Search results for: stem laboratory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3022

Search results for: stem laboratory

172 Foodborne Outbreak Calendar: Application of Time Series Analysis

Authors: Ryan B. Simpson, Margaret A. Waskow, Aishwarya Venkat, Elena N. Naumova

Abstract:

The Centers for Disease Control and Prevention (CDC) estimate that 31 known foodborne pathogens cause 9.4 million cases of these illnesses annually in US. Over 90% of these illnesses are associated with exposure to Campylobacter, Cryptosporidium, Cyclospora, Listeria, Salmonella, Shigella, Shiga-Toxin Producing E.Coli (STEC), Vibrio, and Yersinia. Contaminated products contain parasites typically causing an intestinal illness manifested by diarrhea, stomach cramping, nausea, weight loss, fatigue and may result in deaths in fragile populations. Since 1998, the National Outbreak Reporting System (NORS) has allowed for routine collection of suspected and laboratory-confirmed cases of food poisoning. While retrospective analyses have revealed common pathogen-specific seasonal patterns, little is known concerning the stability of those patterns over time and whether they can be used for preventative forecasting. The objective of this study is to construct a calendar of foodborne outbreaks of nine infections based on the peak timing of outbreak incidence in the US from 1996 to 2017. Reported cases were abstracted from FoodNet for Salmonella (135115), Campylobacter (121099), Shigella (48520), Cryptosporidium (21701), STEC (18022), Yersinia (3602), Vibrio (3000), Listeria (2543), and Cyclospora (758). Monthly counts were compiled for each agent, seasonal peak timing and peak intensity were estimated, and the stability of seasonal peaks and synchronization of infections was examined. Negative Binomial harmonic regression models with the delta-method were applied to derive confidence intervals for the peak timing for each year and overall study period estimates. Preliminary results indicate that five infections continue to lead as major causes of outbreaks, exhibiting steady upward trends with annual increases in cases ranging from 2.71% (95%CI: [2.38, 3.05]) in Campylobacter, 4.78% (95%CI: [4.14, 5.41]) in Salmonella, 7.09% (95%CI: [6.38, 7.82]) in E.Coli, 7.71% (95%CI: [6.94, 8.49]) in Cryptosporidium, and 8.67% (95%CI: [7.55, 9.80]) in Vibrio. Strong synchronization of summer outbreaks were observed, caused by Campylobacter, Vibrio, E.Coli and Salmonella, peaking at 7.57 ± 0.33, 7.84 ± 0.47, 7.85 ± 0.37, and 7.82 ± 0.14 calendar months, respectively, with the serial cross-correlation ranging 0.81-0.88 (p < 0.001). Over 21 years, Listeria and Cryptosporidium peaks (8.43 ± 0.77 and 8.52 ± 0.45 months, respectively) have a tendency to arrive 1-2 weeks earlier, while Vibrio peaks (7.8 ± 0.47) delay by 2-3 weeks. These findings will be incorporated in the forecast models to predict common paths of the spread, long-term trends, and the synchronization of outbreaks across etiological agents. The predictive modeling of foodborne outbreaks should consider long-term changes in seasonal timing, spatiotemporal trends, and sources of contamination.

Keywords: foodborne outbreak, national outbreak reporting system, predictive modeling, seasonality

Procedia PDF Downloads 105
171 Examinations of Sustainable Protection Possibilities against Granary Weevil (Sitophilus granarius L.) on Stored Products

Authors: F. Pal-Fam, R. Hoffmann, S. Keszthelyi

Abstract:

Granary weevil, Sitophilus granarius (L.) (Col.: Curculionidae) is a typical cosmopolitan pest. It can cause significant damage to stored grains, and can drastically decrease yields. Damaged grain has reduced nutritional and market value, weaker germination, and reduced weight. The commonly used protectants against stored-product pests in Europe are residual insecticides, applied directly to the product. Unfortunately, these pesticides can be toxic to mammals, the residues can accumulate in the treated products, and many pest species could become resistant to the protectants. During recent years, alternative solutions of grain protection have received increased attention. These solutions are considered as the most promising alternatives to residual insecticides. The aims of our comparative study were to obtain information about the efficacies of the 1. diatomaceous earth, 2. sterile insect technology and 3. herbal oils against the S. granarius on grain (foremost maize), and to evaluate the influence of the dose rate on weevil mortality and progeny. The main results of our laboratory experiments are the followings: 1. Diatomaceous earth was especially efficacious against S. granarius, but its insecticidal properties depend on exposure time and applied dose. The efficacy on barley was better than on maize. Mortality value of the highest dose was 85% on the 21st day in the case of barley. It can be ascertained that complete elimination of progeny was evidenced on both gain types. To summarize, a satisfactory efficacy level was obtained only on barley at a rate of 4g/kg. Alteration of efficacy between grain types can be explained with differences in grain surface. 2. The mortality consequences of Roentgen irradiation on the S. granarius was highly influenced by the exposure time, and the dose applied. At doses of 50 and 70Gy, the efficacy accepted in plant protection (mortality: 95%) was recorded only on the 21st day. During the application of 100 and 200Gy doses, high mortality values (83.5% and 97.5%) were observed on the 14th day. Our results confirmed the complete sterilizing effect of the doses of 70Gy and above. The autocide effect of 50 and 70Gy doses were demonstrated when irradiated specimens were mixed into groups of fertile specimens. Consequently, these doses might be successfully applied to put sterile insect technique (SIT) into practice. 3. The results revealed that both studied essential oils (Callendula officinalis, Hippophae rhamnoides) exerted strong toxic effect on S. granarius, but C. officinalis triggered higher mortality. The efficacy (94.62 ± 2.63%) was reached after a 48 hours exposure to H. rhamnoides oil at 2ml/kg while the application of 2ml/kg of C. officinalis oil for 24 hours produced 98.94 ± 1.00% mortality rate. Mortality was 100% at 5 ml/kg of H. rhamnoides after 24 hours duration of its application, while with C. officinalis the same value could be reached after a 12 hour-exposure to the oil. Both essential oils applied were eliminated the progeny.

Keywords: Sitophilus granarius, stored product, protection, alternative solutions

Procedia PDF Downloads 147
170 Prevalent Features of Human Infections with Highly Pathogenic Avian Influenza A(H7N9) Virus, China, 2017

Authors: Lei Zhou, Dan Li, Ruiqi Ren, Chao Li, Yali Wang, Daxin Ni, Zijian Feng, Timothy M. Uyeki, Qun Li

Abstract:

Since the first human infections with avian influenza A(H7N9) virus were identified in early 2013, 1533 cases of laboratory-confirmed A(H7N9) virus infections were reported and confirmed as of September 13, 2017. The fifth epidemic was defined as starting from September 1, 2016, and the number of A(H7N9) cases has surged since the end of December in 2016. On February 18, 2017, the A(H7N9) cases who were infected with highly pathogenic avian influenza (HPAI) virus was reported from Southern China. The HPAI A(H7N9) cases were identified and then an investigation and analyses were conducted to assess whether disease severity in humans has changed with HPAI A(H7N9) compared with low pathogenic avian influenza (LPAI) A(H7N9) virus infection. Methods: All confirmed cases with A(H7N9) virus infections reported throughout mainland China from September 1, 2016, to September 13, 2017, were included. Cases' information was extracted from field investigation reports and the notifiable infectious surveillance system to describe the demographic, clinical, and epidemiologic characteristics. Descriptive statistics were used to compare HPAI A(H7N9) cases with all LPAI A(H7N9) cases reported during the fifth epidemic. Results: A total of 27 cases of HPAI A(H7N9) virus were identified infection from five provinces, including Guangxi (44%), Guangdong (33%), Hunan (15%), Hebei (4%) and Shangxi (4%). The median age of cases of HPAI A(H7N9) virus infection was 60 years (range, 15 to 80) and most of them were male (59%) and lived in rural areas (78%). All 27 cases had live poultry related exposures within 10 days before their illness onset. In comparison with LPAI A(H7N9) case-patients, HPAI A(H7N9) case-patients were significantly more likely to live in rural areas (78% vs. 51%; p = 0.006), have exposure to the sick or dead poultry (56% vs. 19%; p = 0.000), and be hospitalized earlier (median 3 vs. 4 days; p = 0.007). No significant differences were observed in median age, sex, prevalence of underlying chronic medical conditions, median time from illness onset to first medical service seeking, starting antiviral treatment, and diagnosis. Although the median time from illness onset to death (9 vs. 13 days) was shorter and the overall case-fatality proportion (48% vs. 38%) was higher for HPAI A(H7N9) case-patients than for LPAI A(H7N9) case-patients, these differences were not statistically significant. Conclusions: Our findings indicate that HPAI A(H7N9) virus infection was associated with exposure to sick and dead poultry in rural areas when visited live poultry market or in the backyard. In the fifth epidemic in mainland China, HPAI A (H7N9) case-patients were hospitalized earlier than LPAI A(H7N9) case-patients. Although the difference was not statistically significant, the mortality of HPAI A (H7N9) case-patients was obviously higher than that of LPAI A(H7N9) case-patients, indicating a potential severity change of HPAI A(H7N9) virus infection.

Keywords: Avian influenza A (H7N9) virus, highly pathogenic avian influenza (HPAI), case-patients, poultry

Procedia PDF Downloads 142
169 Bisphenol-A Concentrations in Urine and Drinking Water Samples of Adults Living in Ankara

Authors: Hasan Atakan Sengul, Nergis Canturk, Bahar Erbas

Abstract:

Drinking water is indispensable for life. With increasing awareness of communities, the content of drinking water and tap water has been a matter of curiosity. The presence of Bisphenol-A is the top one when content curiosity is concerned. The most used chemical worldwide for production of polycarbonate plastics and epoxy resins is Bisphenol-A. People are exposed to Bisphenol-A chemical, which disrupts the endocrine system, almost every day. Each year it is manufactured an average of 5.4 billion kilograms of Bisphenol-A. Linear formula of Bisphenol-A is (CH₃)₂C(C₆H₄OH)₂, its molecular weight is 228.29 and CAS number is 80-05-7. Bisphenol-A is known to be used in the manufacturing of plastics, along with various chemicals. Bisphenol-A, an industrial chemical, is used in the raw materials of packaging mate-rials in the monomers of polycarbonate and epoxy resins. The pass through the nutrients of Bisphenol-A substance happens by packaging. This substance contaminates with nutrition and penetrates into body by consuming. International researches show that BPA is transported through body fluids, leading to hormonal disorders in animals. Experimental studies on animals report that BPA exposure also affects the gender of the newborn and its time to reach adolescence. The extent to what similar endocrine disrupting effects are on humans is a debate topic in many researches. In our country, detailed studies on BPA have not been done. However, it is observed that 'BPA-free' phrases are beginning to appear on plastic packaging such as baby products and water carboys. Accordingly, this situation increases the interest of the society about the subject; yet it causes information pollution. In our country, all national and international studies on exposure to BPA have been examined and Ankara province has been designated as testing region. To assess the effects of plastic use in daily habits of people and the plastic amounts removed out of the body, the results of the survey conducted with volunteers who live in Ankara has been analyzed with Sciex appliance by means of LC-MS/MS in the laboratory and the amount of exposure and BPA removal have been detected by comparing the results elicited before. The results have been compared with similar studies done in international arena and the relation between them has been exhibited. Consequently, there has been found no linear correlation between the amount of BPA in drinking water and the amount of BPA in urine. This has also revealed that environmental exposure and the habits of daily plastic use have also direct effects a human body. When the amount of BPA in drinking water is considered; minimum 0.028 µg/L, maximum 1.136 µg/L, mean 0.29194 µg/L and SD(standard deviation)= 0.199 have been detected. When the amount of BPA in urine is considered; minimum 0.028 µg/L, maximum 0.48 µg/L, mean 0.19181 µg/L and SD= 0.099 have been detected. In conclusion, there has been found no linear correlation between the amount of BPA in drinking water and the amount of BPA in urine (r= -0.151). The p value of the comparison between drinking water’s and urine’s BPA amounts is 0.004 which shows that there is a significant change and the amounts of BPA in urine is dependent on the amounts in drinking waters (p < 0.05). This has revealed that environmental exposure and daily plastic habits have also direct effects on the human body.

Keywords: analyze of bisphenol-A, BPA, BPA in drinking water, BPA in urine

Procedia PDF Downloads 109
168 Influence of Dietary Boron on Gut Absorption of Nutrients, Blood Metabolites and Tissue Pathology

Authors: T. Vijay Bhasker, N. K. S Gowda, P. Krishnamoorthy, D. T. Pal, A. K. Pattanaik, A. K. Verma

Abstract:

Boron (B) is a newer trace element and its biological importance and dietary essentiality is unclear in animals. The available literature suggests its putative role in bone mineralization, antioxidant status and steroid hormone synthesis. A feeding trial was conducted in Wister strain (Rattus norvegicus) albino rats for duration of 90 days. A total of 84 healthy weaned (3-4 weeks) experimental rats were randomly divided into 7 dietary groups (4 replicates of three each) viz., A (Basal diet/ Control), B (Basal diet + 5 ppm B), C (Basal diet + 10 ppm B), D (Basal diet + 20 ppm B), E (Basal diet + 40 ppm B), F (Basal diet-Ca 50%), G (Basal diet-Ca 50% + 40 ppm B). Dietary level of calcium (Ca) was maintained at two levels, 100% and 50% of requirement. Sodium borate was used as source of boron along with other ingredients of basal diet while preparing the pelletized diets. All the rats were kept in proper ventilated laboratory animal house maintained at temperature (23±2º C) and humidity (50 to 70%). At the end of experiment digestibility trial was conducted for 5 days to estimate nutrient digestibility and gut absorption of minerals. Eight rats from each group were sacrificed to collect the vital organs (liver, kidney and spleen) to study histopathology. Blood sample was drawn by heart puncture to determine biochemical profile. The average daily feed intake (g/rat/day), water intake (ml/rat/day) and body weight gain (g/rat/day) were similar among the dietary groups. The digestibility (%) of organic matter and crude fat were significantly improved (P < 0.05) was by B supplementation. The gut absorption (%) Ca was significantly increased (P < 0.01) in B supplemented groups compared to control. However, digestibility of dry matter and crude protein, gut absorption of magnesium and phosphorus showed a non-significant increasing trend with B supplementation. The gut absorption (%) of B (P < 0.01) was significantly lowered (P<0.05) in supplemented groups compared to un-supplemented ones. The serum level of triglycerides (mg/dL), HDL-cholesterol (mg/dL) and alanine transaminase (IU/L) were significantly lowered (P < 0.05) in B supplemented groups. While serum level of glucose (mg/dL) and alkaline phosphatase (KA units) showed a non-significant decreasing trend with B supplementation. However the serum levels of total cholesterol (mg/dL) and aspartate transaminase (IU/L) were similar among dietary groups. The histology sections of kidney and spleen revealed no significant changes among the dietary groups and were observed to be normal in anatomical architecture. However, the liver histology revealed cell degenerative changes with vacuolar degeneration and nuclear condensation in Ca deficient groups. But the comparative degenerative changes were mild in 40 ppm B supplemented Ca deficient group. In conclusion, dietary supplementation of graded levels of boron in rats had a positive effect on metabolism and health by improving nutrient digestibility and gut absorption of Ca. This indicates the beneficial role of dietary boron supplementation.

Keywords: boron, calcium, nutrient utilization, histopathology

Procedia PDF Downloads 299
167 Epidemiological, Ecology, and Case Management of Plasmodium Knowlesi Malaria in Phang-Nga Province, Thailand

Authors: Surachart Koyadun

Abstract:

Introduction: Plasmodium knowlesi (P. knowlesi) malaria is a zoonotic disease that is classified as type 5 of human malaria. Commonly found in macaques (Macaca fascicularis) and (Macaca nemestrina), P. knowlesi is capable of resulting in both uncomplicated and severe malaria in humans. Situation of P. knowlesi malaria in Phang-Nga province for the past 3 years from 2020 – 2022 revealed no case report in 2020, however, a total of 14 cases had been reported in 2021 - 2022. This research aimed to 1) study the epidemiology of P. knowlesi, 2) examine the clinical manifestations of P. knowlesi patients, 3) analyze the ecology and entomology of P. knowlesi, and 4) analyze the diagnosis and treatment of P. knowlesi. Method: This research was a retrospective descriptive study/case report. The study was conducted in 14 patients with P. knowlesi malaria between 2021 and 2022 in 4 districts of Phang-Nga Province, Thailand including Thapput, Kapong, Takuapa and Khuraburi. Results: The study subjects of P. knowlesi malaria were all males. Most of them were working age groups as farmers and worked in forest or plantation areas. All had no history of blood transfusions. Most of the patients did not use mosquito nets and had a history of camping in the forest prior to the onset of fever. An analysis of all 14 sources of infection unveiled the area is home to macaques, and that area has detected Anopheles mosquito, which is the carrier of the disease. Majority of them got sick in the dry season of Thailand (December-April). The main symptoms brought to the hospital were fever, chills, headache, body aches. Laboratory findings on the first day of diagnosis were as follows: The white blood cell count was found within the normal range. In the proportion of white blood cells, eosinophils were found to be slightly higher than normal. Slight anemia was found on early examination. The platelet count was found to be below normal in all cases. Severely low platelet count (2,000 cells/mm3) was found in severe cases with multiple complications. No patient was found dead but 85.7% of complications were found, with acute renal failure being the most common. Patients with delayed diagnosis and treatment of malaria (inaccurate diagnosis or late access to the hospital) had the highest severity and complications than those who had seen the doctor since the first 3-4 days of illness or the screening of symptoms and risk history by the malaria clinic staff at vector-borne disease control unit. Conclusion and Recommendation: P. knowlesi malaria is an emerging infectious disease transmitted from animals to humans. There are challenges in epidemiology, entomology, ecology for effective surveillance, prevention and control. Early diagnosis and treatment would reduce complications and prevent death.

Keywords: malaria, plasmodium knowlesi, epidemiology, ecology, entomology, diagnosis, treatment

Procedia PDF Downloads 40
166 Combustion Characteristics and Pollutant Emissions in Gasoline/Ethanol Mixed Fuels

Authors: Shin Woo Kim, Eui Ju Lee

Abstract:

The recent development of biofuel production technology facilitates the use of bioethanol and biodiesel on automobile. Bioethanol, especially, can be used as a fuel for gasoline vehicles because the addition of ethanol has been known to increase octane number and reduce soot emissions. However, the wide application of biofuel has been still limited because of lack of detailed combustion properties such as auto-ignition temperature and pollutant emissions such as NOx and soot, which has been concerned mainly on the vehicle fire safety and environmental safety. In this study, the combustion characteristics of gasoline/ethanol fuel were investigated both numerically and experimentally. For auto-ignition temperature and NOx emission, the numerical simulation was performed on the well-stirred reactor (WSR) to simulate the homogeneous gasoline engine and to clarify the effect of ethanol addition in the gasoline fuel. Also, the response surface method (RSM) was introduced as a design of experiment (DOE), which enables the various combustion properties to be predicted and optimized systematically with respect to three independent variables, i.e., ethanol mole fraction, equivalence ratio and residence time. The results of stoichiometric gasoline surrogate show that the auto-ignition temperature increases but NOx yields decrease with increasing ethanol mole fraction. This implies that the bioethanol added gasoline is an eco-friendly fuel on engine running condition. However, unburned hydrocarbon is increased dramatically with increasing ethanol content, which results from the incomplete combustion and hence needs to adjust combustion itself rather than an after-treatment system. RSM results analyzed with three independent variables predict the auto-ignition temperature accurately. However, NOx emission had a big difference between the calculated values and the predicted values using conventional RSM because NOx emission varies very steeply and hence the obtained second order polynomial cannot follow the rates. To relax the increasing rate of dependent variable, NOx emission is taken as common logarithms and worked again with RSM. NOx emission predicted through logarithm transformation is in a fairly good agreement with the experimental results. For more tangible understanding of gasoline/ethanol fuel on pollutant emissions, experimental measurements of combustion products were performed in gasoline/ethanol pool fires, which is widely used as a fire source of laboratory scale experiments. Three measurement methods were introduced to clarify the pollutant emissions, i.e., various gas concentrations including NOx, gravimetric soot filter sampling for elements analysis and pyrolysis, thermophoretic soot sampling with transmission electron microscopy (TEM). Soot yield by gravimetric sampling was decreased dramatically as ethanol was added, but NOx emission was almost comparable regardless of ethanol mole fraction. The morphology of the soot particle was investigated to address the degree of soot maturing. The incipient soot such as a liquid like PAHs was observed clearly on the soot of higher ethanol containing gasoline, and the soot might be matured under the undiluted gasoline fuel.

Keywords: gasoline/ethanol fuel, NOx, pool fire, soot, well-stirred reactor (WSR)

Procedia PDF Downloads 192
165 Artificial Neural Network Approach for GIS-Based Soil Macro-Nutrients Mapping

Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Siti Khairunniza Bejo

Abstract:

Conventional methods for nutrient soil mapping are based on laboratory tests of samples that are obtained from surveys. The time and cost involved in gathering and analyzing soil samples are the reasons that researchers use Predictive Soil Mapping (PSM). PSM can be defined as the development of a numerical or statistical model of the relationship among environmental variables and soil properties, which is then applied to a geographic database to create a predictive map. Kriging is a group of geostatistical techniques to spatially interpolate point values at an unobserved location from observations of values at nearby locations. The main problem with using kriging as an interpolator is that it is excessively data-dependent and requires a large number of closely spaced data points. Hence, there is a need to minimize the number of data points without sacrificing the accuracy of the results. In this paper, an Artificial Neural Networks (ANN) scheme was used to predict macronutrient values at un-sampled points. ANN has become a popular tool for prediction as it eliminates certain difficulties in soil property prediction, such as non-linear relationships and non-normality. Back-propagation multilayer feed-forward network structures were used to predict nitrogen, phosphorous and potassium values in the soil of the study area. A limited number of samples were used in the training, validation and testing phases of ANN (pattern reconstruction structures) to classify soil properties and the trained network was used for prediction. The soil analysis results of samples collected from the soil survey of block C of Sawah Sempadan, Tanjung Karang rice irrigation project at Selangor of Malaysia were used. Soil maps were produced by the Kriging method using 236 samples (or values) that were a combination of actual values (obtained from real samples) and virtual values (neural network predicted values). For each macronutrient element, three types of maps were generated with 118 actual and 118 virtual values, 59 actual and 177 virtual values, and 30 actual and 206 virtual values, respectively. To evaluate the performance of the proposed method, for each macronutrient element, a base map using 236 actual samples and test maps using 118, 59 and 30 actual samples respectively produced by the Kriging method. A set of parameters was defined to measure the similarity of the maps that were generated with the proposed method, termed the sample reduction method. The results show that the maps that were generated through the sample reduction method were more accurate than the corresponding base maps produced through a smaller number of real samples. For example, nitrogen maps that were produced from 118, 59 and 30 real samples have 78%, 62%, 41% similarity, respectively with the base map (236 samples) and the sample reduction method increased similarity to 87%, 77%, 71%, respectively. Hence, this method can reduce the number of real samples and substitute ANN predictive samples to achieve the specified level of accuracy.

Keywords: artificial neural network, kriging, macro nutrient, pattern recognition, precision farming, soil mapping

Procedia PDF Downloads 43
164 Deficient Multisensory Integration with Concomitant Resting-State Connectivity in Adult Attention Deficit/Hyperactivity Disorder (ADHD)

Authors: Marcel Schulze, Behrem Aslan, Silke Lux, Alexandra Philipsen

Abstract:

Objective: Patients with Attention Deficit/Hyperactivity Disorder (ADHD) often report that they are being flooded by sensory impressions. Studies investigating sensory processing show hypersensitivity for sensory inputs across the senses in children and adults with ADHD. Especially the auditory modality is affected by deficient acoustical inhibition and modulation of signals. While studying unimodal signal-processing is relevant and well-suited in a controlled laboratory environment, everyday life situations occur multimodal. A complex interplay of the senses is necessary to form a unified percept. In order to achieve this, the unimodal sensory modalities are bound together in a process called multisensory integration (MI). In the current study we investigate MI in an adult ADHD sample using the McGurk-effect – a well-known illusion where incongruent speech like phonemes lead in case of successful integration to a new perceived phoneme via late top-down attentional allocation . In ADHD neuronal dysregulation at rest e.g., aberrant within or between network functional connectivity may also account for difficulties in integrating across the senses. Therefore, the current study includes resting-state functional connectivity to investigate a possible relation of deficient network connectivity and the ability of stimulus integration. Method: Twenty-five ADHD patients (6 females, age: 30.08 (SD:9,3) years) and twenty-four healthy controls (9 females; age: 26.88 (SD: 6.3) years) were recruited. MI was examined using the McGurk effect, where - in case of successful MI - incongruent speech-like phonemes between visual and auditory modality are leading to a perception of a new phoneme. Mann-Whitney-U test was applied to assess statistical differences between groups. Echo-planar imaging-resting-state functional MRI was acquired on a 3.0 Tesla Siemens Magnetom MR scanner. A seed-to-voxel analysis was realized using the CONN toolbox. Results: Susceptibility to McGurk was significantly lowered for ADHD patients (ADHDMdn:5.83%, ControlsMdn:44.2%, U= 160.5, p=0.022, r=-0.34). When ADHD patients integrated phonemes, reaction times were significantly longer (ADHDMdn:1260ms, ControlsMdn:582ms, U=41.0, p<.000, r= -0.56). In functional connectivity medio temporal gyrus (seed) was negatively associated with primary auditory cortex, inferior frontal gyrus, precentral gyrus, and fusiform gyrus. Conclusion: MI seems to be deficient for ADHD patients for stimuli that need top-down attentional allocation. This finding is supported by stronger functional connectivity from unimodal sensory areas to polymodal, MI convergence zones for complex stimuli in ADHD patients.

Keywords: attention-deficit hyperactivity disorder, audiovisual integration, McGurk-effect, resting-state functional connectivity

Procedia PDF Downloads 100
163 A Greener Approach towards the Synthesis of an Antimalarial Drug Lumefantrine

Authors: Luphumlo Ncanywa, Paul Watts

Abstract:

Malaria is a disease that kills approximately one million people annually. Children and pregnant women in sub-Saharan Africa lost their lives due to malaria. Malaria continues to be one of the major causes of death, especially in poor countries in Africa. Decrease the burden of malaria and save lives is very essential. There is a major concern about malaria parasites being able to develop resistance towards antimalarial drugs. People are still dying due to lack of medicine affordability in less well-off countries in the world. If more people could receive treatment by reducing the cost of drugs, the number of deaths in Africa could be massively reduced. There is a shortage of pharmaceutical manufacturing capability within many of the countries in Africa. However one has to question how Africa would actually manufacture drugs, active pharmaceutical ingredients or medicines developed within these research programs. It is quite likely that such manufacturing would be outsourced overseas, hence increasing the cost of production and potentially limiting the full benefit of the original research. As a result the last few years has seen major interest in developing more effective and cheaper technology for manufacturing generic pharmaceutical products. Micro-reactor technology (MRT) is an emerging technique that enables those working in research and development to rapidly screen reactions utilizing continuous flow, leading to the identification of reaction conditions that are suitable for usage at a production level. This emerging technique will be used to develop antimalarial drugs. It is this system flexibility that has the potential to reduce both the time was taken and risk associated with transferring reaction methodology from research to production. Using an approach referred to as scale-out or numbering up, a reaction is first optimized within the laboratory using a single micro-reactor, and in order to increase production volume, the number of reactors employed is simply increased. The overall aim of this research project is to develop and optimize synthetic process of antimalarial drugs in the continuous processing. This will provide a step change in pharmaceutical manufacturing technology that will increase the availability and affordability of antimalarial drugs on a worldwide scale, with a particular emphasis on Africa in the first instance. The research will determine the best chemistry and technology to define the lowest cost manufacturing route to pharmaceutical products. We are currently developing a method to synthesize Lumefantrine in continuous flow using batch process as bench mark. Lumefantrine is a dichlorobenzylidine derivative effective for the treatment of various types of malaria. Lumefantrine is an antimalarial drug used with artemether for the treatment of uncomplicated malaria. The results obtained when synthesizing Lumefantrine in a batch process are transferred into a continuous flow process in order to develop an even better and reproducible process. Therefore, development of an appropriate synthetic route for Lumefantrine is significant in pharmaceutical industry. Consequently, if better (and cheaper) manufacturing routes to antimalarial drugs could be developed and implemented where needed, it is far more likely to enable antimalarial drugs to be available to those in need.

Keywords: antimalarial, flow, lumefantrine, synthesis

Procedia PDF Downloads 168
162 Nanoparticle Exposure Levels in Indoor and Outdoor Demolition Sites

Authors: Aniruddha Mitra, Abbas Rashidi, Shane Lewis, Jefferson Doehling, Alexis Pawlak, Jacob Schwartz, Imaobong Ekpo, Atin Adhikari

Abstract:

Working or living close to demolition sites can increase risks of dust-related health problems. Demolition of concrete buildings may produce crystalline silica dust, which can be associated with a broad range of respiratory diseases including silicosis and lung cancers. Previous studies demonstrated significant associations between demolition dust exposure and increase in the incidence of mesothelioma or asbestos cancer. Dust is a generic term used for minute solid particles of typically <500 µm in diameter. Dust particles in demolition sites vary in a wide range of sizes. Larger particles tend to settle down from the air. On the other hand, the smaller and lighter solid particles remain dispersed in the air for a long period and pose sustained exposure risks. Submicron ultrafine particles and nanoparticles are respirable deeper into our alveoli beyond our body’s natural respiratory cleaning mechanisms such as cilia and mucous membranes and are likely to be retained in the lower airways. To our knowledge, how various demolition tasks release nanoparticles are largely unknown and previous studies mostly focused on course dust, PM2.5, and PM10. General belief is that the dust generated during demolition tasks are mostly large particles formed through crushing, grinding, or sawing of various concrete and wooden structures. Therefore, little consideration has been given to the generated submicron ultrafine and nanoparticles and their exposure levels. These data are, however, critically important because recent laboratory studies have demonstrated cytotoxicity of nanoparticles on lung epithelial cells. The above-described knowledge gaps were addressed in this study by a novel newly developed nanoparticle monitor, which was used for nanoparticle monitoring at two adjacent indoor and outdoor building demolition sites in southern Georgia. Nanoparticle levels were measured (n = 10) by TSI NanoScan SMPS Model 3910 at four different distances (5, 10, 15, and 30 m) from the work location as well as in control sites. Temperature and relative humidity levels were recorded. Indoor demolition works included acetylene torch, masonry drilling, ceiling panel removal, and other miscellaneous tasks. Whereas, outdoor demolition works included acetylene torch and skid-steer loader use to remove a HVAC system. Concentration ranges of nanoparticles of 13 particle sizes at the indoor demolition site were: 11.5 nm: 63 – 1054/cm³; 15.4 nm: 170 – 1690/cm³; 20.5 nm: 321 – 730/cm³; 27.4 nm: 740 – 3255/cm³; 36.5 nm: 1,220 – 17,828/cm³; 48.7 nm: 1,993 – 40,465/cm³; 64.9 nm: 2,848 – 58,910/cm³; 86.6 nm: 3,722 – 62,040/cm³; 115.5 nm: 3,732 – 46,786/cm³; 154 nm: 3,022 – 21,506/cm³; 205.4 nm: 12 – 15,482/cm³; 273.8 nm: Keywords: demolition dust, industrial hygiene, aerosol, occupational exposure

Procedia PDF Downloads 404
161 Biogas Production Using Water Hyacinth as a Means of Waste Management Control at Hartbeespoort Dam, South Africa

Authors: Trevor Malambo Simbayi, Diane Hildebrandt, Tonderayi Matambo

Abstract:

The rapid growth of population in recent decades has resulted in an increased need for energy to meet human activities. As energy demands increase, the need for other sources of energy other than fossil fuels, increases in turn. Furthermore, environmental concerns such as global warming due to the use of fossil fuels, depleting fossil fuel reserves and the rising cost of oil have contributed to an increased interest in renewables sources of energy. Biogas is a renewable source of energy produced through the process of anaerobic digestion (AD) and it offers a two-fold solution; it provides an environmentally friendly source of energy and its production helps to reduce the amount of organic waste taken to landfills. This research seeks to address the waste management problem caused by an aquatic weed called water hyacinth (Eichhornia crassipes) at the Hartbeespoort (Harties) Dam in the North West Province of South Africa, through biogas production of the weed. Water hyacinth is a category 1 invasive species and it is deemed to be the most problematic aquatic weed. This weed is said to double its size in the space of five days. Eutrophication in the Hartbeespoort Dam has manifested itself through the excessive algae bloom and water hyacinth infestation. A large amount of biomass from water hyacinth and algae are generated per annum from the two hundred hectare surface area of the dam exposed to the sun. This biomass creates a waste management problem. Water hyacinth when in full bloom can cover nearly half of the surface of Hartbeespoort Dam. The presence of water hyacinth in the dam has caused economic and environmental problems. Economic activities such as fishing, boating, and recreation, are hampered by the water hyacinth’s prolific growth. This research proposes the use of water hyacinth as a feedstock or substrate for biogas production in order to find an economic and environmentally friendly means of waste management for the communities living around the Hartbeespoort Dam. In order to achieve this objective, water hyacinth will be collected from the dam and it will be mechanically pretreated before anaerobic digestion. Pretreatment is required for lignocellulosic materials like water hyacinth because such materials are called recalcitrant solid materials. Cow manure will be employed as a source of microorganisms needed for biogas production to occur. Once the water hyacinth and the cow dung are mixed, they will be placed in laboratory anaerobic reactors. Biogas production will be monitored daily through the downward displacement of water. Characterization of the substrates (cow manure and water hyacinth) to determine the nitrogen, sulfur, carbon and hydrogen, total solids (TS) and volatile solids (VS). Liquid samples from the anaerobic digesters will be collected and analyzed for volatile fatty acids (VFAs) composition by means of a liquid gas chromatography machine.

Keywords: anaerobic digestion, biogas, waste management, water hyacinth

Procedia PDF Downloads 168
160 Combined Pneumomediastinum and Pneumothorax Due to Hyperemesis Gravidarum

Authors: Fayez Hanna, Viet Tran

Abstract:

A 20 years old lady- primigravida 6 weeks pregnant with unremarkable past history, presented to the emergency department at the Royal Hobart Hospital, Tasmania, Australia, with hyperemesis gravidarum associated with, dehydration and complicated with hematemesis and chest pain resistant. Accordingly, we conducted laboratory investigations which revealed: FBC: WBC 23.9, unremarkable U&E, LFT, lipase and her VBG showed a pH 7.4, pCo2 36.7, cK+ 3.2, cNa+ 142. The decision was made to do a chest X-ray (CXR) after explaining the risks/benefit of performing radiographic investigations during pregnancy and considering the patient's plan for the termination of the pregnancy as she was not ready for motherhood for shared decision-making and consent to look for pneumoperitoneum to suggest perforated viscus that might cause the hematemesis. However, the CXR showed pneumomediastinum but no evidence of pneumoperitoneum or pneumothorax. Consequently, a decision was made to proceed with CT oesophagography with imaging pre and post oral contrast administration to identify a potential oesophageal tear since it could not be excluded using a plain film of the CXR. The CT oesophagography could not find a leak for the administered oral contrast and thus, no oesophageal tear could be confirmed but could not exclude the Mallory-Weiss tear (lower oesophageal tear). Further, the CT oesophagography showed an extensive pneumomediastinum that could not be confirmed to be pulmonary in origin noting the presence of bilateral pulmonary interstitial emphysema and pneumothorax in the apex of the right lung that was small. The patient was admitted to the Emergency Department Inpatient Unit for monitoring, supportive therapy, and symptomatic management. Her hyperemesis was well controlled with ondansetron 8mg IV, metoclopramide 10mg IV, doxylamine 25mg PO, pyridoxine 25mg PO, esomeprazole 40mg IV and oxycodone 5mg PO was given for pain control and 2 litter of IV fluid. The patient was stabilized after 24 hours and discharged home on ondansetron 8mg every 8 hours whereas the patient had a plan for medical termination of pregnancy. Three weeks later, the patient represented with nausea and vomiting complicated by a frank hematemesis. Her observation chart showed HR 117- other vital signs were normal. Pathology showed WBC 14.3 with normal U&E and Hb. The patient was managed in the Emergency Department with the same previous regimen and was discharged home on same previous regimes. Five days later, she presented again with nausea, vomiting and hematemesis and was admitted under obstetrics and gynaecology for stabilization then discharged home with a plan for surgical termination of pregnancy after 3-days rather than the previously planned medical termination of pregnancy to avoid extension of potential oesophageal tear. The surgical termination and follow up period were uneventful. The case is considered rare as pneumomediastinum is a very rare complication of hyperemesis gravidarum where vomiting-induced barotrauma leads to a ruptured oesophagus and air leak into the mediastinum. However no rupture oesophagus in our case. Although the combination of pneumothorax and pneumomediastinum without oesophageal tear was reported only 8 times in the literature, but none of them was due to hyperemesis gravidarum.

Keywords: Pneumothorax, pneumomediastinum, hyperemesis gravidarum, pneumopericardium

Procedia PDF Downloads 68
159 The Combined Use of L-Arginine and Progesterone During the Post-breeding Period in Female Rabbits Increases the Weight of Their Fetuses

Authors: Diego F. Carrillo-González, Milena Osorio, Natalia M. Cerro, Yasser Y. Lenis

Abstract:

Introduction: mortality during the implantation and early embryonic development periods reach around 30% in different mammalian species. It has been described that progesterone (P4) and Arginine (Arg) play a beneficial role in establishing and maintaining early pregnancy in mammals. The combined effect between Arg and P4 on reproductive parameters in the rabbit species is not yet elucidated, to our best knowledge. Objective: to assess the effect of L-arginine and progesterone during the post-breeding period in female rabbits on the composition of the amniotic fluid, the placental structure, and the bone growth in their fetuses. Methods: crossbred female rabbits (n=16) were randomly distributed into four experimental groups (Ctrl, Arg, P4, and Arg+P4). In the control group, 0.9% saline solution was administered as a placebo, the Arg group was administered arginine (50 mg/kg BW) from day 4.5 to day 19 post-breeding, the P4 group was administered progesterone (Gestavec®, 1.5 mg/kg BW) from 24 hours to day 4 post-breeding and for the Arg+P4 group, an administration was performed under the same time and dose guidelines as the Arg and P4 treatments. Four females were sacrificed, and the amniotic fluid was collected and analyzed with rapid urine test strips, while the placenta and fetuses were processed in the laboratory to obtain histological plates. The percentage of deciduous, labyrinthine, and junctional zones was determined, and the length of the femur for each fetus was measured as an indicator of growth. Descriptive statistics were applied to identify the success rates for each of the tests. Afterwards, A one-way analysis of variance (ANOVA) was performed, and a comparison of means was conducted by Tukey's test. Results: a higher density (p<0.05) was observed in the amniotic fluid for fetuses in the control group (1022±2.5g/mL) compared to the P4 (1015±5.3g/mL) and Arg+P4 (1016±4,9g/mL) groups. Additionally, the density of amniotic fluid in the Arg group (1021±2.5g/mL) was higher (p<0.05) than in the P4 group. The concentration of protein, glucose, and ascorbic acid had no statistical difference between treatments (p>0.05). The histological analysis of the uteroplacental regions, a statistical difference (p<0,05) in the proportion of deciduous zone was found between the P4 group (9.6±2.6%) when compared with the Ctrl (28.15±12.3%), and Arg+P4 (26.3±4.9) groups. In the analysis of the fetuses, the weight was higher for the Arg group (2.69±0.18), compared to the other groups (p<0.05), while a shorter length was observed (p<0.05) in the fetuses for the Arg+P4 group (25.97±1.17). However, no difference (p>0.05) was found when comparing the length of the developing femurs between the experimental groups. Conclusion: the combination of L-arginine and progesterone allows a reduction in the density of amniotic fluid, without affecting the protein, energy, and antioxidant components. However, the use of L-arginine stimulates weight gain in fetuses, without affecting size, which could be used to improve production parameters in rabbit production systems. In addition, the modification in the deciduous zone could show a placental adaptation based on the fetal growth process, however more specific studies on the placentation process are required.

Keywords: arginine, progesterone, rabbits, reproduction

Procedia PDF Downloads 51
158 Diagnostic Yield of CT PA and Value of Pre Test Assessments in Predicting the Probability of Pulmonary Embolism

Authors: Shanza Akram, Sameen Toor, Heba Harb Abu Alkass, Zainab Abdulsalam Altaha, Sara Taha Abdulla, Saleem Imran

Abstract:

Acute pulmonary embolism (PE) is a common disease and can be fatal. The clinical presentation is variable and nonspecific, making accurate diagnosis difficult. Testing patients with suspected acute PE has increased dramatically. However, the overuse of some tests, particularly CT and D-dimer measurement, may not improve care while potentially leading to patient harm and unnecessary expense. CTPA is the investigation of choice for PE. Its easy availability, accuracy and ability to provide alternative diagnosis has lowered the threshold for performing it, resulting in its overuse. Guidelines have recommended the use of clinical pretest probability tools such as ‘Wells score’ to assess risk of suspected PE. Unfortunately, implementation of guidelines in clinical practice is inconsistent. This has led to low risk patients being subjected to unnecessary imaging, exposure to radiation and possible contrast related complications. Aim: To study the diagnostic yield of CT PA, clinical pretest probability of patients according to wells score and to determine whether or not there was an overuse of CTPA in our service. Methods: CT scans done on patients with suspected P.E in our hospital from 1st January 2014 to 31st December 2014 were retrospectively reviewed. Medical records were reviewed to study demographics, clinical presentation, final diagnosis, and to establish if Wells score and D-Dimer were used correctly in predicting the probability of PE and the need for subsequent CTPA. Results: 100 patients (51male) underwent CT PA in the time period. Mean age was 57 years (24-91 years). Majority of patients presented with shortness of breath (52%). Other presenting symptoms included chest pain 34%, palpitations 6%, collapse 5% and haemoptysis 5%. D Dimer test was done in 69%. Overall Wells score was low (<2) in 28 %, moderate (>2 - < 6) in 47% and high (> 6) in 15% of patients. Wells score was documented in medical notes of only 20% patients. PE was confirmed in 12% (8 male) patients. 4 had bilateral PE’s. In high-risk group (Wells > 6) (n=15), there were 5 diagnosed PEs. In moderate risk group (Wells >2 - < 6) (n=47), there were 6 and in low risk group (Wells <2) (n=28), one case of PE was confirmed. CT scans negative for PE showed pleural effusion in 30, Consolidation in 20, atelactasis in 15 and pulmonary nodule in 4 patients. 31 scans were completely normal. Conclusion: Yield of CT for pulmonary embolism was low in our cohort at 12%. A significant number of our patients who underwent CT PA had low Wells score. This suggests that CT PA is over utilized in our institution. Wells score was poorly documented in medical notes. CT-PA was able to detect alternative pulmonary abnormalities explaining the patient's clinical presentation. CT-PA requires concomitant pretest clinical probability assessment to be an effective diagnostic tool for confirming or excluding PE. . Clinicians should use validated clinical prediction rules to estimate pretest probability in patients in whom acute PE is being considered. Combining Wells scores with clinical and laboratory assessment may reduce the need for CTPA.

Keywords: CT PA, D dimer, pulmonary embolism, wells score

Procedia PDF Downloads 195
157 The Inverse Problem in the Process of Heat and Moisture Transfer in Multilayer Walling

Authors: Bolatbek Rysbaiuly, Nazerke Rysbayeva, Aigerim Rysbayeva

Abstract:

Relevance: Energy saving elevated to public policy in almost all developed countries. One of the areas for energy efficiency is improving and tightening design standards. In the tie with the state standards, make high demands for thermal protection of buildings. Constructive arrangement of layers should ensure normal operation in which the humidity of materials of construction should not exceed a certain level. Elevated levels of moisture in the walls can be attributed to a defective condition, as moisture significantly reduces the physical, mechanical and thermal properties of materials. Absence at the design stage of modeling the processes occurring in the construction and predict the behavior of structures during their work in the real world leads to an increase in heat loss and premature aging structures. Method: To solve this problem, widely used method of mathematical modeling of heat and mass transfer in materials. The mathematical modeling of heat and mass transfer are taken into the equation interconnected layer [1]. In winter, the thermal and hydraulic conductivity characteristics of the materials are nonlinear and depends on the temperature and moisture in the material. In this case, the experimental method of determining the coefficient of the freezing or thawing of the material becomes much more difficult. Therefore, in this paper we propose an approximate method for calculating the thermal conductivity and moisture permeability characteristics of freezing or thawing material. Questions. Following the development of methods for solving the inverse problem of mathematical modeling allows us to answer questions that are closely related to the rational design of fences: Where the zone of condensation in the body of the multi-layer fencing; How and where to apply insulation rationally his place; Any constructive activities necessary to provide for the removal of moisture from the structure; What should be the temperature and humidity conditions for the normal operation of the premises enclosing structure; What is the longevity of the structure in terms of its components frost materials. Tasks: The proposed mathematical model to solve the following problems: To assess the condition of the thermo-physical designed structures at different operating conditions and select appropriate material layers; Calculate the temperature field in a structurally complex multilayer structures; When measuring temperature and moisture in the characteristic points to determine the thermal characteristics of the materials constituting the surveyed construction; Laboratory testing to significantly reduce test time, and eliminates the climatic chamber and expensive instrumentation experiments and research; Allows you to simulate real-life situations that arise in multilayer enclosing structures associated with freezing, thawing, drying and cooling of any layer of the building material.

Keywords: energy saving, inverse problem, heat transfer, multilayer walling

Procedia PDF Downloads 373
156 Blister Formation Mechanisms in Hot Rolling

Authors: Rebecca Dewfall, Mark Coleman, Vladimir Basabe

Abstract:

Oxide scale growth is an inevitable byproduct of the high temperature processing of steel. Blister is a phenomenon that occurs due to oxide growth, where high temperatures result in the swelling of surface scale, producing a bubble-like feature. Blisters can subsequently become embedded in the steel substrate during hot rolling in the finishing mill. This rolled in scale defect causes havoc within industry, not only with wear on machinery but loss of customer satisfaction, poor surface finish, loss of material, and profit. Even though blister is a highly prevalent issue, there is still much that is not known or understood. The classic iron oxidation system is a complex multiphase system formed of wustite, magnetite, and hematite, producing multi-layered scales. Each phase will have independent properties such as thermal coefficients, growth rate, and mechanical properties, etc. Furthermore, each additional alloying element will have different affinities for oxygen and different mobilities in the oxide phases so that oxide morphologies are specific to alloy chemistry. Therefore, blister regimes can be unique to each steel grade resulting in a diverse range of formation mechanisms. Laboratory conditions were selected to simulate industrial hot rolling with temperature ranges approximate to the formation of secondary and tertiary scales in the finishing mills. Samples with composition: 0.15Wt% C, 0.1Wt% Si, 0.86Wt% Mn, 0.036Wt% Al, and 0.028Wt% Cr, were oxidised in a thermo-gravimetric analyser (TGA), with an air velocity of 10litresmin-1, at temperaturesof 800°C, 850°C, 900°C, 1000°C, 1100°C, and 1200°C respectively. Samples were held at temperature in an argon atmosphere for 10minutes, then oxidised in air for 600s, 60s, 30s, 15s, and 4s, respectively. Oxide morphology and Blisters were characterised using EBSD, WDX, nanoindentation, FIB, and FEG-SEM imaging. Blister was found to have both a nucleation and growth process. During nucleation, the scale detaches from the substrate and blisters after a very short period, roughly 10s. The steel substrate is then exposed inside of the blister and further oxidised in the reducing atmosphere of the blister, however, the atmosphere within the blister is highly dependent upon the porosity of the blister crown. The blister crown was found to be consistently between 35-40um for all heating regimes, which supports the theory that the blister inflates, and the oxide then subsequently grows underneath. Upon heating, two modes of blistering were identified. In Mode 1 it was ascertained that the stresses produced by oxide growth will increase with increasing oxide thickness. Therefore, in Mode 1 the incubation time for blister formation is shortened by increasing temperature. In Mode 2 increase in temperature will result in oxide with a high ductility and high oxide porosity. The high oxide ductility and/or porosity accommodates for the intrinsic stresses from oxide growth. Thus Mode 2 is the inverse of Mode 1, and incubation time is increased with temperature. A new phenomenon was reported whereby blister formed exclusively through cooling at elevated temperatures above mode 2.

Keywords: FEG-SEM, nucleation, oxide morphology, surface defect

Procedia PDF Downloads 117
155 Ecological Relationships Between Material, Colonizing Organisms, and Resulting Performances

Authors: Chris Thurlbourne

Abstract:

Due to the continual demand for material to build, and a limit of good environmental material credentials of 'normal' building materials, there is a need to look at new and reconditioned material types - both biogenic and non-biogenic - and a field of research that accompanies this. This research development focuses on biogenic and non-biogenic material engineering and the impact of our environment on new and reconditioned material types. In our building industry and all the industries involved in constructing our built environment, building material types can be broadly categorized into two types, biogenic and non-biogenic material properties. Both play significant roles in shaping our built environment. Regardless of their properties, all material types originate from our earth, whereas many are modified through processing to provide resistance to 'forces of nature', be it rain, wind, sun, gravity, or whatever the local environmental conditions throw at us. Modifications are succumbed to offer benefits in endurance, resistance, malleability in handling (building with), and ergonomic values - in all types of building material. We assume control of all building materials through rigorous quality control specifications and regulations to ensure materials perform under specific constraints. Yet materials confront an external environment that is not controlled with live forces undetermined, and of which materials naturally act and react through weathering, patination and discoloring, promoting natural chemical reactions such as rusting. The purpose of the paper is to present recent research that explores the after-life of specific new and reconditioned biogenic and non-biogenic material types and how the understanding of materials' natural processes of transformation when exposed to the external climate, can inform initial design decisions. With qualities to receive in a transient and contingent manner, ecological relationships between material, the colonizing organisms and resulting performances invite opportunities for new design explorations for the benefit of both the needs of human society and the needs of our natural environment. The research follows designing for the benefit of both and engaging in both biogenic and non-biogenic material engineering whilst embracing the continual demand for colonization - human and environment, and the aptitude of a material to be colonized by one or several groups of living organisms without necessarily undergoing any severe deterioration, but embracing weathering, patination and discoloring, and at the same time establishing new habitat. The research follows iterative prototyping processes where knowledge has been accumulated via explorations of specific material performances, from laboratory to construction mock-ups focusing on the architectural qualities embedded in control of production techniques and facilitating longer-term patinas of material surfaces to extend the aesthetic beyond common judgments. Experiments are therefore focused on how the inherent material qualities drive a design brief toward specific investigations to explore aesthetics induced through production, patinas and colonization obtained over time while exposed and interactions with external climate conditions.

Keywords: biogenic and non-biogenic, natural processes of transformation, colonization, patina

Procedia PDF Downloads 59
154 42CrMo4 Steel Flow Behavior Characterization for High Temperature Closed Dies Hot Forging in Automotive Components Applications

Authors: O. Bilbao, I. Loizaga, F. A. Girot, A. Torregaray

Abstract:

The current energetical situation and the high competitiveness in industrial sectors as the automotive one have become the development of new manufacturing processes with less energy and raw material consumption a real necessity. As consequence, new forming processes related with high temperature hot forging in closed dies have emerged in the last years as new solutions to expand the possibilities of hot forging and iron casting in the automotive industry. These technologies are mid-way between hot forging and semi-solid metal processes, working at temperatures higher than the hot forging but below the solidus temperature or the semi solid range, where no liquid phase is expected. This represents an advantage comparing with semi-solid forming processes as thixoforging, by the reason that no so high temperatures need to be reached in the case of high melting point alloys as steels, reducing the manufacturing costs and the difficulties associated to semi-solid processing of them. Comparing with hot forging, this kind of technologies allow the production of parts with as forged properties and more complex and near-net shapes (thinner sidewalls), enhancing the possibility of designing lightweight components. From the process viewpoint, the forging forces are significantly decreased, and a significant reduction of the raw material, energy consumption, and the forging steps have been demonstrated. Despite the mentioned advantages, from the material behavior point of view, the expansion of these technologies has shown the necessity of developing new material flow behavior models in the process working temperature range to make the simulation or the prediction of these new forming processes feasible. Moreover, the knowledge of the material flow behavior at the working temperature range also allows the design of the new closed dies concept required. In this work, the flow behavior characterization in the mentioned temperature range of the widely used in automotive commercial components 42CrMo4 steel has been studied. For that, hot compression tests have been carried out in a thermomechanical tester in a temperature range that covers the material behavior from the hot forging until the NDT (Nil Ductility Temperature) temperature (1250 ºC, 1275 ºC, 1300 ºC, 1325 ºC, 1350ºC, and 1375 ºC). As for the strain rates, three different orders of magnitudes have been considered (0,1 s-1, 1s-1, and 10s-1). Then, results obtained from the hot compression tests have been treated in order to adapt or re-write the Spittel model, widely used in automotive commercial softwares as FORGE® that restrict the current existing models up to 1250ºC. Finally, the obtained new flow behavior model has been validated by the process simulation in a commercial automotive component and the comparison of the results of the simulation with the already made experimental tests in a laboratory cellule of the new technology. So as a conclusion of the study, a new flow behavior model for the 42CrMo4 steel in the new working temperature range and the new process simulation in its application in automotive commercial components has been achieved and will be shown.

Keywords: 42CrMo4 high temperature flow behavior, high temperature hot forging in closed dies, simulation of automotive commercial components, spittel flow behavior model

Procedia PDF Downloads 97
153 Restless Leg Syndrome as the Presenting Symptom of Neuroendocrine Tumor

Authors: Mustafa Cam, Nedim Ongun, Ufuk Kutluana

Abstract:

Introduction: Restless LegsSyndrome (RLS) is a common, under-recognized disorder disrupts sleep and diminishes quality of life (1). The most common conditions highly associated with RLS include renalfailure, iron and folic acid deficiency, peripheral neuropathy, pregnancy, celiacdisease, Crohn’sdiseaseandrarelymalignancy (2).Despite a clear relation between low peripheral iron and increased prevalence and severity of RLS, the prevalence and clinical significance of RLS in iron-deficientanemic populations is unknown (2). We report here a case of RLS due to iron deficiency in the setting of neuroendocrinetumor. Report of Case: A 35 year-old man was referred to our clinic with general weakness, weight loss (10 kg in 2 months)and 2-month history of uncomfortable sensations in his legs with urge to move, partially relieved by movement. The symptoms were presented very day, worsening in the evening; the discomfort forced the patient to getup and walk around at night. RLS was severe, with a score of 22 at the International RLS ratingscale. The patient had no past medical history. The patient underwent a complete set of blood analyses and the following ab normal values were found (normal limitswithinbrackets): hemoglobin 9.9 g/dl (14-18), MCV 70 fL (80-94), ferritin 3,5 ng/mL (13-150). Brain and spinemagnetic resonance imaging was normal. The patient consultated with gastroenterology clinic and gastointestinal systemendoscopy was performed for theetiology of the iron deficiency anemia. After the gastricbiopsy, results allowed us to reach the diagnosis of neuroen docrine tumor and the patient referred to oncology clinic. Discussion: The first important consideration from this case report is that the patient was referred to our clinic because of his severe RLS symptoms dramatically reducing his quality of life. However, our clinical study clearly demonstrated that RLS was not the primary disease. Considering the information available for this patient, we believe that the most likely possibility is that RLS was secondary to iron deficiency, a very well-known and established cause of RLS in theliterature (3,4). Neuroendocrine tumors (NETs) are rare epithelial neoplasms with neuroendocrine differentiation that most commonly originate in the lungs and gastrointestinal tract (5). NETs vary widely in their clinical presentation; symptoms are often nonspecific and can be mistaken for those of other more common conditions (6). 50% of patients with reported disease stage have either regional or distant metastases at diagnosis (7). Accurate and earlier NET diagnosis is the first step in shortening the time to optimal care and improved outcomes for patients (8). The most important message from this case report is that RLS symptoms can sometimes be thesign of a life-threatening condition. Conclusion: Careful and complete collection of clinical and laboratory data should be carried out in RLS patients. Inparticular, if RLS onset coincides with weight loss and iron deficieny anemia, gastricendos copy should be performed. It is known about that malignancy is a rare etiology in RLS patients and to our knowledge; it is the first case with neuro endocrine tumor presenting with RLS.

Keywords: neurology, neuroendocrine tumor, restless legs syndrome, sleep

Procedia PDF Downloads 263
152 Comparative Review Of Models For Forecasting Permanent Deformation In Unbound Granular Materials

Authors: Shamsulhaq Amin

Abstract:

Unbound granular materials (UGMs) are pivotal in ensuring long-term quality, especially in the layers under the surface of flexible pavements and other constructions. This study seeks to better understand the behavior of the UGMs by looking at popular models for predicting lasting deformation under various levels of stresses and load cycles. These models focus on variables such as the number of load cycles, stress levels, and features specific to materials and were evaluated on the basis of their ability to accurately predict outcomes. The study showed that these factors play a crucial role in how well the models work. Therefore, the research highlights the need to look at a wide range of stress situations to more accurately predict how much the UGMs bend or shift. The research looked at important factors, like how permanent deformation relates to the number of times a load is applied, how quickly this phenomenon happens, and the shakedown effect, in two different types of UGMs: granite and limestone. A detailed study was done over 100,000 load cycles, which provided deep insights into how these materials behave. In this study, a number of factors, such as the level of stress applied, the number of load cycles, the density of the material, and the moisture present were seen as the main factors affecting permanent deformation. It is vital to fully understand these elements for better designing pavements that last long and handle wear and tear. A series of laboratory tests were performed to evaluate the mechanical properties of materials and acquire model parameters. The testing included gradation tests, CBR tests, and Repeated load triaxial tests. The repeated load triaxial tests were crucial for studying the significant components that affect deformation. This test involved applying various stress levels to estimate model parameters. In addition, certain model parameters were established by regression analysis, and optimization was conducted to improve outcomes. Afterward, the material parameters that were acquired were used to construct graphs for each model. The graphs were subsequently compared to the outcomes obtained from the repeated load triaxial testing. Additionally, the models were evaluated to determine if they demonstrated the two inherent deformation behaviors of materials when subjected to repetitive load: the initial phase, post-compaction, and the second phase volumetric changes. In this study, using log-log graphs was key to making the complex data easier to understand. This method made the analysis clearer and helped make the findings easier to interpret, adding both precision and depth to the research. This research provides important insight into picking the right models for predicting how these materials will act under expected stress and load conditions. Moreover, it offers crucial information regarding the effect of load cycle and permanent deformation as well as the shakedown effect on granite and limestone UGMs.

Keywords: permanent deformation, unbound granular materials, load cycles, stress level

Procedia PDF Downloads 12
151 Storage of Organic Carbon in Chemical Fractions in Acid Soil as Influenced by Different Liming

Authors: Ieva Jokubauskaite, Alvyra Slepetiene, Danute Karcauskiene, Inga Liaudanskiene, Kristina Amaleviciute

Abstract:

Soil organic carbon (SOC) is the key soil quality and ecological stability indicator, therefore, carbon accumulation in stable forms not only supports and increases the organic matter content in the soil, but also has a positive effect on the quality of soil and the whole ecosystem. Soil liming is one of the most common ways to improve the carbon sequestration in the soil. Determination of the optimum intensity and combinations of liming in order to ensure the optimal carbon quantitative and qualitative parameters is one of the most important tasks of this work. The field experiments were carried out at the Vezaiciai Branch of Lithuanian Research Centre for Agriculture and Forestry (LRCAF) during the 2011–2013 period. The effect of liming with different intensity (at a rate 0.5 every 7 years and 2.0 every 3-4 years) was investigated in the topsoil of acid moraine loam Bathygleyic Dystric Glossic Retisol. Chemical analyses were carried out at the Chemical Research Laboratory of Institute of Agriculture, LRCAF. Soil samples for chemical analyses were taken from the topsoil after harvesting. SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) at 590 nm wavelength using glucose standards. SOC fractional composition was determined by Ponomareva and Plotnikova version of classical Tyurin method. Dissolved organic carbon (DOC) was analyzed using an ion chromatograph SKALAR in water extract at soil-water ratio 1:5. Spectral properties (E4/E6 ratio) of humic acids were determined by measuring the absorbance of humic and fulvic acids solutions at 465 and 665 nm. Our study showed a negative statistically significant effect of periodical liming (at 0.5 and 2.0 liming rates) on SOC content in the soil. The content of SOC was 1.45% in the unlimed treatment, while in periodically limed at 2.0 liming rate every 3–4 years it was approximately by 0.18 percentage points lower. It was revealed that liming significantly decreased the DOC concentration in the soil. The lowest concentration of DOC (0.156 g kg-1) was established in the most intensively limed (2.0 liming rate every 3–4 years) treatment. Soil liming exerted an increase of all humic acids and fulvic acid bounded with calcium fractions content in the topsoil. Soil liming resulted in the accumulation of valuable humic acids. Due to the applied liming, the HR/FR ratio, indicating the quality of humus increased to 1.08 compared with that in unlimed soil (0.81). Intensive soil liming promoted the formation of humic acids in which groups of carboxylic and phenolic compounds predominated. These humic acids are characterized by a higher degree of condensation of aromatic compounds and in this way determine the intensive organic matter humification processes in the soil. The results of this research provide us with the clear information on the characteristics of SOC change, which could be very useful to guide the climate policy and sustainable soil management.

Keywords: acid soil, carbon sequestration, long–term liming, soil organic carbon

Procedia PDF Downloads 200
150 Intended Use of Genetically Modified Organisms, Advantages and Disadvantages

Authors: Pakize Ozlem Kurt Polat

Abstract:

GMO (genetically modified organism) is the result of a laboratory process where genes from the DNA of one species are extracted and artificially forced into the genes of an unrelated plant or animal. This technology includes; nucleic acid hybridization, recombinant DNA, RNA, PCR, cell culture and gene cloning techniques. The studies are divided into three groups of properties transferred to the transgenic plant. Up to 59% herbicide resistance characteristic of the transfer, 28% resistance to insects and the virus seems to be related to quality characteristics of 13%. Transgenic crops are not included in the commercial production of each product; mostly commercial plant is soybean, maize, canola, and cotton. Day by day increasing GMO interest can be listed as follows; Use in the health area (Organ transplantation, gene therapy, vaccines and drug), Use in the industrial area (vitamins, monoclonal antibodies, vaccines, anti-cancer compounds, anti -oxidants, plastics, fibers, polyethers, human blood proteins, and are used to produce carotenoids, emulsifiers, sweeteners, enzymes , food preservatives structure is used as a flavor enhancer or color changer),Use in agriculture (Herbicide resistance, Resistance to insects, Viruses, bacteria, fungi resistance to disease, Extend shelf life, Improving quality, Drought , salinity, resistance to extreme conditions such as frost, Improve the nutritional value and quality), we explain all this methods step by step in this research. GMO has advantages and disadvantages, which we explain all of them clearly in full text, because of this topic, worldwide researchers have divided into two. Some researchers thought that the GMO has lots of disadvantages and not to be in use, some of the researchers has opposite thought. If we look the countries law about GMO, we should know Biosafety law for each country and union. For this Biosecurity reasons, the problems caused by the transgenic plants, including Turkey, to minimize 130 countries on 24 May 2000, ‘the United Nations Biosafety Protocol’ signed nudes. This protocol has been prepared in addition to Cartagena Biosafety Protocol entered into force on September 11, 2003. This protocol GMOs in general use by addressing the risks to human health, biodiversity and sustainable transboundary movement of all GMOs that may affect the prevention, transit covers were dealt and used. Under this protocol we have to know the, ‘US Regulations GMO’, ‘European Union Regulations GMO’, ‘Turkey Regulations GMO’. These three different protocols have different applications and rules. World population increasing day by day and agricultural fields getting smaller for this reason feeding human and animal we should improve agricultural product yield and quality. Scientists trying to solve this problem and one solution way is molecular biotechnology which is including the methods of GMO too. Before decide to support or against the GMO, should know the GMO protocols and it effects.

Keywords: biotechnology, GMO (genetically modified organism), molecular marker

Procedia PDF Downloads 212
149 Variability and Stability of Bread and Durum Wheat for Phytic Acid Content

Authors: Gordana Branković, Vesna Dragičević, Dejan Dodig, Desimir Knežević, Srbislav Denčić, Gordana Šurlan-Momirović

Abstract:

Phytic acid is a major pool in the flux of phosphorus through agroecosystems and represents a sum equivalent to > 50% of all phosphorus fertilizer used annually. Nutrition rich in phytic acid can substantially decrease micronutrients apsorption as calcium, zink, iron, manganese, copper due to phytate salts excretion by human and non-ruminant animals as poultry, swine and fish, having in common very scarce phytase activity, and consequently the ability to digest and utilize phytic acid, thus phytic acid derived phosphorus in animal waste contributes to water pollution. The tested accessions consisted of 15 genotypes of bread wheat (Triticum aestivum L. ssp. vulgare) and of 15 genotypes of durum wheat (Triticum durum Desf.). The trials were sown at the three test sites in Serbia: Rimski Šančevi (RS) (45º19´51´´N; 19º50´59´´E), Zemun Polje (ZP) (44º52´N; 20º19´E) and Padinska Skela (PS) (44º57´N 20º26´E) during two vegetation seasons 2010-2011 and 2011-2012. The experimental design was randomized complete block design with four replications. The elementary plot consisted of 3 internal rows of 0.6 m2 area (3 × 0.2 m × 1 m). Grains were grinded with Laboratory Mill 120 Perten (“Perten”, Sweden) (particles size < 500 μm) and flour was used for the analysis. Phytic acid grain content was determined spectrophotometrically with the Shimadzu UV-1601 spectrophotometer (Shimadzu Corporation, Japan). Objectives of this study were to determine: i) variability and stability of the phytic acid content among selected genotypes of bread and durum wheat, ii) predominant source of variation regarding genotype (G), environment (E) and genotype × environment interaction (GEI) from the multi-environment trial, iii) influence of climatic variables on the GEI for the phytic acid content. Based on the analysis of variance it had been determined that the variation of phytic acid content was predominantly influenced by environment in durum wheat, while the GEI prevailed for the variation of the phytic acid content in bread wheat. Phytic acid content expressed on the dry mass basis was in the range 14.21-17.86 mg g-1 with the average of 16.05 mg g-1 for bread wheat and 14.63-16.78 mg g-1 with the average of 15.91 mg g-1 for durum wheat. Average-environment coordination view of the genotype by environment (GGE) biplot was used for the selection of the most desirable genotypes for breeding for low phytic acid content in the sense of good stability and lower level of phytic acid content. The most desirable genotypes of bread and durum wheat for breeding for phytic acid were Apache and 37EDUYT /07 No. 7849. Models of climatic factors in the highest percentage (> 91%) were useful in interpreting GEI for phytic acid content, and included relative humidity in June, sunshine hours in April, mean temperature in April and winter moisture reserves for genotypes of bread wheat, as well as precipitation in June and April, maximum temperature in April and mean temperature in June for genotypes of durum wheat.

Keywords: genotype × environment interaction, phytic acid, stability, variability

Procedia PDF Downloads 365
148 Shale Gas and Oil Resource Assessment in Middle and Lower Indus Basin of Pakistan

Authors: Amjad Ali Khan, Muhammad Ishaq Saqi, Kashif Ali

Abstract:

The focus of hydrocarbon exploration in Pakistan has been primarily on conventional hydrocarbon resources. Directorate General Petroleum Concessions (DGPC) has taken the lead on the assessment of indigenous unconventional oil and gas resources, which has resulted in a ‘Shale Oil/Gas Resource Assessment Study’ conducted with the help of USAID. This was critically required in the energy-starved Pakistan, where the gap between indigenous oil & gas production and demand continues to widen for a long time. Exploration & exploitation of indigenous unconventional resources of Pakistan have become vital to meet our energy demand and reduction of oil and gas import bill of the country. This study has attempted to bridge a critical gap in geological information about the potential of shale gas & oil in Pakistan in the four formations, i.e., Sembar, Lower Goru, Ranikot and Ghazij in the Middle and Lower Indus Basins, which were selected for the study as for resource assessment for shale gas & oil. The primary objective of the study was to estimate and establish shale oil/gas resource assessment of the study area by carrying out extensive geological analysis of exploration, appraisal and development wells drilled in the Middle and Lower Indus Basins, along with identification of fairway(s) and sweet spots in the study area. The Study covers the Lower parts of the Middle Indus basins located in Sindh, southern Punjab & eastern parts of the Baluchistan provinces, with a total sedimentary area of 271,795 km2. Initially, 1611 wells were reviewed, including 1324 wells drilled through different shale formations. Based on the availability of required technical data, a detailed petrophysical analysis of 124 wells (21 Confidential & 103 in the public domain) has been conducted for the shale gas/oil potential of the above-referred formations. The core & cuttings samples of 32 wells and 33 geochemical reports of prospective Shale Formations were available, which were analyzed to calibrate the results of petrophysical analysis with petrographic/ laboratory analyses to increase the credibility of the Shale Gas Resource assessment. This study has identified the most prospective intervals, mainly in Sembar and Lower Goru Formations, for shale gas/oil exploration in the Middle and Lower Indus Basins of Pakistan. The study recommends seven (07) sweet spots for undertaking pilot projects, which will enable to evaluate of the actual production capability and production sustainability of shale oil/gas reservoirs of Pakistan for formulating future strategies to explore and exploit shale/oil resources of Pakistan including fiscal incentives required for developing shale oil/gas resources of Pakistan. Some E&P Companies are being persuaded to make a consortium for undertaking pilot projects that have shown their willingness to participate in the pilot project at appropriate times. The location for undertaking the pilot project has been finalized as a result of a series of technical sessions by geoscientists of the potential consortium members after the review and evaluation of available studies.

Keywords: conventional resources, petrographic analysis, petrophysical analysis, unconventional resources, shale gas & oil, sweet spots

Procedia PDF Downloads 17
147 Impact of Lined and Unlined Water Bodies on the Distribution and Abundance of Fresh Water Snails in Certain Governorates in Egypt

Authors: Nahed Mohamed Ismail, Bayomy Mostafa, Ahmed Abdel Kader, Ahmed Mohamed Azzam

Abstract:

Effect of lining watercourses on the distribution and abundance of fresh water snails at two Egyptian governorates, Baheria (new reclaimed area) and Giza was studied. Seasonal survey in lined and unlined sites during two successive years was carried out. Samples of snails and water were collected from each examined site and the ecological conditions were recorded. The collected snails from each site were placed in plastic aquaria and transferred to the laboratory, where they were sorted out, identified, counted and examined for natural infection. The size frequency distribution was calculated for each snail species. Results revealed that snails were represented in all examined watercourses (lined and unlined) at the two tested habitats by 14 species. (Biomphalaria alexandrina, B. glabrata, Bulinus truncatus, Physa acuta. Helisoma duryi, Lymnaea natalensis, Planorbis planorbis, Cleopatra bulimoids, Lanistes carinatus, Bellamya unicolor, Melanoides tuberculata, Theodoxus nilotica, Succinia cleopatra and Gabbiella senaarensis). During spring, the percentage of live (45%) and dead (55%) snail species was extremely highly significant lower (p>0.001) in lined water bodies compared to the unlined ones (93.5% and 6.5%, respectively) in the examined sites at Baheria. At Giza, the percentage values of live snail species from all lined watercourses (82.6% and 60.2%, during winter and spring, respectively) was significantly lower (p>0.05 & p>0.01) than those in unlined ones (91.1% and 79%, respectively). Size frequency distribution of snails collected from the lined and unlined water bodies at Baheria and Giza governorates during all seasons revealed that during survey, snail populations were stable and the recruitment of young to adult was continuing for some species, where the recruits were observed with adults. However, there was no sign of small snails occurrence in case of B. glabrata and B. alexandrina during autumn, winter and spring and disappear during summer at Giza. Meanwhile they completely absent during all seasons at Baheria Governorate. Chemical analysis of some heavy metals of water samples collected from lined and unlined sites from Baheria and Giza governorates during autumn, winter and spring were approximately as the same in both lined and unlined water bodies. However, Zn and Fe were higher in lined sites (0.78±0.37and 17.4 ± 4.3, respectively) than that of unlined ones (0.4±0.1 and 10.95 ± 1.93, respectively) and Cu was absent in both lined and unlined sites during summer at Baheria governorate. At Giza, Cu and Pb were absent and Fe were higher in lined sites (4.7± 4.2) than that of unlined ones (2.5 ± 1.4) during summer. Statistical analysis showed that no significant difference in all physico-chemical parameters of water in lined and unlined water bodies at the two tested habitats during all seasons. However, it was found that the water conductivity and TDS showed a lower mean values in lined sites than those of unlined ones. Thus, the present obtained data support the concept of utilizing environmental modification such as lining of water courses to help in minimizing the population density of certain vector snails and consequently reduce the transmission of snails born diseases.

Keywords: lining, fresh water, snails, watercourses

Procedia PDF Downloads 228
146 Modeling and Design of a Solar Thermal Open Volumetric Air Receiver

Authors: Piyush Sharma, Laltu Chandra, P. S. Ghoshdastidar, Rajiv Shekhar

Abstract:

Metals processing operations such as melting and heat treatment of metals are energy-intensive, requiring temperatures greater than 500oC. The desired temperature in these industrial furnaces is attained by circulating electrically-heated air. In most of these furnaces, electricity produced from captive coal-based thermal power plants is used. Solar thermal energy could be a viable heat source in these furnaces. A retrofitted solar convective furnace (SCF) concept, which uses solar thermal generated hot air, has been proposed. Critical to the success of a SCF is the design of an open volumetric air receiver (OVAR), which can heat air in excess of 800oC. The OVAR is placed on top of a tower and receives concentrated solar radiation from a heliostat field. Absorbers, mixer assembly, and the return air flow chamber (RAFC) are the major components of an OVAR. The absorber is a porous structure that transfers heat from concentrated solar radiation to ambient air, referred to as primary air. The mixer ensures uniform air temperature at the receiver exit. Flow of the relatively cooler return air in the RAFC ensures that the absorbers do not fail by overheating. In an earlier publication, the detailed design basis, fabrication, and characterization of a 2 kWth open volumetric air receiver (OVAR) based laboratory solar air tower simulator was presented. Development of an experimentally-validated, CFD based mathematical model which can ultimately be used for the design and scale-up of an OVAR has been the major objective of this investigation. In contrast to the published literature, where flow and heat transfer have been modeled primarily in a single absorber module, the present study has modeled the entire receiver assembly, including the RAFC. Flow and heat transfer calculations have been carried out in ANSYS using the LTNE model. The complex return air flow pattern in the RAFC requires complicated meshes and is computational and time intensive. Hence a simple, realistic 1-D mathematical model, which circumvents the need for carrying out detailed flow and heat transfer calculations, has also been proposed. Several important results have emerged from this investigation. Circumferential electrical heating of absorbers can mimic frontal heating by concentrated solar radiation reasonably well in testing and characterizing the performance of an OVAR. Circumferential heating, therefore, obviates the need for expensive high solar concentration simulators. Predictions suggest that the ratio of power on aperture (POA) and mass flow rate of air (MFR) is a normalizing parameter for characterizing the thermal performance of an OVAR. Increasing POA/MFR increases the maximum temperature of air, but decreases the thermal efficiency of an OVAR. Predictions of the 1-D mathematical are within 5% of ANSYS predictions and computation time is reduced from ~ 5 hours to a few seconds.

Keywords: absorbers, mixer assembly, open volumetric air receiver, return air flow chamber, solar thermal energy

Procedia PDF Downloads 169
145 Prognostic Factors for Mortality and Duration of Admission in Malnourished Hospitalized, Elderly Patients: A Cross-Sectional Study

Authors: Christos E. Lampropoulos, Maria Konsta, Vicky Dradaki, Irini Dri, Tamta Sirbilatze, Ifigenia Apostolou, Christina Kordali, Konstantina Panouria, Kostas Argyros, Georgios Mavras

Abstract:

Malnutrition in hospitalized patients is related to increased morbidity and mortality. Purpose of our study was to assess nutritional status of hospitalized, elderly patients with various nutritional scores and to detect unfavorable prognostic factors, related to increased mortality and extended duration of admission. Methods: 150 patients (78 men, 72 women, mean age 80±8.2) were included in this cross-sectional study. Nutritional status was assessed by Mini Nutritional Assessment (MNA full, short-form), Malnutrition Universal Screening Tool (MUST) and short Nutritional Appetite Questionnaire (sNAQ). The following data were incorporated in analysis: Anthropometric and laboratory data, physical activity (International Physical Activity Questionnaires, IPAQ), smoking status, dietary habits and mediterranean diet (assessed by MedDiet score), cause and duration of current admission, medical history (co-morbidities, previous admissions). Primary endpoints were the mortality (from admission until 6 months afterwards) and duration of admission, compared to national guidelines for closed consolidated medical expenses. Mann-Whitney two-sample statistics or t-test was used for group comparisons and Spearman or Pearson coefficients for testing correlation between variables. Results: Normal nutrition was assessed in 54/150 (36%), 92/150 (61.3%) and in 106/150 (70.7%) of patients, according to full MNA, MUST and sNAQ questionnaires respectively. Mortality rate was 20.7% (31/150 patients). The patients who died until 6 months after admission had lower BMI (24±4.4 vs 26±4.8, p=0.04) and albumin levels (2.9±0.7 vs 3.4±0.7, p=0.002), significantly lower full MNA (14.5±7.3 vs 20.7±6, p<0.0001) and short-form MNA scores (7.3±4.2 vs 10.5±3.4, p=0.0002) compared to non-dead one. In contrast, the aforementioned patients had higher MUST (2.5±1.8 vs 0.5±1.02, p=<0.0001) and sNAQ scores (2.9±2.4 vs 1.1±1.3, p<0.0001). Additionally, they showed significantly lower MedDiet (23.5±4.3 vs 31.1±5.6, p<0.0001) and IPAQ scores (37.2±156.2 vs 516.5±1241.7, p<0.0001) compared to remaining one. These patients had extended hospitalization [5 (0-13) days vs 0 (-1-3) days, p=0.001]. Patients who admitted due to cancer depicted higher mortality rate (10/13, 77%), compared to those who admitted due to infections (12/73, 18%), stroke (4/15, 27%) or other causes (4/49, 8%) (p<0.0001). Extension of hospitalization was negatively correlated to both full (Spearman r=-0.35, p<0.0001) and short-form MNA (Spearman r=-0.33, p<0.0001) and positively correlated to MUST (Spearman r=0.34, p<0.0001) and sNAQ (Spearman r=0.3, p=0.0002). Additionally, the extension was inversely related to MedDiet score (Spearman r=-0.35, p<0.0001), IPAQ score (Spearman r=-0.34, p<0.0001), albumin levels (Pearson r=-0.36, p<0.0001), Ht (Pearson r=-0.2, p=0.02) and Hb (Pearson r=-0.18, p=0.02). Conclusion: A great proportion of elderly, hospitalized patients are malnourished or at risk of malnutrition. All nutritional scores, physical activity and albumin are significantly related to mortality and increased hospitalization.

Keywords: dietary habits, duration of admission, malnutrition, prognostic factors for mortality

Procedia PDF Downloads 266
144 Uncertainty Quantification of Crack Widths and Crack Spacing in Reinforced Concrete

Authors: Marcel Meinhardt, Manfred Keuser, Thomas Braml

Abstract:

Cracking of reinforced concrete is a complex phenomenon induced by direct loads or restraints affecting reinforced concrete structures as soon as the tensile strength of the concrete is exceeded. Hence it is important to predict where cracks will be located and how they will propagate. The bond theory and the crack formulas in the actual design codes, for example, DIN EN 1992-1-1, are all based on the assumption that the reinforcement bars are embedded in homogeneous concrete without taking into account the influence of transverse reinforcement and the real stress situation. However, it can often be observed that real structures such as walls, slabs or beams show a crack spacing that is orientated to the transverse reinforcement bars or to the stirrups. In most Finite Element Analysis studies, the smeared crack approach is used for crack prediction. The disadvantage of this model is that the typical strain localization of a crack on element level can’t be seen. The crack propagation in concrete is a discontinuous process characterized by different factors such as the initial random distribution of defects or the scatter of material properties. Such behavior presupposes the elaboration of adequate models and methods of simulation because traditional mechanical approaches deal mainly with average material parameters. This paper concerned with the modelling of the initiation and the propagation of cracks in reinforced concrete structures considering the influence of transverse reinforcement and the real stress distribution in reinforced concrete (R/C) beams/plates in bending action. Therefore, a parameter study was carried out to investigate: (I) the influence of the transversal reinforcement to the stress distribution in concrete in bending mode and (II) the crack initiation in dependence of the diameter and distance of the transversal reinforcement to each other. The numerical investigations on the crack initiation and propagation were carried out with a 2D reinforced concrete structure subjected to quasi static loading and given boundary conditions. To model the uncertainty in the tensile strength of concrete in the Finite Element Analysis correlated normally and lognormally distributed random filed with different correlation lengths were generated. The paper also presents and discuss different methods to generate random fields, e.g. the Covariance Matrix Decomposition Method. For all computations, a plastic constitutive law with softening was used to model the crack initiation and the damage of the concrete in tension. It was found that the distributions of crack spacing and crack widths are highly dependent of the used random field. These distributions are validated to experimental studies on R/C panels which were carried out at the Laboratory for Structural Engineering at the University of the German Armed Forces in Munich. Also, a recommendation for parameters of the random field for realistic modelling the uncertainty of the tensile strength is given. The aim of this research was to show a method in which the localization of strains and cracks as well as the influence of transverse reinforcement on the crack initiation and propagation in Finite Element Analysis can be seen.

Keywords: crack initiation, crack modelling, crack propagation, cracks, numerical simulation, random fields, reinforced concrete, stochastic

Procedia PDF Downloads 119
143 Laboratory Assessment of Electrical Vertical Drains in Composite Soils Using Kaolin and Bentonite Clays

Authors: Maher Z. Mohammed, Barry G. Clarke

Abstract:

As an alternative to stone column in fine grained soils, it is possible to create stiffened columns of soils using electroosmosis (electroosmotic piles). This program of this research is to establish the effectiveness and efficiency of the process in different soils. The aim of this study is to assess the capability of electroosmosis treatment in a range of composite soils. The combined electroosmotic and preloading equipment developed by Nizar and Clarke (2013) was used with an octagonal array of anodes surrounding a single cathode in a nominal 250mm diameter 300mm deep cylinder of soil and 80mm anode to cathode distance. Copper coiled springs were used as electrodes to allow the soil to consolidate either due to an external vertical applied load or electroosmosis. The equipment was modified to allow the temperature to be monitored during the test. Electroosmotic tests were performed on China Clay Grade E kaolin and calcium bentonite (Bentonex CB) mixed with sand fraction C (BS 1881 part 131) at different ratios by weight; (0, 23, 33, 50 and 67%) subjected to applied voltages (5, 10, 15 and 20). The soil slurry was prepared by mixing the dry soil with water to 1.5 times the liquid limit of the soil mixture. The mineralogical and geotechnical properties of the tested soils were measured before the electroosmosis treatment began. In the electroosmosis cell tests, the settlement, expelled water, variation of electrical current and applied voltage, and the generated heat was monitored during the test time for 24 osmotic tests. Water content was measured at the end of each test. The electroosmotic tests are divided into three phases. In Phase 1, 15 kPa was applied to simulate a working platform and produce a uniform soil which had been deposited as a slurry. 50 kPa was used in Phase 3 to simulate a surcharge load. The electroosmotic treatment was only performed during Phase 2 where a constant voltage was applied through the electrodes in addition to the 15 kPa pressure. This phase was stopped when no further water was expelled from the cell, indicating the electroosmotic process had stopped due to either the degradation of the anode or the flow due to the hydraulic gradient exactly balanced the electroosmotic flow resulting in no flow. Control tests for each soil mixture were carried out to assess the behaviour of the soil samples subjected to only an increase of vertical pressure, which is 15kPa in Phase 1 and 50kPa in Phase 3. Analysis of the experimental results from this study showed a significant dewatering effect on the soil slurries. The water discharged by the electroosmotic treatment process decreased as the sand content increased. Soil temperature increased significantly when electrical power was applied and drops when applied DC power turned off or when the electrode degraded. The highest increase in temperature was found in pure clays at higher applied voltage after about 8 hours of electroosmosis test.

Keywords: electrokinetic treatment, electrical conductivity, electroosmotic consolidation, electroosmosis permeability ratio

Procedia PDF Downloads 135