Search results for: multivariate time series data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 38838

Search results for: multivariate time series data

36078 The Effect of Sowing Time on Phytopathogenic Characteristics and Yield of Sunflower Hybrids

Authors: Adrienn Novák

Abstract:

The field research was carried out at the Látókép AGTC KIT research area of the University of Debrecen in Eastern-Hungary, on the area of the aeolain loess of the Hajdúság. We examined the effects of the sowing time on the phytopathogenic characteristics and yield production by applying various fertilizer treatments on two different sunflower genotypes (NK Ferti, PR64H42) in 2012 and 2013. We applied three different sowing times (early, optimal, late) and two different treatment levels of fungicides (control = no fungicides applied, double fungicide protection). During our investigations, the studied cropyears were of different sowing time optimum in terms of yield amount (2012: early, 2013: average). By Pearson’s correlation analysis, we have found that delaying the sowing time pronouncedly decreased the extent of infection in both crop years (Diaporthe: r=0.663**, r=0.681**, Sclerotinia: r=0.465**, r=0.622**). The fungicide treatment not only decreased the extent of infection, but had yield increasing effect too (2012: r=0.498**, 2013: r=0.603**). In 2012, delaying of the sowing time increased (r=0.600**), but in 2013, it decreased (r= 0.356*) the yield amount.

Keywords: fungicide treatment, genotypes, sowing time, yield, sunflower

Procedia PDF Downloads 209
36077 Dark Gravity Confronted with Supernovae, Baryonic Oscillations and Cosmic Microwave Background Data

Authors: Frederic Henry-Couannier

Abstract:

Dark Gravity is a natural extension of general relativity in presence of a flat non dynamical background. Matter and radiation fields from its dark sector, as soon as their gravity dominates over our side fields gravity, produce a constant acceleration law of the scale factor. After a brief reminder of the Dark Gravity theory foundations, the confrontation with the main cosmological probes is carried out. We show that, amazingly, the sudden transition between the usual matter dominated decelerated expansion law a(t) ∝ t²/³ and this accelerated expansion law a(t) ∝ t² predicted by the theory should be able to fit the main cosmological probes (SN, BAO, CMB and age of the oldest stars data) but also direct H₀ measurements with two free parameters only: H₀ and the transition redshift.

Keywords: anti-gravity, negative energies, time reversal, field discontinuities, dark energy theory

Procedia PDF Downloads 55
36076 Multi-Label Approach to Facilitate Test Automation Based on Historical Data

Authors: Warda Khan, Remo Lachmann, Adarsh S. Garakahally

Abstract:

The increasing complexity of software and its applicability in a wide range of industries, e.g., automotive, call for enhanced quality assurance techniques. Test automation is one option to tackle the prevailing challenges by supporting test engineers with fast, parallel, and repetitive test executions. A high degree of test automation allows for a shift from mundane (manual) testing tasks to a more analytical assessment of the software under test. However, a high initial investment of test resources is required to establish test automation, which is, in most cases, a limitation to the time constraints provided for quality assurance of complex software systems. Hence, a computer-aided creation of automated test cases is crucial to increase the benefit of test automation. This paper proposes the application of machine learning for the generation of automated test cases. It is based on supervised learning to analyze test specifications and existing test implementations. The analysis facilitates the identification of patterns between test steps and their implementation with test automation components. For the test case generation, this approach exploits historical data of test automation projects. The identified patterns are the foundation to predict the implementation of unknown test case specifications. Based on this support, a test engineer solely has to review and parameterize the test automation components instead of writing them manually, resulting in a significant time reduction for establishing test automation. Compared to other generation approaches, this ML-based solution can handle different writing styles, authors, application domains, and even languages. Furthermore, test automation tools require expert knowledge by means of programming skills, whereas this approach only requires historical data to generate test cases. The proposed solution is evaluated using various multi-label evaluation criteria (EC) and two small-sized real-world systems. The most prominent EC is ‘Subset Accuracy’. The promising results show an accuracy of at least 86% for test cases, where a 1:1 relationship (Multi-Class) between test step specification and test automation component exists. For complex multi-label problems, i.e., one test step can be implemented by several components, the prediction accuracy is still at 60%. It is better than the current state-of-the-art results. It is expected the prediction quality to increase for larger systems with respective historical data. Consequently, this technique facilitates the time reduction for establishing test automation and is thereby independent of the application domain and project. As a work in progress, the next steps are to investigate incremental and active learning as additions to increase the usability of this approach, e.g., in case labelled historical data is scarce.

Keywords: machine learning, multi-class, multi-label, supervised learning, test automation

Procedia PDF Downloads 132
36075 Ethics Can Enable Open Source Data Research

Authors: Dragana Calic

Abstract:

The openness, availability and the sheer volume of big data have provided, what some regard as, an invaluable and rich dataset. Researchers, businesses, advertising agencies, medical institutions, to name only a few, collect, share, and analyze this data to enable their processes and decision making. However, there are important ethical considerations associated with the use of big data. The rapidly evolving nature of online technologies has overtaken the many legislative, privacy, and ethical frameworks and principles that exist. For example, should we obtain consent to use people’s online data, and under what circumstances can privacy considerations be overridden? Current guidance on how to appropriately and ethically handle big data is inconsistent. Consequently, this paper focuses on two quite distinct but related ethical considerations that are at the core of the use of big data for research purposes. They include empowering the producers of data and empowering researchers who want to study big data. The first consideration focuses on informed consent which is at the core of empowering producers of data. In this paper, we discuss some of the complexities associated with informed consent and consider studies of producers’ perceptions to inform research ethics guidelines and practice. The second consideration focuses on the researcher. Similarly, we explore studies that focus on researchers’ perceptions and experiences.

Keywords: big data, ethics, producers’ perceptions, researchers’ perceptions

Procedia PDF Downloads 284
36074 The Application of Conceptual Metaphor Theory to the Treatment of Depression

Authors: Uma Kanth, Amy Cook

Abstract:

Conceptual Metaphor Theory (CMT) proposes that metaphor is fundamental to human thought. CMT utilizes embodied cognition, in that emotions are conceptualized as effects on the body because of a coupling of one’s bodily experiences and one’s somatosensory system. Time perception is a function of embodied cognition and conceptual metaphor in that one’s experience of time is inextricably dependent on one’s perception of the world around them. A hallmark of depressive disorders is the distortion in one’s perception of time, such as neurological dysfunction and psychomotor retardation, and yet, to the author’s best knowledge, previous studies have not before linked CMT, embodied cognition, and depressive disorders. Therefore, the focus of this paper is the investigation of how the applications of CMT and embodied cognition (especially regarding time perception) have promise in improving current techniques to treat depressive disorders. This paper aimed to extend, through a thorough review of literature, the theoretical basis required to further research into CMT and embodied cognition’s application in treating time distortion related symptoms of depressive disorders. Future research could include the development of brain training technologies that capitalize on the principles of CMT, with the aim of promoting cognitive remediation and cognitive activation to mitigate symptoms of depressive disorder.

Keywords: depression, conceptual metaphor theory, embodied cognition, time

Procedia PDF Downloads 162
36073 Optimizing Energy Efficiency: Leveraging Big Data Analytics and AWS Services for Buildings and Industries

Authors: Gaurav Kumar Sinha

Abstract:

In an era marked by increasing concerns about energy sustainability, this research endeavors to address the pressing challenge of energy consumption in buildings and industries. This study delves into the transformative potential of AWS services in optimizing energy efficiency. The research is founded on the recognition that effective management of energy consumption is imperative for both environmental conservation and economic viability. Buildings and industries account for a substantial portion of global energy use, making it crucial to develop advanced techniques for analysis and reduction. This study sets out to explore the integration of AWS services with big data analytics to provide innovative solutions for energy consumption analysis. Leveraging AWS's cloud computing capabilities, scalable infrastructure, and data analytics tools, the research aims to develop efficient methods for collecting, processing, and analyzing energy data from diverse sources. The core focus is on creating predictive models and real-time monitoring systems that enable proactive energy management. By harnessing AWS's machine learning and data analytics capabilities, the research seeks to identify patterns, anomalies, and optimization opportunities within energy consumption data. Furthermore, this study aims to propose actionable recommendations for reducing energy consumption in buildings and industries. By combining AWS services with metrics-driven insights, the research strives to facilitate the implementation of energy-efficient practices, ultimately leading to reduced carbon emissions and cost savings. The integration of AWS services not only enhances the analytical capabilities but also offers scalable solutions that can be customized for different building and industrial contexts. The research also recognizes the potential for AWS-powered solutions to promote sustainable practices and support environmental stewardship.

Keywords: energy consumption analysis, big data analytics, AWS services, energy efficiency

Procedia PDF Downloads 64
36072 Study the Influence of Zn in Zn-MgFe₂O₄ Nanoparticles for CO₂ Gas Sensors

Authors: Maryam Kiani, Xiaoqin Tian, Yu Du, Abdul Basit Kiani

Abstract:

Zn-doped MgFe₂O₄ nanoparticles (ZMFO) (Zn=0.0, 0.2, 0.35, 0.5,) were prepared by Co-precipitation synthesis route. Structural and morphological analysis confirmed the formation of spinel cubic nanostructure by X-Ray diffraction (XRD) data shows high reactive surface area owing to a small average particle size of about 14 nm, which greatly influences the gas sensing mechanism. The gas sensing property of ZMFO for several gases was obtained by measuring the resistance as a function of different factors, like composition and response time in air and in the presence of gas. The sensitivity of spinel ferrite to gases CO₂, O₂, and O₂ at room temperature has been compared. The nanostructured ZMFO exhibited high sensitivity in the order of CO₂>O₂ and showed a good response time of (~1min) to CO₂, demonstrating that this expanse of research can be used in the field of gas sensors devising high sensitivity and good selectivity at 25°C.

Keywords: MgFe₂O₄ nanoparticles, hydrothermal synthesis, gas sensing properties, XRD

Procedia PDF Downloads 118
36071 Consumer Welfare in the Platform Economy

Authors: Prama Mukhopadhyay

Abstract:

Starting from transport to food, today’s world platform economy and digital markets have taken over almost every sphere of consumers’ lives. Sellers and buyers are getting connected through platforms, which is acting as an intermediary. It has made consumer’s life easier in terms of time, price, choice and other factors. Having said that, there are several concerns regarding platforms. There are competition law concerns like unfair pricing, deep discounting by the platforms which affect the consumer welfare. Apart from that, the biggest problem is lack of transparency with respect to the business models, how it operates, price calculation, etc. In most of the cases, consumers are unaware of how their personal data are being used. In most of the cases, they are unaware of how algorithm uses their personal data to determine the price of the product or even to show the relevant products using their previous searches. Using personal or non-personal data without consumer’s consent is a huge legal concern. In addition to this, another major issue lies with the question of liability. If a dispute arises, who will be responsible? The seller or the platform? For example, if someone ordered food through a food delivery app and the food was bad, in this situation who will be liable: the restaurant or the food delivery platform? In this paper, the researcher tries to examine the legal concern related to platform economy from the consumer protection and consumer welfare perspectives. The paper analyses the cases from different jurisdictions and approach taken by the judiciaries. The author compares the existing legislation of EU, US and other Asian Countries and tries to highlight the best practices.

Keywords: competition, consumer, data, platform

Procedia PDF Downloads 144
36070 Analysis of Strategies to Reduce Patients’ Disposition Holding Time from Emergency Department to Ward

Authors: Kamonwat Suksumek, Seeronk Prichanont

Abstract:

Access block refers to the situation where Emergency Department (ED) patients requiring hospital admission spend an unreasonable holding time in an ED because their access to a ward is blocked by the full utilization of the ward’s beds. Not only it delays the proper treatments required by the patients, but access block is also the cause of ED’s overcrowding. Clearly, access block is an inter-departmental problem that needs to be brought to management’s attention. This paper focuses on the analysis of strategies to address the access block problem, both in the operational and intermediate levels. These strategies were analyzed through a simulation model with a real data set from a university hospital in Thailand. The paper suggests suitable variable levels for each strategy so that the management will make the final decisions.

Keywords: access block, emergency department, health system analysis, simulation

Procedia PDF Downloads 409
36069 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification

Procedia PDF Downloads 464
36068 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing

Authors: Tolulope Aremu

Abstract:

The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.

Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods

Procedia PDF Downloads 18
36067 Influence of Deposition Temperature on Supercapacitive Properties of Reduced Graphene Oxide on Carbon Cloth: New Generation of Wearable Energy Storage Electrode Material

Authors: Snehal L. Kadam, Shriniwas B. Kulkarni

Abstract:

Flexible electrode material with high surface area and good electrochemical properties is the current trend captivating the researchers across globe for application in the next generation energy storage field. In the present work, crumpled sheet like reduced graphene oxide grown on carbon cloth by the hydrothermal method with a series of different deposition temperatures at fixed time. The influence of the deposition temperature on the structural, morphological, optical and supercapacitive properties of the electrode material was investigated by XRD, RAMAN, XPS, TEM, FE-SEM, UV-VISIBLE and electrochemical characterization techniques.The results show that the hydrothermally synthesized reduced graphene oxide on carbon cloth has sheet like mesoporous structure. The reduced graphene oxide material at 160°C exhibits the best supercapacitor performance, with a specific capacitance of 443 F/g at scan rate 5mV/sec. Moreover, stability studies show 97% capacitance retention over 1000 CV cycles. This result shows that hydrothermally synthesized RGO on carbon cloth is the potential electrode material and would be used in the next-generation wearable energy storage systems. The detailed analysis and results will be presented at the conference.

Keywords: graphene oxide, reduced graphene oxide, carbon cloth, deposition temperature, supercapacitor

Procedia PDF Downloads 190
36066 Utilization of Informatics to Transform Clinical Data into a Simplified Reporting System to Examine the Analgesic Prescribing Practices of a Single Urban Hospital’s Emergency Department

Authors: Rubaiat S. Ahmed, Jemer Garrido, Sergey M. Motov

Abstract:

Clinical informatics (CI) enables the transformation of data into a systematic organization that improves the quality of care and the generation of positive health outcomes.Innovative technology through informatics that compiles accurate data on analgesic utilization in the emergency department can enhance pain management in this important clinical setting. We aim to establish a simplified reporting system through CI to examine and assess the analgesic prescribing practices in the EDthrough executing a U.S. federal grant project on opioid reduction initiatives. Queried data points of interest from a level-one trauma ED’s electronic medical records were used to create data sets and develop informational/visual reporting dashboards (on Microsoft Excel and Google Sheets) concerning analgesic usage across several pre-defined parameters and performance metrics using CI. The data was then qualitatively analyzed to evaluate ED analgesic prescribing trends by departmental clinicians and leadership. During a 12-month reporting period (Dec. 1, 2020 – Nov. 30, 2021) for the ongoing project, about 41% of all ED patient visits (N = 91,747) were for pain conditions, of which 81.6% received analgesics in the ED and at discharge (D/C). Of those treated with analgesics, 24.3% received opioids compared to 75.7% receiving opioid alternatives in the ED and at D/C, including non-pharmacological modalities. Demographics showed among patients receiving analgesics, 56.7% were aged between 18-64, 51.8% were male, 51.7% were white, and 66.2% had government funded health insurance. Ninety-one percent of all opioids prescribed were in the ED, with intravenous (IV) morphine, IV fentanyl, and morphine sulfate immediate release (MSIR) tablets accounting for 88.0% of ED dispensed opioids. With 9.3% of all opioids prescribed at D/C, MSIR was dispensed 72.1% of the time. Hydrocodone, oxycodone, and tramadol usage to only 10-15% of the time, and hydromorphone at 0%. Of opioid alternatives, non-steroidal anti-inflammatory drugs were utilized 60.3% of the time, 23.5% with local anesthetics and ultrasound-guided nerve blocks, and 7.9% with acetaminophen as the primary non-opioid drug categories prescribed by ED providers. Non-pharmacological analgesia included virtual reality and other modalities. An average of 18.5 ED opioid orders and 1.9 opioid D/C prescriptions per 102.4 daily ED patient visits was observed for the period. Compared to other specialties within our institution, 2.0% of opioid D/C prescriptions are given by ED providers, compared to the national average of 4.8%. Opioid alternatives accounted for 69.7% and 30.3% usage, versus 90.7% and 9.3% for opioids in the ED and D/C, respectively.There is a pressing need for concise, relevant, and reliable clinical data on analgesic utilization for ED providers and leadership to evaluate prescribing practices and make data-driven decisions. Basic computer software can be used to create effective visual reporting dashboards with indicators that convey relevant and timely information in an easy-to-digest manner. We accurately examined our ED's analgesic prescribing practices using CI through dashboard reporting. Such reporting tools can quickly identify key performance indicators and prioritize data to enhance pain management and promote safe prescribing practices in the emergency setting.

Keywords: clinical informatics, dashboards, emergency department, health informatics, healthcare informatics, medical informatics, opioids, pain management, technology

Procedia PDF Downloads 144
36065 Mulberry Leave: An Efficient and Economical Adsorbent for Remediation of Arsenic (V) and Arsenic (III) Contaminated Water

Authors: Saima Q. Memon, Mazhar I. Khaskheli

Abstract:

The aim of present study was to investigate the efficiency of mulberry leaves for the removal of both arsenic (III) and arsenic (V) from aqueous medium. Batch equilibrium studies were carried out to optimize various parameters such as pH of metal ion solution, volume of sorbate, sorbent doze, and agitation speed and agitation time. Maximum sorption efficiency of mulberry leaves for As (III) and As (V) at optimum conditions were 2818 μg.g-1 and 4930 μg.g-1, respectively. The experimental data was a good fit to Freundlich and D-R adsorption isotherm. Energy of adsorption was found to be in the range of 3-6 KJ/mole suggesting the physical nature of process. Kinetic data followed the first order rate, Morris-Weber equations. Developed method was applied to remove arsenic from real water samples.

Keywords: arsenic removal, mulberry, adsorption isotherms, kinetics of adsorption

Procedia PDF Downloads 275
36064 Seismic Data Scaling: Uncertainties, Potential and Applications in Workstation Interpretation

Authors: Ankur Mundhra, Shubhadeep Chakraborty, Y. R. Singh, Vishal Das

Abstract:

Seismic data scaling affects the dynamic range of a data and with present day lower costs of storage and higher reliability of Hard Disk data, scaling is not suggested. However, in dealing with data of different vintages, which perhaps were processed in 16 bits or even 8 bits and are need to be processed with 32 bit available data, scaling is performed. Also, scaling amplifies low amplitude events in deeper region which disappear due to high amplitude shallow events that saturate amplitude scale. We have focused on significance of scaling data to aid interpretation. This study elucidates a proper seismic loading procedure in workstations without using default preset parameters as available in most software suites. Differences and distribution of amplitude values at different depth for seismic data are probed in this exercise. Proper loading parameters are identified and associated steps are explained that needs to be taken care of while loading data. Finally, the exercise interprets the un-certainties which might arise when correlating scaled and unscaled versions of seismic data with synthetics. As, seismic well tie correlates the seismic reflection events with well markers, for our study it is used to identify regions which are enhanced and/or affected by scaling parameter(s).

Keywords: clipping, compression, resolution, seismic scaling

Procedia PDF Downloads 469
36063 The Effect of Mist Cooling on Sexual Behavior and Semen Quality of Sahiwal Bulls

Authors: Khalid Ahmed Elrabie Abdelrasoul

Abstract:

The present study was carried out on Sahiwal cattle bulls maintained at the Artificial Breeding Complex, NDRI, Karnal, Hayana, India, to assess the effect of cooling using mist cooling and fanning on Sahiwal bulls in the dry hot summer season. Fourteen Sahiwal bulls were divided into two groups of seven each. Sexual behavior and semen quality traits considered were: Reaction time (RT), Dismounting time (DMT), Total time taken in mounts (TTTM), Flehmen response (FR), Erection Score (ES), Protrusion Score (PS), Intensity of thrust (ITS), Temperament Score (TS), Libido Score (LS), Semen volume, Physical appearance, Mass activity, Initial progressive motility, Non-eosinophilic spermatozoa count (NESC) and post thaw motility percent. Data were analyzed by least squares technique. Group-1 was the control, whereas group-2 (treatment group) bulls were exposed to mist cooling and fanning (thrice a day 15 min each) in the dry hot summer season. Group-2 showed significantly (p < 0.01) higher value in DMT (sec), ES, PS, ITS, LS, semen volume (ml), semen color density, mass activity, initial motility, progressive motility and live sperm.

Keywords: mist cooling, Sahiwal bulls, semen quality, sexual behavior

Procedia PDF Downloads 320
36062 Optimization of Marine Waste Collection Considering Dynamic Transport and Ship’s Wake Impact

Authors: Guillaume Richard, Sarra Zaied

Abstract:

Marine waste quantities increase more and more, 5 million tons of plastic waste enter the ocean every year. Their spatiotemporal distribution is never homogeneous and depends mainly on the hydrodynamic characteristics of the environment, as well as the size and location of the waste. As part of optimizing collect of marine plastic wastes, it is important to measure and monitor their evolution over time. In this context, diverse studies have been dedicated to describing waste behavior in order to identify its accumulation in ocean areas. None of the existing tools which track objects at sea had the objective of tracking down a slick of waste. Moreover, the applications related to marine waste are in the minority compared to rescue applications or oil slicks tracking applications. These approaches are able to accurately simulate an object's behavior over time but not during the collection mission of a waste sheet. This paper presents numerical modeling of a boat’s wake impact on the floating marine waste behavior during a collection mission. The aim is to predict the trajectory of a marine waste slick to optimize its collection using meteorological data of ocean currents, wind, and possibly waves. We have made the choice to use Ocean Parcels which is a Python library suitable for trajectoring particles in the ocean. The modeling results showed the important role of advection and diffusion processes in the spatiotemporal distribution of floating plastic litter. The performance of the proposed method was evaluated on real data collected from the Copernicus Marine Environment Monitoring Service (CMEMS). The results of the evaluation in Cape of Good Hope (South Africa) prove that the proposed approach can effectively predict the position and velocity of marine litter during collection, which allowed for optimizing time and more than $90\%$ of the amount of collected waste.

Keywords: marine litter, advection-diffusion equation, sea current, numerical model

Procedia PDF Downloads 87
36061 Real-Time Gesture Recognition System Using Microsoft Kinect

Authors: Ankita Wadhawan, Parteek Kumar, Umesh Kumar

Abstract:

Gesture is any body movement that expresses some attitude or any sentiment. Gestures as a sign language are used by deaf people for conveying messages which helps in eliminating the communication barrier between deaf people and normal persons. Nowadays, everybody is using mobile phone and computer as a very important gadget in their life. But there are some physically challenged people who are blind/deaf and the use of mobile phone or computer like device is very difficult for them. So, there is an immense need of a system which works on body gesture or sign language as input. In this research, Microsoft Kinect Sensor, SDK V2 and Hidden Markov Toolkit (HTK) are used to recognize the object, motion of object and human body joints through Touch less NUI (Natural User Interface) in real-time. The depth data collected from Microsoft Kinect has been used to recognize gestures of Indian Sign Language (ISL). The recorded clips are analyzed using depth, IR and skeletal data at different angles and positions. The proposed system has an average accuracy of 85%. The developed Touch less NUI provides an interface to recognize gestures and controls the cursor and click operation in computer just by waving hand gesture. This research will help deaf people to make use of mobile phones, computers and socialize among other persons in the society.

Keywords: gesture recognition, Indian sign language, Microsoft Kinect, natural user interface, sign language

Procedia PDF Downloads 306
36060 Advanced Stability Criterion for Time-Delayed Systems of Neutral Type and Its Application

Authors: M. J. Park, S. H. Lee, C. H. Lee, O. M. Kwon

Abstract:

This paper investigates stability problem for linear systems of neutral type with time-varying delay. By constructing various Lyapunov-Krasovskii functional, and utilizing some mathematical techniques, the sufficient stability conditions for the systems are established in terms of linear matrix inequalities (LMIs), which can be easily solved by various effective optimization algorithms. Finally, some illustrative examples are given to show the effectiveness of the proposed criterion.

Keywords: neutral systems, time-delay, stability, Lyapnov method, LMI

Procedia PDF Downloads 348
36059 In-situ Acoustic Emission Analysis of a Polymer Electrolyte Membrane Water Electrolyser

Authors: M. Maier, I. Dedigama, J. Majasan, Y. Wu, Q. Meyer, L. Castanheira, G. Hinds, P. R. Shearing, D. J. L. Brett

Abstract:

Increasing the efficiency of electrolyser technology is commonly seen as one of the main challenges on the way to the Hydrogen Economy. There is a significant lack of understanding of the different states of operation of polymer electrolyte membrane water electrolysers (PEMWE) and how these influence the overall efficiency. This in particular means the two-phase flow through the membrane, gas diffusion layers (GDL) and flow channels. In order to increase the efficiency of PEMWE and facilitate their spread as commercial hydrogen production technology, new analytic approaches have to be found. Acoustic emission (AE) offers the possibility to analyse the processes within a PEMWE in a non-destructive, fast and cheap in-situ way. This work describes the generation and analysis of AE data coming from a PEM water electrolyser, for, to the best of our knowledge, the first time in literature. Different experiments are carried out. Each experiment is designed so that only specific physical processes occur and AE solely related to one process can be measured. Therefore, a range of experimental conditions is used to induce different flow regimes within flow channels and GDL. The resulting AE data is first separated into different events, which are defined by exceeding the noise threshold. Each acoustic event consists of a number of consequent peaks and ends when the wave diminishes under the noise threshold. For all these acoustic events the following key attributes are extracted: maximum peak amplitude, duration, number of peaks, peaks before the maximum, average intensity of a peak and time till the maximum is reached. Each event is then expressed as a vector containing the normalized values for all criteria. Principal Component Analysis is performed on the resulting data, which orders the criteria by the eigenvalues of their covariance matrix. This can be used as an easy way of determining which criteria convey the most information on the acoustic data. In the following, the data is ordered in the two- or three-dimensional space formed by the most relevant criteria axes. By finding spaces in the two- or three-dimensional space only occupied by acoustic events originating from one of the three experiments it is possible to relate physical processes to certain acoustic patterns. Due to the complex nature of the AE data modern machine learning techniques are needed to recognize these patterns in-situ. Using the AE data produced before allows to train a self-learning algorithm and develop an analytical tool to diagnose different operational states in a PEMWE. Combining this technique with the measurement of polarization curves and electrochemical impedance spectroscopy allows for in-situ optimization and recognition of suboptimal states of operation.

Keywords: acoustic emission, gas diffusion layers, in-situ diagnosis, PEM water electrolyser

Procedia PDF Downloads 155
36058 Phenols and Manganese Removal from Landfill Leachate and Municipal Waste Water Using the Constructed Wetland

Authors: Amin Mojiri, Lou Ziyang

Abstract:

Constructed wetland (CW) is a reasonable method to treat waste water. Current study was carried out to co-treat landfill leachate and domestic waste water using a CW system. Typha domingensis was transplanted to CW, which encloses two substrate layers of adsorbents named ZELIAC and zeolite. Response surface methodology and central composite design were employed to evaluate experimental data. Contact time (h) and leachate to waste water mixing ratio (%; v/v) were selected as independent factors. Phenols and manganese removal were selected as dependent responses. At optimum contact time (48.7 h) and leachate to waste water mixing ratio (20.0%), removal efficiencies of phenols and manganese removal efficiencies were 90.5%, and 89.4%, respectively.

Keywords: constructed wetland, Manganese, phenols, Thypha domingensis

Procedia PDF Downloads 321
36057 Association of Social Data as a Tool to Support Government Decision Making

Authors: Diego Rodrigues, Marcelo Lisboa, Elismar Batista, Marcos Dias

Abstract:

Based on data on child labor, this work arises questions about how to understand and locate the factors that make up the child labor rates, and which properties are important to analyze these cases. Using data mining techniques to discover valid patterns on Brazilian social databases were evaluated data of child labor in the State of Tocantins (located north of Brazil with a territory of 277000 km2 and comprises 139 counties). This work aims to detect factors that are deterministic for the practice of child labor and their relationships with financial indicators, educational, regional and social, generating information that is not explicit in the government database, thus enabling better monitoring and updating policies for this purpose.

Keywords: social data, government decision making, association of social data, data mining

Procedia PDF Downloads 369
36056 Time Variance and Spillover Effects between International Crude Oil Price and Ten Emerging Equity Markets

Authors: Murad A. Bein

Abstract:

This paper empirically examines the time-varying relationship and spillover effects between the international crude oil price and ten emerging equity markets, namely three oil-exporting countries (Brazil, Mexico, and Russia) and seven Central and Eastern European (CEE) countries (Bulgaria, Croatia, Czech Republic, Hungary, Poland, Romania, and Slovakia). The results revealed that there are spillover effects from oil markets into almost all emerging equity markets save Slovakia. Besides, the oil supply glut had a homogenous effect on the emerging markets, both net oil-exporting, and oil-importing countries (CEE). Further, the time variance drastically increased during financial turmoil. Indeed, the time variance remained high from 2009 to 2012 in response to aggregate demand shocks (global financial crisis and Eurozone debt crisis) and quantitative easing measures. Interestingly, the time variance was slightly higher for the oil-exporting countries than for some of the CEE countries. Decision-makers in emerging economies should therefore seek policy coordination when dealing with financial turmoil.

Keywords: crude oil, spillover effects, emerging equity, time-varying, aggregate demand shock

Procedia PDF Downloads 124
36055 Low Cost Webcam Camera and GNSS Integration for Updating Home Data Using AI Principles

Authors: Mohkammad Nur Cahyadi, Hepi Hapsari Handayani, Agus Budi Raharjo, Ronny Mardianto, Daud Wahyu Imani, Arizal Bawazir, Luki Adi Triawan

Abstract:

PDAM (local water company) determines customer charges by considering the customer's building or house. Charges determination significantly affects PDAM income and customer costs because the PDAM applies a subsidy policy for customers classified as small households. Periodic updates are needed so that pricing is in line with the target. A thorough customer survey in Surabaya is needed to update customer building data. However, the survey that has been carried out so far has been by deploying officers to conduct one-by-one surveys for each PDAM customer. Surveys with this method require a lot of effort and cost. For this reason, this research offers a technology called moblie mapping, a mapping method that is more efficient in terms of time and cost. The use of this tool is also quite simple, where the device will be installed in the car so that it can record the surrounding buildings while the car is running. Mobile mapping technology generally uses lidar sensors equipped with GNSS, but this technology requires high costs. In overcoming this problem, this research develops low-cost mobile mapping technology using a webcam camera sensor added to the GNSS and IMU sensors. The camera used has specifications of 3MP with a resolution of 720 and a diagonal field of view of 78⁰. The principle of this invention is to integrate four camera sensors, a GNSS webcam, and GPS to acquire photo data, which is equipped with location data (latitude, longitude) and IMU (roll, pitch, yaw). This device is also equipped with a tripod and a vacuum cleaner to attach to the car's roof so it doesn't fall off while running. The output data from this technology will be analyzed with artificial intelligence to reduce similar data (Cosine Similarity) and then classify building types. Data reduction is used to eliminate similar data and maintain the image that displays the complete house so that it can be processed for later classification of buildings. The AI method used is transfer learning by utilizing a trained model named VGG-16. From the analysis of similarity data, it was found that the data reduction reached 50%. Then georeferencing is done using the Google Maps API to get address information according to the coordinates in the data. After that, geographic join is done to link survey data with customer data already owned by PDAM Surya Sembada Surabaya.

Keywords: mobile mapping, GNSS, IMU, similarity, classification

Procedia PDF Downloads 84
36054 Outlier Detection in Stock Market Data using Tukey Method and Wavelet Transform

Authors: Sadam Alwadi

Abstract:

Outlier values become a problem that frequently occurs in the data observation or recording process. Thus, the need for data imputation has become an essential matter. In this work, it will make use of the methods described in the prior work to detect the outlier values based on a collection of stock market data. In order to implement the detection and find some solutions that maybe helpful for investors, real closed price data were obtained from the Amman Stock Exchange (ASE). Tukey and Maximum Overlapping Discrete Wavelet Transform (MODWT) methods will be used to impute the detect the outlier values.

Keywords: outlier values, imputation, stock market data, detecting, estimation

Procedia PDF Downloads 81
36053 Variation of Phytoplankton Biomass in the East China Sea Based on MODIS Data

Authors: Yumei Wu, Xiaoyan Dang, Shenglong Yang, Shengmao Zhang

Abstract:

The East China Sea is one of four main seas in China, where there are many fishery resources. Some important fishing grounds, such as Zhousan fishing ground important to society. But the eco-environment is destroyed seriously due to the rapid developing of industry and economy these years. In this paper, about twenty-year satellite data from MODIS and the statistical information of marine environment from the China marine environmental quality bulletin were applied to do the research. The chlorophyll-a concentration data from MODIS were dealt with in the East China Sea and then used to analyze the features and variations of plankton biomass in recent years. The statistics method was used to obtain their spatial and temporal features. The plankton biomass in the Yangtze River estuary and the Taizhou region were highest. The high phytoplankton biomass usually appeared between the 88th day to the 240th day (end-March - August). In the peak time of phytoplankton blooms, the Taizhou islands was the earliest, and the South China Sea was the latest. The intensity and period of phytoplankton blooms were connected with the global climate change. This work give us confidence to use satellite data to do more researches about the China Sea, and it also provides some help for us to know about the eco-environmental variation of the East China Sea and regional effect from global climate change.

Keywords: the East China Sea, phytoplankton biomass, temporal and spatial variation, phytoplankton bloom

Procedia PDF Downloads 329
36052 Comparison of Interactive Performance of Clicking Tasks Using Cursor Control Devices under Different Feedback Modes

Authors: Jinshou Shi, Xiaozhou Zhou, Yingwei Zhou, Tuoyang Zhou, Ning Li, Chi Zhang, Zhanshuo Zhang, Ziang Chen

Abstract:

In order to select the optimal interaction method for common computer click tasks, the click experiment test adopts the ISO 9241-9 task paradigm, using four common operations: mouse, trackball, touch, and eye control under visual feedback, auditory feedback, and no feedback. Through data analysis of various parameters of movement time, throughput, and accuracy, it is found that the movement time of touch-control is the shortest, the operation accuracy and throughput are higher than others, and the overall operation performance is the best. In addition, the motion time of the click operation with auditory feedback is significantly lower than the other two feedback methods in each operation mode experiment. In terms of the size of the click target, it is found that when the target is too small (less than 14px), the click performance of all aspects is reduced, so it is proposed that the design of the interface button should not be less than 28px. In this article, we discussed in detail the advantages and disadvantages of the operation and feedback methods, and the results of the discussion of the click operation can be applied to the design of the buttons in the interactive interface.

Keywords: cursor control performance, feedback, human computer interaction, throughput

Procedia PDF Downloads 196
36051 150 KVA Multifunction Laboratory Test Unit Based on Power-Frequency Converter

Authors: Bartosz Kedra, Robert Malkowski

Abstract:

This paper provides description and presentation of laboratory test unit built basing on 150 kVA power frequency converter and Simulink RealTime platform. Assumptions, based on criteria which load and generator types may be simulated using discussed device, are presented, as well as control algorithm structure. As laboratory setup contains transformer with thyristor controlled tap changer, a wider scope of setup capabilities is presented. Information about used communication interface, data maintenance, and storage solution as well as used Simulink real-time features is presented. List and description of all measurements are provided. Potential of laboratory setup modifications is evaluated. For purposes of Rapid Control Prototyping, a dedicated environment was used Simulink RealTime. Therefore, load model Functional Unit Controller is based on a PC computer with I/O cards and Simulink RealTime software. Simulink RealTime was used to create real-time applications directly from Simulink models. In the next step, applications were loaded on a target computer connected to physical devices that provided opportunity to perform Hardware in the Loop (HIL) tests, as well as the mentioned Rapid Control Prototyping process. With Simulink RealTime, Simulink models were extended with I/O cards driver blocks that made automatic generation of real-time applications and performing interactive or automated runs on a dedicated target computer equipped with a real-time kernel, multicore CPU, and I/O cards possible. Results of performed laboratory tests are presented. Different load configurations are described and experimental results are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area and arbitrary active and reactive power regulation basing on defined schedule.

Keywords: MATLAB, power converter, Simulink Real-Time, thyristor-controlled tap changer

Procedia PDF Downloads 323
36050 A Probabilistic Study on Time to Cover Cracking Due to Corrosion

Authors: Chun-Qing Li, Hassan Baji, Wei Yang

Abstract:

Corrosion of steel in reinforced concrete structures is a major problem worldwide. The volume expansion of corrosion products causes concrete cover cracking, which could lead to delamination of concrete cover. The time to cover cracking plays a key role to the assessment of serviceability of reinforced concrete structures subjected to corrosion. Many analytical, numerical, and empirical models have been developed to predict the time to cracking initiation due to corrosion. In this study, a numerical model based on finite element modeling of corrosion-induced cracking process is used. In order to predict the service life based on time to cover initiation, the numerical approach is coupled with a probabilistic procedure. In this procedure, all the influential factors affecting time to cover cracking are modeled as random variables. The results show that the time to cover cracking is highly variables. It is also shown that rust product expansion ratio and the size of more porous concrete zone around the rebar are the most influential factors in predicting service life of corrosion-affected structures.

Keywords: corrosion, crack width, probabilistic, service life

Procedia PDF Downloads 207
36049 Periodical System of Isotopes

Authors: Andriy Magula

Abstract:

With the help of a special algorithm being the principle of multilevel periodicity, the periodic change of properties at the nuclear level of chemical elements was discovered and the variant for the periodic system of isotopes was presented. The periodic change in the properties of isotopes, as well as the vertical symmetry of subgroups, was checked for consistency in accordance with the following ten types of experimental data: mass ratio of fission fragments; quadrupole moment values; magnetic moment; lifetime of radioactive isotopes; neutron scattering; thermal neutron radiative capture cross-sections (n, γ); α-particle yield cross-sections (n, α); isotope abundance on Earth, in the Solar system and other stellar systems; features of ore formation and stellar evolution. For all ten cases, the correspondences for the proposed periodic structure of the nucleus were obtained. The system was formed in the usual 2D table, similar to the periodic system of elements, and the mass series of isotopes was divided into 8 periods and 4 types of ‘nuclear’ orbitals: sn, dn, pn, fn. The origin of ‘magic’ numbers as a set of filled charge shells of the nucleus was explained. Due to the isotope system, the periodic structure is shown at a new level of the universe, and the prospects of its practical use are opened up.

Keywords: periodic system, isotope, period, subgroup, “nuclear” orbital, nuclear reaction

Procedia PDF Downloads 17