trade program have achieved a great amount of emissions reduction. Therefore, we conclude little evidence of environmental injustice from the CAIR program.Keywords: air pollution, cap-and-trade, emissions trading, environmental justice
Procedia PDF Downloads 147433 Development of Antioxidant Rich Bakery Products by Applying Lysine and Maillard Reaction Products
Authors: Attila Kiss, Erzsébet Némedi, Zoltán Naár
Abstract:
Due to the rapidly growing number of conscious customers in the recent years, more and more people look for products with positive physiological effects which may contribute to the preservation of their health. In response to these demands Food Science Research Institute of Budapest develops and introduces into the market new functional foods of guaranteed positive effect that contain bioactive agents. New, efficient technologies are also elaborated in order to preserve the maximum biological effect of the produced foods. The main objective of our work was the development of new functional biscuits fortified with physiologically beneficial ingredients. Bakery products constitute the base of the food nutrients’ pyramid, thus they might be regarded as foodstuffs of the largest consumed quantity. In addition to the well-known and certified physiological benefits of lysine, as an essential amino acid, a series of antioxidant type compounds is formed as a consequence of the occurring Maillard-reaction. Progress of the evoked Maillard-reaction was studied by applying diverse sugars (glucose, fructose, saccharose, isosugar) and lysine at several temperatures (120-170°C). Interval of thermal treatment was also varied (10-30 min). The composition and production technologies were tailored in order to reach the maximum of the possible biological benefits, so as to the highest antioxidant capacity in the biscuits. Out of the examined sugar components, theextent of the Maillard-reaction-driven transformation of glucose was the most pronounced at both applied temperatures. For the precise assessment of the antioxidant activity of the products FRAP and DPPH methods were adapted and optimised. To acquire an authentic and extensive mechanism of the occurring transformations, Maillard-reaction products were identified, and relevant reaction pathways were revealed. GC-MS and HPLC-MS techniques were applied for the analysis of the 60 generated MRPs and characterisation of actual transformation processes. 3 plausible major transformation routes might have been suggested based on the analytical result and the deductive sequence of possible occurring conversions between lysine and the sugars.Keywords: Maillard-reaction, lysine, antioxidant activity, GC-MS and HPLC-MS techniques
Procedia PDF Downloads 480432 Gas Chromatography and Mass Spectrometry in Honey Fingerprinting: The Occurrence of 3,4-dihydro-3-oxoedulan and (E)-4-(r-1',t-2',c-4'-trihydroxy-3',6',6'-trimethylcyclohexyl)-but-3-en-2-one
Authors: Igor Jerkovic
Abstract:
Owing to the attractive sensory properties and low odour thresholds, norisoprenoids (degraded carotenoid-like structures with 3,5,5-trimethylcyclohex-2-enoic unit) have been identified as aroma contributors in a number of different matrices. C₁₃-Norisoprenoids have been found among volatile organic compounds of various honey types as well as C₉//C₁₀-norisoprenoids or C₁₄/C₁₅-norisoprenoids. Besides degradation of abscisic acid (which produces, e.g., dehydrovomifoliol, vomifoliol, others), the cleavage of the C(9)=C(10) bond of other carotenoid precursors directly generates nonspecific C₁₃-norisoprenoids such as trans-β-damascenone, 3-hydroxy-trans-β-damascone, 3-oxo-α-ionol, 3-oxo-α-ionone, β-ionone found in various honey types. β-Damascenone and β-ionone smelling like honey, exhibit the lowest odour threshold values of all C₁₃-norisoprenoids. The presentation is targeted on two uncommon C₁₃-norisoprenoids in the honey flavor that could be used as specific or nonspecific chemical markers of the botanical origin. Namely, after screening of different honey types, the focus was directed on Centaruea cyanus L. and Allium ursinum L. honey. The samples were extracted by headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE) and the extracts were analysed by gas chromatography and mass spectrometry (GC-MS). SPME fiber with divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) coating was applied for the research of C. cyanus honey headspace and predominant identified compound was 3,4-dihydro-3-oxoedulan (2,5,5,8a-tetramethyl-2,3,5,6,8,8a-hexahydro-7H-chromen-7-one also known as 2,3,5,6,8,8a-hexahydro-2,5,5,8a-tetramethyl-7H-1-benzo-pyran-7-one). The oxoedulan structure contains epoxide and it is more volatile in comparison with its hydroxylated precursors. This compound has not been found in other honey types and can be considered specific for C. cyanus honey. The dichloromethane extract of A. ursinum honey contained abundant (E)-4-(r-1',t-2',c-4'-trihydroxy-3',6',6'-trimethylcyclohexyl)-but-3-en-2-one that was previously isolated as dominant substance from the ether extracts of New Zealand thyme honey. Although a wide variety of degraded carotenoid-like substances have been identified from different honey types, this appears to be rare situation where 3,4-dihydro-3-oxoedulan and (E)-4-(r-1',t-2',c-4'-trihydroxy-3',6',6'-trimethylcyclohexyl)-but-3-en-2-one have been found that is of great importance for chemical fingerprinting and identification of the chemical biomarkers that can complement the pollen analysis as the major method for the honey classification.Keywords: 3, 4-dihydro-3-oxoedulan, (E)-4-(r-1', t-2', c-4'-trihydroxy-3', 6', 6'-trimethylcyclohexyl)-but-3-en-2-one, honey flavour, C₁₃-norisoprenoids
Procedia PDF Downloads 330431 Effects of the Coagulation Bath and Reduction Process on SO2 Adsorption Capacity of Graphene Oxide Fiber
Authors: Özge Alptoğa, Nuray Uçar, Nilgün Karatepe Yavuz, Ayşen Önen
Abstract:
Sulfur dioxide (SO2) is a very toxic air pollutant gas and it causes the greenhouse effect, photochemical smog, and acid rain, which threaten human health severely. Thus, the capture of SO2 gas is very important for the environment. Graphene which is two-dimensional material has excellent mechanical, chemical, thermal properties, and many application areas such as energy storage devices, gas adsorption, sensing devices, and optical electronics. Further, graphene oxide (GO) is examined as a good adsorbent because of its important features such as functional groups (epoxy, carboxyl and hydroxyl) on the surface and layered structure. The SO2 adsorption properties of the fibers are usually investigated on carbon fibers. In this study, potential adsorption capacity of GO fibers was researched. GO dispersion was first obtained with Hummers’ method from graphite, and then GO fibers were obtained via wet spinning process. These fibers were converted into a disc shape, dried, and then subjected to SO2 gas adsorption test. The SO2 gas adsorption capacity of GO fiber discs was investigated in the fields of utilization of different coagulation baths and reduction by hydrazine hydrate. As coagulation baths, single and triple baths were used. In single bath, only ethanol and CaCl2 (calcium chloride) salt were added. In triple bath, each bath has a different concentration of water/ethanol and CaCl2 salt, and the disc obtained from triple bath has been called as reference disk. The fibers which were produced with single bath were flexible and rough, and the analyses show that they had higher SO2 adsorption capacity than triple bath fibers (reference disk). However, the reduction process did not increase the adsorption capacity, because the SEM images showed that the layers and uniform structure in the fiber form were damaged, and reduction decreased the functional groups which SO2 will be attached. Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) analyzes were performed on the fibers and discs, and the effects on the results were interpreted. In the future applications of the study, it is aimed that subjects such as pH and additives will be examined.Keywords: coagulation bath, graphene oxide fiber, reduction, SO2 gas adsorption
Procedia PDF Downloads 359430 Electrospun Fibre Networks Loaded with Hydroxyapatite and Barium Titanate as Smart Scaffolds for Tissue Regeneration
Authors: C. Busuioc, I. Stancu, A. Nicoara, A. Zamfirescu, A. Evanghelidis
Abstract:
The field of tissue engineering has expanded its potential due to the use of composite biomaterials belonging to increasingly complex systems, leading to bone substitutes with properties that are continuously improving to meet the patient's specific needs. Furthermore, the development of biomaterials based on ceramic and polymeric phases is an unlimited resource for future scientific research, with the final aim of restoring the original tissue functionality. Thus, in the first stage, composite scaffolds based on polycaprolactone (PCL) or polylactic acid (PLA) and inorganic powders were prepared by employing the electrospinning technique. The targeted powders were: commercial and laboratory synthesized hydroxyapatite (HAp), as well as barium titanate (BT). By controlling the concentration of the powder within the precursor solution, together with the processing parameters, different types of three-dimensional architectures were achieved. In the second stage, both the mineral powders and hybrid composites were investigated in terms of composition, crystalline structure, and microstructure so that to demonstrate their suitability for tissue engineering applications. Regarding the scaffolds, these were proven to be homogeneous on large areas and loaded with mineral particles in different proportions. The biological assays demonstrated that the addition of inorganic powders leads to modified responses in the presence of simulated body fluid (SBF) or cell cultures. Through SBF immersion, the biodegradability coupled with bioactivity were highlighted, with fiber fragmentation and surface degradation, as well as apatite layer formation within the testing period. Moreover, the final composites represent supports accepted by the cells, favoring implant integration. Concluding, the purposed fibrous materials based on bioresorbable polymers and mineral powders, produced by the electrospinning technique, represent candidates with considerable potential in the field of tissue engineering. Future improvements can be attained by optimizing the synthesis process or by simultaneous incorporation of multiple inorganic phases with well-defined biological action in order to fabricate multifunctional composites.Keywords: barium titanate, electrospinning, fibre networks, hydroxyapatite, smart scaffolds
Procedia PDF Downloads 111429 Impact of Long Term Application of Municipal Solid Waste on Physicochemical and Microbial Parameters and Heavy Metal Distribution in Soils in Accordance to Its Agricultural Uses
Authors: Rinku Dhanker, Suman Chaudhary, Tanvi Bhatia, Sneh Goyal
Abstract:
Municipal Solid Waste (MSW), being a rich source of organic materials, can be used for agricultural applications as an important source of nutrients for soil and plants. This is also an alternative beneficial management practice for MSW generated in developing countries. In the present study, MSW treated soil samples from last four to six years at farmer’s field in Rohtak and Gurgaon states (Haryana, India) were collected. The samples were analyzed for all-important agricultural parameters and compared with the control untreated soil samples. The treated soil at farmer’s field showed increase in total N by 48 to 68%, P by 45.7 to 51.3%, and K by 60 to 67% compared to untreated soil samples. Application of sewage sludge at different sites led to increase in microbial biomass C by 60 to 68% compared to untreated soil. There was significant increase in total Cu, Cr, Ni, Fe, Pb, and Zn in all sewage sludge amended soil samples; however, concentration of all the metals were still below the current permitted (EU) limits. To study the adverse effect of heavy metals accumulation on various soil microbial activities, the sewage sludge samples (from wastewater treatment plant at Gurgaon) were artificially contaminated with heavy metal concentration above the EU limits. They were then applied to soil samples with different rates (0.5 to 4.0%) and incubated for 90 days under laboratory conditions. The samples were drawn at different intervals and analyzed for various parameters like pH, EC, total N, P, K, microbial biomass C, carbon mineralization, and diethylenetriaminepentaacetic acid (DTPA) exactable heavy metals. The results were compared to the uncontaminated sewage sludge. The increasing level of sewage sludge from 0.5 to 4% led to build of organic C and total N, P and K content at the early stages of incubation. But, organic C was decreased after 90 days because of decomposition of organic matter. Biomass production was significantly increased in both contaminated and uncontaminated sewage soil samples, but also led to slight increases in metal accumulation and their bioavailability in soil. The maximum metal concentrations were found in treatment with 4% of contaminated sewage sludge amendment.Keywords: heavy metal, municipal sewage sludge, sustainable agriculture, soil fertility and quality
Procedia PDF Downloads 285