Search results for: gravitational search algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5313

Search results for: gravitational search algorithm

2433 GIS-Based Topographical Network for Minimum “Exertion” Routing

Authors: Katherine Carl Payne, Moshe Dror

Abstract:

The problem of minimum cost routing has been extensively explored in a variety of contexts. While there is a prevalence of routing applications based on least distance, time, and related attributes, exertion-based routing has remained relatively unexplored. In particular, the network structures traditionally used to construct minimum cost paths are not suited to representing exertion or finding paths of least exertion based on road gradient. In this paper, we introduce a topographical network or “topograph” that enables minimum cost routing based on the exertion metric on each arc in a given road network as it is related to changes in road gradient. We describe an algorithm for topograph construction and present the implementation of the topograph on a road network of the state of California with ~22 million nodes.

Keywords: topograph, RPE, routing, GIS

Procedia PDF Downloads 548
2432 Finding Viable Pollution Routes in an Urban Network under a Predefined Cost

Authors: Dimitra Alexiou, Stefanos Katsavounis, Ria Kalfakakou

Abstract:

In an urban area the determination of transportation routes should be planned so as to minimize the provoked pollution taking into account the cost of such routes. In the sequel these routes are cited as pollution routes. The transportation network is expressed by a weighted graph G= (V, E, D, P) where every vertex represents a location to be served and E contains unordered pairs (edges) of elements in V that indicate a simple road. The distances/cost and a weight that depict the provoked air pollution by a vehicle transition at every road are assigned to each road as well. These are the items of set D and P respectively. Furthermore the investigated pollution routes must not exceed predefined corresponding values concerning the route cost and the route pollution level during the vehicle transition. In this paper we present an algorithm that generates such routes in order that the decision maker selects the most appropriate one.

Keywords: bi-criteria, pollution, shortest paths, computation

Procedia PDF Downloads 376
2431 Pedagogical Content Knowledge for Nature of Science: In Search for a Meaning for the Construct

Authors: Elaosi Vhurumuku

Abstract:

During the past twenty years, there has been an increased interest by science educators in researching and developing teachers’ pedagogical content knowledge for teaching the nature of science (PCKNOS). While there has been this surge in interest in the idea of PCKNOS, there has not been a common understanding among NOS researchers as to how exactly the PCKNOS concept should be construed. In this paper, we analyse and evaluate published accredited journal articles on PCKNOS research. We also draw from our teaching experiences. The major points of foci are the researchers’ presentations of SMKNOS and their centres of attention regarding the elements of PCKNOS. Our content, cluster analysis, and evaluation of the studies on PCKNOS reveal that most researchers have presented SMKNOS in the form of a heuristic or a set of heuristics (targeted NOS ideas) to be mastered by teachers or learners. Furthermore, we found that most of the researchers’ attention has been on developing and recommending teacher pedagogical practices for teaching NOS. From this, we synthesize and propose a subject knowledge content structure and a pedagogical approach that we believe is relevant and appropriate for secondary school and science teacher education if the goal of science education for scientific literacy is to be achieved. The justification of our arguments is rooted in tracing and unpacking the origins and meaning of pedagogical content knowledge (PCK). From our analysis, synthesis, and evaluation, as well as teaching experiences, we distil and construct a meaning for the PCKNOS construct.

Keywords: pedagogical content knowledge, teaching, nature of science, construct, subject matter knowledge

Procedia PDF Downloads 103
2430 Particle Swarm Optimisation of a Terminal Synergetic Controllers for a DC-DC Converter

Authors: H. Abderrezek, M. N. Harmas

Abstract:

DC-DC converters are widely used as reliable power source for many industrial and military applications, computers and electronic devices. Several control methods were developed for DC-DC converters control mostly with asymptotic convergence. Synergetic control (SC) is a proven robust control approach and will be used here in a so-called terminal scheme to achieve finite time convergence. Lyapunov synthesis is adopted to assure controlled system stability. Furthermore particle swarm optimization (PSO) algorithm, based on an integral time absolute of error (ITAE) criterion will be used to optimize controller parameters. Simulation of terminal synergetic control of a DC-DC converter is carried out for different operating conditions and results are compared to classic synergetic control performance, that which demonstrate the effectiveness and feasibility of the proposed control method.

Keywords: DC-DC converter, PSO, finite time, terminal, synergetic control

Procedia PDF Downloads 504
2429 Development of Academic Software for Medial Axis Determination of Porous Media from High-Resolution X-Ray Microtomography Data

Authors: S. Jurado, E. Pazmino

Abstract:

Determination of the medial axis of a porous media sample is a non-trivial problem of interest for several disciplines, e.g., hydrology, fluid dynamics, contaminant transport, filtration, oil extraction, etc. However, the computational tools available for researchers are limited and restricted. The primary aim of this work was to develop a series of algorithms to extract porosity, medial axis structure, and pore-throat size distributions from porous media domains. A complementary objective was to provide the algorithms as free computational software available to the academic community comprising researchers and students interested in 3D data processing. The burn algorithm was tested on porous media data obtained from High-Resolution X-Ray Microtomography (HRXMT) and idealized computer-generated domains. The real data and idealized domains were discretized in voxels domains of 550³ elements and binarized to denote solid and void regions to determine porosity. Subsequently, the algorithm identifies the layer of void voxels next to the solid boundaries. An iterative process removes or 'burns' void voxels in sequence of layer by layer until all the void space is characterized. Multiples strategies were tested to optimize the execution time and use of computer memory, i.e., segmentation of the overall domain in subdomains, vectorization of operations, and extraction of single burn layer data during the iterative process. The medial axis determination was conducted identifying regions where burnt layers collide. The final medial axis structure was refined to avoid concave-grain effects and utilized to determine the pore throat size distribution. A graphic user interface software was developed to encompass all these algorithms, including the generation of idealized porous media domains. The software allows input of HRXMT data to calculate porosity, medial axis, and pore-throat size distribution and provide output in tabular and graphical formats. Preliminary tests of the software developed during this study achieved medial axis, pore-throat size distribution and porosity determination of 100³, 320³ and 550³ voxel porous media domains in 2, 22, and 45 minutes, respectively in a personal computer (Intel i7 processor, 16Gb RAM). These results indicate that the software is a practical and accessible tool in postprocessing HRXMT data for the academic community.

Keywords: medial axis, pore-throat distribution, porosity, porous media

Procedia PDF Downloads 116
2428 Efficient Positioning of Data Aggregation Point for Wireless Sensor Network

Authors: Sifat Rahman Ahona, Rifat Tasnim, Naima Hassan

Abstract:

Data aggregation is a helpful technique for reducing the data communication overhead in wireless sensor network. One of the important tasks of data aggregation is positioning of the aggregator points. There are a lot of works done on data aggregation. But, efficient positioning of the aggregators points is not focused so much. In this paper, authors are focusing on the positioning or the placement of the aggregation points in wireless sensor network. Authors proposed an algorithm to select the aggregators positions for a scenario where aggregator nodes are more powerful than sensor nodes.

Keywords: aggregation point, data communication, data aggregation, wireless sensor network

Procedia PDF Downloads 162
2427 Applying a Noise Reduction Method to Reveal Chaos in the River Flow Time Series

Authors: Mohammad H. Fattahi

Abstract:

Chaotic analysis has been performed on the river flow time series before and after applying the wavelet based de-noising techniques in order to investigate the noise content effects on chaotic nature of flow series. In this study, 38 years of monthly runoff data of three gauging stations were used. Gauging stations were located in Ghar-e-Aghaj river basin, Fars province, Iran. The noise level of time series was estimated with the aid of Gaussian kernel algorithm. This step was found to be crucial in preventing removal of the vital data such as memory, correlation and trend from the time series in addition to the noise during de-noising process.

Keywords: chaotic behavior, wavelet, noise reduction, river flow

Procedia PDF Downloads 470
2426 A Summary-Based Text Classification Model for Graph Attention Networks

Authors: Shuo Liu

Abstract:

In Chinese text classification tasks, redundant words and phrases can interfere with the formation of extracted and analyzed text information, leading to a decrease in the accuracy of the classification model. To reduce irrelevant elements, extract and utilize text content information more efficiently and improve the accuracy of text classification models. In this paper, the text in the corpus is first extracted using the TextRank algorithm for abstraction, the words in the abstract are used as nodes to construct a text graph, and then the graph attention network (GAT) is used to complete the task of classifying the text. Testing on a Chinese dataset from the network, the classification accuracy was improved over the direct method of generating graph structures using text.

Keywords: Chinese natural language processing, text classification, abstract extraction, graph attention network

Procedia PDF Downloads 103
2425 Surgical Applied Anatomy: Alive and Kicking

Authors: Jake Hindmarch, Edward Farley, Norman Eizenberg, Mark Midwinter

Abstract:

There is a need to bring the anatomical knowledge of medical students up to the standards required by surgical specialties. Contention exists amongst anatomists, clinicians, and surgeons about the standard of anatomical knowledge medical students need. The aim of this study was to explore the standards which the Royal Australasian College of Surgeons are applying knowledge of anatomy. Furthermore, to align medical school teaching to what the surgical profession requires from graduates.: The 2018 volume of the ANZ Journal of Surgery was narrowed down to 254 articles by applying the search term “Anatomy”. The main topic was then extracted from each paper. The content of the paper was assessed for ‘novel description’ or ‘application’ of anatomical knowledge’ and classified accordingly. The majority of papers with an anatomical focus was from the general surgery specialty, which focused on surgical techniques, outcomes and management. Vascular surgery had the highest percentage of papers with a novel description and application of anatomy. Cardiothoracic and paediatric surgery had no papers with a novel description of anatomy. Finally, a novel application of anatomy was the main focus of each speciality. Firstly, a high proportion of novel applications and descriptions of anatomy are in general surgery. Secondly, vascular surgery had the largest proportion of novel application and description of anatomy, namely due to the rise of therapeutic imaging and endovascular techniques. Finally, all disciplines demonstrated a trend towards having a higher proportion of novel application of anatomical knowledge

Keywords: anatomical knowledge, anatomy, surgery, novel anatomy

Procedia PDF Downloads 120
2424 Association Between Friendship Quality and Subjective Wellbeing Among Adolescents: A Systematic Review

Authors: Abdullah Alsarrani, Leandro Garcia, Ruth Hunter, Laura Dunne

Abstract:

Social integration with friends has an important role in shaping adolescents’ behavior and determining their well-being. Friendship features such as companionship, trust, closeness, intimacy, and conflicts all form the concept of friendship quality. The quality of friendship relationships can either enhance or impede mental development during adolescence. Therefore, this systematic review was conducted to understand the association between friendship quality and adolescents’ mental wellbeing. The evidence was synthesized from a search of five databases (Medline, Embase, ProQuest, Scopus, and PsycINFO). Thirty-two articles out of 18801 records were included in the review. The relationship between friendship quality and depression has been investigated extensively in the literature and negative (beneficial) associations were found in twelve studies out of sixteen. Poor peer relationship was linked to loneliness in eight studies out of nine. All five studies on life satisfaction and quality of peer connection found a positive association. In five studies, optimal peer relationship was found to be associated with happiness. A positive association between friendship quality and self-esteem in four out of five applicable studies. Friendship quality was found to be correlated with subjective well-being in all of three included studies focused on this area. The review demonstrates the paramount value of promoting healthy friendship to adolescents’ subjective well-being constructs. Interventions that aim to promote subjective wellbeing among adolescents should consider the development and maintenance of healthy friendships.

Keywords: adolescents, friendship quality, peer, wellbeing

Procedia PDF Downloads 113
2423 Radar on Bike: Coarse Classification based on Multi-Level Clustering for Cyclist Safety Enhancement

Authors: Asma Omri, Noureddine Benothman, Sofiane Sayahi, Fethi Tlili, Hichem Besbes

Abstract:

Cycling, a popular mode of transportation, can also be perilous due to cyclists' vulnerability to collisions with vehicles and obstacles. This paper presents an innovative cyclist safety system based on radar technology designed to offer real-time collision risk warnings to cyclists. The system incorporates a low-power radar sensor affixed to the bicycle and connected to a microcontroller. It leverages radar point cloud detections, a clustering algorithm, and a supervised classifier. These algorithms are optimized for efficiency to run on the TI’s AWR 1843 BOOST radar, utilizing a coarse classification approach distinguishing between cars, trucks, two-wheeled vehicles, and other objects. To enhance the performance of clustering techniques, we propose a 2-Level clustering approach. This approach builds on the state-of-the-art Density-based spatial clustering of applications with noise (DBSCAN). The objective is to first cluster objects based on their velocity, then refine the analysis by clustering based on position. The initial level identifies groups of objects with similar velocities and movement patterns. The subsequent level refines the analysis by considering the spatial distribution of these objects. The clusters obtained from the first level serve as input for the second level of clustering. Our proposed technique surpasses the classical DBSCAN algorithm in terms of geometrical metrics, including homogeneity, completeness, and V-score. Relevant cluster features are extracted and utilized to classify objects using an SVM classifier. Potential obstacles are identified based on their velocity and proximity to the cyclist. To optimize the system, we used the View of Delft dataset for hyperparameter selection and SVM classifier training. The system's performance was assessed using our collected dataset of radar point clouds synchronized with a camera on an Nvidia Jetson Nano board. The radar-based cyclist safety system is a practical solution that can be easily installed on any bicycle and connected to smartphones or other devices, offering real-time feedback and navigation assistance to cyclists. We conducted experiments to validate the system's feasibility, achieving an impressive 85% accuracy in the classification task. This system has the potential to significantly reduce the number of accidents involving cyclists and enhance their safety on the road.

Keywords: 2-level clustering, coarse classification, cyclist safety, warning system based on radar technology

Procedia PDF Downloads 85
2422 Joint Path and Push Planning among Moveable Obstacles

Authors: Victor Emeli, Akansel Cosgun

Abstract:

This paper explores the navigation among movable obstacles (NAMO) problem and proposes joint path and push planning: which path to take and in what direction the obstacles should be pushed at, given a start and goal position. We present a planning algorithm for selecting a path and the obstacles to be pushed, where a rapidly-exploring random tree (RRT)-based heuristic is employed to calculate a minimal collision path. When it is necessary to apply a pushing force to slide an obstacle out of the way, the planners leverage means-end analysis through a dynamic physics simulation to determine the sequence of linear pushes to clear the necessary space. Simulation experiments show that our approach finds solutions in higher clutter percentages (up to 49%) compared to the straight-line push planner (37%) and RRT without pushing (18%).

Keywords: motion planning, path planning, push planning, robot navigation

Procedia PDF Downloads 167
2421 Clinical Course and Prognosis of Cutaneous Manifestations of COVID-19: A Systematic Review of Reported Cases

Authors: Hilary Modir, Kyle Dutton, Michelle Swab, Shabnam Asghari

Abstract:

Since its emergence, the cutaneous manifestations of COVID-19 have been documented in the literature. However, the majority are case reports with significant limitations in appraisal quality, thus leaving the role of dermatological manifestations of COVID-19 erroneously underexplored. The primary aim of this review was to systematically examine clinical patterns of dermatological manifestations as reported in the literature. This study was designed as a systematic review of case reports. The inclusion criteria consisted of all published reports and articles regarding COVID-19 in English, from September 1st, 2019, until June 22nd, 2020. The population consisted of confirmed cases of COVID-19 with associated cutaneous signs and symptoms. Exclusion criteria included research in planning stages, protocols, book reviews, news articles, review studies, and policy analyses. With the collaboration of a librarian, a search strategy was created consisting of a mixture of keyword terms and controlled vocabulary. Electronic databases searched were MEDLINE via PubMed, EMBASE, CINAHL, Web of Science, LILACS, PsycINFO, WHO Global Literature on Coronavirus Disease, Cochrane Library, Campbell Collaboration, Prospero, WHO International Clinical Trials Registry Platform, Australian and New Zealand Clinical Trials Registry, U.S. Institutes of Health Ongoing Trials Register, AAD Registry, OSF preprints, SSRN, MedRxiV and BioRxiV. The study selection featured an initial pre-screening of titles and abstracts by one independent reviewer. Results were verified by re-examining a random sample of 1% of excluded articles. Eligible studies progressed for full-text review by two calibrated independent reviewers. Covidence was used to store and extract data, such as citation information and findings pertaining to COVID-19 and cutaneous signs and symptoms. Data analysis and summarization methodology reflect the framework proposed by PRISMA and recommendations set out by Cochrane and Joanna Brigg’s Institute for conducting systematic reviews. The Oxford Centre for Evidence-Based Medicine’s level of evidence was used to appraise the quality of individual studies. The literature search revealed a total of 1221 articles. After the abstract and full-text screening, only 95 studies met the eligibility criteria, proceeding to data extraction. Studies were divided into 58% case reports and 42% series. A total of 833 manifestations were reported in 723 confirmed COVID-19 cases. The most frequent lesions were 23% maculopapular, 15% urticarial and 13% pseudo-chilblains, with 46% of lesions reporting pruritus, 16% erythema, 14% pain, 12% burning sensation, and 4% edema. The most common lesion locations were 20% trunk, 19.5% lower limbs, and 17.7% upper limbs. The time to resolution of lesions was between one and twenty-one days. In conclusion, over half of the reported cutaneous presentations in COVID-19 positive patients were maculopapular, urticarial and pseudo-chilblains, with the majority of lesions distributed to the extremities and trunk. As this review’s sample size only contained COVID-19 confirmed cases with skin presentations, it becomes difficult to deduce the direct relationship between skin findings and COVID-19. However, it can be correlated that acute onset of skin lesions, such as chilblains-like, may be associated with or may warrant consideration of COVID-19 as part of the differential diagnosis.

Keywords: COVID-19, cutaneous manifestations, cutaneous signs, general dermatology, medical dermatology, Sars-Cov-2, skin and infectious disease, skin findings, skin manifestations

Procedia PDF Downloads 182
2420 Identification of Potential Predictive Biomarkers for Early Diagnosis of Preeclampsia Growth Factors to microRNAs

Authors: Sadia Munir

Abstract:

Preeclampsia is the contributor to the worldwide maternal mortality of approximately 100,000 deaths a year. It complicates about 10% of all pregnancies and is the first cause of maternal admission to intensive care units. Predicting preeclampsia is a major challenge in obstetrics. More importantly, no major progress has been achieved in the treatment of preeclampsia. As placenta is the main cause of the disease, the only way to treat the disease is to extract placental and deliver the baby. In developed countries, the cost of an average case of preeclampsia is estimated at £9000. Interestingly, preeclampsia may have an impact on the health of mother or infant, beyond the pregnancy. We performed a systematic search of PubMed including the combination of terms such as preeclampsia, biomarkers, treatment, hypoxia, inflammation, oxidative stress, vascular endothelial growth factor A, activin A, inhibin A, placental growth factor, transforming growth factor β-1, Nodal, placenta, trophoblast cells, microRNAs. In this review, we have summarized current knowledge on the identification of potential biomarkers for the diagnosis of preeclampsia. Although these studies show promising data in early diagnosis of preeclampsia, the current value of these factors as biomarkers, for the precise prediction of preeclampsia, has its limitation. Therefore, future studies need to be done to support some of the very promising and interesting data to develop affordable and widely available tests for early detection and treatment of preeclampsia.

Keywords: activin, biomarkers, growth factors, miroRNA

Procedia PDF Downloads 443
2419 Path Planning for Collision Detection between two Polyhedra

Authors: M. Khouil, N. Saber, M. Mestari

Abstract:

This study aimed to propose, a different architecture of a Path Planning using the NECMOP. where several nonlinear objective functions must be optimized in a conflicting situation. The ability to detect and avoid collision is very important for mobile intelligent machines. However, many artificial vision systems are not yet able to quickly and cheaply extract the wealth information. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons linear and threshold logic, which simplified the actual implementation of all the networks proposed. This article represents a comprehensive algorithm that determine through the AMAXNET network a measure (a mini-maximum point) in a fixed time, which allows us to detect the presence of a potential collision.

Keywords: path planning, collision detection, convex polyhedron, neural network

Procedia PDF Downloads 439
2418 Proposed Terminal Device for End-to-End Secure SMS in Cellular Networks

Authors: Neetesh Saxena, Narendra S. Chaudhari

Abstract:

Nowadays, SMS is a very popular mobile service and even the poor, illiterate people and those living in rural areas use SMS service very efficiently. Although many mobile operators have already started 3G and 4G services, 2G services are still being used by the people in many countries. In 2G (GSM), only encryption provided is between the MS and the BTS, there is no end-to-end encryption available. Sometimes we all need to send some confidential message to other person containing bank account number, some password, financial details, etc. Normally, a message is sent in plain text only to the recipient and it is not an acceptable standard for transmitting such important and confidential information. Authors propose an end-to-end encryption approach by proposing a terminal for sending/receiving a secure message. An asymmetric key exchange algorithm is used in order to transmit secret shared key securely to the recipient. The proposed approach with terminal device provides authentication, confidentiality, integrity and non-repudiation.

Keywords: AES, DES, Diffie-Hellman, ECDH, A5, SMS

Procedia PDF Downloads 419
2417 A Systematic Review Emotion Regulation through Music in Children, Adults, and Elderly

Authors: Fabiana Ribeiro, Ana Moreno, Antonio Oliveira, Patricia Oliveira-Silva

Abstract:

Music is present in our daily lives, and to our knowledge music is often used to change the emotions in the listeners. For this reason, the objective of this study was to explore and synthesize results examining the use and effects of music on emotion regulation in children, adults, and elderly, and clarify if the music is effective across ages to promote emotion regulation. A literature search was conducted using ISI Web of Knowledge, Pubmed, PsycINFO, and Scopus, inclusion criteria comprised children, adolescents, young, and old adults, including health population. Articles applying musical intervention, specifically musical listening, and assessing the emotion regulation directly through reports or neurophysiological measures were included in this review. Results showed age differences in the function of musical listening; initially, adolescents revealed age increments in emotional listening compared to children, and young adults in comparison to older adults, in which the first use music aiming to emotion regulation and social connection, while older adults also utilize music as emotion regulation searching for personal growth. Moreover, some of the studies showed that personal characteristics also would determine the efficiency of the emotion regulation strategy. In conclusion, it was observed that music could beneficiate all ages investigated, however, this review detected a necessity to develop adequate paradigms to explore the use of music for emotion regulation.

Keywords: music, emotion, regulation, musical listening

Procedia PDF Downloads 172
2416 The Use of YouTube and Its Relation to Changing the Kuwaiti Children’s Social Values from Parents’ Perspectives: Field Study

Authors: Laila Alkhayat

Abstract:

In this study, the researcher explored the positive and negative effects of children watching YouTube on changing social values from the perspective of parents in Kuwait. This study also explored whether any correlation exists between changed values from watching YouTube and the following variables: relationship with a child, social situation, school level, gender, and age. The researcher collected data from 286 questionnaires distributed randomly to parents in Kuwait. The results of the study show that parents face many disadvantages when dealing with children watching YouTube, such as children spending too much time in front of screens, inability to organize bedtime, and children’s social isolation. However, the researcher found some positives come from watching YouTube, such as learning new information, enabling children to search for new information, and introducing children to the culture of their society and other cultures around them. Moreover, this study found that boys are more likely to have negative viewing habits than girls. Given the results, this study shows that the biggest impact on social values from children watching YouTube is that they are preoccupied with watching YouTube and they waste time, which makes them feel disturbed, and this affects the value of time management and delays children’s sleeping times. This study concludes that watching YouTube simultaneously has negative and positive effects on changing social values, but it plays a negative role in changing social values of children from the parents’ perspective.

Keywords: YouTube, children, social value, social media effects

Procedia PDF Downloads 158
2415 An Online Priority-Configuration Algorithm for Obstacle Avoidance of the Unmanned Air Vehicles Swarm

Authors: Lihua Zhu, Jianfeng Du, Yu Wang, Zhiqiang Wu

Abstract:

Collision avoidance problems of a swarm of unmanned air vehicles (UAVs) flying in an obstacle-laden environment are investigated in this paper. Given that the UAV swarm needs to adapt to the obstacle distribution in dynamic operation, a priority configuration is designed to guide the UAVs to pass through the obstacles in turn. Based on the collision cone approach and the prediction of the collision time, a collision evaluation model is established to judge the urgency of the imminent collision of each UAV, and the evaluation result is used to assign the priority of each UAV to further instruct them going through the obstacles in descending order. At last, the simulation results provide the promising validation in terms of the efficiency and scalability of the proposed approach.

Keywords: UAV swarm, collision avoidance, complex environment, online priority design

Procedia PDF Downloads 216
2414 Secure Transfer of Medical Images Using Hybrid Encryption Authentication, Confidentiality, Integrity

Authors: Boukhatem Mohammed Belkaid, Lahdir Mourad

Abstract:

In this paper, we propose a new encryption system for security issues medical images. The hybrid encryption scheme is based on AES and RSA algorithms to validate the three security services are authentication, integrity, and confidentiality. Privacy is ensured by AES, authenticity is ensured by the RSA algorithm. Integrity is assured by the basic function of the correlation between adjacent pixels. Our system generates a unique password every new session of encryption, that will be used to encrypt each frame of the medical image basis to strengthen and ensure his safety. Several metrics have been used for various tests of our analysis. For the integrity test, we noticed the efficiencies of our system and how the imprint cryptographic changes at reception if a change affects the image in the transmission channel.

Keywords: AES, RSA, integrity, confidentiality, authentication, medical images, encryption, decryption, key, correlation

Procedia PDF Downloads 541
2413 A Framework for Automating Software Testing: A Practical Approach

Authors: Ana Paula Cavalcanti Furtado, Silvio Meira

Abstract:

Context: The quality of a software product can be directly influenced by the quality of its development process. Therefore, immature or ad-hoc test processes are means that are unsuited for introducing systematic test automation, and should not be used to support improving the quality of software. Objective: In order to conduct this research, the benefits and limitations of and gaps in automating software testing had to be assessed in order to identify the best practices and to propose a strategy for systematically introducing test automation into software development processes. Method: To conduct this research, an exploratory bibliographical survey was undertaken so as to underpin the search by theory and the recent literature. After defining the proposal, two case studies were conducted so as to analyze the proposal in a real-world environment. In addition, the proposal was also assessed through a focus group with specialists in the field. Results: The proposal of a Framework for Automating Software Testing (FAST), which is a theoretical framework consisting of a hierarchical structure to introduce test automation. Conclusion: The findings of this research showed that the absence of systematic processes is one of the factors that hinder the introduction of test automation. Based on the results of the case studies, FAST can be considered as a satisfactory alternative that lies within the scope of introducing and maintaining test automation in software development.

Keywords: software process improvement, software quality, software testing, test automation

Procedia PDF Downloads 146
2412 Stabilization of the Bernoulli-Euler Plate Equation: Numerical Analysis

Authors: Carla E. O. de Moraes, Gladson O. Antunes, Mauro A. Rincon

Abstract:

The aim of this paper is to study the internal stabilization of the Bernoulli-Euler equation numerically. For this, we consider a square plate subjected to a feedback/damping force distributed only in a subdomain. An algorithm for obtaining an approximate solution to this problem was proposed and implemented. The numerical method used was the Finite Difference Method. Numerical simulations were performed and showed the behavior of the solution, confirming the theoretical results that have already been proved in the literature. In addition, we studied the validation of the numerical scheme proposed, followed by an analysis of the numerical error; and we conducted a study on the decay of the energy associated.

Keywords: Bernoulli-Euler plate equation, numerical simulations, stability, energy decay, finite difference method

Procedia PDF Downloads 417
2411 A Scoping Review to Explore the Policies and Procedures Addressing the Implementation of Inclusive Education in BRICS Countries

Authors: Bronwyn S. Mthimunye, Athena S. Pedro, Nicolette V. Roman

Abstract:

Inclusive education is a global concern, in the context of Brazil, Russia, India, China, and South Africa. These countries are all striving for inclusive education, as there are many children excluded from formal schooling. The need for inclusive education is imperative, given the increase in special needs diagnoses. Many children confronted with special needs are still not able to exercise their basic right to education. The aim of conducting this scoping review was to explore the policies and procedures addressing the implementation of inclusive education in Brazil, Russia, India, China, and South Africa. The studies included were published between 2006-2016 and located in Academic Search Complete, ERIC, Medline, PsycARTICLES, JSTOR, and SAGE Journals. Seven articles were included in which all of the articles reported on inclusive education and the status of implementation. The findings identified many challenges faced by Brazil, Russia, India, China, and South Africa that affect the implementation of policies and programmes. Challenges such as poor planning, resource-constrained communities, lack of professionals in schools, and the need for adequate teacher training were identified. Brazil, Russia, India, China, and South Africa are faced with many social and economic challenges, which serves as a barrier to the implementation of inclusive education.

Keywords: special needs, inclusion, education, scoping review

Procedia PDF Downloads 300
2410 Block Matching Based Stereo Correspondence for Depth Calculation

Authors: G. Balakrishnan

Abstract:

Stereo Correspondence plays a major role in estimation of distance of an object from the stereo camera pair for various applications. In this paper, a stereo correspondence algorithm based on block-matching technique is presented. Initially, an energy matrix is calculated for every disparity obtained using modified Sum of Absolute Difference (SAD). Higher energy matrix errors are removed by using threshold value in order to reduce the mismatch errors. A smoothening filter is applied to eliminate unreliable disparity estimate across the object boundaries. The purpose is to improve the reliability of calculation of disparity map. The experimental results obtained shows that the final depth map produce better results and can be used to all the applications using stereo cameras.

Keywords: stereo matching, filters, energy matrix, disparity

Procedia PDF Downloads 216
2409 Fuzzy Based Stabilizer Control System for Quad-Rotor

Authors: B. G. Sampath, K. C. R. Perera, W. A. S. I. Wijesuriya, V. P. C. Dassanayake

Abstract:

In this paper the design, development and testing of a stabilizer control system for a Quad-rotor is presented which is focused on the maneuverability. The mechanical design is performed along with the design of the controlling algorithm which is devised using fuzzy logic controller. The inputs for the system are the angular positions and angular rates of the Quad-Rotor relative to three axes. Then the output data is filtered from an accelerometer and a gyroscope through a Kalman filter. In the development of the stability controlling system Mandani Fuzzy Model is incorporated. The results prove that the fuzzy based stabilizer control system is superior in high dynamic disturbances compared to the traditional systems which use PID integrated stabilizer control systems.

Keywords: fuzzy stabilizer, maneuverability, PID, quad-rotor

Procedia PDF Downloads 325
2408 Covid Medical Imaging Trial: Utilising Artificial Intelligence to Identify Changes on Chest X-Ray of COVID

Authors: Leonard Tiong, Sonit Singh, Kevin Ho Shon, Sarah Lewis

Abstract:

Investigation into the use of artificial intelligence in radiology continues to develop at a rapid rate. During the coronavirus pandemic, the combination of an exponential increase in chest x-rays and unpredictable staff shortages resulted in a huge strain on the department's workload. There is a World Health Organisation estimate that two-thirds of the global population does not have access to diagnostic radiology. Therefore, there could be demand for a program that could detect acute changes in imaging compatible with infection to assist with screening. We generated a conventional neural network and tested its efficacy in recognizing changes compatible with coronavirus infection. Following ethics approval, a deidentified set of 77 normal and 77 abnormal chest x-rays in patients with confirmed coronavirus infection were used to generate an algorithm that could train, validate and then test itself. DICOM and PNG image formats were selected due to their lossless file format. The model was trained with 100 images (50 positive, 50 negative), validated against 28 samples (14 positive, 14 negative), and tested against 26 samples (13 positive, 13 negative). The initial training of the model involved training a conventional neural network in what constituted a normal study and changes on the x-rays compatible with coronavirus infection. The weightings were then modified, and the model was executed again. The training samples were in batch sizes of 8 and underwent 25 epochs of training. The results trended towards an 85.71% true positive/true negative detection rate and an area under the curve trending towards 0.95, indicating approximately 95% accuracy in detecting changes on chest X-rays compatible with coronavirus infection. Study limitations include access to only a small dataset and no specificity in the diagnosis. Following a discussion with our programmer, there are areas where modifications in the weighting of the algorithm can be made in order to improve the detection rates. Given the high detection rate of the program, and the potential ease of implementation, this would be effective in assisting staff that is not trained in radiology in detecting otherwise subtle changes that might not be appreciated on imaging. Limitations include the lack of a differential diagnosis and application of the appropriate clinical history, although this may be less of a problem in day-to-day clinical practice. It is nonetheless our belief that implementing this program and widening its scope to detecting multiple pathologies such as lung masses will greatly assist both the radiology department and our colleagues in increasing workflow and detection rate.

Keywords: artificial intelligence, COVID, neural network, machine learning

Procedia PDF Downloads 95
2407 Cross-Comparison between Land Surface Temperature from Polar and Geostationary Satellite over Heterogenous Landscape: A Case Study in Hong Kong

Authors: Ibrahim A. Adeniran, Rui F. Zhu, Man S. Wong

Abstract:

Owing to the insufficiency in the spatial representativeness and continuity of in situ temperature measurements from weather stations (WS), the use of temperature measurement from WS for large-range diurnal analysis in heterogenous landscapes has been limited. This has made the accurate estimation of land surface temperature (LST) from remotely sensed data more crucial. Moreover, the study of dynamic interaction between the atmosphere and the physical surface of the Earth could be enhanced at both annual and diurnal scales by using optimal LST data derived from satellite sensors. The tradeoff between the spatial and temporal resolution of LSTs from satellite’s thermal infrared sensors (TIRS) has, however, been a major challenge, especially when high spatiotemporal LST data are recommended. It is well-known from existing literature that polar satellites have the advantage of high spatial resolution, while geostationary satellites have a high temporal resolution. Hence, this study is aimed at designing a framework for the cross-comparison of LST data from polar and geostationary satellites in a heterogeneous landscape. This could help to understand the relationship between the LST estimates from the two satellites and, consequently, their integration in diurnal LST analysis. Landsat-8 satellite data will be used as the representative of the polar satellite due to the availability of its long-term series, while the Himawari-8 satellite will be used as the data source for the geostationary satellite because of its improved TIRS. For the study area, Hong Kong Special Administrative Region (HK SAR) will be selected; this is due to the heterogeneity in the landscape of the region. LST data will be retrieved from both satellites using the Split window algorithm (SWA), and the resulting data will be validated by comparing satellite-derived LST data with temperature data from automatic WS in HK SAR. The LST data from the satellite data will then be separated based on the land use classification in HK SAR using the Global Land Cover by National Mapping Organization version3 (GLCNMO 2013) data. The relationship between LST data from Landsat-8 and Himawari-8 will then be investigated based on the land-use class and over different seasons of the year in order to account for seasonal variation in their relationship. The resulting relationship will be spatially and statistically analyzed and graphically visualized for detailed interpretation. Findings from this study will reveal the relationship between the two satellite data based on the land use classification within the study area and the seasons of the year. While the information provided by this study will help in the optimal combination of LST data from Polar (Landsat-8) and geostationary (Himawari-8) satellites, it will also serve as a roadmap in the annual and diurnal urban heat (UHI) analysis in Hong Kong SAR.

Keywords: automatic weather station, Himawari-8, Landsat-8, land surface temperature, land use classification, split window algorithm, urban heat island

Procedia PDF Downloads 76
2406 The Effect of Physical Therapy on Triceps Surae Myofascial Trigger Point

Authors: M. Simon, O. Peillon, R. Seijas, P. Alvarez, A. Pérez-Bellmunt

Abstract:

Introduction: Myofascial trigger points (MTrPs) are defined as hyperirritable areas within taut bands of skeletal muscle and classified as either active or latent. Although they could be present in any muscle, the triceps surae is one of the most affected of the lower limb. The aim of this study was described which treatments are more used and their principal results. Study design: We performed a systematic literature search using strategies for the concepts of “Trigger Points and Gastrocnemius and Soleus not Trapezius” in Medline. Articles were screened by authors and included if they contained a rehabilitation intervention of MTrPs in healthy subjects or patients. Results: The treatments used were mostly invasive interventions and only a small part of the studies used non-invasive treatments. The methodology (time o type of intervention, characteristics of treatment, etc.) used in these treatments were frequently undefined. Overall, examination variables varied significantly among the included studies, but they were improving their parameters when the MTrPs were treated. Conclusions: There are a high variety of physical therapy treatments to improve the symptomatology of MTrPs when affect triceps surae muscle. Even so, not a single study analyzing the skeletal muscle contractile parameters (as maximal displacement or delay time) change with MTrPS therapy has been found. The treatments have to better specificity the methodology used in the futures investigation.

Keywords: fascia, myofascial trigger points, physical therapy, triceps surae

Procedia PDF Downloads 150
2405 The Sensitization Profile of Children Allergic to IgE-mediated Cow's Milk Proteins

Authors: Gadiri Sabiha

Abstract:

Introduction : IgE-dependent cow's milk protein allergy (APLV) is one of the most common allergies in children and is one of the three most common allergies observed in children under 6 years of age. Its natural evolution is most often towards healing. The objective is to determine the sensitization profile of patients allergic to cow's milk (VL). Material and method :A retrospective study carried out on a pediatric population (age < 12 years) over a period of four years (2018-2021) in the context of a suspected food allergy to cow's milk proteins carried out on 121 children aged between 8 months -12 years The search for specific IgE was carried out by immunodot (EUROLINE Pediatric; EUROIMMUN) test which allows a semi-quantitative determination of specific IgE. Results 36 patients (29.7%) had a cow's milk protein allergy (ALPV) with a slight female predominance (58.33% girls vs 41.66% boys) The main clinical signs were: acute diarrhoea; vomiting; Intense abdominal pain, and cutaneous signs (pruritus/urticaria) with respective frequencies of 72%; 58%; 44% and 19%. The 3 major and specific VL allergens identified were beta-lactoglobulin 59% caseins 51% and alpha-lactalbumin 29.7%, The profile of sensitization to LV varies according to age, in infants before 1 year of anti-casein, IgE are predominant 83.3%, followed by beta-lactoglobulin 66.66% and alpha-lactolbumin 50% Conclusion CMPA is a frequent pathology which ranks among the three most common food allergies in children. This is the first to appear, most often starting in infants under 6 months old.

Keywords: specific Ige, food allergy, cow 's milk, child

Procedia PDF Downloads 72
2404 Simultaneous Targeting of MYD88 and Nur77 as an Effective Approach for the Treatment of Inflammatory Diseases

Authors: Uzma Saqib, Mirza S. Baig

Abstract:

Myeloid differentiation primary response protein 88 (MYD88) has long been considered a central player in the inflammatory pathway. Recent studies clearly suggest that it is an important therapeutic target in inflammation. On the other hand, a recent study on the interaction between the orphan nuclear receptor (Nur77) and p38α, leading to increased lipopolysaccharide-induced hyperinflammatory response, suggests this binary complex as a therapeutic target. In this study, we have designed inhibitors that can inhibit both MYD88 and Nur77 at the same time. Since both MYD88 and Nur77 are an integral part of the pathways involving lipopolysaccharide-induced activation of NF-κB-mediated inflammation, we tried to target both proteins with the same library in order to retrieve compounds having dual inhibitory properties. To perform this, we developed a homodimeric model of MYD88 and, along with the crystal structure of Nur77, screened a virtual library of compounds from the traditional Chinese medicine database containing ~61,000 compounds. We analyzed the resulting hits for their efficacy for dual binding and probed them for developing a common pharmacophore model that could be used as a prototype to screen compound libraries as well as to guide combinatorial library design to search for ideal dual-target inhibitors. Thus, our study explores the identification of novel leads having dual inhibiting effects due to binding to both MYD88 and Nur77 targets.

Keywords: drug design, Nur77, MYD88, inflammation

Procedia PDF Downloads 306