Search results for: rutting resistance
451 Investigations on Geopolymer Concrete Slabs
Authors: Akhila Jose
Abstract:
The cement industry is one of the major contributors to the global warming due to the release of greenhouse gases. The primary binder in conventional concrete is Ordinary Portland cement (OPC) and billions of tons are produced annually all over the world. An alternative binding material to OPC is needed to reduce the environmental impact caused during the cement manufacturing process. Geopolymer concrete is an ideal material to substitute cement-based binder. Geopolymer is an inorganic alumino-silicate polymer. Geopolymer Concrete (GPC) is formed by the polymerization of aluminates and silicates formed by the reaction of solid aluminosilicates with alkali hydroxides or alkali silicates. Various Industrial bye- products like Fly Ash (FA), Rice Husk Ash (RHA), Ground granulated Blast Furnace Slag (GGBFS), Silica Fume (SF), Red mud (RM) etc. are rich in aluminates and silicates. Using by-products from other industries reduces the carbon dioxide emission and thus giving a sustainable way of reducing greenhouse gas emissions and also a way to dispose the huge wastes generated from the major industries like thermal plants, steel plants, etc. The earlier research about geopolymer were focused on heat cured fly ash based precast members and this limited its applications. The heat curing mechanism itself is highly cumbersome and costly even though they possess high compressive strength, low drying shrinkage and creep, and good resistance to sulphate and acid environments. GPC having comparable strength and durability characteristics of OPC were able to develop under ambient cured conditions is the solution making it a sustainable alternative in future. In this paper an attempt has been made to review and compare the feasibility of ambient cured GPC over heat cured geopolymer concrete with respect to strength and serviceability characteristics. The variation on the behavior of structural members is also reviewed to identify the research gaps for future development of ambient cured geopolymer concrete. The comparison and analysis of studies showed that GPC most importantly ambient cured type has a comparable behavior with respect to OPC based concrete in terms strength and durability criteria.Keywords: geopolymer concrete, oven heated, durability properties, mechanical properties
Procedia PDF Downloads 183450 Sublethal Effects of Clothianidin and Summer Oil on the Demographic Parameters and Population Projection of Bravicoryne Brassicae(Hemiptera: Aphididae)
Authors: Mehdi Piri Ouchtapeh, Fariba Mehrkhou, Maryam Fourouzan
Abstract:
The cabbage aphid, Bravicoryne brassicae (Hemiptera: Aphididae), is known as an economically important and oligophagous pest of different cole crops. The polyvolitine characteristics of B. brassicae resulted in resistance to insecticides. For this purpose, in this study, the sub-lethal concentration (LC25) of two insecticides, clothianidin and summer oil, on the life table parameters and population projection of cabbage aphid were studied at controlled condition (20±1 ℃, R.H. 60 ±5 % and a photoperiod of 16:8 h (L:D). The dipping method was used in bioassay and life table studies. Briefly, the leaves of cabbage containing 15 the same-aged (24h) adults of cabbage aphid (four replicates) were dipped into the related concentrations of insecticides for 10 s. The sub-lethal (LC25) obtained concentration were used 5.822 and 108.741 p.p.m for clothianidin and summer oil, respectively. The biological and life table studies were done using at least 100, 93 and 82 the same age of eggs for control, summer oil and clothianidin treatments respectively. The life history data of the greenhouse whitefly cohorts exposed to sublethal concentration of the aforementioned insecticides were analyzed using the computer program TWOSEX–MSChart based on the age-stage, two-sex life table theory. The results of this study showed that the used insecticides affected the developmental time, survival rate, adult longevity, and fecundity of the F1 generation. The developmental time on control, clothianidin and summer oil treatments was obtained (5.91 ± 0.10 days), (7.64 ± 0.12 days) and (6.66 ± 0.10 days), respectively. The sublethal concentration of clothianidin resulted in decreasing of adult longevity (8.63 ± 0.30 days), fecundity (14.14 ± 87 nymphs), survival rate (71%) and the life expectancy (10.26 days) of B. brassicae, as well. Additionally, usage of LC25 insecticides led to decreasing of the net reproductive rate (R0) of the cabbage aphid compared to summer oil and control treatments. The intrinsic rate of increase (r) (day-1) was decreased in F1 adults of cabbage aphid compared with other treatments. Additionally, the population projection results were accordance with the population growth rate of cabbage aphid. Therefore, the findings of this research showed that, however, both of the insecticides were effective on cabbage aphid population, but clothianidin was more effective and could be consider in the management of aforementioned pest.Keywords: the cabbage aphid, sublethal effects, survival rate, population projection, life expectancy
Procedia PDF Downloads 79449 Assessing the Impact of Antiretroviral Mediated Drug-Drug Interactions on Piperaquine Antimalarial Treatment in Pregnant Women Using Physiologically Based Pharmacokinetic Modelling
Authors: Olusola Omolola Olafuyi, Michael Coleman, Raj Kumar Singh Badhan
Abstract:
Introduction: Malaria in pregnancy has morbidity and mortality implication on both mother and unborn child. Piperaquine (PQ) based antimalarial treatment is emerging as a choice antimalarial for pregnant women in the face of resistance to current antimalarial treatment recommendation in pregnancy. Physiological and biochemical changes in pregnant women may affect the pharmacokinetics of the antimalarial drug in these. In malaria endemic regions other infectious diseases like HIV/AIDs are prevalent. Pregnant women who are co-infected with malaria and HIV/AID are at even more greater risk of death not only due to complications of the diseases but also due to drug-drug interactions (DDIs) between antimalarials (AMT) and antiretroviral (ARVs). In this study, physiologically based pharmacokinetic (PBPK) modelling was used to investigate the effect of physiological and biochemical changes on the impact of ARV mediated DDIs in pregnant women in three countries. Method: A PBPK model for PQ was developed on SimCYP® using published physicochemical and pharmacokinetic data of PQ from literature, this was validated in three customized population groups from Thailand, Sudan and Papua New Guinea with clinical data. Validation of PQ model was also done in presence of interaction with efavirenz (pre-validated on SimCYP®). Different albumin levels and pregnancy stages was simulated in the presence of interaction with standard doses of efavirenz and ritonavir. PQ day 7 concentration of 30ng/ml was used as the efficacy endpoint for PQ treatment.. Results: The median day 7 concentration of PQ remained virtually consistent throughout pregnancy and were satisfactory across the three population groups ranging from 26-34.1ng/ml; this implied the efficacy of PQ throughout pregnancy. DDI interaction with ritonavir and efavirenz resulted in modest effect on the day 7 concentrations of PQ with AUCratio ranging from 0.56-0.8 and 1.64-1.79 for efavirenz and ritonavir respectively over 10-40 gestational weeks, however, a reduction in human serum albumin level reflective of severe malaria resulted in significantly reduced the number of subjects attaining the PQ day 7 concentration in the presence of both DDIs. The model demonstrated that the DDI between PQ and ARV in pregnant women with different malaria severities can alter the pharmacokinetic of PQ.Keywords: antiretroviral, malaria, piperaquine, pregnancy, physiologically-based pharmacokinetics
Procedia PDF Downloads 185448 Experimental investigation on the lithium-Ion Battery Thermal Management System Based on Micro Heat Pipe Array in High Temperature Environment
Authors: Ruyang Ren, Yaohua Zhao, Yanhua Diao
Abstract:
The intermittent and unstable characteristics of renewable energy such as solar energy can be effectively solved through battery energy storage system. Lithium-ion battery is widely used in battery energy storage system because of its advantages of high energy density, small internal resistance, low self-discharge rate, no memory effect and long service life. However, the performance and service life of lithium-ion battery is seriously affected by its operating temperature. Thus, the safety operation of the lithium-ion battery module is inseparable from an effective thermal management system (TMS). In this study, a new type of TMS based on micro heat pipe array (MHPA) for lithium-ion battery is established, and the TMS is applied to a battery energy storage box that needs to operate at a high temperature environment of 40 °C all year round. MHPA is a flat shape metal body with high thermal conductivity and excellent temperature uniformity. The battery energy storage box is composed of four battery modules, with a nominal voltage of 51.2 V, a nominal capacity of 400 Ah. Through the excellent heat transfer characteristics of the MHPA, the heat generated by the charge and discharge process can be quickly transferred out of the battery module. In addition, if only the MHPA cannot meet the heat dissipation requirements of the battery module, the TMS can automatically control the opening of the external fan outside the battery module according to the temperature of the battery, so as to further enhance the heat dissipation of the battery module. The thermal management performance of lithium-ion battery TMS based on MHPA is studied experimentally under different ambient temperatures and the condition to turn on the fan or not. Results show that when the ambient temperature is 40 °C and the fan is not turned on in the whole charge and discharge process, the maximum temperature of the battery in the energy storage box is 53.1 °C and the maximum temperature difference in the battery module is 2.4 °C. After the fan is turned on in the whole charge and discharge process, the maximum temperature is reduced to 50.1 °C, and the maximum temperature difference is reduced to 1.7 °C. Obviously, the lithium-ion battery TMS based on MHPA not only could control the maximum temperature of the battery below 55 °C, but also ensure the excellent temperature uniformity of the battery module. In conclusion, the lithium-ion battery TMS based on MHPA can ensure the safe and stable operation of the battery energy storage box in high temperature environment.Keywords: heat dissipation, lithium-ion battery thermal management, micro heat pipe array, temperature uniformity
Procedia PDF Downloads 181447 Antibiotic Prescribing in the Acute Care in Iraq
Authors: Ola A. Nassr, Ali M. Abd Alridha, Rua A. Naser, Rasha S. Abbas
Abstract:
Background: Excessive and inappropriate use of antimicrobial agents among hospitalized patients remains an important patient safety and public health issue worldwide. Not only does this behavior incur unnecessary cost but it is also associated with increased morbidity and mortality. The objective of this study is to obtain an insight into the prescribing patterns of antibiotics in surgical and medical wards, to help identify a scope for improvement in service delivery. Method: A simple point prevalence survey included a convenience sample of 200 patients admitted to medical and surgical wards in a government teaching hospital in Baghdad between October 2017 and April 2018. Data were collected by a trained pharmacy intern using a standardized form. Patient’s demographics and details of the prescribed antibiotics, including dose, frequency of dosing and route of administration, were reported. Patients were included if they had been admitted at least 24 hours before the survey. Patients under 18 years of age, having a diagnosis of cancer or shock, or being admitted to the intensive care unit, were excluded. Data were checked and entered by the authors into Excel and were subjected to frequency analysis, which was carried out on anonymized data to protect patient confidentiality. Results: Overall, 88.5% of patients (n=177) received 293 antibiotics during their hospital admission, with a small variation between wards (80%-97%). The average number of antibiotics prescribed per patient was 1.65, ranging from 1.3 for medical patients to 1.95 for surgical patients. Parenteral third-generation cephalosporins were the most commonly prescribed at a rate of 54.3% (n=159) followed by nitroimidazole 29.4% (n=86), quinolones 7.5% (n=22) and macrolides 4.4% (n=13), while carbapenems and aminoglycosides were the least prescribed together accounting for only 4.4% (n=13). The intravenous route was the most common route of administration, used for 96.6% of patients (n=171). Indications were reported in only 63.8% of cases. Culture to identify pathogenic organisms was employed in only 0.5% of cases. Conclusion: Broad-spectrum antibiotics are prescribed at an alarming rate. This practice may provoke antibiotic resistance and adversely affect the patient outcome. Implementation of an antibiotic stewardship program is warranted to enhance the efficacy, safety and cost-effectiveness of antimicrobial agents.Keywords: Acute care, Antibiotic misuse, Iraq, Prescribing
Procedia PDF Downloads 122446 Identification of the Best Blend Composition of Natural Rubber-High Density Polyethylene Blends for Roofing Applications
Authors: W. V. W. H. Wickramaarachchi, S. Walpalage, S. M. Egodage
Abstract:
Thermoplastic elastomer (TPE) is a multifunctional polymeric material which possesses a combination of excellent properties of parent materials. Basically, TPE has a rubber phase and a thermoplastic phase which gives processability as thermoplastics. When the rubber phase is partially or fully crosslinked in the thermoplastic matrix, TPE is called as thermoplastic elastomer vulcanizate (TPV). If the rubber phase is non-crosslinked, it is called as thermoplastic elastomer olefin (TPO). Nowadays TPEs are introduced into the commercial market with different products. However, the application of TPE as a roofing material is limited. Out of the commercially available roofing products from different materials, only single ply roofing membranes and plastic roofing sheets are produced from rubbers and plastics. Natural rubber (NR) and high density polyethylene (HDPE) are used in various industrial applications individually with some drawbacks. Therefore, this study was focused to develop both TPO and TPV blends from NR and HDPE at different compositions and then to identify the best blend composition to use as a roofing material. A series of blends by varying NR loading from 10 wt% to 50 wt%, at 10 wt% intervals, were prepared using a twin screw extruder. Dicumyl peroxide was used as a crosslinker for TPV. The standard properties for a roofing material like tensile properties tear strength, hardness, impact strength, water absorption, swell/gel analysis and thermal characteristics of the blends were investigated. Change of tensile strength after exposing to UV radiation was also studied. Tensile strength, hardness, tear strength, melting temperature and gel content of TPVs show higher values compared to TPOs at every loading studied, while water absorption and swelling index show lower values, suggesting TPVs are more suitable than TPOs for roofing applications. Most of the optimum properties were shown at 10/90 (NR/HDPE) composition. However, high impact strength and gel content were shown at 20/80 (NR/HDPE) composition. Impact strength, as being an energy absorbing property, is the most important for a roofing material in order to resist impact loads. Therefore, 20/80 (NR/HDPE) is identified as the best blend composition. UV resistance and other properties required for a roofing material could be achieved by incorporating suitable additives to TPVs.Keywords: thermoplastic elastomer, natural rubber, high density polyethylene, roofing material
Procedia PDF Downloads 126445 Political Coercion from Within: Theoretical Convergence in the Strategies of Terrorist Groups, Insurgencies, and Social Movements
Authors: John Hardy
Abstract:
The early twenty-first century national security environment has been characterized by political coercion. Despite an abundance of political commentary on the various forms of non-state coercion leveraged against the state, there is a lack of literature which distinguishes between the mechanisms and the mediums of coercion. Frequently non-state movements seeking to coerce the state are labelled by their tactics, not their strategies. Terrorists, insurgencies and social movements are largely defined by the ways in which they seek to influence the state, rather than by their political aims. This study examines the strategies of coercion used by non-state actors against states. This approach includes terrorist groups, insurgencies, and social movements who seek to coerce state politics. Not all non-state actors seek political coercion, so not all examples of different group types are considered. This approach also excludes political coercion by states, focusing on the non-state actor as the primary unit of analysis. The study applies a general theory of political coercion, which is defined as attempts to change the policies or action of a polity against its will, to the strategies employed by terrorist groups, insurgencies, and social movements. This distinguishes non-state actors’ strategic objectives from their actions and motives, which are variables that are often used to differentiate between types of non-state actors and the labels commonly used to describe them. It also allows for a comparative analysis of theoretical perspectives from the disciplines of terrorism, insurgency and counterinsurgency, and social movements. The study finds that there is a significant degree of overlap in the way that different disciplines conceptualize the mechanism of political coercion by non-state actors. Studies of terrorism and counterterrorism focus more on the notions of cost tolerance and collective punishment, while studies of insurgency focus on a contest of legitimacy between actors, and social movement theory tend to link political objectives, social capital, and a mechanism of influence to leverage against the state. Each discipline has a particular vernacular for the mechanism of coercion, which is often linked to the means of coercion, but they converge on three core theoretical components of compelling a polity to change its policies or actions: exceeding resistance to change, using political or violent punishments, and withholding legitimacy or consent from a government.Keywords: counter terrorism, homeland security, insurgency, political coercion, social movement theory, terrorism
Procedia PDF Downloads 174444 Core-Shell Nanofibers for Prevention of Postsurgical Adhesion
Authors: Jyh-Ping Chen, Chia-Lin Sheu
Abstract:
In this study, we propose to use electrospinning to fabricate porous nanofibrous membranes as postsurgical anti-adhesion barriers and to improve the properties of current post-surgical anti-adhesion products. We propose to combine FDA-approved biomaterials with anti-adhesion properties, polycaprolactone (PCL), polyethylene glycol (PEG), hyaluronic acid (HA) with silver nanoparticles (Ag) and ibuprofen (IBU), to produce anti-adhesion barrier nanofibrous membranes. For this purpose, PEG/PCL/Ag/HA/IBU core-shell nanofibers were prepared. The shell layer contains PEG + PCL to provide mechanical supports and Ag was added to the outer PEG-PCL shell layer during electrospinning to endow the nanofibrous membrane with anti-bacterial properties. The core contains HA to exert anti-adhesion and IBU to exert anti-inflammation effects, respectively. The nanofibrous structure of the membranes can reduce cell penetration while allowing nutrient and waste transports to prevent postsurgical adhesion. Nanofibers with different core/shell thickness ratio were prepared. The nanofibrous membranes were first characterized for their physico-chemical properties in detail, followed by in vitro cell culture studies for cell attachment and proliferation. The HA released from the core region showed extended release up to 21 days for prolonged anti-adhesion effects. The attachment of adhesion-forming fibroblasts is reduced using the nanofibrous membrane from DNA assays and confocal microscopic observation of adhesion protein vinculin expression. The Ag released from the shell showed burst release to prevent E Coli and S. aureus infection immediately and prevent bacterial resistance to Ag. Minimum cytotoxicity was observed from Ag and IBU when fibroblasts were culture with the extraction medium of the nanofibrous membranes. The peritendinous anti-adhesion model in rabbits and the peritoneal anti-adhesion model in rats were used to test the efficacy of the anti-adhesion barriers as determined by gross observation, histology, and biomechanical tests. Within all membranes, the PEG/PCL/Ag/HA/IBU core-shell nanofibers showed the best reduction in cell attachment and proliferation when tested with fibroblasts in vitro. The PEG/PCL/Ag/HA/IBU nanofibrous membranes also showed significant improvement in preventing both peritendinous and peritoneal adhesions when compared with other groups and a commercial adhesion barrier film.Keywords: anti-adhesion, electrospinning, hyaluronic acid, ibuprofen, nanofibers
Procedia PDF Downloads 181443 Comparison of Monte Carlo Simulations and Experimental Results for the Measurement of Complex DNA Damage Induced by Ionizing Radiations of Different Quality
Authors: Ifigeneia V. Mavragani, Zacharenia Nikitaki, George Kalantzis, George Iliakis, Alexandros G. Georgakilas
Abstract:
Complex DNA damage consisting of a combination of DNA lesions, such as Double Strand Breaks (DSBs) and non-DSB base lesions occurring in a small volume is considered as one of the most important biological endpoints regarding ionizing radiation (IR) exposure. Strong theoretical (Monte Carlo simulations) and experimental evidence suggests an increment of the complexity of DNA damage and therefore repair resistance with increasing linear energy transfer (LET). Experimental detection of complex (clustered) DNA damage is often associated with technical deficiencies limiting its measurement, especially in cellular or tissue systems. Our groups have recently made significant improvements towards the identification of key parameters relating to the efficient detection of complex DSBs and non-DSBs in human cellular systems exposed to IR of varying quality (γ-, X-rays 0.3-1 keV/μm, α-particles 116 keV/μm and 36Ar ions 270 keV/μm). The induction and processing of DSB and non-DSB-oxidative clusters were measured using adaptations of immunofluorescence (γH2AX or 53PB1 foci staining as DSB probes and human repair enzymes OGG1 or APE1 as probes for oxidized purines and abasic sites respectively). In the current study, Relative Biological Effectiveness (RBE) values for DSB and non-DSB induction have been measured in different human normal (FEP18-11-T1) and cancerous cell lines (MCF7, HepG2, A549, MO59K/J). The experimental results are compared to simulation data obtained using a validated microdosimetric fast Monte Carlo DNA Damage Simulation code (MCDS). Moreover, this simulation approach is implemented in two realistic clinical cases, i.e. prostate cancer treatment using X-rays generated by a linear accelerator and a pediatric osteosarcoma case using a 200.6 MeV proton pencil beam. RBE values for complex DNA damage induction are calculated for the tumor areas. These results reveal a disparity between theory and experiment and underline the necessity for implementing highly precise and more efficient experimental and simulation approaches.Keywords: complex DNA damage, DNA damage simulation, protons, radiotherapy
Procedia PDF Downloads 325442 Computer-Aided Drug Repurposing for Mycobacterium Tuberculosis by Targeting Tryptophanyl-tRNA Synthetase
Authors: Neslihan Demirci, Serdar Durdağı
Abstract:
Mycobacterium tuberculosis is still a worldwide disease-causing agent that, according to WHO, led to the death of 1.5 million people from tuberculosis (TB) in 2020. The bacteria reside in macrophages located specifically in the lung. There is a known quadruple drug therapy regimen for TB consisting of isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and ethambutol (EMB). Over the past 60 years, there have been great contributions to treatment options, such as recently approved delamanid (OPC67683) and bedaquiline (TMC207/R207910), targeting mycolic acid and ATP synthesis, respectively. Also, there are natural compounds that can block the tryptophanyl-tRNA synthetase (TrpRS) enzyme, chuangxinmycin, and indolmycin. Yet, already the drug resistance is reported for those agents. In this study, the newly released TrpRS enzyme structure is investigated for potential inhibitor drugs from already synthesized molecules to help the treatment of resistant cases and to propose an alternative drug for the quadruple drug therapy of tuberculosis. Maestro, Schrodinger is used for docking and molecular dynamic simulations. In-house library containing ~8000 compounds among FDA-approved indole-containing compounds, a total of 57 obtained from the ChemBL were used for both ATP and tryptophan binding pocket docking. Best of indole-containing 57 compounds were subjected to hit expansion and compared later with virtual screening workflow (VSW) results. After docking, VSW was done. Glide-XP docking algorithm was chosen. When compared, VSW alone performed better than the hit expansion module. Best scored compounds were kept for ten ns molecular dynamic simulations by Desmond. Further, 100 ns molecular dynamic simulation was performed for elected molecules according to Z-score. The top three MMGBSA-scored compounds were subjected to steered molecular dynamic (SMD) simulations by Gromacs. While SMD simulations are still being conducted, ponesimod (for multiple sclerosis), vilanterol (β₂ adrenoreceptor agonist), and silodosin (for benign prostatic hyperplasia) were found to have a significant affinity for tuberculosis TrpRS, which is the propulsive force for the urge to expand the research with in vitro studies. Interestingly, top-scored ponesimod has been reported to have a side effect that makes the patient prone to upper respiratory tract infections.Keywords: drug repurposing, molecular dynamics, tryptophanyl-tRNA synthetase, tuberculosis
Procedia PDF Downloads 123441 Formulation and Evaluation of Curcumin-Zn (II) Microparticulate Drug Delivery System for Antimalarial Activity
Authors: M. R. Aher, R. B. Laware, G. S. Asane, B. S. Kuchekar
Abstract:
Objective: Studies have shown that a new combination therapy with Artemisinin derivatives and curcumin is unique, with potential advantages over known ACTs. In present study an attempt was made to prepare microparticulate drug delivery system of Curcumin-Zn complex and evaluate it in combination with artemether for antimalarial activity. Material and method: Curcumin Zn complex was prepared and encapsulated using sodium alginate. Microparticles thus obtained are further coated with various enteric polymers at different coating thickness to control the release. Microparticles are evaluated for encapsulation efficiency, drug loading and in vitro drug release. Roentgenographic Studies was conducted in rabbits with BaSO 4 tagged formulation. Optimized formulation was screened for antimalarial activity using P. berghei-infected mice survival test and % paracetemia inhibition, alone (three oral dose of 5mg/day) and in combination with arthemether (i.p. 500, 1000 and 1500µg). Curcumin-Zn(II) was estimated in serum after oral administration to rats by using spectroflurometry. Result: Microparticles coated with Cellulose acetate phthalate showed most satisfactory and controlled release with 479 min time for 60% drug release. X-ray images taken at different time intervals confirmed the retention of formulation in GI tract. Estimation of curcumin in serum by spectroflurometry showed that drug concentration is maintained in the blood for longer time with tmax of 6 hours. The survival time (40 days post treatment) of mice infected with P. berghei was compared to survival after treatment with either Curcumin-Zn(II) microparticles artemether combination, curcumin-Zn complex and artemether. Oral administration of Curcumin-Zn(II)-artemether prolonged the survival of P.berghei-infected mice. All the mice treated with Curcumin-Zn(II) microparticles (5mg/day) artemether (1000µg) survived for more than 40 days and recovered with no detectable parasitemia. Administration of Curcumin-Zn(II) artemether combination reduced the parasitemia in mice by more than 90% compared to that in control mice for the first 3 days after treatment. Conclusion: Antimalarial activity of the curcumin Zn-artemether combination was more pronounced than mono therapy. A single dose of 1000µg of artemether in curcumin-Zn combination gives complete protection in P. berghei-infected mice. This may reduce the chances of drug resistance in malaria management.Keywords: formulation, microparticulate drug delivery, antimalarial, pharmaceutics
Procedia PDF Downloads 394440 Coating of Cotton with Blend of Natural Rubber and Chloroprene Containing Ammonium Acetate for Producing Moisture Vapour Permeable Waterproof Fabric
Authors: Debasish Das, Mainak Mitra, A.Chaudhuri
Abstract:
For the purpose of producing moisture vapor permeable waterproof cotton fabric to be used for protective apparel against rain, cotton fabric was coated with the blend of natural rubber and chloroprene rubber containing ammonium acetate as the water-soluble salt, employing a calendar coating technique. Rubber formulations also contained filler, homogenizer, and a typical sulphur curing system. Natural rubber and chloroprene blend in the blend ratio of 30: 70, containing 25 parts of sodium acetate per hundred parts of rubber was coated on the fabric. The coated fabric was vulcanized thereafter at 140oC for 3 h. Coated and vulcanized fabric was subsequently dipped in water for 45 min, followed by drying in air. Such set of treatments produced optimum results. Coated, vulcanized, washed and dried cotton fabric showed optimum developments in the property profiles in respect of waterproofness, breathability as revealed by moisture vapor transmission rate, coating adhesion, tensile properties, abrasion resistance, flex endurance and fire retardancy. Incorporation of highly water-soluble ammonium acetate salt in the coating formulation and their subsequent removal from vulcanized coated layer affected by post washing in consequent to dipping in the water-bath produced holes of only a few microns in the coating matrix of the fabric. Such microporous membrane formed on the cotton fabric allowed only transportation of moisture vapor through them, giving a moisture vapor transmission rate of 3734 g/m2/24h, while acting as a barrier for large liquid water droplet resisting 120cm of the water column in the hydrostatic water-head tester, rendering the coated cotton fabric waterproof. Examination of surface morphology of vulcanized coating by scanning electron microscopy supported the mechanism proposed for development of breathable waterproof layer on cotton fabric by the process employed above. Such process provides an easy and cost-effective route for achieving moisture vapor permeable waterproof cotton.Keywords: moisture vapour permeability, waterproofness, chloroprene, calendar coating, coating adhesion, fire retardancy
Procedia PDF Downloads 254439 Harnessing the Power of Mixed Ligand Complexes: Enhancing Antimicrobial Activities with Thiosemicarbazones
Authors: Sakshi Gupta, Seema Joshi
Abstract:
Thiosemicarbazones (TSCs) have garnered significant attention in coordination chemistry due to their versatile coordination modes and pharmacological properties. Mixed ligand complexes of TSCs represent a promising area of research, offering enhanced antimicrobial activities compared to their parent compounds. This review provides an overview of the synthesis, characterization, and antimicrobial properties of mixed ligand complexes incorporating thiosemicarbazones. The synthesis of mixed ligand complexes typically involves the reaction of a metal salt with TSC ligands and additional ligands, such as nitrogen- or oxygen-based ligands. Various transition metals, including copper, nickel, and cobalt, have been employed to form mixed ligand complexes with TSCs. Characterization techniques such as spectroscopy, X-ray crystallography, and elemental analysis are commonly utilized to confirm the structures of these complexes. One of the key advantages of mixed ligand complexes is their enhanced antimicrobial activity compared to pure TSC compounds. The synergistic effect between the TSC ligands and additional ligands contributes to increased efficacy, possibly through improved metal-ligand interactions or enhanced membrane permeability. Furthermore, mixed ligand complexes offer the potential for selective targeting of microbial species while minimizing toxicity to mammalian cells. This selectivity arises from the specific interactions between the metal center, TSC ligands, and biological targets within microbial cells. Such targeted antimicrobial activity is crucial for developing effective treatments with minimal side effects. Moreover, the versatility of mixed ligand complexes allows for the design of tailored antimicrobial agents with optimized properties. By varying the metal ion, TSC ligands, and additional ligands, researchers can fine-tune the physicochemical properties and biological activities of these complexes. This tunability opens avenues for the development of novel antimicrobial agents with improved efficacy and reduced resistance. In conclusion, mixed ligand complexes of thiosemicarbazones represent a promising class of compounds with potent antimicrobial activities. Further research in this field holds great potential for the development of novel therapeutic agents to combat microbial infections effectively.Keywords: metal complex, thiosemicarbazones, mixed ligand, selective targeting, antimicrobial activity
Procedia PDF Downloads 60438 Treatment of High Concentration Cutting Fluid Wastewater by Ceramic Membrane Bioreactor
Authors: Kai-Shiang Chang, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu
Abstract:
In recent years, membrane bioreactors (MBR) have been widely utilized as it can effectively replace conventional activated sludge process (CAS). Membrane bioreactor (MBR) is found to be more effective technology compared to other conventional activated sludge process and advanced membrane separation technique. Additionally, as far as the MBR is concerned, it is having excellent control of sludge retention time (SRT) and hydraulic retention time (HRT) and conducive to the retention of high concentration of sludge biomass. The membrane bioreactor (MBR) can effectively reduce footprint in terms of area and omit the secondary processing procedures in the conventional activated sludge process (CAS). Currently, as per the membrane technology, the ceramic membrane is found to have highly strong anti-acid-base properties, and it is more suitable than polymeric membrane while using for backwash and chemical cleaning. This study is based upon the treatment of Cutting Fluid wastewater, as the Cutting Fluid is widely used in the cutting equipment. However, the Cutting Fluid wastewater is very difficult to treat. In this study, the ceramic membrane was used and combine with of MBR system to treat the Cutting Fluid wastewater. In this present study, different kind of chemical coagulants have been utilized for pretreatment purpose in order to get the supernatant and simultaneously this wastewater (supernatant) was treated by MBR process. Nevertheless, ceramic membrane has three advantages such as high mechanical strength, drug resistance and reuse. During the experiment, the backwash technique was used for every interval of 10 minutes in order to avoid fouling of the membrane. In this study, during pretreatment the Chemical Oxygen Demand (COD) removal efficiency was found to be 71-86% and oil removal efficiency was analyzed to be 83-92%. This pretreatment study suggests that it is quiet effective methodology to reduce COD and oil concentration. Finally, In the MBR system when the HRT is more than 7.5 hour, the COD removal efficiency was found to be 87-93% and could achieve 100% oil removal efficiency. Coagulation test series were seen in Refs coagulants for the treatment of wastewater containing cutting oil with better oil and COD removal efficiency. The results also showed that the oil removal efficiency in the MBR system could reduce the oil content to less than 1 mg / L when the oil quality was 126 mg / L. Therefore, in this paper, the performance of membrane bioreactor by utilizing ceramic membrane has been demonstrated for treatment of Cutting Fluid wastewater.Keywords: membrane bioreactor, cutting fluid, oil, chemical oxygen demand
Procedia PDF Downloads 314437 The Comparative Study of Attitudes toward Entrepreneurial Intention between ASEAN and Europe: An Analysis Using GEM Data
Authors: Suchart Tripopsakul
Abstract:
This paper uses data from the Global Entrepreneurship Monitor (GEM) to investigate the difference of attitudes towards entrepreneurial intention (EI). EI is generally assumed to be the single most relevant predictor of entrepreneurial behavior. The aim of this paper is to examine a range of attitudes effect on individual’s intent to start a new venture. A cross-cultural comparison between Asia and Europe is used to further investigate the possible differences between potential entrepreneurs from these distinct national contexts. The empirical analysis includes a GEM data set of 10 countries (n = 10,306) which was collected in 2013. Logistic regression is used to investigate the effect of individual’s attitudes on EI. Independent variables include individual’s perceived capabilities, the ability to recognize business opportunities, entrepreneurial network, risk perceptions as well as a range of socio-cultural attitudes. Moreover, a cross-cultural comparison of the model is conducted including six ASEAN (Malaysia, Indonesia, Philippines, Singapore, Vietnam and Thailand) and four European nations (Spain, Sweden, Germany, and the United Kingdom). The findings support the relationship between individual’s attitudes and their entrepreneurial intention. Individual’s capability, opportunity recognition, networks and a range of socio-cultural perceptions all influence EI significantly. The impact of media attention on entrepreneurship and was found to influence EI in ASEAN, but not in Europe. On the one hand, Fear of failure was found to influence EI in Europe, but not in ASEAN. The paper develops and empirically tests attitudes toward Entrepreneurial Intention between ASEAN and Europe. Interestingly, fear of failure was found to have no significant effect in ASEAN, and the impact of media attention on entrepreneurship and was found to influence EI in ASEAN. Moreover, the resistance of ASEAN entrepreneurs to the otherwise high rates of fear of failure and high impact of media attention are proposed as independent variables to explain the relatively high rates of entrepreneurial activity in ASEAN as reported by GEM. The paper utilizes a representative sample of 10,306 individuals in 10 countries. A range of attitudes was found to significantly influence entrepreneurial intention. Many of these perceptions, such as the impact of media attention on entrepreneurship can be manipulated by government policy. The paper also suggests strategies by which Asian economy in particular can benefit from their apparent high impact of media attention on entrepreneurship.Keywords: an entrepreneurial intention, attitude, GEM, ASEAN and Europe
Procedia PDF Downloads 311436 Feasibility Study of Particle Image Velocimetry in the Muzzle Flow Fields during the Intermediate Ballistic Phase
Authors: Moumen Abdelhafidh, Stribu Bogdan, Laboureur Delphine, Gallant Johan, Hendrick Patrick
Abstract:
This study is part of an ongoing effort to improve the understanding of phenomena occurring during the intermediate ballistic phase, such as muzzle flows. A thorough comprehension of muzzle flow fields is essential for optimizing muzzle device and projectile design. This flow characterization has heretofore been almost entirely limited to local and intrusive measurement techniques such as pressure measurements using pencil probes. Consequently, the body of quantitative experimental data is limited, so is the number of numerical codes validated in this field. The objective of the work presented here is to demonstrate the applicability of the Particle Image Velocimetry (PIV) technique in the challenging environment of the propellant flow of a .300 blackout weapon to provide accurate velocity measurements. The key points of a successful PIV measurement are the selection of the particle tracer, their seeding technique, and their tracking characteristics. We have experimentally investigated the aforementioned points by evaluating the resistance, gas dispersion, laser light reflection as well as the response to a step change across the Mach disk for five different solid tracers using two seeding methods. To this end, an experimental setup has been performed and consisted of a PIV system, the combustion chamber pressure measurement, classical high-speed schlieren visualization, and an aerosol spectrometer. The latter is used to determine the particle size distribution in the muzzle flow. The experimental results demonstrated the ability of PIV to accurately resolve the salient features of the propellant flow, such as the under the expanded jet and vortex rings, as well as the instantaneous velocity field with maximum centreline velocities of more than 1000 m/s. Besides, naturally present unburned particles in the gas and solid ZrO₂ particles with a nominal size of 100 nm, when coated on the propellant powder, are suitable as tracers. However, the TiO₂ particles intended to act as a tracer, surprisingly not only melted but also functioned as a combustion accelerator and decreased the number of particles in the propellant gas.Keywords: intermediate ballistic, muzzle flow fields, particle image velocimetry, propellant gas, particle size distribution, under expanded jet, solid particle tracers
Procedia PDF Downloads 161435 Two-Component Biocompartible Material for Reconstruction of Articular Hyaline Cartilage
Authors: Alena O. Stepanova, Vera S. Chernonosova, Tatyana S. Godovikova, Konstantin A. Bulatov, Andrey Y. Patrushev, Pavel P. Laktionov
Abstract:
Trauma and arthrosis, not to mention cartilage destruction in overweight and elders put hyaline cartilage lesion among the most frequent diseases of locomotor system. These problems combined with low regeneration potential of the cartilage make regeneration of articular cartilage a high-priority task of tissue engineering. Many types of matrices, the procedures of their installation and autologous chondrocyte implantation protocols were offered, but certain aspects including adhesion of the implant with surrounding cartilage/bone, prevention of the ossification and fibrosis were not resolved. Simplification and acceleration of the procedures resulting in restoration of normal cartilage are also required. We have demonstrated that human chondroblasts can be successfully cultivated at the surface of electrospun scaffolds and produce extracellular matrix components in contrast to chondroblasts grown in homogeneous hydrogels. To restore cartilage we offer to use stacks of electrospun scaffolds fixed with photopolymerized solution of prepared from gelatin and chondroitin-4-sulfate both modified by glycidyl methacrylate and non-toxic photoinitator Darocur 2959. Scaffolds were prepared from nylon 6, polylactide-co-glicolide and their mixtures with modified gelatin. Illumination of chondroblasts in photopolymerized solution using 365 nm LED light had no effect on cell viability at compressive strength of the gel less than0,12 MPa. Stacks of electrospun scaffolds provide good compressive strength and have the potential for substitution with cartilage when biodegradable scaffolds are used. Vascularization can be prevented by introduction of biostable scaffolds in the layers contacting the subchondral bone. Studies of two-component materials (2-3 sheets of electrospun scaffold) implanted in the knee-joints of rabbits and fixed by photopolymerization demonstrated good crush resistance, biocompatibility and good adhesion of the implant with surrounding cartilage. Histological examination of the implants 3 month after implantation demonstrates absence of any inflammation and signs of replacement of the biodegradable scaffolds with normal cartilage. The possibility of intraoperative population of the implants with autologous cells is being investigated.Keywords: chondroblasts, electrospun scaffolds, hyaline cartilage, photopolymerized gel
Procedia PDF Downloads 283434 Role of F18-FDG PET in Management of Differentiated Thyroid Cancers (TENIS) Patients
Authors: Seemab Safdar, Shazia Fatima, Ahmad Qureshy, M. Adnan Saeed, M. Faheem
Abstract:
Background: Thyroid cancer has 586,000 cases per year worldwide, and this translates to 3% of all tumor diagnoses. 90% of the cases fall under differentiated thyroid carcinoma (DTC), which includes follicular thyroid cancer (FTC) and papillary thyroid cancer (PTC). During their illness, 10% of patients develop distant metastases, and two-thirds of them develop resistance to radioactive iodine (RAI) treatment. It has been shown that in some circumstances, like DTC with high TG levels and negative 131I whole-body scintigraphy (TENIS), [18F] FDG-PET-CT is an effective imaging technique. This study determines the role of [18F] FDG-PET-CT in the treatment of TENIS patients. Methods: 16 patients (n = 12 female; 4 males, age 45 ± 15 years) with histologically proven thyroid cancer (Differentiated and poorly differentiated) and high TG with negative iodine scans were included in this prospective study from January 2024 to June 2024. They underwent scanning in state-of-the-art (GE Discovery MI) [18F] FDG-PET-CT for re-staging or diagnostics of recurrent disease using a standardized protocol. All DTC subtypes and PDTC were included. The referring physicians completed standardized questionnaires both before and after PET-CT to prospectively determine the examination's effect on clinical decision-making. Patient outcomes were measured by analysis of medical records. Moreover, after PET-CT, a change in the pre-PET-CT planned therapies was documented in 32% of cases and additional invasive diagnostic procedures could be waived in 37.5 % of cases. TG levels under TSH stimulation were significantly higher in patients showing PET-CT metastases compared to patients without such findings (68.75%). Results: Without PET-CT, physicians referring to the doctors had not established a complete treatment plan for 45% of patients with thyroid carcinoma. 12/16 patients showed FDG avidity in cervical lymph nodes that were not Iodine avid previously, 2 patients had FDG avid disease in the lungs. In the process, PET-CT helped plan patient management and created a clear plan for treatment in 68.75% of patients. Conclusions: This study confirms that [18F] FDG-PET-CT used in a routine clinical setting has a very important impact on the management of patients with thyroid cancer when TG levels are persistently high in the presence of negative Iodine Scans by initiating treatments and replacing additional imaging and invasive tests.Keywords: PET-CT, TENIS, role, FDG
Procedia PDF Downloads 14433 Fastidious Enteric Pathogens in HIV
Authors: S. Pathak, R. Lazarus
Abstract:
A 25-year-old male HIV patient (CD4 cells 20/µL and HIV viral load 14200000 copies/ml) with a past medical history of duodenal ulcer, pneumocystis carinii pneumonia, oesophageal candidiasis presented with fever and a seizure to hospital. The only recent travel had been a religious pilgrimage from Singapore to Malaysia 5 days prior; during the trip he sustained skin abrasions. The patient had recently started highly active antiretroviral therapy 2 months prior. Clinical examination was unremarkable other than a temperature of 38.8°C and perianal warts. Laboratory tests showed a leukocyte count 12.5x109 cells/L, haemoglobin 9.4 g/dL, normal biochemistry and a C-reactive protein 121 mg/L. CT head and MRI head were unremarkable and cerebrospinal fluid analysis performed after a delay (due to technical difficulties) of 11 days was unremarkable. Blood cultures (three sets) taken on admission showed Gram-negative rods in the anaerobic bottles only at the end of incubation with culture result confirmed by molecular sequencing showing Helicobacter cinaedi. The patient was treated empirically with ceftriaxone for seven days and this was converted to oral co-amoxiclav for a further seven days after the blood cultures became positive. A Transthoracic echocardiogram was unremarkable. The patient made a full recovery. Helicobacter cinaedi is a gram-negative anaerobic fastidious organism affecting patients with comorbidity. Infection may manifest as cellulitius, colitis or as in this case as bloodstream infection – the latter is often attributed to faeco-oral infection. Laboratory identification requires prolonged culture. Therapeutic options may be limited by resistance to macrolides and fluoroquinolones. The likely pathogen inoculation routes in the case described include gastrointestinal translocation due to proctitis at the site of perianal warts, or breach of the skin via abrasions occurring during the pilgrimage. Such organisms are increasing in prevalence as our patient population ages and patients have multiple comorbidities including HIV. It may be necessary in patients with unexplained fever to prolong incubation of sterile sites including blood in order to identify this unusual fastidious organism.Keywords: fastidious, Helicobacter cinaedi, HIV, immunocompromised
Procedia PDF Downloads 378432 Exercise and Geriatric Depression: a Scoping Review of the Research Evidence
Authors: Samira Mehrabi
Abstract:
Geriatric depression is a common late-life mental health disorder that increases morbidity and mortality. It has been shown that exercise is effective in alleviating symptoms of geriatric depression. However, inconsistencies across studies and lack of optimal dose-response of exercise for improving geriatric depression have made it challenging to draw solid conclusions on the effectiveness of exercise in late-life depression. Purpose: To further investigate the moderators of the effectiveness of exercise on geriatric depression across the current body of evidence. Methods: Based on the Arksey and O’Malley framework, an extensive search strategy was performed by exploring PubMed, Scopus, Sport Discus, PsycInfo, ERIC, and IBSS without limitations in the time frame. Eight systematic reviews with empirical results that evaluated the effect of exercise on depression among people aged ≥ 60 years were identified and their individual studies were screened for inclusion. One additional study was found through the hand searching of reference lists. After full-text screening and applying inclusion and exclusion criteria, 21 studies were retained for inclusion. Results: The review revealed high variability in characteristics of the exercise interventions and outcome measures. Sample characteristics, nature of comparators, main outcome assessment, and baseline severity of depression also varied notably. Mind-body and aerobic exercises were found to significantly reduce geriatric depression. However, results on the relationship between resistance training and improvements in geriatric depression were inconsistent, and results of the intensity-related antidepressant effects of exercise interventions were mixed. Extensive use of self-reported questionnaires for the main outcome assessment and lack of evidence on the relationship between depression severity and observed effects were of the other important highlights of the review. Conclusion: Several literature gaps were found regarding the potential effect modifiers of exercise and geriatric depression. While acknowledging the complexity of establishing recommendations on the exercise variables and geriatric depression, future studies are required to understand the interplay and threshold effect of exercise for treating geriatric depression.Keywords: exercise, geriatric depression, healthy aging, older adults, physical activity intervention, scoping review
Procedia PDF Downloads 107431 Voltage and Frequency Regulation Using the Third-Party Mid-Size Battery
Authors: Roghieh A. Biroon, Zoleikha Abdollahi
Abstract:
The recent growth of renewables, e.g., solar panels, batteries, and electric vehicles (EVs) in residential and small commercial sectors, has potential impacts on the stability and operation of power grids. Considering approximately 50 percent share of the residential and the commercial sectors in the electricity demand market, the significance of these impacts, and the necessity of addressing them are more highlighted. Utilities and power system operators should manage the renewable electricity sources integration with power systems in such a way to extract the most possible advantages for the power systems. The most common effect of high penetration level of the renewables is the reverse power flow in the distribution feeders when the customers generate more power than their needs. The reverse power flow causes voltage rise and thermal issues in the power grids. To overcome the voltage rise issues in the distribution system, several techniques have been proposed including reducing transformers short circuit resistance and feeder impedance, installing autotransformers/voltage regulators along the line, absorbing the reactive power by distributed generators (DGs), and limiting the PV and battery sizes. In this study, we consider a medium-scale battery energy storage to manage the power energy and address the aforementioned issues on voltage deviation and power loss increase. We propose an optimization algorithm to find the optimum size and location for the battery. The optimization for the battery location and size is so that the battery maintains the feeder voltage deviation and power loss at a certain desired level. Moreover, the proposed optimization algorithm controls the charging/discharging profile of the battery to absorb the negative power flow from residential and commercial customers in the feeder during the peak time and sell the power back to the system during the off-peak time. The proposed battery regulates the voltage problem in the distribution system while it also can play frequency regulation role in islanded microgrids. This battery can be regulated and controlled by the utilities or a third-party ancillary service provider for the utilities to reduce the power system loss and regulate the distribution feeder voltage and frequency in standard level.Keywords: ancillary services, battery, distribution system and optimization
Procedia PDF Downloads 131430 The Effect of the Variety and Harvesting Date on Polyphenol Composition of Haskap (Lonicera caerulea L.) and Anti-diabetic Properties of Haskap Polyphenols
Authors: Aruma Baduge Kithma De Silva
Abstract:
Haskap (Lonicera caerulea L.), also known as blue honeysuckle, is a newly commercialized berry crop in Canada. Haskap berries are rich in polyphenols, including, anthocyanins, which are known for potential health-promoting properties. Cyanidin-3-O-glucoside (C3G) is the most abundant anthocyanin of haskap berries. The compound C3G has the ability to reduce the risk of type 2 diabetes (T2D), which has become an increasingly common health issue around the world. The T2D is characterized as a metabolic disorder of hyperglycemia and insulin resistance. It has been demonstrated that C3G has anti-diabetic effects through several ways, including inhibition of dipeptidyl peptidase-4 (DPP-4), reduction of gluconeogenesis, improvement in insulin sensitivity, and inhibition of activities of carbohydrate hydrolyzing enzymes, including α-amylase and α-glucosidase. The goal of this study was to investigate the influence of variety and harvests maturity of haskap on C3G, other fruit quality characteristics and anti-diabetic activities of haskap berries using in vitro studies. The polyphenols present in four commercially grown haskap cultivars, Aurora, Rebecca, Larissa, and Evie harvested at five harvesting dates (H1-H5) apart from 2-3 days, were extracted separately. High-performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI-MS) analyzes of polyphenols revealed that haskap berries contain predominantly anthocyanins, flavonols, flavan-3-ols, and phenolic acids. The compound C3G was the most prominent anthocyanin, which is available in approximately 79% of total anthocyanin in four cultivars. The Larissa at H5 contained the highest C3G content. The antioxidant capacity of Evie at H5 was greater than other cultivars. Furthermore, Larissa H5 showed the greatest inhibition of carbohydrate hydrolyzing enzymes including alpha-glucosidase and alpha-amylase. In conclusion, the haskap variety and harvesting date influenced the polyphenol composition and biological properties. The variety Larissa, at H5 harvesting date, contained the highest polyphenol content and the ability of inhibition of the carbohydrate hydrolyzing enzyme as well as DPP4 enzyme in order to reduce type 2 diabetes.Keywords: anthocyanin, Haskap, type 2 diabetes, polyphenol
Procedia PDF Downloads 142429 Limos Lactobacillus Fermentum from Buffalo Milk Is Suitable for Potential Biotechnological Process Development
Authors: Sergio D’Ambrosioa, Azza Dobousa, Chiara Schiraldia, Donatella Ciminib
Abstract:
Probiotics are living microorganisms that give beneficial effects while consumed. Lactic acid bacteria and bifidobacteria are among the most representative strains assessed as probiotics and exploited as food supplements. Numerous studies demonstrated their potential as a therapeutic candidate for a variety of diseases (restoring gut flora, lowering cholesterol, immune response-enhancing, anti-inflammation and anti-oxidation activities). These beneficial actions are also due to biomolecules produced by probiotics, such as exopolysaccharides (EPSs), that demonstrate plenty of beneficial properties such as antimicrobial, antitumor, anti-biofilm, antiviral and immunomodulatory activities. Limosilactobacillus fermentum is a widely studied member of probiotics; however, few data are available on the development of fermentation and downstream processes for the production of viable biomasses for potential industrial applications. However, few data are available on the development of fermentation processes for the large-scale production of probiotics biomass for industrial applications and for purification processes of EPSs at an industrial scale. For this purpose, L. fermentum strain was isolated from buffalo milk and used as a test example for biotechnological process development. The strain was able to produce up to 109 CFU/mL on a (glucose-based) semi-defined medium deprived of animal-derived raw materials up to the pilot scale (150 L), demonstrating improved results compared to commonly used, although industrially not suitable, media-rich of casein and beef extract. Biomass concentration via microfiltration on hollow fibers, and subsequent spray-drying allowed to recover of about 5.7 × 1010CFU/gpowder of viable cells, indicating strain resistance to harsh processing conditions. Overall, these data demonstrate the possibility of obtaining and maintaining adequate levels of viable L. fermentum cells by using a simple approach that is potentially suitable for industrial development. A downstream EPS purification protocol based on ultrafiltration, precipitation and activated charcoal treatments showed a purity of the recovered polysaccharides of about 70-80%.Keywords: probiotics, fermentation, exopolysaccharides (EPSs), purification
Procedia PDF Downloads 82428 Berberine Ameliorates Glucocorticoid-Induced Hyperglycemia: An In-Vitro and In-Vivo Study
Authors: Mrinal Gupta, Mohammad Rumman, Babita Singh Abbas Ali Mahdi, Shivani Pandey
Abstract:
Introduction: Berberine (BBR), a bioactive compound isolated from Coptidis Rhizoma, possesses diverse pharmacological activities, including anti-bacterial, anti-inflammatory, antitumor, hypolipidemic, and anti-diabetic. However, its role as an anti-diabetic agent in animal models of dexamethasone (Dex)-induced diabetes remains unknown. Studies have shown that natural compounds, including aloe, caper, cinnamon, cocoa, green and black tea, and turmeric, can be used for treating Type 2 diabetes mellitus (DM). Compared to conventional drugs, natural compounds have fewer side effects and are easily available. Herein, we studied the anti-diabetic effects of BBR in a mice model of Dex-induced diabetes. Methods: HepG2 cell line was used for glucose release and glycogen synthesis studies. Cell proliferation was measured by methylthiotetrazole (MTT) assay. For animal studies, mice were treated with Dex (2 mg/kg, i.m.) for 30 days and the effect of BBR at the doses 100, 200, and 500 mg/kg (p.o.) was analyzed. Glucose, insulin, and pyruvate tests were performed to evaluate the development of the diabetic model. An echo MRI was performed to assess the fat mass. Further, to elucidate the mechanism of action of BBR, mRNA expression of genes regulating gluconeogenesis, glucose uptake, and glycolysis were analyzed. Results: In vitro BBR had no impact on cell viability up to a concentration of 50μM. Moreover, BBR suppressed the hepatic glucose release and improved glucose tolerance in HepG2 cells. In vivo, BBR improved glucose homeostasis in diabetic mice, as evidenced by enhanced glucose clearance, increased glycolysis, elevated glucose uptake, and decreased gluconeogenesis. Further, Dex treatment increased the total fat mass in mice, which was ameliorated by BBR treatment. Conclusion: BBR improves glucose tolerance by increasing glucose clearance, inhibiting hepatic glucose release, and decreasing obesity. Thus, BBR may become a potential therapeutic agent for treating glucocorticoid-induced diabetes and obesity in the future.Keywords: glucocorticoid, hyperglycemia, berberine, HepG2 cells, insulin resistance, glucose
Procedia PDF Downloads 64427 Exploring Penicillin Resistance in Gonococcal Penicillin Binding Protein-2: Molecular Docking and Ligand Interaction Analysis
Authors: Sinethemba Yakobi, Lindiwe Zuma, Ofentse Pooe
Abstract:
Gonococcal infections present a notable public health issue, and the major approach for treatment involves using β-lactam antibiotics that specifically target penicillin-binding protein 2 (PBP2) in Neisseria gonorrhoeae. This study examines the influence of flavonoids, namely rutin, on the structural changes of PBP2 in both penicillin-resistant (FA6140) and penicillin-susceptible (FA19) strains. The research clarifies the structural effects of particular mutations, such as inserting an aspartate residue at position 345 (Asp-345a) in the PBP2 protein. The strain FA6140, which is resistant to penicillin, shows specific changes that lead to a decrease in penicillin binding. These mutations, namely P551S and F504L, significantly impact the pace at which acylation occurs and the stability of the strain under high temperatures. Molecular docking analyses investigate the antibacterial activities of rutin and other phytocompounds, emphasizing its exceptional binding affinity and potential as an inhibitor of PBP2. Quercetin and protocatechuic acid have encouraging antibacterial effectiveness, with quercetin displaying characteristics similar to those of drugs. Molecular dynamics simulations offer a detailed comprehension of the interactions between flavonoids and PBP2, highlighting rutin's exceptional antioxidant effects and strong affinity for the substrate binding site. The study's wider ramifications pertain to the pressing requirement for antiviral treatments in the context of the ongoing COVID-19 epidemic. Flavonoids have a strong affinity for binding to PBP2, indicating their potential as inhibitors to impair cell wall formation in N. gonorrhoeae. Ultimately, this study provides extensive knowledge on the interactions between proteins and ligands, the dynamics of the structure, and the ability of flavonoids to combat penicillin-resistant N. gonorrhoeae bacteria. The verified simulation outcomes establish a basis for creating potent inhibitors and medicinal therapies to combat infectious illnesses.Keywords: phytochemicals, penicillin-binding protein 2, gonococcal infection, ligand-protein interaction, binding energy, neisseria gonorrhoeae FA19, neisseria gonorrhoeae FA6140, flavonoids
Procedia PDF Downloads 69426 Influence of Nanomaterials on the Properties of Shape Memory Polymeric Materials
Authors: Katielly Vianna Polkowski, Rodrigo Denizarte de Oliveira Polkowski, Cristiano Grings Herbert
Abstract:
The use of nanomaterials in the formulation of polymeric materials modifies their molecular structure, offering an infinite range of possibilities for the development of smart products, being of great importance for science and contemporary industry. Shape memory polymers are generally lightweight, have high shape recovery capabilities, they are easy to process and have properties that can be adapted for a variety of applications. Shape memory materials are active materials that have attracted attention due to their superior damping properties when compared to conventional structural materials. The development of methodologies capable of preparing new materials, which use graphene in their structure, represents technological innovation that transforms low-cost products into advanced materials with high added value. To obtain an improvement in the shape memory effect (SME) of polymeric materials, it is possible to use graphene in its composition containing low concentration by mass of graphene nanoplatelets (GNP), graphene oxide (GO) or other functionalized graphene, via different mixture process. As a result, there was an improvement in the SME, regarding the increase in the values of maximum strain. In addition, the use of graphene contributes to obtaining nanocomposites with superior electrical properties, greater crystallinity, as well as resistance to material degradation. The methodology used in the research is Systematic Review, scientific investigation, gathering relevant studies on influence of nanomaterials on the properties of shape memory polymeric, using the literature database as a source and study methods. In the present study, a systematic reviewwas performed of all papers published from 2014 to 2022 regarding graphene and shape memory polymeric througha search of three databases. This study allows for easy identification of themost relevant fields of study with respect to graphene and shape memory polymeric, as well as the main gaps to beexplored in the literature. The addition of graphene showed improvements in obtaining higher values of maximum deformation of the material, attributed to a possible slip between stacked or agglomerated nanostructures, as well as an increase in stiffness due to the increase in the degree of phase separation that results in a greater amount physical cross-links, referring to the formation of shortrange rigid domains.Keywords: graphene, shape memory, smart materials, polymers, nanomaterials
Procedia PDF Downloads 84425 Effect of Repellent Coatings, Aerosol Protective Liners, and Lamination on the Properties of Chemical/Biological Protective Textiles
Authors: Natalie Pomerantz, Nicholas Dugan, Molly Richards, Walter Zukas
Abstract:
The primary research question to be answered for Chemical/Biological (CB) protective clothing, is how to protect wearers from a range of chemical and biological threats in liquid, vapor, and aerosol form, while reducing the thermal burden. Currently, CB protective garments are hot, heavy, and wearers are limited by short work times in order to prevent heat injury. This study demonstrates how to incorporate different levels of protection on a material level and modify fabric composites such that the thermal burden is reduced to such an extent it approaches that of a standard duty uniform with no CB protection. CB protective materials are usually comprised of several fabric layers: a cover fabric with a liquid repellent coating, a protective layer which is comprised of a carbon-based sorptive material or semi-permeable membrane, and a comfort next-to-skin liner. In order to reduce thermal burden, all of these layers were laminated together to form one fabric composite which had no insulative air gap in between layers. However, the elimination of the air gap also reduced the CB protection of the fabric composite. In order to increase protection in the laminated composite, different nonwoven aerosol protective liners were added, and a super repellent coating was applied to the cover fabric, prior to lamination. Different adhesive patterns were investigated to determine the durability of the laminate with the super repellent coating, and the effect on air permeation. After evaluating the thermal properties, textile properties and protective properties of the iterations of these fabric composites, it was found that the thermal burden of these materials was greatly reduced by decreasing the thermal resistance with the elimination of the air gap between layers. While the level of protection was reduced in laminate composites, the addition of a super repellent coating increased protection towards low volatility agents without impacting thermal burden. Similarly, the addition of aerosol protective liner increased protection without reducing water vapor transport, depending on the nonwoven used, however, the air permeability was significantly decreased. The balance of all these properties and exploration of the trade space between thermal burden and protection will be discussed.Keywords: aerosol protection, CBRNe protection, lamination, nonwovens, repellent coatings, thermal burden
Procedia PDF Downloads 363424 Non Destructive Ultrasound Testing for the Determination of Elastic Characteristics of AlSi7Zn3Cu2Mg Foundry Alloy
Authors: A. Hakem, Y. Bouafia
Abstract:
Characterization of materials used for various mechanical components is of great importance in their design. Several studies were conducted by various authors in order to improve their physical and/or chemical properties in general and mechanical or metallurgical properties in particular. The foundry alloy AlSi7Zn3Cu2Mg is one of the main components constituting the various mechanisms for the implementation of applications and various industrial projects. Obtaining a reliable product is not an easy task; several results proposed by different authors show sometimes results that can contradictory. Due to their high mechanical characteristics, these alloys are widely used in engineering. Silicon improves casting properties and magnesium allows heat treatment. It is thus possible to obtain various degrees of hardening and therefore interesting compromise between tensile strength and yield strength, on one hand, and elongation, on the other hand. These mechanical characteristics can be further enhanced by a series of mechanical treatments or heat treatments. Their light weight coupled with high mechanical characteristics, aluminum alloys are very much used in cars and aircraft industry. The present study is focused on the influence of heat treatments which cause significant micro structural changes, usually hardening by variation of annealing temperatures by increments of 10°C and 20°C on the evolution of the main elastic characteristics, the resistance, the ductility and the structural characteristics of AlSi7Zn3Cu2Mg foundry alloy cast in sand by gravity. These elastic properties are determined in three directions for each specimen of dimensions 200x150x20 mm³ by the ultrasonic method based on acoustic or elastic waves. The hardness, the micro hardness and the structural characteristics are evaluated by a non-destructive method. The aim of this work is to study the hardening ability of AlSi7Zn3Cu2Mg alloy by considering ten states. To improve the mechanical properties obtained with the raw casting, one should use heat treatment for structural hardening; the addition of magnesium is necessary to increase the sensitivity to this specific heat treatment: Treatment followed by homogenization which generates a diffusion of atoms in a substitution solid solution inside a hardening furnace at 500°C during 8h, followed immediately by quenching in water at room temperature 20 to 25°C, then an ageing process for 17h at room temperature and at different annealing temperature (150, 160, 170, 180, 190, 240, 200, 220 and 240°C) for 20h in an annealing oven. The specimens were allowed to cool inside the oven.Keywords: aluminum, foundry alloy, magnesium, mechanical characteristics, silicon
Procedia PDF Downloads 264423 Knowledge, Attitude and Associated Factors of Practice towards Post Exposure Prophylaxis of HIV Infection among Health Professionals in Yeka and Kazanchis Health Center
Authors: Semira Zeru Haileslassie
Abstract:
Lack of awareness and practices of PEP treatment were observed among respondents, but they had a better attitude towards PEP. To this end, a formal training for all respondents regarding PEP for HIV prior to their clinical attachments is of utmost importance. The training ought to incorporate a brief clarification with respect to the unpleasant impact of non-adherence that essentially incorporate destitute treatment result and most prominent hazard of resistance and few given as a major cause for non-compliance to PEP, common transient side-effects of PEP and its administrations ought to be cloister educated healthcare specialists to diminish its effect on adherence. Besides, the propensity of detailing needle adhere harm was destitute that needs endeavors to progress. Progressing the culture of detailing and making the detailing handle simple is very necessary. In reality, announcing such wounds as early as conceivable will educate others not to commit same issue once more and, for the most part, will empower stakeholders to intercede the issue sometime prior to it re-occur. At long last, as distant as get up and go utilize has cleared out with so numerous bothers, risk decrease is the foremost choice. With this, taking the increased significance of protective barriers so as to decrease the hazard of exposure to HIV, distinctive stakeholders (the healing center hardware supply chain director, the HIV/ Helps clinic, the clinic chief, hardware and supply quality confirmation group, and other authoritative bodies) ought to work together in co-ordination to secure the supply and guarantee the quality of those crucial protective barriers and to advance demand health laborers to continuously wear protective barriers when exposed to HIV hazard components as well as to dispose appropriately once done. At long last, we prescribe future examiners to conduct planned multicenter studies with extra goals (counting indicator investigation) for way better generalization and result. In spite of satisfactory information and favorable state of mind towards PEP for HIV in most of the respondents, this study uncovered that there were delays in starting, low utilization, and fragmented use of the prescribed PEP. So, health care staff need to progress their practice on PEP of HIV through diverse training program related to PEP of HIV.Keywords: HIV infection, prophylaxis, knowledge, attitude
Procedia PDF Downloads 195422 The Clash Between Sexual Choices and Socio-Culturo-Religious Morality in Ghana: Public Perceptions on the Impact of Anti-LGBTQIs Activities on Communal Peace
Authors: George Hikah Benson
Abstract:
The promotion of lesbian, gay, bisexual, transgender, queer and Intersex (LGBTQIs) rights within the continent of Africa in general and Ghana, in particular, has for some time now, met the fiercest of resistance; premised mainly on socio-cultural-religious factors. This phenomenon contrasts with notions of countries of the Global North where persons within the context of their fundamental freedoms and rights have the right to sexual choices and preferences. A Private Member’s Bill was introduced to the Ghanaian Parliament in 2021, seeking to criminalize the promotion and advocacy of LGBTQIs related activities. This paper in assessing public views on the matter also seeks to ascertain the security implications regarding the passage of the law at the community level. The study also evaluates LGBTQIs rights vis-a-vis the provisions of Chapter 5 of the 1992 Ghana Constitution and global legal jurisprudence on fundamental human rights. To that end, the study adopted a mixed design approach (quantitative and qualitative) to gather data from 1,550 respondents from all ‘walks of life, across all sixteen regions of Ghana. The main findings are that first, over 85% of Ghanaians abhor the practices of LGBTQIs in keeping with the societal, cultural and religious beliefs of Ghanaians, and will go any length to prevent its survival in the country. Further, the time is not ripe for the acceptance of LGBTQ rights in Ghana as the activities will disrupt family values and poison the existing peace that Ghanaians are currently enjoying. However, it is generally believed that when the bill is passed into law, Ghana’s international image will be dented, and 60% of participants and respondents will be unmoved. Against this hostile, intolerant backdrop regarding LGBTQIs rights in the country and in many other African countries, the study foremost recommends that such a law, when passed, should come with a ‘human face’ that will not just seek to be punitive of LGBTQIs persons but corrective. Additionally, the law should be one that offers them support in line with their rights as Ghanaian and African citizens. Moreover, religious and traditional bodies should endeavor to engage LGBTQIs persons in a friendlier, corrective and loving manner rather than in the current hostile environment that society exposes them to.Keywords: Ghanaian parliament, LGBTQIs rights, perceptions, socio-culture-religious
Procedia PDF Downloads 87