Search results for: the health belief model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24772

Search results for: the health belief model

21922 Health Behaviours of Patients Qualified for Bariatric Surgery

Authors: A. Gazdzinska, P. Jagielski, E. Kaniewska, S. P. Gazdzinski, M. Wylezol

Abstract:

Background: In the multi-factor etiology of obesity, an increasing degree of importance is attributed to behavioral factors. Lifestyle and health-oriented behaviors heavily influence the treatment of multiple diseases, including obesity. However, only a few studies evaluated health-related behaviors exhibited by patients qualified for bariatric surgery. None of them was performed in Polish population. Aim: Assessment of health behaviors of obese patients according to the degree of mood disorders. Method: The study involved 93 patients (66 females) who were qualified for bariatric surgery in the Department of Surgery of the Military Institute of Aviation Medicine in Warsaw. Diagnostic instrument was the Juczynski’s Inventory of Health Behavior (HBI), which evaluates health behavior in four categories, i.e. proper nutrition habits (PNH), preventive behavior (PH), health practices (HP) and positive mental attitude (PMA). The average HBI falls in the range between 24 and 120 points, for each category of health behaviors fall between 1 and 5 (higher score means higher severity declared healthy behaviors). The depressive symptoms in patients were assessed with Beck Depression Inventory (BDI). All analyses were conducted using STATISTICA 12. Results: The average age was 44.2 ± 11.5 years, mean BMI was 44.3 ± 10.5 kg/m2 and 46.8 ± 7.6 kg/m2, in females and males respectively. According to BDI, 32% patients had mild level of depression, 10% moderate and 14% severe depression. BDI scores were not different between females and males. Low results with regard to the health behaviors declared were obtained by 35.5 % of patients, medium by 44.0%, while high ones by only 20.5%. On average, patients gained 3.28 points in PNH, 3.37 points in PH, 3.29 points in HP, while 3.42 in the PMA category, showing average intensity of these behaviors. These health behaviors were practiced significantly more often by women (p = 0.04). The average HBI was 80.2; with average score of 81.5 for females and 76.6 for males, respectively (p = 0.03). Women were better in the PNH category (p = 0.02). A positive correlation was found between age and all categories of health behaviors, in particular PNH (R = 0.38; p = 0.001), PH (R = 0.26; p = 0.01), HP (R = 0.27; p = 0.01) and PMA (R = 0.24; p = 0.02), independent of gender. The severity of depression had a significant impact only on the behaviors associated with proper eating habits, which saw a negative correlation between BDI scores and the PNH (R = -0.21; p = 0.04). Conclusions: Majority of morbidly obese patients qualified for bariatric surgery obtained low to average scores in health behavior questionnaire. However, these results are similar in comparison with the Polish adult population. In accordance to these results, it seems that healthy behaviors, among them eating behaviors, do not appear to be a cause of obesity epidemic or they might be acquired when the disease is already underway. Female gender and age had a positive effect, and depression had a negative effect on the level of health behaviors among patients qualified for bariatric surgery.

Keywords: depression, habits, health behaviours, obesity

Procedia PDF Downloads 286
21921 A Comprehensive Finite Element Model for Incremental Launching of Bridges: Optimizing Construction and Design

Authors: Mohammad Bagher Anvari, Arman Shojaei

Abstract:

Incremental launching, a widely adopted bridge erection technique, offers numerous advantages for bridge designers. However, accurately simulating and modeling the dynamic behavior of the bridge during each step of the launching process proves to be tedious and time-consuming. The perpetual variation of internal forces within the deck during construction stages adds complexity, exacerbated further by considerations of other load cases, such as support settlements and temperature effects. As a result, there is an urgent need for a reliable, simple, economical, and fast algorithmic solution to model bridge construction stages effectively. This paper presents a novel Finite Element (FE) model that focuses on studying the static behavior of bridges during the launching process. Additionally, a simple method is introduced to normalize all quantities in the problem. The new FE model overcomes the limitations of previous models, enabling the simulation of all stages of launching, which conventional models fail to achieve due to underlying assumptions. By leveraging the results obtained from the new FE model, this study proposes solutions to improve the accuracy of conventional models, particularly for the initial stages of bridge construction that have been neglected in previous research. The research highlights the critical role played by the first span of the bridge during the initial stages, a factor often overlooked in existing studies. Furthermore, a new and simplified model termed the "semi-infinite beam" model, is developed to address this oversight. By utilizing this model alongside a simple optimization approach, optimal values for launching nose specifications are derived. The practical applications of this study extend to optimizing the nose-deck system of incrementally launched bridges, providing valuable insights for practical usage. In conclusion, this paper introduces a comprehensive Finite Element model for studying the static behavior of bridges during incremental launching. The proposed model addresses limitations found in previous approaches and offers practical solutions to enhance accuracy. The study emphasizes the importance of considering the initial stages and introduces the "semi-infinite beam" model. Through the developed model and optimization approach, optimal specifications for launching nose configurations are determined. This research holds significant practical implications and contributes to the optimization of incrementally launched bridges, benefiting both the construction industry and bridge designers.

Keywords: incremental launching, bridge construction, finite element model, optimization

Procedia PDF Downloads 102
21920 Three-Dimensional Numerical Investigation for Reinforced Concrete Slabs with Opening

Authors: Abdelrahman Elsehsah, Hany Madkour, Khalid Farah

Abstract:

This article presents a 3-D modified non-linear elastic model in the strain space. The Helmholtz free energy function is introduced with the existence of a dissipation potential surface in the space of thermodynamic conjugate forces. The constitutive equation and the damage evolution were derived as well. The modified damage has been examined to model the nonlinear behavior of reinforced concrete (RC) slabs with an opening. A parametric study with RC was carried out to investigate the impact of different factors on the behavior of RC slabs. These factors are the opening area, the opening shape, the place of opening, and the thickness of the slabs. And the numerical results have been compared with the experimental data from literature. Finally, the model showed its ability to be applied to the structural analysis of RC slabs.

Keywords: damage mechanics, 3-D numerical analysis, RC, slab with opening

Procedia PDF Downloads 174
21919 Assessment of Implementation of the Health and Safety Contents of the Nigerian Factories Act by Small and Medium Scale Industries in Anambra State, Nigeria

Authors: Vivian Uchechi Okpala

Abstract:

Background: Millions of workers die every year as a result of occupational hazards, accidents and injuries, which are as a result of non- compliance to the laws or legislations guiding the health, safety and welfare of workers in the industries. This and many more lead to the assessment of implementation of the health and safety contents of the Nigerian Factories Act (NFA) by small and medium scale industries in Anambra State. Objectives: The study is aimed at achieving the following specific objectives; to assess the extent of implementation of Part-II Health and Part -III Safety (General Provisions), implementation of Part II Health and Part -III Safety (General Provisions Nigerian Factories Acts based on the age of the industries, locations of the industries and level of education of the workers of the small and medium scale industries Methods: the research design that was used for this study was descriptive survey research design, Area of this study was Anambra state, The population for this study comprised 180 chairmen/presidents of union workers of manufacturing industries in Anambra State, The instrument used for this study was structured questionnaire titled ‘assessment of implementation of NFA health and safety contents by small and medium scale industries, results: From the analysis, the following findings were made: Results: The medium scale industries implemented the Part-II Health and Part III Safety (General provisions) better than the small scale industries in Anambra state, the age of the industries, location of the industries and the level of education of the workers in the industries significantly influenced the implementation of the Part III Safety (General Provisions) of NFA, the location of the industries significantly influenced the implementation of the Part II-Health (General Provisions) of NFA. Conclusion: there was generally a certain level of implementation of the factories Act, there is need for more improvement, strict inspection by the regulatory agencies. Implications of the study were highlighted and several suggestions for further studies were made. Based on the findings, several recommendations were made including that the Ministry of Labour and Productivity and the Ministry of Health should strengthen planned information, strict policies to sanction the offenders. Keywords: Occupational Health and Safety, Nigerian Factories Act

Keywords: occupational health and safety, Nigerian factories act, workers, welfare

Procedia PDF Downloads 140
21918 A Strength Weaknesses Opportunities and Threats Analysis of Socialisation Externalisation Combination and Internalisation Modes in Knowledge Management Practice: A Systematic Review of Literature

Authors: Aderonke Olaitan Adesina

Abstract:

Background: The paradigm shift to knowledge, as the key to organizational innovation and competitive advantage, has made the management of knowledge resources in organizations a mandate. A key component of the knowledge management (KM) cycle is knowledge creation, which is researched to be the result of the interaction between explicit and tacit knowledge. An effective knowledge creation process requires the use of the right model. The SECI (Socialisation, Externalisation, Combination, and Internalisation) model, proposed in 1995, is attested to be a preferred model of choice for knowledge creation activities. The model has, however, been criticized by researchers, who raise their concern, especially about its sequential nature. Therefore, this paper reviews extant literature on the practical application of each mode of the SECI model, from 1995 to date, with a view to ascertaining the relevance in modern-day KM practice. The study will establish the trends of use, with regards to the location and industry of use, and the interconnectedness of the modes. The main research question is, for organizational knowledge creation activities, is the SECI model indeed linear and sequential? In other words, does the model need to be reviewed in today’s KM practice? The review will generate a compendium of the usage of the SECI modes and propose a framework of use, based on the strength weaknesses opportunities and threats (SWOT) findings of the study. Method: This study will employ the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology to investigate the usage and SWOT of the modes, in order to ascertain the success, or otherwise, of the sequential application of the modes in practice from 1995 to 2019. To achieve the purpose, four databases will be explored to search for open access, peer-reviewed articles from 1995 to 2019. The year 1995 is chosen as the baseline because it was the year the first paper on the SECI model was published. The study will appraise relevant peer-reviewed articles under the search terms: SECI (or its synonym, knowledge creation theory), socialization, externalization, combination, and internalization in the title, abstract, or keywords list. This review will include only empirical studies of knowledge management initiatives in which the SECI model and its modes were used. Findings: It is expected that the study will highlight the practical relevance of each mode of the SECI model, the linearity or not of the model, the SWOT in each mode. Concluding Statement: Organisations can, from the analysis, determine the modes of emphasis for their knowledge creation activities. It is expected that the study will support decision making in the choice of the SECI model as a strategy for the management of organizational knowledge resources, and in appropriating the SECI model, or its remodeled version, as a theoretical framework in future KM research.

Keywords: combination, externalisation, internalisation, knowledge management, SECI model, socialisation

Procedia PDF Downloads 354
21917 Agent/Group/Role Organizational Model to Simulate an Industrial Control System

Authors: Noureddine Seddari, Mohamed Belaoued, Salah Bougueroua

Abstract:

The modeling of complex systems is generally based on the decomposition of their components into sub-systems easier to handle. This division has to be made in a methodical way. In this paper, we introduce an industrial control system modeling and simulation based on the Multi-Agent System (MAS) methodology AALAADIN and more particularly the underlying conceptual model Agent/Group/Role (AGR). Indeed, in this division using AGR model, the overall system is decomposed into sub-systems in order to improve the understanding of regulation and control systems, and to simplify the implementation of the obtained agents and their groups, which are implemented using the Multi-Agents Development KIT (MAD-KIT) platform. This approach appears to us to be the most appropriate for modeling of this type of systems because, due to the use of MAS, it is possible to model real systems in which very complex behaviors emerge from relatively simple and local interactions between many different individuals, therefore a MAS is well adapted to describe a system from the standpoint of the activity of its components, that is to say when the behavior of the individuals is complex (difficult to describe with equations). The main aim of this approach is the take advantage of the performance, the scalability and the robustness that are intuitively provided by MAS.

Keywords: complex systems, modeling and simulation, industrial control system, MAS, AALAADIN, AGR, MAD-KIT

Procedia PDF Downloads 240
21916 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh

Authors: S. M. Anowarul Haque, Md. Asiful Islam

Abstract:

Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.

Keywords: load forecasting, artificial neural network, particle swarm optimization

Procedia PDF Downloads 171
21915 A Process Model for Online Trip Reservation System

Authors: Sh. Wafa, M. Alanoud, S. Liyakathunisa

Abstract:

Online booking for a trip or hotel has become an indispensable traveling tool today, people tend to be more interested in selecting air flight travel as their first choice when going for a long trip. People's shopping behavior has greatly changed by the advent of social network. Traditional ticket booking methods are considered as outdated with the advancement in tools and technology. Web based booking framework is an 'absolute necessity to have' for any visit or movement business that is investing heaps of energy noting telephone calls, sending messages or considering employing more staff. In this paper, we propose a process model for online trip reservation for our designed web application. Our proposed system will be highly beneficial and helps in reduction in time and cost for customers.

Keywords: trip, hotel, reservation, process model, time, cost, web app

Procedia PDF Downloads 214
21914 Effect of White Roofing on Refrigerated Buildings

Authors: Samuel Matylewicz, K. W. Goossen

Abstract:

The deployment of white or cool (high albedo) roofing is a common energy savings recommendation for a variety of buildings all over the world. Here, the effect of a white roof on the energy savings of an ice rink facility in the northeastern US is determined by measuring the effect of solar irradiance on the consumption of the rink's ice refrigeration system. The consumption of the refrigeration system was logged over a year, along with multiple weather vectors, and a statistical model was applied. The experimental model indicates that the expected savings of replacing the existing grey roof with a white roof on the consumption of the refrigeration system is only 4.7 %. This overall result of the statistical model is confirmed with isolated instances of otherwise similar weather days, but cloudy vs. sunny, where there was no measurable difference in refrigeration consumption up to the noise in the local data, which was a few percent. This compares with a simple theoretical calculation that indicates 30% savings. The difference is attributed to a lack of convective cooling of the roof in the theoretical model. The best experimental model shows a relative effect of the weather vectors dry bulb temperature, solar irradiance, wind speed, and relative humidity on refrigeration consumption of 1, 0.026, 0.163, and -0.056, respectively. This result can have an impact on decisions to apply white roofing to refrigerated buildings in general.

Keywords: cool roofs, solar cooling load, refrigerated buildings, energy-efficient building envelopes

Procedia PDF Downloads 129
21913 Optimizing Telehealth Internet of Things Integration: A Sustainable Approach through Fog and Cloud Computing Platforms for Energy Efficiency

Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo

Abstract:

The swift proliferation of telehealth Internet of Things (IoT) devices has sparked concerns regarding energy consumption and the need for streamlined data processing. This paper presents an energy-efficient model that integrates telehealth IoT devices into a platform based on fog and cloud computing. This integrated system provides a sustainable and robust solution to address the challenges. Our model strategically utilizes fog computing as a localized data processing layer and leverages cloud computing for resource-intensive tasks, resulting in a significant reduction in overall energy consumption. The incorporation of adaptive energy-saving strategies further enhances the efficiency of our approach. Simulation analysis validates the effectiveness of our model in improving energy efficiency for telehealth IoT systems, particularly when integrated with localized fog nodes and both private and public cloud infrastructures. Subsequent research endeavors will concentrate on refining the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability across various healthcare and industry sectors.

Keywords: energy-efficient, fog computing, IoT, telehealth

Procedia PDF Downloads 76
21912 Mathematical Modeling of District Cooling Systems

Authors: Dana Alghool, Tarek ElMekkawy, Mohamed Haouari, Adel Elomari

Abstract:

District cooling systems have captured the attentions of many researchers recently due to the enormous benefits offered by such system in comparison with traditional cooling technologies. It is considered a major component of urban cities due to the significant reduction of energy consumption. This paper aims to find the optimal design and operation of district cooling systems by developing a mixed integer linear programming model to minimize the annual total system cost and satisfy the end-user cooling demand. The proposed model is experimented with different cooling demand scenarios. The results of the very high cooling demand scenario are only presented in this paper. A sensitivity analysis on different parameters of the model was performed.

Keywords: Annual Cooling Demand, Compression Chiller, Mathematical Modeling, District Cooling Systems, Optimization

Procedia PDF Downloads 202
21911 Association Between Disability and Obesity Status Among US Adults: Findings From 2019-2021 National Health Interview Survey (NHIS)

Authors: Chimuanya Osuji, Kido Uyamasi, Morgan Bradley

Abstract:

Introduction: Obesity is a major risk factor for many chronic diseases, with higher rates occurring among certain populations. Even though disparities in obesity rates exist for those with disabilities, few studies have assessed the association between disability and obesity status. This study aims to examine the association between type of disability and obesity status among US adults during the Covid-19 pandemic (2019-2021). Methods: Data for this cross-sectional study was obtained from the 2019, 2020 and 2021 NHIS. Multinomial logistic regressions were used to assess the relationship between each type of disability and obesity status (reference= normal/underweight). Each model adjusted for demographic, health status and health-related quality of life variables. Statistical analyses were conducted using SAS version 9.4. Results: Of the 82,632 US adults who completed the NHIS in 2019, 2020, and 2021. 8.9% (n= 7,354) reported at least 1 disability-related condition. Respondents reported having a disability across vision (1.5%), hearing (1.5%), mobility (5.3%), communication (0.8%), cognition (2.4%) and self-care (1.1%) domains. After adjusting for covariates, adults with at least 1 disability-related condition were about 30% more likely to have moderate-severe obesity (AOR=1.3; 95% CI=1.11, 1.53). Mobility was the only disability category positively associated with mild obesity (AOR=1.16; 95% CI=1.01, 1.35) and moderate/severe obesity (AOR=1.6; 95% CI=1.35, 1.89). Individuals with vision disability were about 35% less likely to have mild obesity (AOR=0.66; 95% CI=0.51, 0.86) and moderate-severe obesity (AOR=0.66; 95% CI= 0.48, 0.9). Individuals with hearing disability were 28% less likely to have mild obesity (AOR=0.72; 95% CI= 0.56, 0.94). Individuals with communication disability were about 30% less likely to be overweight (AOR=0.66; 95% CI=0.47, 0.93) and 50% less likely to have mild obesity (AOR=0.45; 95% CI= 0.29, 0.71). Individuals with cognitive disability were about 25% less likely to have mild obesity and about 35% less likely to have moderate-severe obesity. Individuals with self-care disability were about 30% less likely to be overweight. Conclusion: Mobility-related disabilities are significantly associated with obesity status among adults residing in the United States. Researchers and policy makers should implement obesity intervention methods that can address the gap in obesity prevalence rates among those with and without disabilities.

Keywords: cognition, disability, mobility, obesity

Procedia PDF Downloads 70
21910 Optimised Path Recommendation for a Real Time Process

Authors: Likewin Thomas, M. V. Manoj Kumar, B. Annappa

Abstract:

Traditional execution process follows the path of execution drawn by the process analyst without observing the behaviour of resource and other real-time constraints. Identifying process model, predicting the behaviour of resource and recommending the optimal path of execution for a real time process is challenging. The proposed AlfyMiner: αyM iner gives a new dimension in process execution with the novel techniques Process Model Analyser: PMAMiner and Resource behaviour Analyser: RBAMiner for recommending the probable path of execution. PMAMiner discovers next probable activity for currently executing activity in an online process using variant matching technique to identify the set of next probable activity, among which the next probable activity is discovered using decision tree model. RBAMiner identifies the resource suitable for performing the discovered next probable activity and observe the behaviour based on; load and performance using polynomial regression model, and waiting time using queueing theory. Based on the observed behaviour αyM iner recommend the probable path of execution with; next probable activity and the best suitable resource for performing it. Experiments were conducted on process logs of CoSeLoG Project1 and 72% of accuracy is obtained in identifying and recommending next probable activity and the efficiency of resource performance was optimised by 59% by decreasing their load.

Keywords: cross-organization process mining, process behaviour, path of execution, polynomial regression model

Procedia PDF Downloads 334
21909 Kinetic Modeling Study and Scale-Up of Niogas Generation Using Garden Grass and Cattle Dung as Feedstock

Authors: Tumisang Seodigeng, Hilary Rutto

Abstract:

In this study we investigate the use of a laboratory batch digester to derive kinetic parameters for anaerobic digestion of garden grass and cattle dung. Laboratory experimental data from a 5 liter batch digester operating at mesophilic temperature of 32 C is used to derive parameters for Michaelis-Menten kinetic model. These fitted kinetics are further used to predict the scale-up parameters of a batch digester using DynoChem modeling and scale-up software. The scale-up model results are compared with performance data from 20 liter, 50 liter, and 200 liter batch digesters. Michaelis-Menten kinetic model shows to be a very good and easy to use model for kinetic parameter fitting on DynoChem and can accurately predict scale-up performance of 20 liter and 50 liter batch reactor based on parameters fitted on a 5 liter batch reactor.

Keywords: Biogas, kinetics, DynoChem Scale-up, Michaelis-Menten

Procedia PDF Downloads 497
21908 Achievements of Healthcare Services Vis-À-Vis the Millennium Development Goals Targets: Evidence from Pakistan

Authors: Saeeda Batool, Ather Maqsood Ahmed

Abstract:

This study investigates the impact of public healthcare facilities and socio-economic circumstances on the status of child health in Pakistan. The complete analysis is carried out in correspondence with fourth and sixth millennium development goals. Further, the health variables chosen are also inherited from targeted indicators of the mentioned goals (MDGs). Trends in the Human Opportunity Index (HOI) for both health inequalities and coverage are analyzed using the Pakistan Social and Living Standards Measurement (PLSM) data set for 2001-02 to 2012-13 at the national and provincial level. To reveal the relative importance of each circumstance in achieving the targeted values for child health, Shorrocks decomposition is applied on HOI. The annual point average growth rate of HOI is used to simulate the time period for the achievement of target set by MDGs and universal access also. The results indicate an improvement in HOI for a reduction in child mortality rates from 52.1% in 2001-02 to 67.3% in 2012-13, which confirms the availability of healthcare opportunities to a larger segment of society. Similarly, immunization against measles and other diseases such as Diphtheria, Polio, Bacillus Calmette-Guerin (BCG), and Hepatitis has also registered an improvement from 51.6% to 69.9% during the period of study at the national level. On a positive note, no gender disparity has been found for child health indicators and that health outcome is mostly affected by the parental and geographical features and availability of health infrastructure. However, the study finds that this achievement has been uneven across provinces. Pakistan is not only lagging behind in achieving its health goals, disappointingly with the current rate of health care provision, but it will take many additional years to achieve its targets.

Keywords: socio-economic circumstances, unmet MDGs, public healthcare services, child and infant mortality

Procedia PDF Downloads 229
21907 Implementation of a Non-Poissonian Model in a Low-Seismicity Area

Authors: Ludivine Saint-Mard, Masato Nakajima, Gloria Senfaute

Abstract:

In areas with low to moderate seismicity, the probabilistic seismic hazard analysis frequently uses a Poisson approach, which assumes independence in time and space of events to determine the annual probability of earthquake occurrence. Nevertheless, in countries with high seismic rate, such as Japan, it is frequently use non-poissonian model which assumes that next earthquake occurrence depends on the date of previous one. The objective of this paper is to apply a non-poissonian models in a region of low to moderate seismicity to get a feedback on the following questions: can we overcome the lack of data to determine some key parameters?, and can we deal with uncertainties to apply largely this methodology on an industrial context?. The Brownian-Passage-Time model was applied to a fault located in France and conclude that even if the lack of data can be overcome with some calculations, the amount of uncertainties and number of scenarios leads to a numerous branches in PSHA, making this method difficult to apply on a large scale of low to moderate seismicity areas and in an industrial context.

Keywords: probabilistic seismic hazard, non-poissonian model, earthquake occurrence, low seismicity

Procedia PDF Downloads 62
21906 Model-Based Approach as Support for Product Industrialization: Application to an Optical Sensor

Authors: Frederic Schenker, Jonathan J. Hendriks, Gianluca Nicchiotti

Abstract:

In a product industrialization perspective, the end-product shall always be at the peak of technological advancement and developed in the shortest time possible. Thus, the constant growth of complexity and a shorter time-to-market calls for important changes on both the technical and business level. Undeniably, the common understanding of the system is beclouded by its complexity which leads to the communication gap between the engineers and the sale department. This communication link is therefore important to maintain and increase the information exchange between departments to ensure a punctual and flawless delivery to the end customer. This evolution brings engineers to reason with more hindsight and plan ahead. In this sense, they use new viewpoints to represent the data and to express the model deliverables in an understandable way that the different stakeholder may identify their needs and ideas. This article focuses on the usage of Model-Based System Engineering (MBSE) in a perspective of system industrialization and reconnect the engineering with the sales team. The modeling method used and presented in this paper concentrates on displaying as closely as possible the needs of the customer. Firstly, by providing a technical solution to the sales team to help them elaborate commercial offers without omitting technicalities. Secondly, the model simulates between a vast number of possibilities across a wide range of components. It becomes a dynamic tool for powerful analysis and optimizations. Thus, the model is no longer a technical tool for the engineers, but a way to maintain and solidify the communication between departments using different views of the model. The MBSE contribution to cost optimization during New Product Introduction (NPI) activities is made explicit through the illustration of a case study describing the support provided by system models to architectural choices during the industrialization of a novel optical sensor.

Keywords: analytical model, architecture comparison, MBSE, product industrialization, SysML, system thinking

Procedia PDF Downloads 161
21905 A Domain Specific Modeling Language Semantic Model for Artefact Orientation

Authors: Bunakiye R. Japheth, Ogude U. Cyril

Abstract:

Since the process of transforming user requirements to modeling constructs are not very well supported by domain-specific frameworks, it became necessary to integrate domain requirements with the specific architectures to achieve an integrated customizable solutions space via artifact orientation. Domain-specific modeling language specifications of model-driven engineering technologies focus more on requirements within a particular domain, which can be tailored to aid the domain expert in expressing domain concepts effectively. Modeling processes through domain-specific language formalisms are highly volatile due to dependencies on domain concepts or used process models. A capable solution is given by artifact orientation that stresses on the results rather than expressing a strict dependence on complicated platforms for model creation and development. Based on this premise, domain-specific methods for producing artifacts without having to take into account the complexity and variability of platforms for model definitions can be integrated to support customizable development. In this paper, we discuss methods for the integration capabilities and necessities within a common structure and semantics that contribute a metamodel for artifact-orientation, which leads to a reusable software layer with concrete syntax capable of determining design intents from domain expert. These concepts forming the language formalism are established from models explained within the oil and gas pipelines industry.

Keywords: control process, metrics of engineering, structured abstraction, semantic model

Procedia PDF Downloads 141
21904 A Generative Pretrained Transformer-Based Question-Answer Chatbot and Phantom-Less Quantitative Computed Tomography Bone Mineral Density Measurement System for Osteoporosis

Authors: Mian Huang, Chi Ma, Junyu Lin, William Lu

Abstract:

Introduction: Bone health attracts more attention recently and an intelligent question and answer (QA) chatbot for osteoporosis is helpful for science popularization. With Generative Pretrained Transformer (GPT) technology developing, we build an osteoporosis corpus dataset and then fine-tune LLaMA, a famous open-source GPT foundation large language model(LLM), on our self-constructed osteoporosis corpus. Evaluated by clinical orthopedic experts, our fine-tuned model outperforms vanilla LLaMA on osteoporosis QA task in Chinese. Three-dimensional quantitative computed tomography (QCT) measured bone mineral density (BMD) is considered as more accurate than DXA for BMD measurement in recent years. We develop an automatic Phantom-less QCT(PL-QCT) that is more efficient for BMD measurement since no need of an external phantom for calibration. Combined with LLM on osteoporosis, our PL-QCT provides efficient and accurate BMD measurement for our chatbot users. Material and Methods: We build an osteoporosis corpus containing about 30,000 Chinese literatures whose titles are related to osteoporosis. The whole process is done automatically, including crawling literatures in .pdf format, localizing text/figure/table region by layout segmentation algorithm and recognizing text by OCR algorithm. We train our model by continuous pre-training with Low-rank Adaptation (LoRA, rank=10) technology to adapt LLaMA-7B model to osteoporosis domain, whose basic principle is to mask the next word in the text and make the model predict that word. The loss function is defined as cross-entropy between the predicted and ground-truth word. Experiment is implemented on single NVIDIA A800 GPU for 15 days. Our automatic PL-QCT BMD measurement adopt AI-associated region-of-interest (ROI) generation algorithm for localizing vertebrae-parallel cylinder in cancellous bone. Due to no phantom for BMD calibration, we calculate ROI BMD by CT-BMD of personal muscle and fat. Results & Discussion: Clinical orthopaedic experts are invited to design 5 osteoporosis questions in Chinese, evaluating performance of vanilla LLaMA and our fine-tuned model. Our model outperforms LLaMA on over 80% of these questions, understanding ‘Expert Consensus on Osteoporosis’, ‘QCT for osteoporosis diagnosis’ and ‘Effect of age on osteoporosis’. Detailed results are shown in appendix. Future work may be done by training a larger LLM on the whole orthopaedics with more high-quality domain data, or a multi-modal GPT combining and understanding X-ray and medical text for orthopaedic computer-aided-diagnosis. However, GPT model gives unexpected outputs sometimes, such as repetitive text or seemingly normal but wrong answer (called ‘hallucination’). Even though GPT give correct answers, it cannot be considered as valid clinical diagnoses instead of clinical doctors. The PL-QCT BMD system provided by Bone’s QCT(Bone’s Technology(Shenzhen) Limited) achieves 0.1448mg/cm2(spine) and 0.0002 mg/cm2(hip) mean absolute error(MAE) and linear correlation coefficient R2=0.9970(spine) and R2=0.9991(hip)(compared to QCT-Pro(Mindways)) on 155 patients in three-center clinical trial in Guangzhou, China. Conclusion: This study builds a Chinese osteoporosis corpus and develops a fine-tuned and domain-adapted LLM as well as a PL-QCT BMD measurement system. Our fine-tuned GPT model shows better capability than LLaMA model on most testing questions on osteoporosis. Combined with our PL-QCT BMD system, we are looking forward to providing science popularization and early morning screening for potential osteoporotic patients.

Keywords: GPT, phantom-less QCT, large language model, osteoporosis

Procedia PDF Downloads 71
21903 Multi-Objective Production Planning Problem: A Case Study of Certain and Uncertain Environment

Authors: Ahteshamul Haq, Srikant Gupta, Murshid Kamal, Irfan Ali

Abstract:

This case study designs and builds a multi-objective production planning model for a hardware firm with certain & uncertain data. During the time of interaction with the manager of the firm, they indicate some of the parameters may be vague. This vagueness in the formulated model is handled by the concept of fuzzy set theory. Triangular & Trapezoidal fuzzy numbers are used to represent the uncertainty in the collected data. The fuzzy nature is de-fuzzified into the crisp form using well-known defuzzification method via graded mean integration representation method. The proposed model attempts to maximize the production of the firm, profit related to the manufactured items & minimize the carrying inventory costs in both certain & uncertain environment. The recommended optimal plan is determined via fuzzy programming approach, and the formulated models are solved by using optimizing software LINGO 16.0 for getting the optimal production plan. The proposed model yields an efficient compromise solution with the overall satisfaction of decision maker.

Keywords: production planning problem, multi-objective optimization, fuzzy programming, fuzzy sets

Procedia PDF Downloads 213
21902 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms

Authors: Man-Yun Liu, Emily Chia-Yu Su

Abstract:

Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.

Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning

Procedia PDF Downloads 322
21901 A Quasi-Experimental Study of the Impact of 5Es Instructional Model on Students' Mathematics Achievement in Northern Province, Rwanda

Authors: Emmanuel Iyamuremye, Jean François Maniriho, Irenee Ndayambaje

Abstract:

Mathematics is the foundational enabling discipline that underpins science, technology, and engineering disciplines. Science, technology, engineering, and mathematics (STEM) subjects are foreseen as the engine for socio-economic transformation. Rwanda has done reforms in education aiming at empowering and preparing students for the real world job by providing career pathways in science, technology, engineering, and mathematics related fields. While that considered so, the performance in mathematics has remained deplorable in both formative and national examinations. Therefore, this paper aims at exploring the extent to which the engage, explore, explain, elaborate and evaluate (5Es) instructional model contributing towards students’ achievement in mathematics. The present study adopted the pre-test, post-test non-equivalent control group quasi-experimental design. The 5Es instructional model was applied to the experimental group while the control group received instruction with the conventional teaching method for eight weeks. One research-made instrument, mathematics achievement test (MAT), was used for data collection. A pre-test was given to students before the intervention to make sure that both groups have equivalent characteristics. At the end of the experimental period, the two groups have undergone a post-test to ascertain the contribution of the 5Es instructional model. Descriptive statistics and analysis of covariance (ANCOVA) were used for the analysis of the study. For determining the improvement in mathematics, Hakes methods of calculating gain were used to analyze the pre-test and post-test scores. Results showed that students exposed to 5Es instructional model achieved significantly better performance in mathematics than students instructed using the conventional teaching method. It was also found that 5Es instructional model made lessons more interesting, easy and created friendship among students. Thus, 5Es instructional model was recommended to be adopted as a close substitute to the conventional teaching method in teaching mathematics in lower secondary schools in Rwanda.

Keywords: 5Es instructional model, achievement, conventional teaching method, mathematics

Procedia PDF Downloads 103
21900 The Optimal Order Policy for the Newsvendor Model under Worker Learning

Authors: Sunantha Teyarachakul

Abstract:

We consider the worker-learning Newsvendor Model, under the case of lost-sales for unmet demand, with the research objective of proposing the cost-minimization order policy and lot size, scheduled to arrive at the beginning of the selling-period. In general, the New Vendor Model is used to find the optimal order quantity for the perishable items such as fashionable products or those with seasonal demand or short-life cycles. Technically, it is used when the product demand is stochastic and available for the single selling-season, and when there is only a one time opportunity for the vendor to purchase, with possibly of long ordering lead-times. Our work differs from the classical Newsvendor Model in that we incorporate the human factor (specifically worker learning) and its influence over the costs of processing units into the model. We describe this by using the well-known Wright’s Learning Curve. Most of the assumptions of the classical New Vendor Model are still maintained in our work, such as the constant per-unit cost of leftover and shortage, the zero initial inventory, as well as the continuous time. Our problem is challenging in the way that the best order quantity in the classical model, which is balancing the over-stocking and under-stocking costs, is no longer optimal. Specifically, when adding the cost-saving from worker learning to such expected total cost, the convexity of the cost function will likely not be maintained. This has called for a new way in determining the optimal order policy. In response to such challenges, we found a number of characteristics related to the expected cost function and its derivatives, which we then used in formulating the optimal ordering policy. Examples of such characteristics are; the optimal order quantity exists and is unique if the demand follows a Uniform Distribution; if the demand follows the Beta Distribution with some specific properties of its parameters, the second derivative of the expected cost function has at most two roots; and there exists the specific level of lot size that satisfies the first order condition. Our research results could be helpful for analysis of supply chain coordination and of the periodic review system for similar problems.

Keywords: inventory management, Newsvendor model, order policy, worker learning

Procedia PDF Downloads 416
21899 Jan’s Life-History: Changing Faces of Managerial Masculinities and Consequences for Health

Authors: Susanne Gustafsson

Abstract:

Life-history research is an extraordinarily fruitful method to use for social analysis and gendered health analysis in particular. Its potential is illustrated through a case study drawn from a Swedish project. It reveals an old type of masculinity that faces difficulties when carrying out two sets of demands simultaneously, as a worker/manager and as a father/husband. The paper illuminates the historical transformation of masculinity and the consequences of this for health. We draw on the idea of the “changing faces of masculinity” to explore the dynamism and complexity of gendered health. An empirical case is used for its illustrative abilities. Jan, a middle-level manager and father employed in the energy sector in urban Sweden is the subject of this paper. Jan’s story is one of 32 semi-structured interviews included in an extended study focusing on well-being at work. The results reveal a face of masculinity conceived of in middle-level management as tacitly linked to the neoliberal doctrine. Over a couple of decades, the idea of “flexibility” was turned into a valuable characteristic that everyone was supposed to strive for. This resulted in increased workloads. Quite a few employees, and managers, in particular, find themselves working both day and night. This may explain why not having enough time to spend with children and family members is a recurring theme in the data. Can this way of doing be linked to masculinity and health? The first author’s research has revealed that the use of gender in health science is not sufficiently or critically questioned. This lack of critical questioning is a serious problem, especially since ways of doing gender affect health. We suggest that gender reproduction and gender transformation are interconnected, regardless of how they affect health. They are recognized as two sides of the same phenomenon, and minor movements in one direction or the other become crucial for understanding its relation to health. More or less, at the same time, as Jan’s masculinity was reproduced in response to workplace practices, Jan’s family position was transformed—not totally but by a degree or two, and these degrees became significant for the family’s health and well-being. By moving back and forth between varied events in Jan’s biographical history and his sociohistorical life span, it becomes possible to show that in a time of gender transformations, power relations can be renegotiated, leading to consequences for health.

Keywords: changing faces of masculinity, gendered health, life-history research method, subverter

Procedia PDF Downloads 113
21898 The Factors Constitute the Interaction between Teachers and Students: An Empirical Study at the Notion of Framing

Authors: Tien-Hui Chiang

Abstract:

The code theory, proposed by Basil Bernstein, indicates that framing can be viewed as the core element in constituting the phenomenon of cultural reproduction because it is able to regulate the transmission of pedagogical information. Strong framing increases the social relation boundary between a teacher and pupils, which obstructs information transmission, so that in order to improve underachieving students’ academic performances, teachers need to reduce to strength of framing. Weak framing enables them to transform academic knowledge into commonsense knowledge in daily life language. This study posits that most teachers would deliver strong framing due to their belief mainly confined within the aspect of instrumental rationality that deprives their critical minds. This situation could make them view the normal distribution bell curve of students’ academic performances as a natural outcome. In order to examine the interplay between framing, instrumental rationality and pedagogical action, questionnaires were completed by over 5,000 primary school teachers in Henan province, China, who were stratified sample. The statistical results show that most teachers employed psychological concepts to measure students’ academic performances and, in turn, educational inequity was legitimatized as a natural outcome in the efficiency-led approach. Such efficiency-led minds made them perform as the agent practicing the mechanism of social control and in turn sustaining the phenomenon of cultural reproduction.

Keywords: code, cultural reproduction, framing, instrumental rationality, social relation and interaction

Procedia PDF Downloads 151
21897 Religio-Cultural Ethos and Mental Health

Authors: Haveesha Buddhdev

Abstract:

The most important right for a human being in a society is the freedom of expression as stated by Article 18 and 19 of the Universal Declaration of Human rights pledged by member states of United Nations. Will it be fair to expect him/her to be of sound mental health if this right is taken away? Religion as a primary social institution controls many rights, freedoms and duties of people in a society. It does so by imposing certain values and beliefs on people which would either enhance quality of life or curb their freedom adversely thus affecting individual mental health. This paper aims to study the positive and negative role that religion plays in influencing one’s freedom of expression. This paper will focus on reviewing existing studies on the positive and negative impacts of religion on mental health. It will also contain data collected by the researcher about the impacts of religion on freedom of expression which will be obtained by surveying a sample of 30 adolescents and young adults. The researcher will use a Likert scale for these purpose, with response options ranging from strongly disagree to strongly agree and quantify it accordingly. Descriptive statistics would be used to analyse the data. Such research would help to identify possible problems faced by adolescents and young adults when it comes to religio-cultural ethos and also facilitate further researches to study the role that religion plays in mental health.

Keywords: cultural Ethos, freedom of expression, adolescent mental health, social science

Procedia PDF Downloads 449
21896 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 73
21895 Managers' Awareness of Employees' Mental Health in Small- and Medium-Sized Enterprises in Underpopulated Mountainous Areas

Authors: Susumu Fukita, Hiromi Kawasaki, Satoko Yamasaki, Kotomi Yamashita, Tomoko Iki

Abstract:

The increase in the number of workers with mental health problems has become an issue. Many workers work in small- and medium-sized enterprises, which often support local employment and economy, especially in underpopulated mountainous areas. It is important for managers to take mental health measures for employees since there is no budget to hire health staff in small- and medium-sized enterprises. It is necessary to understand the manager's attitude toward the mental health of employees and to publicly support the manager in promoting mental health measures for employees. The purpose of this study was to study the awareness of managers of small- and medium-sized enterprises regarding the mental health of employees and to consider support for managers to take measures for the mental health of employees. Semi-structured interviews were conducted with six managers of small- and medium-sized enterprises in underpopulated mountainous areas in November 2019. Managers were asked about their awareness of the mental health of their employees. Qualitative descriptive analysis was used, and subcategories and categories were extracted. Four categories emerged. Regarding the mental health of employees, the managers acknowledged that if the appearance and behavior of the employees do not interfere with their lives, the manager judges that the employees’ mental health is normal. It was also found that the managers acknowledged that there is a comfortable working environment due to the characteristics of the underpopulated mountainous area. On the other hand, the managers acknowledged that employees are dissatisfied with salaries and management systems. In addition, it was found the manager acknowledged that some employees retire due to mental health problems. Although managers recognized that employees may be dissatisfied with salaries, they also recognized that there was a comfortable working environment due to the characteristics of the areas, with good interpersonal relationships. Economic challenges are difficult to solve in underpopulated mountainous areas. It is useful to consider measures that take advantage of the characteristics of the areas where it is easy to work because of good relations with each other, for example, to create a family-like workplace culture where managers and employees can engage in daily conversation. The managers judged that the employees were in good health if there was no interference with their lives. However, it is too late to take measures at the stage when it becomes an obstacle to life. Therefore, it is necessary to provide training for managers to learn observation techniques by which they quickly notice changes in the situation of employees and give appropriate responses; and to set up a contact point for managers to consult. Local governments should actively provide public support such as training for managers and establishing consultation desks to maintain valuable employment and local economics in underpopulated mountainous areas.

Keywords: employer, mental health, small- and medium- sized enterprises, underpopulated areas

Procedia PDF Downloads 144
21894 Effects of Active Muscle Contraction in a Car Occupant in Whiplash Injury

Authors: Nisha Nandlal Sharma, Julaluk Carmai, Saiprasit Koetniyom, Bernd Markert

Abstract:

Whiplash Injuries are usually associated with car accidents. The sudden forward or backward jerk to head causes neck strain, which is the result of damage to the muscle or tendons. Neck pain and headaches are the two most common symptoms of whiplash. Symptoms of whiplash are commonly reported in studies but the Injury mechanism is poorly understood. Neck muscles are the most important factor to study the neck Injury. This study focuses on the development of finite element (FE) model of human neck muscle to study the whiplash injury mechanism and effect of active muscle contraction on occupant kinematics. A detailed study of Injury mechanism will promote development and evaluation of new safety systems in cars, hence reducing the occurrence of severe injuries to the occupant. In present study, an active human finite element (FE) model with 3D neck muscle model is developed. Neck muscle was modeled with a combination of solid tetrahedral elements and 1D beam elements. Muscle active properties were represented by beam elements whereas, passive properties by solid tetrahedral elements. To generate muscular force according to inputted activation levels, Hill-type muscle model was applied to beam elements. To simulate non-linear passive properties of muscle, solid elements were modeled with rubber/foam material model. Material properties were assigned from published experimental tests. Some important muscles were then inserted into THUMS (Total Human Model for Safety) 50th percentile male pedestrian model. To reduce the simulation time required, THUMS lower body parts were not included. Posterior to muscle insertion, THUMS was given a boundary conditions similar to experimental tests. The model was exposed to 4g and 7g rear impacts as these load impacts are close to low speed impacts causing whiplash. The effect of muscle activation level on occupant kinematics during whiplash was analyzed.

Keywords: finite element model, muscle activation, neck muscle, whiplash injury prevention

Procedia PDF Downloads 357
21893 Influence of a Company’s Dynamic Capabilities on Its Innovation Capabilities

Authors: Lovorka Galetic, Zeljko Vukelic

Abstract:

The advanced concepts of strategic and innovation management in the sphere of company dynamic and innovation capabilities, and achieving their mutual alignment and a synergy effect, are important elements in business today. This paper analyses the theory and empirically investigates the influence of a company’s dynamic capabilities on its innovation capabilities. A new multidimensional model of dynamic capabilities is presented, consisting of five factors appropriate to real time requirements, while innovation capabilities are considered pursuant to the official OECD and Eurostat standards. After examination of dynamic and innovation capabilities indicated their theoretical links, the empirical study testing the model and examining the influence of a company’s dynamic capabilities on its innovation capabilities showed significant results. In the study, a research model was posed to relate company dynamic and innovation capabilities. One side of the model features the variables that are the determinants of dynamic capabilities defined through their factors, while the other side features the determinants of innovation capabilities pursuant to the official standards. With regard to the research model, five hypotheses were set. The study was performed in late 2014 on a representative sample of large and very large Croatian enterprises with a minimum of 250 employees. The research instrument was a questionnaire administered to company top management. For both variables, the position of the company was tested in comparison to industry competitors, on a fivepoint scale. In order to test the hypotheses, correlation tests were performed to determine whether there is a correlation between each individual factor of company dynamic capabilities with the existence of its innovation capabilities, in line with the research model. The results indicate a strong correlation between a company’s possession of dynamic capabilities in terms of their factors, due to the new multi-dimensional model presented in this paper, with its possession of innovation capabilities. Based on the results, all five hypotheses were accepted. Ultimately, it was concluded that there is a strong association between the dynamic and innovation capabilities of a company. 

Keywords: dynamic capabilities, innovation capabilities, competitive advantage, business results

Procedia PDF Downloads 305