Search results for: scanning path
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3264

Search results for: scanning path

414 Generation-Based Travel Decision Analysis in the Post-Pandemic Era

Authors: Hsuan Yu Lai, Hsuan Hsuan Chang

Abstract:

The consumer decision process steps through problems by weighing evidence, examining alternatives, and choosing a decision path. Currently, the COVID 19 made the tourism industry encounter a huge challenge and suffer the biggest amount of economic loss. It would be very important to reexamine the decision-making process model, especially after the pandemic, and consider the differences among different generations. The tourism industry has been significantly impacted by the global outbreak of COVID-19, but as the pandemic subsides, the sector is recovering. This study addresses the scarcity of research on travel decision-making patterns among generations in Taiwan. Specifically targeting individuals who frequently traveled abroad before the pandemic, the study explores differences in decision-making at different stages post-outbreak. So this study investigates differences in travel decision-making among individuals from different generations during/after the COVID-19 pandemic and examines the moderating effects of social media usage and individuals' perception of health risks. The study hypotheses are “there are significant differences in the decision-making process including travel motivation, information searching preferences, and criteria for decision-making” and that social-media usage and health-risk perception would moderate the results of the previous study hypothesis. The X, Y, and Z generations are defined and categorized based on a literature review. The survey collected data including their social-economic background, travel behaviors, motivations, considerations for destinations, travel information searching preferences, and decision-making criteria before/after the pandemic based on the reviews of previous studies. Data from 656 online questionnaires were collected between January to May 2023 and from Taiwanese travel consumers who used to travel at least one time abroad before Covid-19. SPSS is used to analyze the data with One-Way ANOVA and Two-Way ANOVA. The analysis includes demand perception, information gathering, alternative comparison, purchase behavior, and post-travel experience sharing. Social media influence and perception of health risks are examined as moderating factors. The findings show that before the pandemic, the Y Generation preferred natural environments, while the X Generation favored historical and cultural sites compared to the Z Generation. However, after the outbreak, the Z Generation displayed a significant preference for entertainment activities. This study contributes to understanding changes in travel decision-making patterns following COVID-19 and the influence of social media and health risks. The findings have practical implications for the tourism industry.

Keywords: consumer decision-making, generation study, health risk perception, post-pandemic era, social media

Procedia PDF Downloads 60
413 Depositional Environment and Diagenetic Alterations, Influences of Facies and Fine Kaolinite Formation Migration on Sandstones’ Reservoir Quality, Sarir Formation, Sirt Basin Libya

Authors: Faraj M. Elkhatri, Hana Ali Allafi

Abstract:

The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. (present day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Ba-sin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly find by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some of fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets, but also small, disaggregated kaolinite platelets derived from the dis-aggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore, but also coat some of the sur-rounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and re-duce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on select-ed minerals observed during the SEM study were obtained using an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats, with limited occlusion by kaolinite.

Keywords: por throat, formation damage, porosity lose, solids plugging

Procedia PDF Downloads 59
412 Teacher Professional Development in Saudi Arabia through the Implementation of Universal Design for Learning

Authors: Majed A. Alsalem

Abstract:

Universal Design for Learning (UDL) is common theme in education across the US and an influential model and framework that enables students in general and particularly students who are deaf and hard of hearing (DHH) to access the general education curriculum. UDL helps teachers determine how information will be presented to students and how to keep students engaged. Moreover, UDL helps students to express their understanding and knowledge to others. UDL relies on technology to promote students' interaction with content and their communication of knowledge. This study included 120 DHH students who received daily instruction based on UDL principles. This study presents the results of the study and discusses its implications for the integration of UDL in day-to-day practice as well as in the country's education policy. UDL is a Western concept that began and grew in the US, and it has just begun to transfer to other countries such as Saudi Arabia. It will be very important to researchers, practitioners, and educators to see how UDL is being implemented in a new place with a different culture. UDL is a framework that is built to provide multiple means of engagement, representation, and action and expression that should be part of curricula and lessons for all students. The purpose of this study is to investigate the variables associated with the implementation of UDL in Saudi Arabian schools and identify the barriers that could prevent the implementation of UDL. Therefore, this study used a mixed methods design that use both quantitative and qualitative methods. More insights will be gained by including both quantitative and qualitative rather than using a single method. By having methods that different concepts and approaches, the databases will be enriched. This study uses levels of collecting date through two stages in order to insure that the data comes from multiple ways to mitigate validity threats and establishing trustworthiness in the findings. The rationale and significance of this study is that it will be the first known research that targets UDL in Saudi Arabia. Furthermore, it will deal with UDL in depth to set the path for further studies in the Middle East. From a perspective of content, this study considers teachers’ implementation knowledge, skills, and concerns of implementation. This study deals with effective instructional designs that have not been presented in any conferences, workshops, teacher preparation and professional development programs in Saudi Arabia. Specifically, Saudi Arabian schools are challenged to design inclusive schools and practices as well as to support all students’ academic skills development. The total participants in stage one were 336 teachers of DHH students. The results of the intervention indicated significant differences among teachers before and after taking the training sessions associated with their understanding and level of concern. Teachers have indicated interest in knowing more about UDL and adopting it into their practices; they reported that UDL has benefits that will enhance their performance for supporting student learning.

Keywords: deaf and hard of hearing, professional development, Saudi Arabia, universal design for learning

Procedia PDF Downloads 432
411 Atomic Layer Deposition of Metal Oxide Inverse Opals: A Tailorable Platform for Unprecedented Photocatalytic Performance

Authors: Hamsasew Hankebo Lemago, Dóra Hessz, Zoltán Erdélyi, Imre Miklós Szilágyi

Abstract:

Metal oxide inverse opals are a unique class of photocatalysts with a hierarchical structure that mimics the natural opal gemstone. They are composed of a network of interconnected pores, which provides a large surface area and efficient pathways for the transport of light and reactants. Atomic layer deposition (ALD) is a versatile technique for the synthesis of high-precision metal oxide thin films, including inverse opals. ALD allows for precise control over the thickness, composition, and morphology of the synthesized films, making it an ideal technique for the fabrication of photocatalysts with tailored properties. In this study, we report the synthesis of TiO2, ZnO, and Al2O3 inverse opal photocatalysts using thermal or plasma-enhanced ALD. The synthesized photocatalysts were characterized using a variety of techniques, including scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL), ellipsometry, and UV-visible spectroscopy. The results showed that the ALD-synthesized metal oxide inverse opals had a highly ordered structure and a tunable pore size. The PL spectroscopy results showed low recombination rates of photogenerated electron-hole pairs, while the ellipsometry and UV-visible spectroscopy results showed tunable optical properties and band gap energies. The photocatalytic activity of the samples was evaluated by the degradation of methylene blue under visible light irradiation. The results showed that the ALD-synthesized metal oxide inverse opals exhibited high photocatalytic activity, even under visible light irradiation. The composites photocatalysts showed even higher activity than the individual metal oxide inverse opals. The enhanced photocatalytic activity of the composites can be attributed to the synergistic effect between the different metal oxides. For example, Al2O3 can act as a charge carrier scavenger, which can reduce the recombination of photogenerated electron-hole pairs. The ALD-synthesized metal oxide inverse opals and their composites are promising photocatalysts for a variety of applications, such as wastewater treatment, air purification, and energy production. For example, they can be used to remove organic pollutants from wastewater, decompose harmful gases in the air, and produce hydrogen fuel from water.

Keywords: ALD, metal oxide inverse opals, composites, photocatalysis

Procedia PDF Downloads 84
410 Traumatic Brain Injury in Cameroon: A Prospective Observational Study in a Level 1 Trauma Centre

Authors: Franklin Chu Buh, Irene Ule Ngole Sumbele, Andrew I. R. Maas, Mathieu Motah, Jogi V. Pattisapu, Eric Youm, Basil Kum Meh, Firas H. Kobeissy, Kevin W. Wang, Peter J. A. Hutchinson, Germain Sotoing Taiwe

Abstract:

Introduction: Studying TBI characteristics and their relation to outcomes can identify initiatives to improve TBI prevention and care. The objective of this study was to define the features and outcomes of TBI patients seen over a 1-year period in a level-I trauma center in Cameroon. Methods: Data on demographics, causes, injury mechanisms, clinical aspects, and discharge status were prospectively collected over a period of 12 months. The Glasgow Outcome Scale-Extended (GOSE) and the Quality of Life Questionnaire after Brain Injury (QoLIBRI) were used to evaluate outcomes 6-months after TBI. Categorical variables were described as frequencies and percentages. Comparisons between 2 categorical variables were done using Pearson's Chi-square test or Fisher's exact test. Results: A total of 160 TBI patients participated in the study. The age group 15-45 years (78%; 125) was most represented. Males were more affected (90%; 144). Low educational level was recorded in 122 (76%) cases. Road traffic incidents (RTI) were the main cause of TBI (85%), with professional bike riders being frequently involved (27%, 43/160). Assaults (7.5%) and falls (2.5%) represent the second and third most common causes of TBI in Cameroon, respectively. Only 15 patients were transported to the hospital by ambulance, and 14 of these were from a referring hospital. CT-imaging was performed in 78% (125/160) of cases intracranial traumatic abnormality was identified in 77/125 (64%) cases. Financial constraints were the main reason for not performing a CT scan on 35 patients. A total of 46 (33%) patients were discharged against medical advice (DAMA) due to financial constraints. Mortality was 14% (22/160) but disproportionately high in patients with severe TBI (46%). DAMA had poor outcomes with QoLIBRI. Only 4 patients received post-injury physiotherapy services. Conclusion: TBI in Cameroon mainly results from RTIs and commonly affects young adult males, and low educational or socioeconomic status and commercial bike riding appear to be predisposing factors. Lack of pre-hospital care, financial constraints limiting both CT-scanning and medical care, and lack of acute physiotherapy services likely influenced care and outcomes adversely.

Keywords: characteristics, traumatic brain injury, outcome, disparities in care, prospective study

Procedia PDF Downloads 123
409 An Easy Approach for Fabrication of Macroporous Apatite-Based Bone Cement Used As Potential Trabecular Bone Substitute

Authors: Vimal Kumar Dewangan, T. S. Sampath Kumar, Mukesh Doble, Viju Daniel Varghese

Abstract:

The apatite-based, i.e., calcium-deficient hydroxyapatite (CDHAp) bone cement is well-known potential bone graft/substitute in orthopaedics due to its similar chemical composition with natural bone minerals. Therefore, an easy approach was attempted to fabricate the apatite-based (CDHAp) bone cement with improved injectability, bioresorbability, and macroporosity. In this study, the desired bone cement was developed by mixing the solid phase (consisting of wet chemically synthesized nanocrystalline hydroxyapatite and commercially available (synthetic) tricalcium phosphate) and the liquid phase (consisting of cement binding accelerator with few biopolymers in a dilute acidic solution) along with a liquid porogen as polysorbate or a solid porogen as mannitol (for comparison) in an optimized liquid-to-powder ratio. The fabricated cement sets within clinically preferred setting time (≤20 minutes) are better injectable (>70%) and also stable at ~7.3-7.4 (physiological pH). The CDHAp phased bone cement was resulted by immersing the fabricated after-set cement in phosphate buffer solution and other similar artificial body fluids and incubated at physiological conditions for seven days, confirmed through the X-ray diffraction and Fourier transform-infrared spectroscopy analyses. The so-formed synthetic apatite-based bone cement holds the acceptable compressive strength (within the range of trabecular bone) with average interconnected pores size falls in a macropores range (~50-200μm) inside the cement, verified by scanning electron microscopy (SEM), mercury intrusion porosimetry and micro-CT analysis techniques. Also, it is biodegradable (degrades ~19-22% within 10-12 weeks) when incubated in artificial body fluids under physiological conditions. The biocompatibility study of the bone cement, when incubated with MG63 cells, shows a significant increase in the cell viability after 3rd day of incubation compared with the control, and the cells were well-attached and spread completely on the surface of the bone cement, confirmed through SEM and fluorescence microscopy analyses. With this all, we can conclude that the developed synthetic macroporous apatite-based bone cement may have the potential to become promising material used as a trabecular bone substitute.

Keywords: calcium deficient hydroxyapatite, synthetic apatite-based bone cement, injectability, macroporosity, trabecular bone substitute

Procedia PDF Downloads 86
408 Master Di-Chiao: A Great Practitioner of Earth Store Bodhisattva's Compassion

Authors: Mei-Hsia Dai

Abstract:

Venerable Master Di-Chiao has been devoted all her life practicing the Earth Store Bodhisattva’s spirit and is one of the greatest masters in modern Buddhism. All Buddha and Bodhisattvas pay great respect to the Earth Store Bodhisattva because He vowed that He would not become Buddha until the hell is empty, and He would only achieve Bodhi until all sentient beings have been saved. The aim of this study is to investigate Venerable Master Di-Chiao, who actualizes the Buddha’s teaching and practices the Earth Store Bodhisattva’s compassion and apply them to help people. In fact, she has integrated her learning to teach people how to eliminate their karmic suffering with her close attention and full effort, even though she would be hurt all over or she had to sacrifice her own life. This qualitative research gathers data in terms of a field study, including an interview with Venerable Master Di-Chiao, a book about the Master and three books about true stories of people saved by the Master, and about 300 online feedbacks from her disciples and followers explaining how they were helped by the Master through their difficulties, together with a year-long observation at the Dharma services held in Taipei Di-Zang Temple. This article is divided into four parts: The first part depicts Master Di-Chiao’s original intent of being a nun and her three-step-one-bow pilgrimage experience around Taiwan. Part two illustrates the invitation of the Master’s being the Abbess of Tsiang-Te Temple, which was designated by Bodhisattva Avalokitesvara in a manager’s dream of the temple, and many unexpected difficulties ahead of the cultivation in the Master’s Buddha Path. In addition to maintenance of Tsiang-Te Temple, the third part will discuss the purpose of founding Taipei Di-Zang Temple, in which the Master always tries her best with various methods to cultivate good seeds for her disciples and followers and watches out for their karma and does her utmost effort to help them overcome it. The final part will briefly explain the Three Buddhalization: Buddhist wedding, Buddhist prenatal education and Buddhist family, which the Master has been advocating and considers them the essence of constructing a harmonious society and having a meaningful and enlightening life. Extraordinary results of practicing the Three Buddhalization will be given. Findings show that Master’s Di-Chiao’s actualization of Buddha’s teaching and Bodhisattva’s compassion is incredibly amazing and powerful, and she has helped countless people to conquer their difficulties and purify their evil habits. With the Master’s assistance and their hardworking and faith to the Master’s teaching, some of her disciples and followers have gone to the Maitreya Inside Realm, where the future Buddha has resided, and continue their cultivation. True stories will be presented to illuminate the incredibility of the Master’s compassion, her brevity and perseverance in the course of the Buddhahood. Venerable Master Di-Chiao is the embodiment of the Earth Store Bodhisattva for her disciples and followers.

Keywords: compassion, the Earth Store Bodhisattva, three Buddhalization, venerable Master Di-Chiao

Procedia PDF Downloads 136
407 God, The Master Programmer: The Relationship Between God and Computers

Authors: Mohammad Sabbagh

Abstract:

Anyone who reads the Torah or the Quran learns that GOD created everything that is around us, seen and unseen, in six days. Within HIS plan of creation, HE placed for us a key proof of HIS existence which is essentially computers and the ability to program them. Digital computer programming began with binary instructions, which eventually evolved to what is known as high-level programming languages. Any programmer in our modern time can attest that you are essentially giving the computer commands by words and when the program is compiled, whatever is processed as output is limited to what the computer was given as an ability and furthermore as an instruction. So one can deduce that GOD created everything around us with HIS words, programming everything around in six days, just like how we can program a virtual world on the computer. GOD did mention in the Quran that one day where GOD’s throne is, is 1000 years of what we count; therefore, one might understand that GOD spoke non-stop for 6000 years of what we count, and gave everything it’s the function, attributes, class, methods and interactions. Similar to what we do in object-oriented programming. Of course, GOD has the higher example, and what HE created is much more than OOP. So when GOD said that everything is already predetermined, it is because any input, whether physical, spiritual or by thought, is outputted by any of HIS creatures, the answer has already been programmed. Any path, any thought, any idea has already been laid out with a reaction to any decision an inputter makes. Exalted is GOD!. GOD refers to HIMSELF as The Fastest Accountant in The Quran; the Arabic word that was used is close to processor or calculator. If you create a 3D simulation of a supernova explosion to understand how GOD produces certain elements and fuses protons together to spread more of HIS blessings around HIS skies; in 2022 you are going to require one of the strongest, fastest, most capable supercomputers of the world that has a theoretical speed of 50 petaFLOPS to accomplish that. In other words, the ability to perform one quadrillion (1015) floating-point operations per second. A number a human cannot even fathom. To put in more of a perspective, GOD is calculating when the computer is going through those 50 petaFLOPS calculations per second and HE is also calculating all the physics of every atom and what is smaller than that in all the actual explosion, and it’s all in truth. When GOD said HE created the world in truth, one of the meanings a person can understand is that when certain things occur around you, whether how a car crashes or how a tree grows; there is a science and a way to understand it, and whatever programming or science you deduce from whatever event you observed, it can relate to other similar events. That is why GOD might have said in The Quran that it is the people of knowledge, scholars, or scientist that fears GOD the most! One thing that is essential for us to keep up with what the computer is doing and for us to track our progress along with any errors is we incorporate logging mechanisms and backups. GOD in The Quran said that ‘WE used to copy what you used to do’. Essentially as the world is running, think of it as an interactive movie that is being played out in front of you, in a full-immersive non-virtual reality setting. GOD is recording it, from every angle to every thought, to every action. This brings the idea of how scary the Day of Judgment will be when one might realize that it’s going to be a fully immersive video when we would be getting and reading our book.

Keywords: programming, the Quran, object orientation, computers and humans, GOD

Procedia PDF Downloads 107
406 The Characterization and Optimization of Bio-Graphene Derived From Oil Palm Shell Through Slow Pyrolysis Environment and Its Electrical Conductivity and Capacitance Performance as Electrodes Materials in Fast Charging Supercapacitor Application

Authors: Nurhafizah Md. Disa, Nurhayati Binti Abdullah, Muhammad Rabie Bin Omar

Abstract:

This research intends to identify the existing knowledge gap because of the lack of substantial studies to fabricate and characterize bio-graphene created from Oil Palm Shell (OPS) through the means of pre-treatment and slow pyrolysis. By fabricating bio-graphene through OPS, a novel material can be found to procure and used for graphene-based research. The characterization of produced bio-graphene is intended to possess a unique hexagonal graphene pattern and graphene properties in comparison to other previously fabricated graphene. The OPS will be fabricated by pre-treatment of zinc chloride (ZnCl₂) and iron (III) chloride (FeCl3), which then induced the bio-graphene thermally by slow pyrolysis. The pyrolizer's final temperature and resident time will be set at 550 °C, 5/min, and 1 hour respectively. Finally, the charred product will be washed with hydrochloric acid (HCL) to remove metal residue. The obtained bio-graphene will undergo different analyses to investigate the physicochemical properties of the two-dimensional layer of carbon atoms with sp2 hybridization hexagonal lattice structure. The analysis that will be taking place is Raman Spectroscopy (RAMAN), UV-visible spectroscopy (UV-VIS), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD). In retrospect, RAMAN is used to analyze three key peaks found in graphene, namely D, G, and 2D peaks, which will evaluate the quality of the bio-graphene structure and the number of layers generated. To compare and strengthen graphene layer resolves, UV-VIS may be used to establish similar results of graphene layer from last layer analysis and also characterize the types of graphene procured. A clear physical image of graphene can be obtained by analyzation of TEM in order to study structural quality and layers condition and SEM in order to study the surface quality and repeating porosity pattern. Lastly, establishing the crystallinity of the produced bio-graphene, simultaneously as an oxygen contamination factor and thus pristineness of the graphene can be done by XRD. In the conclusion of this paper, this study is able to obtain bio-graphene through OPS as a novel material in pre-treatment by chloride ZnCl₂ and FeCl3 and slow pyrolization to provide a characterization analysis related to bio-graphene that will be beneficial for future graphene-related applications. The characterization should yield similar findings to previous papers as to confirm graphene quality.

Keywords: oil palm shell, bio-graphene, pre-treatment, slow pyrolysis

Procedia PDF Downloads 84
405 Homeostatic Analysis of the Integrated Insulin and Glucagon Signaling Network: Demonstration of Bistable Response in Catabolic and Anabolic States

Authors: Pramod Somvanshi, Manu Tomar, K. V. Venkatesh

Abstract:

Insulin and glucagon are responsible for homeostasis of key plasma metabolites like glucose, amino acids and fatty acids in the blood plasma. These hormones act antagonistically to each other during the secretion and signaling stages. In the present work, we analyze the effect of macronutrients on the response from integrated insulin and glucagon signaling pathways. The insulin and glucagon pathways are connected by DAG (a calcium signaling component which is part of the glucagon signaling module) which activates PKC and inhibits IRS (insulin signaling component) constituting a crosstalk. AKT (insulin signaling component) inhibits cAMP (glucagon signaling component) through PDE3 forming the other crosstalk between the two signaling pathways. Physiological level of anabolism and catabolism is captured through a metric quantified by the activity levels of AKT and PKA in their phosphorylated states, which represent the insulin and glucagon signaling endpoints, respectively. Under resting and starving conditions, the phosphorylation metric represents homeostasis indicating a balance between the anabolic and catabolic activities in the tissues. The steady state analysis of the integrated network demonstrates the presence of a bistable response in the phosphorylation metric with respect to input plasma glucose levels. This indicates that two steady state conditions (one in the homeostatic zone and other in the anabolic zone) are possible for a given glucose concentration depending on the ON or OFF path. When glucose levels rise above normal, during post-meal conditions, the bistability is observed in the anabolic space denoting the dominance of the glycogenesis in liver. For glucose concentrations lower than the physiological levels, while exercising, metabolic response lies in the catabolic space denoting the prevalence of glycogenolysis in liver. The non-linear positive feedback of AKT on IRS in insulin signaling module of the network is the main cause of the bistable response. The span of bistability in the phosphorylation metric increases as plasma fatty acid and amino acid levels rise and eventually the response turns monostable and catabolic representing diabetic conditions. In the case of high fat or protein diet, fatty acids and amino acids have an inhibitory effect on the insulin signaling pathway by increasing the serine phosphorylation of IRS protein via the activation of PKC and S6K, respectively. Similar analysis was also performed with respect to input amino acid and fatty acid levels. This emergent property of bistability in the integrated network helps us understand why it becomes extremely difficult to treat obesity and diabetes when blood glucose level rises beyond a certain value.

Keywords: bistability, diabetes, feedback and crosstalk, obesity

Procedia PDF Downloads 275
404 Detailed Quantum Circuit Design and Evaluation of Grover's Algorithm for the Bounded Degree Traveling Salesman Problem Using the Q# Language

Authors: Wenjun Hou, Marek Perkowski

Abstract:

The Traveling Salesman problem is famous in computing and graph theory. In short, it asks for the Hamiltonian cycle of the least total weight in a given graph with N nodes. All variations on this problem, such as those with K-bounded-degree nodes, are classified as NP-complete in classical computing. Although several papers propose theoretical high-level designs of quantum algorithms for the Traveling Salesman Problem, no quantum circuit implementation of these algorithms has been created up to our best knowledge. In contrast to previous papers, the goal of this paper is not to optimize some abstract complexity measures based on the number of oracle iterations, but to be able to evaluate the real circuit and time costs of the quantum computer. Using the emerging quantum programming language Q# developed by Microsoft, which runs quantum circuits in a quantum computer simulation, an implementation of the bounded-degree problem and its respective quantum circuit were created. To apply Grover’s algorithm to this problem, a quantum oracle was designed, evaluating the cost of a particular set of edges in the graph as well as its validity as a Hamiltonian cycle. Repeating the Grover algorithm with an oracle that finds successively lower cost each time allows to transform the decision problem to an optimization problem, finding the minimum cost of Hamiltonian cycles. N log₂ K qubits are put into an equiprobablistic superposition by applying the Hadamard gate on each qubit. Within these N log₂ K qubits, the method uses an encoding in which every node is mapped to a set of its encoded edges. The oracle consists of several blocks of circuits: a custom-written edge weight adder, node index calculator, uniqueness checker, and comparator, which were all created using only quantum Toffoli gates, including its special forms, which are Feynman and Pauli X. The oracle begins by using the edge encodings specified by the qubits to calculate each node that this path visits and adding up the edge weights along the way. Next, the oracle uses the calculated nodes from the previous step and check that all the nodes are unique. Finally, the oracle checks that the calculated cost is less than the previously-calculated cost. By performing the oracle an optimal number of times, a correct answer can be generated with very high probability. The oracle of the Grover Algorithm is modified using the recalculated minimum cost value, and this procedure is repeated until the cost cannot be further reduced. This algorithm and circuit design have been verified, using several datasets, to generate correct outputs.

Keywords: quantum computing, quantum circuit optimization, quantum algorithms, hybrid quantum algorithms, quantum programming, Grover’s algorithm, traveling salesman problem, bounded-degree TSP, minimal cost, Q# language

Procedia PDF Downloads 190
403 High Strength, High Toughness Polyhydroxybutyrate-Co-Valerate Based Biocomposites

Authors: S. Z. A. Zaidi, A. Crosky

Abstract:

Biocomposites is a field that has gained much scientific attention due to the current substantial consumption of non-renewable resources and the environmentally harmful disposal methods required for traditional polymer composites. Research on natural fiber reinforced polyhydroxyalkanoates (PHAs) has gained considerable momentum over the past decade. There is little work on PHAs reinforced with unidirectional (UD) natural fibers and little work on using epoxidized natural rubber (ENR) as a toughening agent for PHA-based biocomposites. In this work, we prepared polyhydroxybutyrate-co-valerate (PHBV) biocomposites reinforced with UD 30 wt.% flax fibers and evaluated the use of ENR with 50% epoxidation (ENR50) as a toughening agent for PHBV biocomposites. Quasi-unidirectional flax/PHBV composites were prepared by hand layup, powder impregnation followed by compression molding.  Toughening agents – polybutylene adiphate-co-terephthalate (PBAT) and ENR50 – were cryogenically ground into powder and mechanically mixed with main matrix PHBV to maintain the powder impregnation process. The tensile, flexural and impact properties of the biocomposites were measured and morphology of the composites examined using optical microscopy (OM) and scanning electron microscopy (SEM). The UD biocomposites showed exceptionally high mechanical properties as compared to the results obtained previously where only short fibers have been used. The improved tensile and flexural properties were attributed to the continuous nature of the fiber reinforcement and the increased proportion of fibers in the loading direction. The improved impact properties were attributed to a larger surface area for fiber-matrix debonding and for subsequent sliding and fiber pull-out mechanisms to act on, allowing more energy to be absorbed. Coating cryogenically ground ENR50 particles with PHBV powder successfully inhibits the self-healing nature of ENR-50, preventing particles from coalescing and overcoming problems in mechanical mixing, compounding and molding. Cryogenic grinding, followed by powder impregnation and subsequent compression molding is an effective route to the production of high-mechanical-property biocomposites based on renewable resources for high-obsolescence applications such as plastic casings for consumer electronics.

Keywords: natural fibers, natural rubber, polyhydroxyalkanoates, unidirectional

Procedia PDF Downloads 288
402 Optimization of Adsorptive Removal of Common Used Pesticides Water Wastewater Using Golden Activated Charcoal

Authors: Saad Mohamed Elsaid, Nabil Anwar, Mahmoud Rushdi

Abstract:

One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use traded activated charcoal with gold nitrate solution; for removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption, forming a complex with the gold metal immobilized on activated carbon surfaces. In addition, the gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups, were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.

Keywords: waste water, pesticides pollution, adsorption, activated carbon

Procedia PDF Downloads 73
401 Impact of Youth Corners and Knowledge about Human Sexuality among Young Adults and Adolescents of Nigerian Population in the Prevention of Sexually Transmitted Diseases

Authors: Gabriel I. Oke, Faremi O. Ayodeji

Abstract:

Background: Access to youth Friendly Health Corners is vital for ensuring sexual reproductive health and total well being of young Adults since human sexuality has been widely misunderstood. Meanwhile, behavior of young people towards it remains at variance with the alarm. This study attempt to access the impact of youth corners also called Adolescent Friendly Health Corners on manifestation of human sexual behavior among Nigerian adolescent and young adults. Description: Hundred young adults and adolescents of both sex between the Age range of 12-25years were randomly selected from 5 secondary schools and 3 prominent universities in Southwestern Nigeria and focal group discussions (FGD) were conducted among them. Fifty secondary and primary health facilities were visited between February and June 2017 to conduct interviews for health workers and to ascertain the presence or absence of youth corners. Results: 95% of the health facilities visited lack Youth Corners section neither are they willing to make provision for it due to lack of workmanship and sponsorship. However, 5% with Youth corners does not have well-trained Counselors or a Health Educator but health professionals from nursing profession. 90% of the respondents of which 16-17 years of Age is the mean age had their first sexual exposure with no use of protection even before been introduced to what Sexuality is all about. Virtually, none of the respondents had ever visited a Youth Corner before or heard the term before. 86% have heard about the term STI before of which 60% are using protection, 10% care less about any information attached to the term STI, 4% have not heard of the term STI before even when translated to their local dialect. 20% are abstaining as at the time the study was conducted and they attribute their sexual decision to religion and parental influence. Of the age group 20-25, 45% claimed they have had symptoms of one STI or the other and 40% claimed they have been tested positive for an STI before of which 12% have positive HIV status. Promiscuous behaviors were found among them before they reach the age 16years with pornography ranking the highest, followed by masturbation. Respondents blame this on peer pressure, the lack of Youth Friendly Centers in their locality and lack of proper Sexual Orientation on time. About half of the respondents make use of contraceptives while others have varying views. We found out that inability to access Youth Friendly Centers amongst the respondents might be one of the singular reasons of their early experimentation of their sex life and lack of healthy sexual lifestyle. (95% CI, P=0.922) Conclusion: The study reveals that a connection between youth Friendly Centers and Prevention of Sexually Transmitted Diseases, therefore more sustainable Friendly Youth Corners with well-trained educators are needed in various Health facilities to checkmate the numerous risks of Young People along the path of adulthood.

Keywords: adolescents, sexually transmitted infections, reproductive health, youth corners

Procedia PDF Downloads 230
400 Functionalized Spherical Aluminosilicates in Biomedically Grade Composites

Authors: Damian Stanislaw Nakonieczny, Grazyna Simha Martynkova, Marianna Hundakova, G. Kratosová, Karla Cech Barabaszova

Abstract:

The main aim of the research was to functionalize the surface of spherical aluminum silicates in the form of so-called cenospheres. Cenospheres are light ceramic particles with a density between 0.45 and 0.85 kgm-3 hat can be obtained as a result of separation from fly ash from coal combustion. However, their occurrence is limited to about 1% by weight of dry ash mainly derived from anthracite. Hence they are very rare and desirable material. Cenospheres are characterized by complete chemical inertness. Mohs hardness in range of 6 and completely smooth surface. Main idea was to prepare the surface by chemical etching, among others hydrofluoric acid (HF) and hydrogen peroxide, caro acid, silanization using (3-aminopropyl) triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) to obtain the maximum development and functionalization of the surface to improve chemical and mechanical connection with biomedically used polymers, i.e., polyacrylic methacrylate (PMMA) and polyetheretherketone (PEEK). These polymers are used medically mainly as a material for fixed and removable dental prostheses and PEEK spinal implants. The problem with their use is the decrease in mechanical properties over time and bacterial infections fungal during implantation and use of dentures. Hence, the use of a ceramic filler that will significantly improve the mechanical properties, improve the fluidity of the polymer during shape formation, and in the future, will be able to support bacteriostatic substances such as silver and zinc ions seem promising. In order to evaluate our laboratory work, several instrumental studies were performed: chemical composition and morphology with scanning electron microscopy with Energy-Dispersive X-Ray Probe (SEM/EDX), determination of characteristic functional groups of Fourier Transform Infrared Spectroscopy (FTIR), phase composition of X-ray Diffraction (XRD) and thermal analysis of Thermo Gravimetric Analysis/differentia thermal analysis (TGA/DTA), as well as assessment of isotherm of adsorption with Brunauer-Emmett-Teller (BET) surface development. The surface was evaluated for the future application of additional bacteria and static fungus layers. Based on the experimental work, it was found that orated methods can be suitable for the functionalization of the surface of cenosphere ceramics, and in the future it can be suitable as a bacteriostatic filler for biomedical polymers, i.e., PEEK or PMMA.

Keywords: bioceramics, composites, functionalization, surface development

Procedia PDF Downloads 120
399 The Role of Entrepreneur University in the Development of Entrepreneurship Education

Authors: Ramin Tafazzoli, Rahime Zamanfashami, Amir Mohagheghzadeh

Abstract:

Entrepreneurship is the driving engine of countries’ economic development and has a determinant role in the economic, social and cultural improvement of the societies. Entrepreneurship and its impact on countries’ destiny, result in the planner and policy makers’ attempts to explore and extend it in various aspects. These days, all countries follow their social capital development and human resource quality improvement to achieve the strategic national objectives, economic growth, value creation, cultural dynamism, civil excellence and social solidarity, pursuing the sustainable development based on innovation, entrepreneurial technology , knowledge management and knowledge-focused in various levels and areas. Because of the rapid economic and cultural changes in recent decades and also the emerged need for reinforcing the knowledge-based structures and wealth generation via knowledge, a convenient infrastructure is strongly required for generating science and technology. Devoting attention to entrepreneurship and training and fostering the students who have the essential abilities and skills for creating a suitable business unit, is one of the duties of each university. New expectations necessitate that universities in the development trend by way of entrepreneurship, play a prominent role. Since, higher education has an important role in training and fostering the specialist human resource in the society, attention to the academic entrepreneurship help to develop this issue better. The higher education, relying on its core mission (training and researching) be expected to help the path where exploit and apply the created capabilities and also to cause the development in the society. In this term, the higher education play an essential role to expanse and extent the entrepreneurial concepts by establishing the entrepreneurship universities. Therefore, it is necessary to constitute and establish the entrepreneurship university to solve the problems and improve the development trend. The entrepreneurial courses follow the objectives such as: informing, creating culture, entrepreneurial morality, technical knowledge, entrepreneurial skills transferring, preparing the audiences or researching, job creation, business establishing and its preservation. According to the vision 1404 of Islamic republic of Iran in which the society has to include the advanced knowledge in the field of technology and science generation and also economic growth. In this essay, we investigate the entrepreneurship concepts, entrepreneurship university characteristics, entrepreneurship organizations values, entrepreneurship education process, meanwhile paying attention to that fact which the university can play an essential role in entrepreneurs training by education, culture and science. At the end, we present some suggestion and some solution for obstacles, emphasizing on the vision.

Keywords: entrepreneurship, entrepreneur university, higher education, university

Procedia PDF Downloads 433
398 Antibacterial Effect of Silver Diamine Fluoride Incorporated in Fissure Sealants

Authors: Nélio Veiga, Paula Ferreira, Tiago Correia, Maria J. Correia, Carlos Pereira, Odete Amaral, Ilídio J. Correia

Abstract:

Introduction: The application of fissure sealants is considered to be an important primary prevention method used in dental medicine. However, the formation of microleakage gaps between tooth enamel and the fissure sealant applied is one of the most common reasons of dental caries development in teeth with fissure sealants. The association between various dental biomaterials may limit the major disadvantages and limitations of biomaterials functioning in a complementary manner. The present study consists in the incorporation of a cariostatic agent – silver diamine fluoride (SDF) – in a resin-based fissure sealant followed by the study of release kinetics by spectrophotometry analysis of the association between both biomaterials and assessment of the inhibitory effect on the growth of the reference bacterial strain Streptococcus mutans (S. mutans) in an in vitro study. Materials and Methods: An experimental in vitro study was designed consisting in the entrapment of SDF (Cariestop® 12% and 30%) into a commercially available fissure sealant (Fissurit®), by photopolymerization and photocrosslinking. The same sealant, without SDF was used as a negative control. The effect of the sealants on the growth of S. mutans was determined by the presence of bacterial inhibitory halos in the cultures at the end of the incubation period. In order to confirm the absence of bacteria in the surface of the materials, Scanning Electron Microscopy (SEM) characterization was performed. Also, to analyze the release profile of SDF along time, spectrophotometry technique was applied. Results: The obtained results indicate that the association of SDF to a resin-based fissure sealant may be able to increase the inhibition of S. mutans growth. However, no SDF release was noticed during the in vitro release studies and no statistical significant difference was verified when comparing the inhibitory halo sizes obtained for test and control group.  Conclusions: In this study, the entrapment of SDF in the resin-based fissure sealant did not potentiate the antibacterial effect of the fissure sealant or avoid the immediate development of dental caries. The development of more laboratorial research and, afterwards, long-term clinical data are necessary in order to verify if this association between these biomaterials is effective and can be considered for being used in oral health management. Also, other methodologies for associating cariostatic agents and sealant should be addressed.

Keywords: biomaterial, fissure sealant, primary prevention, silver diamine fluoride

Procedia PDF Downloads 259
397 An Exploration of Policy-related Documents on District Heating and Cooling in Flanders: A Slow and Bottom-up Process

Authors: Isaura Bonneux

Abstract:

District heating and cooling (DHC) is increasingly recognized as a viable path towards sustainable heating and cooling. While some countries like Sweden and Denmark have a longstanding tradition of DHC, Belgium is lacking behind. The Northern part of Belgium, Flanders, had only a total of 95 heating networks in July 2023. Nevertheless, it is increasingly exploring its possibilities to enhance the scope of DHC. DHC is a complex energy system, requiring a lot of collaboration between various stakeholders on various levels. Therefore, it is of interest to look closer at policy-related documents at the Flemish (regional) level, as these policies set the scene for DHC development in the Flemish region. This kind of analysis has not been undertaken so far. This paper has the following research question: “Who talks about DHC, and in which way and context is DHC discussed in Flemish policy-related documents?” To answer this question, the Overton policy database was used to search and retrieve relevant policy-related documents. Overton retrieves data from governments, think thanks, NGOs, and IGOs. In total, out of the 244 original results, 117 documents between 2009 and 2023 were analyzed. Every selected document included theme keywords, policymaking department(s), date, and document type. These elements were used for quantitative data description and visualization. Further, qualitative content analysis revealed patterns and main themes regarding DHC in Flanders. Four main conclusions can be drawn: First, it is obvious from the timeframe that DHC is a new topic in Flanders with still limited attention; 2014, 2016 and 2017 were the years with the most documents, yet this number is still only 12 documents. In addition, many documents talked about DHC but not much in depth and painted it as a future scenario with a lot of uncertainty around it. The largest part of the issuing government departments had a link to either energy or climate (e.g. Flemish Environmental Agency) or policy (e.g. Socio-Economic Council of Flanders) Second, DHC is mentioned most within an ‘Environment and Sustainability’ context, followed by ‘General Policy and Regulation’. This is intuitive, as DHC is perceived as a sustainable heating and cooling technique and this analysis compromises policy-related documents. Third, Flanders seems mostly interested in using waste or residual heat as a heating source for DHC. The harbors and waste incineration plants are identified as potential and promising supply sources. This approach tries to conciliate environmental and economic incentives. Last, local councils get assigned a central role and the initiative is mostly taken by them. The policy documents and policy advices demonstrate that Flanders opts for a bottom-up organization. As DHC is very dependent on local conditions, this seems a logic step. Nevertheless, this can impede smaller councils to create DHC networks and slow down systematic and fast implementation of DHC throughout Flanders.

Keywords: district heating and cooling, flanders, overton database, policy analysis

Procedia PDF Downloads 44
396 Sample Preparation and Coring of Highly Friable and Heterogeneous Bonded Geomaterials

Authors: Mohammad Khoshini, Arman Khoshghalb, Meghdad Payan, Nasser Khalili

Abstract:

Most of the Earth’s crust surface rocks are technically categorized as weak rocks or weakly bonded geomaterials. Deeply weathered, weakly cemented, friable and easily erodible, they demonstrate complex material behaviour and understanding the overlooked mechanical behaviour of such materials is of particular importance in geotechnical engineering practice. Weakly bonded geomaterials are so susceptible to surface shear and moisture that conventional methods of core drilling fail to extract high-quality undisturbed samples out of them. Moreover, most of these geomaterials are of high heterogeneity rendering less reliable and feasible material characterization. In order to compensate for the unpredictability of the material response, either numerous experiments are needed to be conducted or large factors of safety must be implemented in the design process. However, none of these approaches is sustainable. In this study, a method for dry core drilling of such materials is introduced to take high-quality undisturbed core samples. By freezing the material at certain moisture content, a secondary structure is developed throughout the material which helps the whole structure to remain intact during the core drilling process. Moreover, to address the heterogeneity issue, the natural material was reconstructed artificially to obtain a homogeneous material with very high similarity to the natural one in both micro and macro-mechanical perspectives. The method is verified for both micro and macro scale. In terms of micro-scale analysis, using Scanning Electron Microscopy (SEM), pore spaces and inter-particle bonds were investigated and compared between natural and artificial materials. X-Ray Diffraction, XRD, analyses are also performed to control the chemical composition. At the macro scale, several uniaxial compressive strength tests, as well as triaxial tests, were performed to verify the similar mechanical response of the materials. A high level of agreement is observed between micro and macro results of natural and artificially bonded geomaterials. The proposed methods can play an important role to cut down the costs of experimental programs for material characterization and also to promote the accuracy of the numerical modellings based on the experimental results.

Keywords: Artificial geomaterial, core drilling, macro-mechanical behavior, micro-scale, sample preparation, SEM photography, weakly bonded geomaterials

Procedia PDF Downloads 216
395 Non-Cytotoxic Natural Sourced Inorganic Hydroxyapatite (HAp) Scaffold Facilitate Bone-like Mechanical Support and Cell Proliferation

Authors: Sudip Mondal, Biswanath Mondal, Sudit S. Mukhopadhyay, Apurba Dey

Abstract:

Bioactive materials improve devices for a long lifespan but have mechanical limitations. Mechanical characterization is one of the very important characteristics to evaluate the life span and functionality of the scaffold material. After implantation of scaffold material the primary stage rejection of scaffold occurs due to non biocompatible effect of host body system. The second major problems occur due to the effect of mechanical failure. The mechanical and biocompatibility failure of the scaffold materials can be overcome by the prior evaluation of the scaffold materials. In this study chemically treated Labeo rohita scale is used for synthesizing hydroxyapatite (HAp) biomaterial. Thermo-gravimetric and differential thermal analysis (TG-DTA) is carried out to ensure thermal stability. The chemical composition and bond structures of wet ball-milled calcined HAp powder is characterized by Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) analysis. Fish scale derived apatite materials consists of nano-sized particles with Ca/P ratio of 1.71. The biocompatibility through cytotoxicity evaluation and MTT assay are carried out in MG63 osteoblast cell lines. In the cell attachment study, the cells are tightly attached with HAp scaffolds developed in the laboratory. The result clearly suggests that HAp material synthesized in this study do not have any cytotoxic effect, as well as it has a natural binding affinity for mammalian cell lines. The synthesized HAp powder further successfully used to develop porous scaffold material with suitable mechanical property of ~0.8GPa compressive stress, ~1.10 GPa a hardness and ~ 30-35% porosity which is acceptable for implantation in trauma region for animal model. The histological analysis also supports the bio-affinity of processed HAp biomaterials in Wistar rat model for investigating the contact reaction and stability at the artificial or natural prosthesis interface for biomedical function. This study suggests the natural sourced fish scale-derived HAp material could be used as a suitable alternative biomaterial for tissue engineering application in near future.

Keywords: biomaterials, hydroxyapatite, scaffold, mechanical property, tissue engineering

Procedia PDF Downloads 455
394 Factors Controlling Marine Shale Porosity: A Case Study between Lower Cambrian and Lower Silurian of Upper Yangtze Area, South China

Authors: Xin Li, Zhenxue Jiang, Zhuo Li

Abstract:

Generally, shale gas is trapped within shale systems with low porosity and ultralow permeability as free and adsorbing states. Its production is controlled by properties, in terms of occurrence phases, gas contents, and percolation characteristics. These properties are all influenced by porous features. In this paper, porosity differences of marine shales were explored between Lower Cambrian shale and Lower Silurian shale of Sichuan Basin, South China. Both the two shales were marine shales with abundant oil-prone kerogen and rich siliceous minerals. Whereas Lower Cambrian shale (3.56% Ro) possessed a higher thermal degree than that of Lower Silurian shale (2.31% Ro). Samples were measured by a combination of organic-chemistry geology measurement, organic matter (OM) isolation, X-ray diffraction (XRD), N2 adsorption, and focused ion beam milling and scanning electron microscopy (FIB-SEM). Lower Cambrian shale presented relatively low pore properties, with averaging 0.008ml/g pore volume (PV), averaging 7.99m²/g pore surface area (PSA) and averaging 5.94nm average pore diameter (APD). Lower Silurian shale showed as relatively high pore properties, with averaging 0.015ml/g PV, averaging 10.53m²/g PSA and averaging 18.60nm APD. Additionally, fractal analysis indicated that the two shales presented discrepant pore morphologies, mainly caused by differences in the combination of pore types between the two shales. More specifically, OM-hosted pores with pin-hole shape and dissolved pores with dead-end openings were the main types in Lower Cambrian shale, while OM-hosted pore with a cellular structure was the main type in Lower Silurian shale. Moreover, porous characteristics of isolated OM suggested that OM of Lower Silurian shale was more capable than that of Lower Cambrian shale in the aspect of pore contribution. PV of isolated OM in Lower Silurian shale was almost 6.6 times higher than that in Lower Cambrian shale, and PSA of isolated OM in Lower Silurian shale was almost 4.3 times higher than that in Lower Cambrian shale. However, no apparent differences existed among samples with various matrix compositions. At late diagenetic or metamorphic epoch, extensive diagenesis overprints the effects of minerals on pore properties and OM plays the dominant role in pore developments. Hence, differences of porous features between the two marine shales highlight the effect of diagenetic degree on OM-hosted pore development. Consequently, distinctive pore characteristics may be caused by the different degrees of diagenetic evolution, even with similar matrix basics.

Keywords: marine shale, lower Cambrian, lower Silurian, om isolation, pore properties, om-hosted pore

Procedia PDF Downloads 134
393 Optimising Apparel Digital Production in Industrial Clusters

Authors: Minji Seo

Abstract:

Fashion stakeholders are becoming increasingly aware of technological innovation in manufacturing. In 2020, the COVID-19 pandemic caused transformations in working patterns, such as working remotely rather thancommuting. To enable smooth remote working, 3D fashion design software is being adoptedas the latest trend in design and production. The majority of fashion designers, however, are still resistantto this change. Previous studies on 3D fashion design software solely highlighted the beneficial and detrimental factors of adopting design innovations. They lacked research on the relationship between resistance factors and the adoption of innovation. These studies also fell short of exploringthe perspectives of users of these innovations. This paper aims to investigate the key drivers and barriers of employing 3D fashion design software as wellas to explore the challenges faced by designers.It also toucheson the governmental support for digital manufacturing in Seoul, South Korea, and London, the United Kingdom. By conceptualising local support, this study aims to provide a new path for industrial clusters to optimise digital apparel manufacturing. The study uses a mixture of quantitative and qualitative approaches. Initially, it reflects a survey of 350 samples, fashion designers, on innovation resistance factors of 3D fashion design software and the effectiveness of local support. In-depth interviews with 30 participants provide a better understanding of designers’ aspects of the benefits and obstacles of employing 3D fashion design software. The key findings of this research are the main barriers to employing 3D fashion design software in fashion production. The cultural characteristics and interviews resultsare used to interpret the survey results. The findings of quantitative data examine the main resistance factors to adopting design innovations. The dominant obstacles are: the cost of software and its complexity; lack of customers’ interest in innovation; lack of qualified personnel, and lack of knowledge. The main difference between Seoul and London is the attitudes towards government support. Compared to the UK’s fashion designers, South Korean designers emphasise that government support is highly relevant to employing 3D fashion design software. The top-down and bottom-up policy implementation approach distinguishes the perception of government support. Compared to top-down policy approaches in South Korea, British fashion designers based on employing bottom-up approaches are reluctant to receive government support. The findings of this research will contribute to generating solutions for local government and the optimisation of use of 3D fashion design software in fashion industrial clusters.

Keywords: digital apparel production, industrial clusters, innovation resistance, 3D fashion design software, manufacturing, innovation, technology, digital manufacturing, innovative fashion design process

Procedia PDF Downloads 102
392 Understanding and Measuring Stigma, Barriers and Attitudes Associated with Seeking Psychological Help Among Young Adults in Czech Republic

Authors: Tereza Hruskova

Abstract:

200 million people globally experience serious mental health problems, and only one third seek professional help, and help-seeking is described as a last resort. Adolescents and young adults have a high prevalence of mental illness. Mental stigma is a key element in the decision to seek help and is divided into (i) self-stigma (self-stigmatization), including internal beliefs, low self-esteem, and lower quality of life, and (ii) public stigma (social stigma) containing stereotypes, beliefs and society's disapproval of help-seeking having a negative effect on help-seeking and our attitudes. Previous research has mainly focused on examining the construct of help seeking, avoidance, and delaying separately and trying to find out why people do not seek help in time and what obstacles stand in the way. Barriers are not static and may change over time and the stage of help-seeking. Attitudes are closely related to self-stigma and social stigma and predict whether a person will seek help. Barriers (stigmatization, a sense of humiliation, insufficient recognition of the problem, preferences, solving it alone, and distrust of a professional) and facilitators (previous experience with mental problems, social support, and help from others) are factors influencing help-seeking. The current research on the Czech population of young adults responds to the gap between a person with mental health problems and actually seeking professional help. The aim of the study is to describe in detail the individual constructs and factors, to understand the person seeking help, and to define possible obstacles on this path of seeking help. A sample of approximately 250 participants (age 18-35) would take part in the online questionnaire, conducted in May-June 2023, and would be administered a demographic questionnaire and four scales measuring attitudes (Attitudes Toward Seeking Professional Psychological Help – Short form), barriers (Barrier to Help Seeking Scale), self-stigma (Self Stigma of Seeking Help) and stigmatization (Perceptions of Stigmatization by Others for seeking help). Firstly, all four scales would be translated into the Czech language. The aim is (I) to determine the validity and reliability of the Czech translation of the scales, (II) to examine the factors of the scales on the Czech population and compare them retrospectively with the results of reliability and validity from the original language of the scales and (III) to examine the connections between attitudes towards seeking, avoidance or delaying the search for professional psychological help due to the demographic and individual differences of the participants, barriers, self-stigmatization and social stigmatization. We expect to carry out the first study on the given topic in the Czech Republic, to identify and better understand the factors leading to the avoidance of seeking professional help and to reveal the relationships between stigmatization, attitudes and barriers leading to the avoidance or postponement of seeking professional help. The belief is to find out whether the Czech population of young adults differs from the data found on the foreign population in individual constructs, as cultural differences in individual countries were found.

Keywords: mental health, stigma, problems, seeking psychological help

Procedia PDF Downloads 75
391 Paradigms of Sustainability: Roles and Impact of Communication in the Fashion System

Authors: Elena Pucci, Margherita Tufarelli, Leonardo Giliberti

Abstract:

As central for human and social development of the future, sustainability is becoming a recurring theme also in the fashion industry, where the need to explore new possible directions aimed at achieving sustainability goals and their communication is rising. Scholars have been devoted to the overall environmental impact of the textile and fashion industry, which, emerging as one of the world’s most polluting, today concretely assumes the need to take the path of sustainability in both products and production processes. Every day we witness the impact of our consumption, showing that the sustainability concept is as vast as complex: with a sometimes ambiguous definition, sustainability can concern projects, products, companies, sales, packagings, supply chains in relation to the actors proximity as well as traceability, raw materials procurement, and disposal. However, in its primary meaning, sustainability is the ability to maintain specific values and resources for future generations. The contribution aims to address sustainability in the fashion system as a layered problem that requires substantial changes at different levels: in the fashion product (materials, production processes, timing, distribution, and disposal), in the functioning of the system (life cycle, impact, needs, communication) and last but not least in the practice of fashion design which should conceive durable, low obsolescence and possibly demountable products. Moreover, consumers play a central role for the growing awareness, together with an increasingly strong sensitivity towards the environment and sustainable clothing. Since it is also a market demand, undertaking significant efforts to achieve total transparency and sustainability in all production and distribution processes is becoming fundamental for the fashion system. Sustainability is not to be understood as purely environmental but as the pursuit of collective well-being in relation to conscious production, human rights, and social dignity with the aim to achieve intelligent, resource, and environmentally friendly production and consumption patterns. Assuming sustainability as a layered problem makes the role of communication crucial to convey scientific or production specific content so that people can obtain and interpret information to make related decisions. Hence, if it is true that “what designers make becomes the future we inhabit'', design is facing great and challenging responsibility. The fashion industry needs a system of rules able to assess the sustainability of products, which is transparent and easily interpreted by consumers, identifying and enhancing virtuous practices. There are still complex and fragmented value chains that make it extremely difficult for brands and manufacturers to know the history of their products, to identify exactly where the risks lie, and to respond to the growing demand from consumers and civil society for responsible and sustainable production practices in the fashion industry.

Keywords: fashion design, fashion system, sustainability, communication, complexity

Procedia PDF Downloads 122
390 Computational Homogenization of Thin Walled Structures: On the Influence of the Global vs Local Applied Plane Stress Condition

Authors: M. Beusink, E. W. C. Coenen

Abstract:

The increased application of novel structural materials, such as high grade asphalt, concrete and laminated composites, has sparked the need for a better understanding of the often complex, non-linear mechanical behavior of such materials. The effective macroscopic mechanical response is generally dependent on the applied load path. Moreover, it is also significantly influenced by the microstructure of the material, e.g. embedded fibers, voids and/or grain morphology. At present, multiscale techniques are widely adopted to assess micro-macro interactions in a numerically efficient way. Computational homogenization techniques have been successfully applied over a wide range of engineering cases, e.g. cases involving first order and second order continua, thin shells and cohesive zone models. Most of these homogenization methods rely on Representative Volume Elements (RVE), which model the relevant microstructural details in a confined volume. Imposed through kinematical constraints or boundary conditions, a RVE can be subjected to a microscopic load sequence. This provides the RVE's effective stress-strain response, which can serve as constitutive input for macroscale analyses. Simultaneously, such a study of a RVE gives insight into fine scale phenomena such as microstructural damage and its evolution. It has been reported by several authors that the type of boundary conditions applied to the RVE affect the resulting homogenized stress-strain response. As a consequence, dedicated boundary conditions have been proposed to appropriately deal with this concern. For the specific case of a planar assumption for the analyzed structure, e.g. plane strain, axisymmetric or plane stress, this assumption needs to be addressed consistently in all considered scales. Although in many multiscale studies a planar condition has been employed, the related impact on the multiscale solution has not been explicitly investigated. This work therefore focuses on the influence of the planar assumption for multiscale modeling. In particular the plane stress case is highlighted, by proposing three different implementation strategies which are compatible with a first-order computational homogenization framework. The first method consists of applying classical plane stress theory at the microscale, whereas with the second method a generalized plane stress condition is assumed at the RVE level. For the third method, the plane stress condition is applied at the macroscale by requiring that the resulting macroscopic out-of-plane forces are equal to zero. These strategies are assessed through a numerical study of a thin walled structure and the resulting effective macroscale stress-strain response is compared. It is shown that there is a clear influence of the length scale at which the planar condition is applied.

Keywords: first-order computational homogenization, planar analysis, multiscale, microstrucutures

Procedia PDF Downloads 233
389 Doped TiO2 Thin Films Microstructural and Electrical Properties

Authors: Mantas Sriubas, Kristina Bockute, Darius Virbukas, Giedrius Laukaitis

Abstract:

In this work, the doped TiO2 (dopants – Ca, Mg) was investigated. The comparison between the physical vapour deposition methods as electron beam vapour deposition and magnetron sputtering was performed and the structural and electrical properties of the formed thin films were investigated. Thin films were deposited on different type of substrates: SiO2, Alloy 600 (Fe-Ni-Cr) and Al2O3 substrates. The structural properties were investigated using Ambios XP-200 profilometer, scanning electron microscope (SEM) Hitachi S-3400N, X-ray energy-dispersive spectroscope (EDS) Quad 5040 (Bruker AXS Microanalysis GmbH), X-ray diffractometer (XRD) D8 Discover (Bruker AXS GmbH) with glancing angles focusing geometry in a 20 – 70° range using the Cu Kα1 λ = 0.1540562 nm radiation). The impedance spectroscopy measurements were performed using Probostat® (NorECs AS) measurement cell in the frequency range from 10-1-106 Hz under reducing and oxidizing conditions in temperature range of 200 °C to 1200 °C. The investigation of the e-beam deposited Ca and Mg doped-TiO2 thin films shows that the thin films are dense without any visible pores and cavities and the thin films grow in zone T according Barna-Adamik SZM. Substrate temperature was kept 600 °C during the deposition and Ts/Tm ≈ 0.32 (substrate temperature (Ts) and coating material melting temperature (Tm)). The surface diffusion is high however, the grain boundary migration is strongly limited at this temperature. This means that structure is inhomogeneous and the columnar structure is mostly visible in the upper part of the films. According to XRD, the increasing of the Ca dopants’ concentration increases the crystallinity of the formed thin films and the crystallites size increase linearly and Ca dopants act as prohibitors. Thin films are comprised of anatase TiO2 phase with an exception of 2 % Ca doped TiO2, where a small peak of Ca arise. In the case of Mg doped-TiO2 the intensities of the XRD peaks decreases with increasing Mg molar concentration. It means that there are less diffraction planes of the particular orientation in thin films with higher impurities concentration. Thus, the crystallinity decreases with increasing Mg concentration and Mg dopants act as inhibitors. The impedance measurements show that the dopants changed the conductivity of the formed thin films. The conductivity varies from 10-3 S/cm to 10-4 S/cm at 800 °C under wet reducing conditions. The microstructure of the magnetron sputtered thin TiO2 films is different comparing to the thin films deposited using e-beam deposition therefore influencing other structural and electrical properties.

Keywords: electrical properties, electron beam deposition, magnetron sputtering, microstructure, titanium dioxide

Procedia PDF Downloads 295
388 Suture Biomaterials Development from Natural Fibers: Muga Silk (Antheraea assama) and Ramie (Boehmeria nivea)

Authors: Raghuram Kandimalla, Sanjeeb Kalita, Bhaswati Choudhury, Jibon Kotoky

Abstract:

The quest for developing an ideal suture material prompted our interest to develop a novel suture with advantageous characteristics to market available ones. We developed novel suture biomaterial from muga silk (Antheraea assama) and ramie (Boehmeria nivea) plant fiber. Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) and thermo gravimetric analysis (TGA) results revealed the physicochemical properties of the fibers which supports the suitability of fibers for suture fabrication. Tensile properties of the prepared sutures were comparable with market available sutures and it found to be biocompatible towards human erythrocytes and nontoxic to mammalian cells. The prepared sutures completely healed the superficial deep wound incisions within seven days in adult male wister rats leaving no rash and scar. Histopathology studies supports the wound healing ability of sutures, as rapid synthesis of collagen, connective tissue and other skin adnexal structures were observed within seven days of surgery. Further muga suture surface modified by exposing the suture to oxygen plasma which resulted in formation of nanotopography on suture surface. Broad spectrum antibiotic amoxicillin was functionalized on the suture surface to prepare an advanced antimicrobial muga suture. Surface hydrophilicity induced by oxygen plasma results in an increase in drug-impregnation efficiency of modified muga suture by 16.7%. In vitro drug release profiles showed continuous and prolonged release of amoxicillin from suture up to 336 hours. The advanced muga suture proves to be effective against growth inhibition of Staphylococcus aureus and Escherichia coli, whereas normal muga suture offers no antibacterial activity against both types of bacteria. In vivo histopathology studies and colony-forming unit count data revealed accelerated wound healing activity of advanced suture over normal one through rapid synthesis and proliferation of collagen, hair follicle and connective tissues.

Keywords: sutures, biomaterials, silk, Ramie

Procedia PDF Downloads 317
387 Variation among East Wollega Coffee (Coffea arabica L.) Landraces for Quality Attributes

Authors: Getachew Weldemichael, Sentayehu Alamerew, Leta Tulu, Gezahegn Berecha

Abstract:

Coffee quality improvement program is becoming the focus of coffee research, as the world coffee consumption pattern shifted to high-quality coffee. However, there is limited information on the genetic variation of C. Arabica for quality improvement in potential specialty coffee growing areas of Ethiopia. Therefore, this experiment was conducted with the objectives of determining the magnitude of variation among 105 coffee accessions collected from east Wollega coffee growing areas and assessing correlations between the different coffee qualities attributes. It was conducted in RCRD with three replications. Data on green bean physical characters (shape and make, bean color and odor) and organoleptic cup quality traits (aromatic intensity, aromatic quality, acidity, astringency, bitterness, body, flavor, and overall standard of the liquor) were recorded. Analysis of variance, clustering, genetic divergence, principal component and correlation analysis was performed using SAS software. The result revealed that there were highly significant differences (P<0.01) among the accessions for all quality attributes except for odor and bitterness. Among the tested accessions, EW104 /09, EW101 /09, EW58/09, EW77/09, EW35/09, EW71/09, EW68/09, EW96 /09, EW83/09 and EW72/09 had the highest total coffee quality values (the sum of bean physical and cup quality attributes). These genotypes could serve as a source of genes for green bean physical characters and cup quality improvement in Arabica coffee. Furthermore, cluster analysis grouped the coffee accessions into five clusters with significant inter-cluster distances implying that there is moderate diversity among the accessions and crossing accessions from these divergent inter-clusters would result in hetrosis and recombinants in segregating generations. The principal component analysis revealed that the first three principal components with eigenvalues greater than unity accounted for 83.1% of the total variability due to the variation of nine quality attributes considered for PC analysis, indicating that all quality attributes equally contribute to a grouping of the accessions in different clusters. Organoleptic cup quality attributes showed positive and significant correlations both at the genotypic and phenotypic levels, demonstrating the possibility of simultaneous improvement of the traits. Path coefficient analysis revealed that acidity, flavor, and body had a high positive direct effect on overall cup quality, implying that these traits can be used as indirect criteria to improve overall coffee quality. Therefore, it was concluded that there is considerable variation among the accessions, which need to be properly conserved for future improvement of the coffee quality. However, the variability observed for quality attributes must be further verified using biochemical and molecular analysis.

Keywords: accessions, Coffea arabica, cluster analysis, correlation, principal component

Procedia PDF Downloads 165
386 Investigation of a Single Feedstock Particle during Pyrolysis in Fluidized Bed Reactors via X-Ray Imaging Technique

Authors: Stefano Iannello, Massimiliano Materazzi

Abstract:

Fluidized bed reactor technologies are one of the most valuable pathways for thermochemical conversions of biogenic fuels due to their good operating flexibility. Nevertheless, there are still issues related to the mixing and separation of heterogeneous phases during operation with highly volatile feedstocks, including biomass and waste. At high temperatures, the volatile content of the feedstock is released in the form of the so-called endogenous bubbles, which generally exert a “lift” effect on the particle itself by dragging it up to the bed surface. Such phenomenon leads to high release of volatile matter into the freeboard and limited mass and heat transfer with particles of the bed inventory. The aim of this work is to get a better understanding of the behaviour of a single reacting particle in a hot fluidized bed reactor during the devolatilization stage. The analysis has been undertaken at different fluidization regimes and temperatures to closely mirror the operating conditions of waste-to-energy processes. Beechwood and polypropylene particles were used to resemble the biomass and plastic fractions present in waste materials, respectively. The non-invasive X-ray technique was coupled to particle tracking algorithms to characterize the motion of a single feedstock particle during the devolatilization with high resolution. A high-energy X-ray beam passes through the vessel where absorption occurs, depending on the distribution and amount of solids and fluids along the beam path. A high-speed video camera is synchronised to the beam and provides frame-by-frame imaging of the flow patterns of fluids and solids within the fluidized bed up to 72 fps (frames per second). A comprehensive mathematical model has been developed in order to validate the experimental results. Beech wood and polypropylene particles have shown a very different dynamic behaviour during the pyrolysis stage. When the feedstock is fed from the bottom, the plastic material tends to spend more time within the bed than the biomass. This behaviour can be attributed to the presence of the endogenous bubbles, which drag effect is more pronounced during the devolatilization of biomass, resulting in a lower residence time of the particle within the bed. At the typical operating temperatures of thermochemical conversions, the synthetic polymer softens and melts, and the bed particles attach on its outer surface, generating a wet plastic-sand agglomerate. Consequently, this additional layer of sand may hinder the rapid evolution of volatiles in the form of endogenous bubbles, and therefore the establishment of a poor drag effect acting on the feedstock itself. Information about the mixing and segregation of solid feedstock is of prime importance for the design and development of more efficient industrial-scale operations.

Keywords: fluidized bed, pyrolysis, waste feedstock, X-ray

Procedia PDF Downloads 172
385 Enhanced Photocatalytic Activities of TiO2/Ag2O Heterojunction Nanotubes Arrays Obtained by Electrochemical Method

Authors: Magdalena Diaka, Paweł Mazierski, Joanna Żebrowska, Michał Winiarski, Tomasz Klimczuk, Adriana Zaleska-Medynska

Abstract:

During the last years, TiO2 nanotubes have been widely studied due to their unique highly ordered array structure, unidirectional charge transfer and higher specific surface area compared to conventional TiO2 powder. These photoactive materials, in the form of thin layer, can be activated by low powered and low cost irradiation sources (such as LEDs) to remove VOCs, microorganism and to deodorize air streams. This is possible due to their directly growth on a support material and high surface area, which guarantee enhanced photon absorption together with an extensive adsorption of reactant molecules on the photocatalyst surface. TiO2 nanotubes exhibit also lots of other attractive properties, such as potential enhancement of electron percolation pathways, light conversion, and ion diffusion at the semiconductor-electrolyte interface. Pure TiO2 nanotubes were previously used to remove organic compounds from the gas phase as well as in water splitting reaction. The major factors limiting the use of TiO2 nanotubes, which have not been fully overcome, are their relatively large band gap (3-3,2 eV) and high recombination rate of photogenerated electron–hole pairs. Many different strategies were proposed to solve this problem, however titania nanostructures containing incorporated metal oxides like Ag2O shows very promising, new optical and photocatalytic properties. Unfortunately, there is still very limited number of reports regarding application of TiO2/MxOy nanostructures. In the present work, we prepared TiO2/Ag2O nanotubes obtained by anodization of Ti-Ag alloys containing 5, 10 and 15 wt. % Ag. Photocatalysts prepared in this way were characterized by X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), luminescence spectroscopy and UV-Vis spectroscopy. The activities of new TiO2/Ag2O were examined by photocatalytic degradation of toluene in gas phase reaction and phenol in aqueous phase using 1000 W Xenon lamp (Oriel) and light emitting diodes (LED) as a irradiation sources. Additionally efficiency of bacteria (Pseudomonas aeruginosa) removal from the gas phase was estimated. The number of surviving bacteria was determined by the serial twofold dilution microtiter plate method, in Tryptic Soy Broth medium (TSB, GibcoBRL).

Keywords: photocatalysis, antibacterial properties, titania nanotubes, new TiO2/MxOy nanostructures

Procedia PDF Downloads 293