Search results for: sheet metal manufacturing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4684

Search results for: sheet metal manufacturing

1834 Simulation of Welded Steel Tube Subjected to Internal Pressure

Authors: H. Zedira, M. T. Hannachi, H. Djebaili, B. Daheche

Abstract:

The rapid pace of technology development and strong competition in the market, prompted us to consider the field of manufacturing of steel pipes by a process complies fully with the requirements of industrial induction welding is high frequency (HF), this technique is better known today in Algeria, more precisely for the manufacture of tubes diameters Single Annabib TG Tebessa. The aim of our study is based on the characterization of processes controlling the mechanical behavior of steel pipes (type E24-2), welded by high frequency induction, considering the different tests and among the most destructive known test internal pressure. The internal pressure test is performed according to the application area of welded pipes, or as leak test, either as a test of strength (bursting). All tubes are subjected to a hydraulic test pressure of 50 bar kept at room temperature for a period of 6 seconds. This study provides information that helps optimize the design and implementation to predict the behavior of the tubes during operation.

Keywords: castem, pressure, stress, tubes, thickness

Procedia PDF Downloads 326
1833 Sensing Characteristics of Gold Nanoparticles Decorated Sputtered Tin Oxide Thin Films as Nitrogen Oxide Sensor

Authors: Qasem Drmosh, Zain Yamai, Amar Mohamedkhair, Abdulmajid Hendi

Abstract:

In recent years, there has been a growing interest in the reduction of the nitrogen oxides NOx (NO2, NO) gases resulting from automotive or combustion emissions. Recently, metal additives in nanometer dimension onto the surface of SnO2 nanorods, nanowires and nanotubes sensitizer to further increase the sensor response have been used. In contrast, there is a lack study focused on modifying the surface of SnO2 thin films by nanoparticles. The challenge in case of thin films is how to fabricate these nanoparticles on the surfaces in cost-effective method, high purity as well as without hampering electrical and topographical properties. Here in this report, a simple and facile strategy has been demonstrated to acquire high sensitive and fast response NO2 gas sensor. Structural, electrical, morphological, optical, and compositional properties of the fabricated sensors were investigated through different analytical technique including X-ray diffraction (XRD), Field emission scanning emission microscope (FESEM) and X-ray photoelectron spectroscopy (XPS). The sensing performance of the prepared sensors are studied at different temperatures for various concentrations of NO2 and compared with pristine SnO2 film.

Keywords: NO2 sensor, SnO2, sputtering, thin films

Procedia PDF Downloads 211
1832 Laboratory and Numerical Hydraulic Modelling of Annular Pipe Electrocoagulation Reactors

Authors: Alejandra Martin-Dominguez, Javier Canto-Rios, Velitchko Tzatchkov

Abstract:

Electrocoagulation is a water treatment technology that consists of generating coagulant species in situ by electrolytic oxidation of sacrificial anode materials triggered by electric current. It removes suspended solids, heavy metals, emulsified oils, bacteria, colloidal solids and particles, soluble inorganic pollutants and other contaminants from water, offering an alternative to the use of metal salts or polymers and polyelectrolyte addition for breaking stable emulsions and suspensions. The method essentially consists of passing the water being treated through pairs of consumable conductive metal plates in parallel, which act as monopolar electrodes, commonly known as ‘sacrificial electrodes’. Physicochemical, electrochemical and hydraulic processes are involved in the efficiency of this type of treatment. While the physicochemical and electrochemical aspects of the technology have been extensively studied, little is known about the influence of the hydraulics. However, the hydraulic process is fundamental for the reactions that take place at the electrode boundary layers and for the coagulant mixing. Electrocoagulation reactors can be open (with free water surface) and closed (pressurized). Independently of the type of rector, hydraulic head loss is an important factor for its design. The present work focuses on the study of the total hydraulic head loss and flow velocity and pressure distribution in electrocoagulation reactors with single or multiple concentric annular cross sections. An analysis of the head loss produced by hydraulic wall shear friction and accessories (minor head losses) is presented, and compared to the head loss measured on a semi-pilot scale laboratory model for different flow rates through the reactor. The tests included laminar, transitional and turbulent flow. The observed head loss was compared also to the head loss predicted by several known conceptual theoretical and empirical equations, specific for flow in concentric annular pipes. Four single concentric annular cross section and one multiple concentric annular cross section reactor configuration were studied. The theoretical head loss resulted higher than the observed in the laboratory model in some of the tests, and lower in others of them, depending also on the assumed value for the wall roughness. Most of the theoretical models assume that the fluid elements in all annular sections have the same velocity, and that flow is steady, uniform and one-dimensional, with the same pressure and velocity profiles in all reactor sections. To check the validity of such assumptions, a computational fluid dynamics (CFD) model of the concentric annular pipe reactor was implemented using the ANSYS Fluent software, demonstrating that pressure and flow velocity distribution inside the reactor actually is not uniform. Based on the analysis, the equations that predict better the head loss in single and multiple annular sections were obtained. Other factors that may impact the head loss, such as the generation of coagulants and gases during the electrochemical reaction, the accumulation of hydroxides inside the reactor, and the change of the electrode material with time, are also discussed. The results can be used as tools for design and scale-up of electrocoagulation reactors, to be integrated into new or existing water treatment plants.

Keywords: electrocoagulation reactors, hydraulic head loss, concentric annular pipes, computational fluid dynamics model

Procedia PDF Downloads 218
1831 The Impact of Environmental Dynamism on Strategic Outsourcing Success

Authors: Mohamad Ghozali Hassan, Abdul Aziz Othman, Mohd Azril Ismail

Abstract:

Adapting quickly to environmental dynamism is essential for an organization to develop outsourcing strategic and management in order to sustain competitive advantage. This research used the Partial Least Squares Structural Equation Modeling (PLS-SEM) tool to investigate the factors of environmental dynamism impact on the strategic outsourcing success among electrical and electronic manufacturing industries in outsourcing management. Statistical results confirm that the inclusion of customer demand, technological change, and competition level as a new combination concept of environmental dynamism, has positive effects on outsourcing success. Additionally, this research demonstrates the acceptability of PLS-SEM as a statistical analysis to furnish a better understanding of environmental dynamism in outsourcing management in Malaysia. A practical finding contributes to academics and practitioners in the field of outsourcing management.

Keywords: environmental dynamism, customer demand, technological change, competition level, outsourcing success

Procedia PDF Downloads 501
1830 Acid-Responsive Polymer Conjugates as a New Generation of Corrosion Protecting Materials

Authors: Naruphorn Dararatana, Farzad Seidi, Daniel Crespy

Abstract:

Protection of metals is a critical issue in industry. The annual cost of corrosion in the world is estimated to be about 2.5 trillion dollars and continuously increases. Therefore, there is a need for developing novel protection approaches to improve corrosion protection. We designed and synthesized smart polymer/corrosion inhibitor conjugates as new generations of corrosion protecting materials. Firstly, a polymerizable acrylate derivative of 8-hydroxyquinoline (8HQ), an effective corrosion inhibitor, containing acid-labile β-thiopropionate linkage was prepared in three steps. Then, it was copolymerized with ethyl acrylate in the presence of 1,1′-azobis(cyclohexanecarbonitrile) (ABCN) by radical polymerization. Nanoparticles with an average diameter of 140 nm were prepared from the polymer conjugate by the miniemulsion-solvent evaporation process. The release behavior of 8HQ from the the nanoparticles was studied in acidic (pH 3.5) and neutral media (pH 7.0). The release profile showed a faster release of 8HQ in acidic medium in comparison with neutral medium. Indeed 100% of 8HQ was released after 14 days in acidic medium whereas only around 15% of 8HQ was released during the same period at neutral pH. Therefore, the polymer conjugate nanoparticles are suitable materials as additives or to form coatings on metal substrates for corrosion protection.

Keywords: Corrosion inhibitor, 8-Hydroxyquinoline, Polymer conjugated, β-Thiopropionate

Procedia PDF Downloads 193
1829 Controlling Dimensions and Shape of Carbon Nanotubes Using Nanoporous Anodic Alumina under Different Conditions

Authors: Amine Mezni, Merfat Algethami, Ali Aldalbahi, Arwa Alrooqi, Abel Santos, Dusan Losic, Sarah Alharthi, Tariq Altalhi

Abstract:

In situ synthesis of carbon nanotubes featuring different diameters (10-200 nm), lengths (1 to 100 µm) and periodically nanostructured shape was performed in a custom designed chemical vapor deposition (CVD) system using nanoporous anodic alumina (NAA) under different conditions. The morphology of the resulting CNTs/NAA composites and free-standing CNTs were analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results confirm that highly ordered arrays of CNTs with precise control of nanotube dimensions in the range 20-200 nm with tube length in the range < 1 µm to > 100 μm and with periodically shaped morphology can be fabricated using nanostructured NAA templates prepared by anodization. This technique allows us to obtain tubes open at one / both ends with a uniform diameter along the pore length without using any metal catalyst. Our finding suggests that this fabrication strategy for designing new CNTs membranes and structures can be significant for emerging applications as molecular separation/transport, optical biosensing, and drug delivery.

Keywords: carbon nanotubes, CVD approach, composites membrane, nanoporous anodic alumina

Procedia PDF Downloads 281
1828 Corrosion Behavior of Different Electroplated Systems Coated With Physical Vapor Deposition

Authors: Jorge Santos, Ana V. Girão, F. J. Oliveira, Alexandre C. Bastos

Abstract:

Protective or decorative coatings containing hexavalent chromium compounds are still used on metal and plastic parts. These hexavalent chromium compounds represent a risk to living beings and the environment, and, for this reason, there is a great need to investigate alternatives. Physical Vapor Deposition (PVD) is an environmentally friendly process that allows the deposition of wear and corrosion resistant thin films with excellent optical properties. However, PVD thin films are porous and if deposited onto low corrosion resistant substrates, lead to a degradation risk. The corrosion behavior of chromium-free electroplated coating systems finished with magnetron sputtered PVD thin films was investigated in this work. The electroplated systems consisted of distinct nickel layers deposited on top of a copper interlayer on acrylonitrile butadiene styrene (ABS) plates. Electrochemical and corrosion evaluation was conducted by electrochemical impedance spectroscopy and polarization curves on the different electroplated coating systems, with and without PVD thin film on top. The results show that the corrosion resistance is lower for the electroplated coating systems finished with PVD thin film for extended exposure periods when compared to those without the PVD overlay.

Keywords: PVD, electroplating, corrosion, thin film

Procedia PDF Downloads 147
1827 Determination of Nanomolar Mercury (II) by Using Multi-Walled Carbon Nanotubes Modified Carbon Zinc/Aluminum Layered Double Hydroxide – 3 (4-Methoxyphenyl) Propionate Nanocomposite Paste Electrode

Authors: Illyas Md Isa, Sharifah Norain Mohd Sharif, Norhayati Hashima

Abstract:

A mercury(II) sensor was developed by using multi-walled carbon nanotubes (MWCNTs) paste electrode modified with Zn/Al layered double hydroxide-3(4-methoxyphenyl)propionate nanocomposite (Zn/Al-HMPP). The optimum conditions by cyclic voltammetry were observed at electrode composition 2.5% (w/w) of Zn/Al-HMPP/MWCNTs, 0.4 M potassium chloride, pH 4.0, and scan rate of 100 mVs-1. The sensor exhibited wide linear range from 1x10-3 M to 1x10-7 M Hg2+ and 1x10-7 M to 1x10-9 M Hg2+, with a detection limit of 1x10-10 M Hg2+. The high sensitivity of the proposed electrode towards Hg(II) was confirmed by double potential-step chronocoulometry which indicated these values; diffusion coefficient 1.5445 x 10-9 cm2 s-1, surface charge 524.5 µC s-½ and surface coverage 4.41 x 10-2 mol cm-2. The presence of 25-fold concentration of most metal ions had no influence on the anodic peak current. With characteristics such as high sensitivity, selectivity and repeatability the electrode was then proposed as the appropriate alternative for the determination of mercury(II).

Keywords: cyclic voltammetry, mercury(II), modified carbon paste electrode, nanocomposite

Procedia PDF Downloads 309
1826 Mechanical Behavior of a Pipe Subject to Buckling

Authors: H. Chenine, D. Ouinas, Z. Bennaceur

Abstract:

The thin shell structures like metal are particularly susceptible to buckling or geometric instability. Their sizing is performed by resorting to simplified rules, this approach is generally conservative. Indeed, these structures are very sensitive to the slightest imperfection shape (initial geometrical defects). The design is usually based on the knowledge of the real or perceived initial state. Now this configuration evolves over time, there is usually the addition of new deformities due to operation (accidental loads, creep), but also to loss of material located in the corroded areas. Taking into account these various damage generally led to a loss of bearing capacity. In order to preserve the charge potential of the structure, it is then necessary to find a different material. In our study, we plan to replace the material used for reservoirs found in the company Sonatrach with a composite material made from carbon fiber or glass. 6 to 12 layers of composite are simply stuck. Research is devoted to the study of the buckling of multilayer shells subjected to an imposed displacement, allowed us to identify the key parameters and those whose effect is less. For all results, we find that the carbon epoxy T700E is the strongest, increasing the number of layers increases the strength of the shell.

Keywords: finite element analysis, circular notches, buckling, tank made composite materials

Procedia PDF Downloads 216
1825 Buckling a Reservoir Composite Provided with Notches

Authors: H. Chenine, D. Ouinas, Z. Bennaceur

Abstract:

The thin shell structures like metal are particularly susceptible to buckling or geometric instability. Their sizing is performed by resorting to simplified rules, this approach is generally conservative. Indeed, these structures are very sensitive to the slightest imperfection shape (initial geometrical defects). The design is usually based on the knowledge of the real or perceived initial state. Now this configuration evolves over time, there is usually the addition of new deformities due to operation (accidental loads, creep), but also to loss of material located in the corroded areas. Taking into account these various damage generally led to a loss of bearing capacity. In order to preserve the charge potential of the structure, it is then necessary to find a different material. In our study we plan to replace the material used for reservoirs found in the company Sonatrach with a composite material made from carbon fiber or glass. 6 to 12 layers of composite are simply stuck. Research is devoted to the study of the buckling of multilayer shells subjected to an imposed displacement, allowed us to identify the key parameters and those whose effect is less. For all results, we find that the carbon epoxy T700E is the strongest, increasing the number of layers increases the strength of the shell.

Keywords: Finite Element Analysis, circular notches, buckling, tank made composite materials

Procedia PDF Downloads 359
1824 Numerical Design and Characterization of MOVPE Grown Nitride Based Semiconductors

Authors: J. Skibinski, P. Caban, T. Wejrzanowski, K. J. Kurzydlowski

Abstract:

In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S are addressed. The aim of this study was to design the optimal fluid flow and thermal conditions for obtaining the most homogeneous product. Since there are many agents influencing reactions on the crystal growth area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. Variations of process pressure and hydrogen mass flow rates have been considered. According to the fact that it’s impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, detailed 3D modeling has been used to get an insight of the process conditions. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in the numerical model allows to calculate the growth rate of the substrate. The present approach has been applied to enhance the performance of AIX-200/4RF-S reactor.

Keywords: computational fluid dynamics, finite volume method, epitaxial growth, gallium nitride

Procedia PDF Downloads 454
1823 XRD and Image Analysis of Low Carbon Type Recycled Cement Using Waste Cementitious Powder

Authors: Hyeonuk Shin, Hun Song, Yongsik Chu, Jongkyu Lee, Dongcheon Park

Abstract:

Although much current research has been devoted to reusing concrete in the form of recycled aggregate, insufficient attention has been given to researching the utilization of waste concrete powder, which constitutes 20 % or more of waste concrete and therefore the majority of waste cementitious powder is currently being discarded or buried in landfills. This study consists of foundational research for the purpose of reusing waste cementitious powder in the form of recycled cement that can answer the need for low carbon green growth. Progressing beyond the conventional practice of using the waste cementitious powder as inert filler material, this study contributes to the aim of manufacturing high value added materials that exploits the chemical properties of the waste cementitious powder, by presenting a pre-treatment method for the material and an optimal method of proportioning the mix of materials to develop a low carbon type of recycled cement.

Keywords: Low carbon type cement, Waste cementitious powder, Waste recycling

Procedia PDF Downloads 464
1822 N Doped Multiwall Carbon Nanotubes Growth over a Ni Catalyst Substrate

Authors: Angie Quevedo, Juan Bussi, Nestor Tancredi, Juan Fajardo-Díaz, Florentino López-Urías, Emilio Muñóz-Sandoval

Abstract:

In this work, we study the carbon nanotubes (CNTs) formation by catalytic chemical vapor deposition (CCVD) over a catalyst with 20 % of Ni supported over La₂Zr₂O₇ (Ni20LZO). The high C solubility of Ni made it one of the most used in CNTs synthesis. Nevertheless, Ni presents also sintering and coalescence at high temperature. These troubles can be reduced by choosing a suitable support. We propose La₂Zr₂O₇ as for this matter since the incorporation of Ni by co-precipitation and calcination at 900 °C allows a good dispersion and interaction of the active metal (in the oxidized form, NiO) with this support. The CCVD was performed using 1 g of Ni20LZO at 950 °C during 30 min in Ar:H₂ atmosphere (2.5 L/min). The precursor, benzylamine, was added by a nebulizer-sprayer. X ray diffraction study shows the phase separation of NiO and La₂Zr₂O₇ after the calcination and the reduction to Ni after the synthesis. Raman spectra show D and G bands with a ID/IG ratio of 0.75. Elemental study verifies the incorporation of 1% of N. Thermogravimetric analysis shows the oxidation process start at around 450 °C. Future studies will determine the application potential of the samples.

Keywords: N doped carbon nanotubes, catalytic chemical vapor deposition, nickel catalyst, bimetallic oxide

Procedia PDF Downloads 163
1821 Combinated Effect of Cadmium and Municipal Solid Waste Compost Addition on Physicochemical and Biochemical Proprieties of Soil and Lolium Perenne Production

Authors: Sonia Mbarki Marian Brestic, Artemio Cerda Naceur Jedidi, Jose Antonnio Pascual Chedly Abdelly

Abstract:

Monitoring the effect addition bio-amendment as compost to an agricultural soil for growing plant lolium perenne irrigated with a CdCl2 solution at 50 µM on physicochemical soils characteristics and plant production in laboratory condition. Even microbial activity indexes (acid phosphatase, β-glucosidase, urease, and dehydrogenase) was determined. Basal respiration was the most affected index, while enzymatic activities and microbial biomass showed a decrease due to the cadmium treatments. We noticed that this clay soil with higher pH showed inhibition of basal respiration. Our results provide evidence for the importance of ameliorating effect compost on plant growth even when soil was added with cadmium solution at 50 µmoml.l-1. Soil heavy metal concentrations depended on heavy metals types, increased substantially with cadmium increase and with compost addition, but the recorded values were below the toxicity limits in soils and plants except for cadmium.

Keywords: compost, enzymatic activity, lolium perenne, bioremediation

Procedia PDF Downloads 378
1820 Improved Hydrogen Sorption Kinetics of Compacted LiNH₂-LiH Based Small Hydrogen Storage Tank by Doping with TiF₄ and MWCNTs

Authors: Chongsutthamani Sitthiwet, Praphatsorn Plerdsranoy, Palmarin Dansirima, Priew Eiamlamai, Oliver Utke, Rapee Utke

Abstract:

Hydrogen storage tank containing compacted LiNH2-LiH is developed by doping with TiF₄ and multi-walled nanotubes (MWCNTs) to study kinetic properties. Transition metal-based catalyst (TiF₄) provides the catalytic effect on hydrogen dissociation/recombination, while MWCNTs benefit thermal conductivity and hydrogen permeability during de/rehydrogenation process. The Enhancement of dehydrogenation kinetics is observed from the single-step reaction at a narrower and lower temperature range of 150-350 ºC (100 ºC lower than the compacted LiNH₂-LiH without additives) as well as long plateau temperature and constant hydrogen flow rate (50 SCCM) up to 30 min during desorption. Besides, Hydrogen contents de/absorbed during 5-6 cycles increase from 1.90-2.40 to 3.10-4.70 wt. % H₂ (from 29 to up to 80 % of theoretical capacity). In the process, Li₅TiN₃ is detected upon cycling probably absorbs NH₃ to form Li₅TiN₃(NH₃)x, which is favoring hydrogen sorption properties of the LiNH₂-LiH system. Importantly, the homogeneous reaction mechanisms and performances are found at all positions inside the tank of compacted LiNH₂-LiH doped with TiF₄ and MWCNTs.

Keywords: carbon, hydride, kinetics, dehydrogenation

Procedia PDF Downloads 145
1819 Protection of Transformers Against Surge Voltage

Authors: Anil S. Khopkar, Umesh N. Soni

Abstract:

Surge voltage arises in the system either by switching operations of heavy load or by natural lightning. Surge voltages cause significant failure of power system equipment if adequate protection is not provided. A Surge Arrester is a device connected to a power system to protect the equipment against surge voltages. To protect the transformers against surge voltages, metal oxide surge arresters (MOSA) are connected across each terminal. Basic Insulation Level (BIL) has been defined in national and international standards of transformers based on their voltage rating. While designing transformer insulation, the BIL of the transformer, Surge arrester ratings and its operating voltage have to be considered. However, the performance of transformer insulation largely depends on the ratings of the surge arrester connected, the location of the surge arrester, the margin considered in the insulation design, the quantity of surge voltage strike, etc. This paper demonstrates the role of Surge arresters in the protection of transformers against over-voltage, transformer insulation design, optimum location of surge arresters and their connection lead length, Insulation coordination for transformer, protection margin in BIL and methods of protection of transformers against surge voltages, in detail.

Keywords: surge voltage, surge arresters, insulation coordination, protection margin

Procedia PDF Downloads 64
1818 The Effect of Environmental Consciousness on Firm Performance

Authors: Hossein Emari, Hossein Vazifehdoust, Hashem Nikoo Maram

Abstract:

This study aims to develop an original framework of Environmental Consciousness (EC) to explore the positive effect of environmental consciousness on financial performance through the partial mediator - green intellectual capital. A questionnaire survey on the environmental consciousness, intellectual capital, and financial performance of Iran’s manufacturing firms was conducted, and 324 samples were analyzed. This study utilizes structural equation modeling to explore the direct and indirect influences of EC on financial performance. Research results reveal that environmental consciousness had an indirect impact on financial performance through investment in green intellectual capital. It was thus known that green intellectual capital is a mediator of the relationship between environmental consciousness and financial performance. This paper may serve as a reference for firms mapping out future environmental policies and provide an input of various perspectives and arguments into the discipline of green management.

Keywords: environmental consciousness, social responsibility, green intellectual capital, financial performance

Procedia PDF Downloads 488
1817 Phytochemical and Biological Study of Chrozophora oblongifolia

Authors: Al-Braa Kashegari, Ali M. El-Halawany, Akram A. Shalabi, Sabrin R. M. Ibrahim, Hossam M. Abdallah

Abstract:

Chemical investigation of Chrozophora oblongifolia resulted in the isolation of five major compounds that were identified as apeginin-7-O-glucoside (1), quercetin-3-O-glucuronic acid (2), quercetin-3-O-glacturonic acid (3), rutin (4), and 1,3,6-trigalloyl glucose (5). The identity of isolated compounds was assessed by different spectroscopic methods, including one- and two-dimensional NMR. The isolated compounds were tested for their antioxidant activity using different assays viz., DPPH, FRAP, ABTS, ORAC, and metal chelation effects. In addition, the inhibition of target enzymes involved in the metabolic syndrome, such as alpha-glucosidase and pancreatic lipase, were carried out. Moreover, the effect of the compounds on the advanced glycation end-products (AGEs) as one of the major complications of oxidative stress and hyperglycemia in metabolic syndromes were carried out using BSA‐fructose (bovine serum albumin), BSA-methylglyoxal, and arginine methylglyoxal models. The pure isolates showed a protective effect in metabolic syndromes as well as promising antioxidant activity. The results showed potent activity of compound 5 in all measured parameters meanwhile, none of the tested compounds showed activity against pancreatic lipase.

Keywords: Chrozophora oblongifolia, antioxidant, pancreatic lipase, metabolic syndromes

Procedia PDF Downloads 111
1816 Evaluation of Corrosion in Steel Reinforced Concrete with Brick Waste

Authors: Julieta Daniela Chelaru, Maria Gorea

Abstract:

The massive demolition of old buildings in recent years has generated tons of waste, especially brick waste. Thus, a concern of recent research is the use of this waste for the production of environmentally friendly concrete. At the same time, corrosion in classical concrete is a current problem. In this context, in the present paper a study was carried out on the corrosion of metal reinforcement in cement mortars with brick waste. The corrosion process was analyzed on four compositions of mortars without and with 15 %, 25 % and 35 % bricks waste replacing the sand. The brick waste has a majority content in SiO2, Al₂O₃, FeO₃ and CaO. The grain size distribution of brick waste was close to that of the sand (dₘₐₓ = 3 mm). The preparation method of the samples was similar to ordinary mortars. The corrosion properties of concrete, at different waste bricks concentrations, on rebar, were investigated by electrochemical measurements (Tafel curves and EIS) at 1 and 6 months. The results obtained at 6 months revealed that the addition of the bricks waste in mortar are improved the anticorrosion properties, in the case of all samples compared with the sample with 0% bricks waste. The best results were obtained in the case of the sample with 15% bricks waste (the efficiency was ≈ 90 %). The corrosion intermediary layer formed on the rebar surface was determined by SEM-EDX.

Keywords: EIS, steel corrosion, steel reinforced concrete, waste materials

Procedia PDF Downloads 339
1815 Fabrication and Evaluation of Particleboards from Oil Palm Fronds Blend with Empty Fruit Bunch Fibre

Authors: Ghazi Faisal Najmuldeen, Wahida Amat Fadzila

Abstract:

The aim of this study is to investigate physical and mechanical properties of experimental particleboards manufactured from mixing the oil palm fronds particles with empty fruit bunch fibers. Variables were two blending ratios (100:0 and 70:30), press temperature (160°C and 180°C) and press time (180 and 300 s). Experimental boards with a target density of 750 kg m-3 were manufactured from these two particles and fibers blended with urea formaldehyde resin and compressed into targeted thickness. The effect of these manufacturing conditions on bending strength, internal bonding, water absorption and thickness swelling were determined. From this research, it can be concluded that hybridization of fibers with fronds particles improved some properties of particleboard. Empty fruit bunch fibers and fronds particleboard showed better modulus of rupture and internal bonding than fronds particleboards.

Keywords: oil palm fronds, empty fruit bunch, particleboards, chemistry, environment

Procedia PDF Downloads 333
1814 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line

Authors: K. Jahani, J. Razavi

Abstract:

Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.

Keywords: computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone

Procedia PDF Downloads 404
1813 A Novel Bio-ceramic Using Hyperthermia for Bone Cancer Therapy, Ferro-substituted Silicate Calcium Materials

Authors: hassan gheisari

Abstract:

Ferro silicate calcium nano particles are prepared through the sol-gel method using polyvinyl alcohol (PVA) as a chelating agent. The powder, as prepared, is annealed at three different temperatures (900 ºC, 1000 ºC, and 1100 ºC) for 3 h. The XRD patterns of the samples indicate broad peaks, and the full width at half maximum decreased with increasing annealing temperature. FTIR spectra of the samples confirm the presence of metal - oxygen complexes within the structure. The average particle size obtained from PSA curve demonstrates ultrafine particles. SEM micrographs indicate the particles synthesized have spherical morphology. The saturation magnetization (Ms) and remnant magnetization (Mr) of the samples show dependence on particle size and crystallinity of the samples. The highest saturation magnetization is achieved for the sample annealed at 1100 ºC having maximum average particle size. The high saturation magnetization of the samples suggests the present method is suitable for obtaining nano particles magnetic ferro bioceramic, which is desirable for practical applications such as hyperthermia bone cancer therapy.

Keywords: hyperthermia, bone cancer, bio ceramic; magnetic materials; sol– gel, silicate calcium

Procedia PDF Downloads 73
1812 Ferro-Substituted Silicate Calcium Materials, a Novel Bio-Ceramic Using Hyperthermia for Bone Cancer Therapy

Authors: Hassan Gheisari

Abstract:

Ferro silicate calcium nano particles are prepared through the sol-gel method using polyvinyl alcohol (PVA) as a chelating agent. The powder as prepared is annealed at three different temperatures (900 ºC, 1000 ºC and 1100 ºC) for 3 h. The XRD patterns of the samples indicate broad peaks and the full width at half maximum decreased with increasing annealing temperature. FTIR spectra of the samples confirm the presence of metal - oxygen complexes within the structure. The average particle size obtained from PSA curve demonstrates ultrafine particles. SEM micrographs indicate the particles synthesized have spherical morphology. The saturation magnetization (Ms) and remnant magnetization (Mr) of the samples show dependence on particle size and crystallinity of the samples. The highest saturation magnetization is achieved for the sample annealed at 1100 ºC having maximum average particle size. The high saturation magnetization of the samples suggests the present method is suitable for obtaining nano particles magnetic ferro bioceramic which is desirable for practical applications such as hyperthermia bone cancer therapy.

Keywords: hyperthermia, bone cancer, bio ceramic, magnetic materials, sol– gel, silicate calcium

Procedia PDF Downloads 308
1811 Diffusion Treatment of Niobium and Molybdenum on Pur Titanium and Titanium Alloy Ti-64al and Their Properties

Authors: Kaouka Alaeddine, K. Benarous

Abstract:

This study aims to obtain a surface of pure titanium and titanium alloy Ti-64Al with high performance by the diffusion process. Two agents metal alloy have been used in this treatment, niobium (Nb) and molybdenum (Mo), spread on elemental titanium and Ti-64Al alloy. Nb and Mo are used as powder form to increase the contact surface and to improve the distribution. Both Mo and Nb are distributed on samples of Ti and Ti-64Al at 1100 °C and 1200 °C for 3 h. They were performed to effect different experiments objectives. This work was achieved to improve some properties and microstructure of Ti and Ti-64Al surface, using optical microscopy and SEM and study some mechanical properties. The effects of temperature and the powder contents on the microstructure of Ti and Ti-64Al alloy, different phases and hardness value of Ti and Ti-64Al alloy were determined. Experimental results indicate that increasing the powder contents and/or the temperature, the α + β phases change to the equiaxed β lamellar structure. In particular, experiments in 1200 °C were created by diffusion α + β phases both equiaxed β phase laminar and α + β phase, thus meeting the objectives were established in the work. In addition, simulation results are used for comparison with the experimental results by DICTRA software.

Keywords: diffusion, powder metallurgy, titanium alloy, molybdenum, niobium

Procedia PDF Downloads 148
1810 Central Solar Tower Model

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

It is presented a model of two subsystems of Central Solar Tower to produce steam in applications to help in energy consumption. The first subsystem consists of 24 heliostats constructed of adaptive and mobile metal structures to track the apparent movement of the sun on its focus and covered by 96 layers of mirror of 150 mm at width and 220 mm at length, totaling an area of concentration of 3.2 m². Thereby obtaining optical parameters essential to reflection of sunlight by the reflector surface and absorption of this light by focus located in the light receiver, which is inserted in the second subsystem, which is at the top of a tower. The tower was built in galvanized iron able to support the absorber, and a gas cylinder to cool the equipment. The area illuminated by the sun was 9 x 10-2m2, yielding a concentration factor of 35.22. It will be shown the processes of manufacture and assembly of the Mini-Central Tower proposal, which has as main characteristics the construction and assembly facilities, in addition to reduced cost. Data of tests to produce water vapor parameters are presented and determined to diagnose the efficiency of the mini-solar central tower. It will be demonstrated the thermal, economic and material viability of the proposed system.

Keywords: solar oven, solar cooker, composite material, low cost, sustainable development

Procedia PDF Downloads 418
1809 Timely Detection and Identification of Abnormalities for Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

The detection and identification of multivariate manufacturing processes are quite important in order to maintain good product quality. Unusual behaviors or events encountered during its operation can have a serious impact on the process and product quality. Thus they should be detected and identified as soon as possible. This paper focused on the efficient representation of process measurement data in detecting and identifying abnormalities. This qualitative method is effective in representing fault patterns of process data. In addition, it is quite sensitive to measurement noise so that reliable outcomes can be obtained. To evaluate its performance a simulation process was utilized, and the effect of adopting linear and nonlinear methods in the detection and identification was tested with different simulation data. It has shown that the use of a nonlinear technique produced more satisfactory and more robust results for the simulation data sets. This monitoring framework can help operating personnel to detect the occurrence of process abnormalities and identify their assignable causes in an on-line or real-time basis.

Keywords: detection, monitoring, identification, measurement data, multivariate techniques

Procedia PDF Downloads 236
1808 Substitution of Natural Aggregates by Crushed Concrete Waste in Concrete Products Manufacturing

Authors: Jozef Junak, Nadezda Stevulova

Abstract:

This paper is aimed to the use of different types of industrial wastes in concrete production. From examined waste (crushed concrete waste) our tested concrete samples with dimension 150 mm were prepared. In these samples, fractions 4/8 mm and 8/16 mm by recycled concrete aggregate with a range of variation from 0 to 100% were replaced. Experiment samples were tested for compressive strength after 2, 7, 14 and 28 days of hardening. From obtained results it is evident that all samples prepared with washed recycled concrete aggregates met the requirement of standard for compressive strength of 20 MPa already after 14 days of hardening. Sample prepared with recycled concrete aggregates (4/8 mm: 100% and 8/16 mm: 60%) reached 101% of compressive strength value (34.7 MPa) after 28 days of hardening in comparison with the reference sample (34.4 MPa). The lowest strength after 28 days of hardening (27.42 MPa) was obtained for sample consisting of recycled concrete in proportion of 40% for 4/8 fraction and 100% for 8/16 fraction of recycled concrete.

Keywords: recycled concrete aggregate, re-use, workability, compressive strength

Procedia PDF Downloads 372
1807 Electrical Resistivity of Solid and Liquid Pt: Insight into Electrical Resistivity of ε-Fe

Authors: Innocent C. Ezenwa, Takashi Yoshino

Abstract:

Knowledge of the transport properties of Fe and its alloys at extreme high pressure (P), temperature (T) conditions are essential for understanding the generation and sustainability of the magnetic field of the rocky planets with a metallic core. Since Pt, an unfilled d-band late transition metal with an electronic structure of Xe4f¹⁴5d⁹6s¹, is paramagnetic and remains close-packed structure at ambient conditions and high P-T, it is expected that its transport properties at these conditions would be similar to those of ε-Fe. We investigated the T-dependent electrical resistivity of solid and liquid Pt up to 8 GPa and found it constant along its melting curve both on the liquid and solid sides in agreement with theoretical prediction and experimental results estimated from thermal conductivity measurements. Our results suggest that the T-dependent resistivity of ε-Fe is linear and would not saturate at high P, T conditions. This, in turn, suggests that the thermal conductivity of liquid Fe at Earth’s core conditions may not be as high as previously suggested by models employing saturation resistivity. Hence, thermal convection could have powered the geodynamo before the birth of the inner core. The electrical resistivity and thermal conductivity on the liquid and solid sides of the inner core boundary of the Earth would be significantly different in values.

Keywords: electrical resistivity, thermal conductivity, transport properties, geodynamo and geomagnetic field

Procedia PDF Downloads 143
1806 Optimizing Power in Sequential Circuits by Reducing Leakage Current Using Enhanced Multi Threshold CMOS

Authors: Patikineti Sreenivasulu, K. srinivasa Rao, A. Vinaya Babu

Abstract:

The demand for portability, performance and high functional integration density of digital devices leads to the scaling of complementary metal oxide semiconductor (CMOS) devices inevitable. The increase in power consumption, coupled with the increasing demand for portable/hand-held electronics, has made power consumption a dominant concern in the design of VLSI circuits today. MTCMOS technology provides low leakage and high performance operation by utilizing high speed, low Vt (LVT) transistors for logic cells and low leakage, high Vt (HVT) devices as sleep transistors. Sleep transistors disconnect logic cells from the supply and/or ground to reduce the leakage in the sleep mode. In this technology, energy consumption while doing the mode transition and minimum time required to turn ON the circuit upon receiving the wake up signal are issues to be considered because these can adversely impact the performance of VLSI circuit. In this paper we are introducing an enhancing method of MTCMOS technology to optimize the power in MTCMOS sequential circuits.

Keywords: power consumption, ultra-low power, leakage, sub threshold, MTCMOS

Procedia PDF Downloads 408
1805 High Temperature Behavior of a 75Cr3C2–25NiCr Coated T91 Boiler Steel in an Actual Industrial Environment of a Coal Fired Boiler

Authors: Buta Singh Sidhu, Sukhpal Singh Chatha, Hazoor Singh Sidhu

Abstract:

In the present investigation, 75Cr3C2-25NiCr coating was deposited on T91 boiler tube steel substrate by high velocity oxy-fuel (HVOF) process to enhance high-temperature corrosion resistance. High-temperature performance of bare, as well as HVOF-coated steel specimens was evaluated for 1500 h under cyclic conditions in the platen superheater zone coal-fired boiler, where the temperature was around 900 °C. Experiments were carried out for 15 cycles each of 100 h duration followed by 1 h cooling at ambient temperature. The performance of the bare and coated specimens was assessed via metal thickness loss corresponding to the corrosion scale formation and the depth of internal corrosion attack. 75Cr3C2-25NiCr coating deposited on T91 steel imparted better hot corrosion resistance than the uncoated steel. Inferior resistance of bare T91 steel is attributed to the formation of pores and loosely bounded oxide scale rich in Fe2O3.

Keywords: 75Cr3C2-25NiCr, HVOF process, boiler steel, coal fired boilers

Procedia PDF Downloads 609