Search results for: dye degradation/removal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3116

Search results for: dye degradation/removal

356 Phytoremediation Alternative for Landfill Leachate Sludges Doña Juana Bogotá D.C. Colombia Treatment

Authors: Pinzón Uribe Luis Felipe, Chávez Porras Álvaro, Ruge Castellanos Liliana Constanza

Abstract:

According to global data, solid waste management of has low economic investment for its management in underdeveloped countries; being the main factor the advanced technologies acknowledge for proper operation and at the same time the technical development. Has been evidenced that communities have a distorted perception of the role and legalized final destinations for waste or "Landfill" places specific management; influenced primarily by their physical characteristics and the information that the media provide of these, as well as their wrong association with "open dumps". One of the major inconveniences in these landfills is the leachate sludge management from treatment plants; as this exhibit a composition highly contaminating (physical, chemical and biological) for the natural environment due to improper handling and disposal. This is the case Landfill Doña Juana (RSDJ), Bogotá, Colombia, considered among the largest in South America; where management problems have persisted for decades, since its creation being definitive on the concept that society has acquired about this form of waste disposal and improper leachate handling. Within this research process for treating phytoremediation alternatives were determined by using plants that are able to degrade heavy metals contained in these; allowing the resulting sludge to be used as a seal in the final landfill cover; within a restoration process, providing option to solve the landscape contamination problem, as well as in the communities perception and conflicts that generates landfill. For the project chemical assays were performed in sludge leachate that allowed the characterization of metals such as chromium (Cr), lead (Pb), arsenic (As) and mercury (Hg), in order to meet the amount in the biosolids regard to the provisions of the USEPA 40 CFR 503. The evaluations showed concentrations of 102.2 mg / kg of Cr, 0.49 mg / kg Pb, 0.390 mg / kg of As and 0.104 mg / kg of Hg; being lower than of the standards. A literature review on native plant species suitable for an alternative process of phytoremediation, these metals degradation capable was developed. Concluding that among them, Vetiveria zizanioides, Eichhornia crassipes and Limnobium laevigatum, for their hiperacumulativas in their leaves, stems and roots characteristics may allow these toxic elements reduction of in the environment, improving the outlook for disposal.

Keywords: health, filling slurry of leachate, heavy metals, phytoremediation

Procedia PDF Downloads 308
355 Do the Health Benefits of Oil-Led Economic Development Outweigh the Potential Health Harms from Environmental Pollution in Nigeria?

Authors: Marian Emmanuel Okon

Abstract:

Introduction: The Niger Delta region of Nigeria has a vast reserve of oil and gas, which has globally positioned the nation as the sixth largest exporter of crude oil. Production rapidly rose following oil discovery. In most oil producing nations of the world, the wealth generated from oil production and export has propelled economic advancement, enabling the development of industries and other relevant infrastructures. Therefore, it can be assumed that majority of the oil resource such as Nigeria’s, has the potential to improve the health of the population via job creation and derived revenues. However, the health benefits of this economic development might be offset by the environmental consequences of oil exploitation and production. Objective: This research aims to evaluate the balance between the health benefits of oil-led economic development and harmful environmental consequences of crude oil exploitation in Nigeria. Study Design: A pathway has been designed to guide data search and this study. The model created will assess the relationship between oil-led economic development and population health development via job creation, improvement of education, development of infrastructure and other forms of development as well as through harmful environmental consequences from oil activities. Data/Emerging Findings: Diverse potentially suitable datasets which are at different geographical scales have been identified, obtained or applied for and the dataset from the World Bank has been the most thoroughly explored. This large dataset contains information that would enable the longitudinal assessment of both the health benefits and harms from oil exploitation in Nigeria as well as identify the disparities that exist between the communities, states and regions. However, these data do not extend far back enough in time to capture the start of crude oil production. Thus, it is possible that the maximum economic benefits and health harms could be missed. To deal with this shortcoming, the potential for a comparative study with countries like United Kingdom, Morocco and Cote D’ivoire has also been taken into consideration, so as to evaluate the differences between these countries as well as identify the areas of improvement in Nigeria’s environmental and health policies. Notwithstanding, these data have shown some differences in each country’s economic, environmental and health state over time as well as a corresponding summary statistics. Conclusion: In theory, the beneficial effects of oil exploitation to the health of the population may be substantial as large swaths of the ‘wider determinants’ of population heath are influenced by the wealth of a nation. However, if uncontrolled, the consequences from environmental pollution and degradation may outweigh these benefits. Thus, there is a need to address this, in order to improve environmental and population health in Nigeria.

Keywords: environmental pollution, health benefits, oil-led economic development, petroleum exploitation

Procedia PDF Downloads 307
354 The Use of Geographic Information System in Spatial Location of Waste Collection Points and the Attendant Impacts in Bida Urban Centre, Nigeria

Authors: Daramola Japheth, Tabiti S. Tabiti, Daramola Elizabeth Lara, Hussaini Yusuf Atulukwu

Abstract:

Bida urban centre is faced with solid waste management problems which are evident in the processes of waste generation, onsite storage, collection, transfer and transport, processing and disposal of solid waste. As a result of this the urban centre is defaced with litters of garbage and offensive odours due to indiscriminate dumping of refuse within the neighborhood. The partial removal of the fuel subsidy by the Federal Government in January 2012 leads to the formation of Subsidy Reinvestment Programmes (SURE-P), the Federal Government’s share is 41 per cent of the savings while the States and Local Government shared the remaining 59 percent. The SURE-P Committee in carrying out the mandate entrusted upon it by the President by identifying few critical infrastructure and social Safety nets that will ameliorate the sufferings of Nigerians. Waste disposal programme as an aspect of Solid waste management is one of the areas of focus for Niger State SURE-programmes incorporated under Niger State Environmental Protection Agency. The emergence of this programme as related to waste management in Bida has left behind a huge refuse spots along major corridors leading to a serious state of mess. Major roads within the LGA is now turned to dumping site, thereby obstructing traffic movements, while the aesthetic nature of the town became something else with offensive odours all over. This paper however wishes to underscore the use of geographical Information System in identifying solid waste sports towards effective solid waste management in the Bida urban centre. The paper examined the spatial location of dumping points and its impact on the environment. Hand held Global Position System was use to pick the dumping points location; where a total number of 91 dumping points collected were uploaded to ArcGis 10.2 for analysis. Interview method was used to derive information from households living near the dumping site. It was discovered that the people now have to cope with offensive odours, rodents invasion, dog and cats coming around the house as a result of inadequate and in prompt collection of waste around the neighborhood. The researchers hereby recommend that more points needs to be created with prompt collections of waste within the neighborhood by the necessary SURE - P agencies.

Keywords: dumping site, neighborhood, refuse, waste

Procedia PDF Downloads 510
353 Scaling out Sustainable Land Use Systems in Colombia: Some Insights and Implications from Two Regional Case Studies

Authors: Martha Lilia Del Rio Duque, Michelle Bonatti, Katharina Loehr, Marcos Lana, Tatiana Rodriguez, Stefan Sieber

Abstract:

Nowadays, most agricultural practices can reduce the ability of ecosystems to provide goods and services. To enhance environmentally friendly food production and to maximize social and economic benefits, sustainable land use systems (SLUS) are one of the most critical strategies increasingly/strongly promoted by donors organizations, international agencies, and policymakers. This process involves the question of how SLUS can be scaled out also large-scale landscapes and not merely isolated experiments. As SLUS are context-specific strategies, diffusion and replication of successful SLUS in Colombia required the identification of main factors that facilitate this scaling out process. We applied a case study approach to investigate the scaling out process of SLUS in cocoa and livestock sector within peacebuilding territories in Colombia, specifically, in Cesar and Caqueta region. These two regions are contrasting, but both have a current trend of increasing land degradation. Presently in Colombia, Caqueta is one of the most deforested departments, and Cesar has some most degraded soils. Following a qualitative research approach, 19 semi-structured interviews and 2 focus groups were conducted with agroforestry experts in both regions to analyze (1) what does it mean a sustainable land use system in Cocoa/Livestock, specifically in Caqueta or Cesar and (2) to identify the key elements at the level of the following dimensions: biophysical, economic and profitability, market, social, policy and institutions that can explain how and why SLUS are replicated and spread among more producers. The Interviews were coded and analyzed using MAXQDA to identify, analyze and report patterns (themes) within data. As the results show, key themes, among which: premium market, solid regional markets and price stability, water availability and management, generational renewal, land use knowledge and diversification, producer organization and certifications are crucial to understand how the SLUS can have an impact across large-scale landscapes and how the scaling out process can be set up best in order to be successful across different contexts. The analysis further reveals which key factors might affect SLUS efficiency.

Keywords: agroforestry, cocoa sector, Colombia, livestock sector, sustainable land use system

Procedia PDF Downloads 133
352 Impact on the Yield of Flavonoid and Total Phenolic Content from Pomegranate Fruit by Different Extraction Methods

Authors: Udeshika Yapa Bandara, Chamindri Witharana, Preethi Soysa

Abstract:

Pomegranate fruits are used in cancer treatment in Ayurveda, Sri Lanka. Due to prevailing therapeutic effects of phytochemicals, this study was focus on anti-cancer properties of the constituents in the parts of Pomegranate fruit. Furthermore, the method of extraction, plays a crucial step of the phytochemical analysis. Therefore, this study was focus on different extraction methods. Five techniques were involved for the peel and the pericarp to evaluate the most effective extraction method; Boiling with electric burner (BL), Sonication (SN), Microwaving (MC), Heating in a 50°C water bath (WB) and Sonication followed by Microwaving (SN-MC). The presence of polyphenolic and flavonoid contents were evaluated to recognize the best extraction method for polyphenols. The total phenolic content was measured spectrophotometrically by Folin-Ciocalteu method and expressed as Gallic Acid Equivalents (w/w% GAE). Total flavonoid content was also determined spectrophotometrically with Aluminium chloride colourimetric assay and expressed as Quercetin Equivalents (w/w % QE). Pomegranate juice was taken as fermented juice (with Saccharomyces bayanus) and fresh juice. Powdered seeds were refluxed, filtered and freeze-dried. 2g of freeze-dried powder of each component was dissolved in 100ml of De-ionized water for extraction. For the comparison of antioxidant activity and total phenol content, the polyphenols were removed by the Polyvinylpolypyrrolidone (PVVP) column and fermented and fresh juice were tested for the 1, 1-diphenyl-2-picrylhydrazil (DPPH) radical scavenging activity, before and after the removal of polyphenols. For the peel samples of Pomegranate fruit, total phenol and flavonoid contents were high in Sonication (SN). In pericarp, total phenol and flavonoid contents were highly exhibited in method of Sonication (SN). A significant difference was observed (P< 0.05) in total phenol and flavonoid contents, between five extraction methods for both peel and pericarp samples. Fermented juice had a greatest polyphenolic and flavonoid contents comparative to fresh juice. After removing polyphenols of fermented juice and fresh juice using Polyvinyl polypyrrolidone (PVVP) column, low antioxidant activity was resulted for DPPH antioxidant activity assay. Seeds had a very low total phenol and flavonoid contents according to the results. Although, Pomegranate peel is the main waste component of the fruit, it has an excellent polyphenolic and flavonoid contents compared to other parts of the fruit, devoid of the method of extraction. Polyphenols play a major role for antioxidant activity.

Keywords: antioxidant activity, flavonoids, polyphenols, pomegranate

Procedia PDF Downloads 144
351 Atomic Layer Deposition of Metal Oxide Inverse Opals: A Tailorable Platform for Unprecedented Photocatalytic Performance

Authors: Hamsasew Hankebo Lemago, Dóra Hessz, Zoltán Erdélyi, Imre Miklós Szilágyi

Abstract:

Metal oxide inverse opals are a unique class of photocatalysts with a hierarchical structure that mimics the natural opal gemstone. They are composed of a network of interconnected pores, which provides a large surface area and efficient pathways for the transport of light and reactants. Atomic layer deposition (ALD) is a versatile technique for the synthesis of high-precision metal oxide thin films, including inverse opals. ALD allows for precise control over the thickness, composition, and morphology of the synthesized films, making it an ideal technique for the fabrication of photocatalysts with tailored properties. In this study, we report the synthesis of TiO2, ZnO, and Al2O3 inverse opal photocatalysts using thermal or plasma-enhanced ALD. The synthesized photocatalysts were characterized using a variety of techniques, including scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL), ellipsometry, and UV-visible spectroscopy. The results showed that the ALD-synthesized metal oxide inverse opals had a highly ordered structure and a tunable pore size. The PL spectroscopy results showed low recombination rates of photogenerated electron-hole pairs, while the ellipsometry and UV-visible spectroscopy results showed tunable optical properties and band gap energies. The photocatalytic activity of the samples was evaluated by the degradation of methylene blue under visible light irradiation. The results showed that the ALD-synthesized metal oxide inverse opals exhibited high photocatalytic activity, even under visible light irradiation. The composites photocatalysts showed even higher activity than the individual metal oxide inverse opals. The enhanced photocatalytic activity of the composites can be attributed to the synergistic effect between the different metal oxides. For example, Al2O3 can act as a charge carrier scavenger, which can reduce the recombination of photogenerated electron-hole pairs. The ALD-synthesized metal oxide inverse opals and their composites are promising photocatalysts for a variety of applications, such as wastewater treatment, air purification, and energy production. For example, they can be used to remove organic pollutants from wastewater, decompose harmful gases in the air, and produce hydrogen fuel from water.

Keywords: ALD, metal oxide inverse opals, composites, photocatalysis

Procedia PDF Downloads 59
350 Assessment of Groundwater Quality in Karakulam Grama Panchayath in Thiruvananthapuram, Kerala State, South India

Authors: D. S. Jaya, G. P. Deepthi

Abstract:

Groundwater is vital to the livelihoods and health of the majority of the people since it provides almost the entire water resource for domestic, agricultural and industrial uses. Groundwater quality comprises the physical, chemical, and bacteriological qualities. The present investigation was carried out to determine the physicochemical and bacteriological quality of the ground water sources in the residential areas of Karakulam Grama Panchayath in Thiruvananthapuram district, Kerala state in India. Karakulam is located in the eastern suburbs of Thiruvananthapuram city. The major drinking water source of the residents in the study area are wells. The present study aims to assess the portability and irrigational suitability of groundwater in the study area. The water samples were collected from randomly selected dug wells and bore wells in the study area during post monsoon and pre-monsoon seasons of the year 2014 after a preliminary field survey. The physical, chemical and bacteriological parameters of the water samples were analysed following standard procedures. The concentration of heavy metals (Cd, Pb, and Mn) in the acid digested water samples were determined by using an Atomic Absorption Spectrophotometer. The results showed that the pH of well water samples ranged from acidic to the alkaline level. In the majority of well water samples ( > 54%) the iron and magnesium content were found high in both the seasons studied, and the values were above the permissible limits of WHO drinking water quality standards. Bacteriological analyses showed that 63% of the wells were contaminated with total coliforms in both the seasons studied. Irrigational suitability of groundwater was assessed by determining the chemical indices like Sodium Percentage (%Na), Sodium Adsorption Ratio (SAR), Residual Sodium Carbonate (RSC), Permeability Index (PI), and the results indicate that the well water in the study area is good for irrigation purposes. Therefore, the study reveals the degradation of drinking water quality groundwater sources in Karakulam Grama Panchayath in Thiruvananthapuram District, Kerala in terms of its chemical and bacteriological characteristics and is not potable without proper treatment. In the study, more than 1/3rd of the wells tested were positive for total coliforms, and the bacterial contamination may pose threats to public health. The study recommends the need for periodic well water quality monitoring in the study area and to conduct awareness programs among the residents.

Keywords: bacteriological, groundwater, irrigational suitability, physicochemical, portability

Procedia PDF Downloads 247
349 The Impact of Land Use Ex-Concession to the Environment in Dharmasraya District, West Sumatra Province, Indonesia

Authors: Yurike, Yonariza, Rudi Febriamansyah, Syafruddin Karimi

Abstract:

Forest is a natural resource that has an important function as a supporting element of human life. Forest degradation enormous impact on global warming is a reality we have experienced together, that disruption of ecosystems, extreme weather conditions, disruption of water management system watersheds and the threat of natural disasters as floods, landslides and droughts, even disruption food security. Dharmasraya is a district in the province of West Sumatra, which has an area of 92.150 ha of forest, which is largely a former production forest concessions (Forest Management Rights) which is supposed to be a secondary forest. This study answers about the impact of land use in the former concession area Dharmasraya on the environment. The methodology used is the household survey, key informants, and satellite data / GIS. From the results of the study, the former concession area in Dharmasraya experienced a reduction of forest cover over time significantly. Forest concessions should be secondary forests in Dharmasraya, now turned conversion to oil palm plantations. Population pressures and growing economic pressures, resulting in more intensive harvesting. As a result of these forest disturbances caused changes in forest functions. These changes put more emphasis towards economic function by ignoring social functions or ecological function. Society prefers to maximize their benefits today and pay less attention to the protection of natural resources. This causes global warming is increasing and this is not only felt by people around Dharmasraya but also the world. Land clearing by the community through a process in slash and burn. This fire was observed by NOAA satellites and recorded by the Forest Service of West Sumatra. This demonstrates the ability of trees felled trees to absorb carbon dioxide (CO2) to be lost, even with forest fires accounted for carbon dioxide emitted into the air, and this has an impact on global warming. In addition to the change of control of land into oil palm plantations water service has been poor, people began to trouble the water and oil palm plantations are located in the watershed caused the river dried up. Through the findings of this study is expected to contribute ideas to the policy makers to pay more attention to the former concession forest management as the prevention or reduction of global warming.

Keywords: climate change, community, concession forests, environment

Procedia PDF Downloads 306
348 Pesticide Use Practices among Female Headed Households in the Amhara Region, Ethiopia

Authors: Birtukan Atinkut Asmare, Bernhard Freyer, Jim Bingen

Abstract:

Though it is possible to transform the farming system towards a healthy, sustainable, and toxic-free food system by reducing pesticide use both in the field and postharvest, pesticides, including those that have been banned or severely restricted from use in developed countries, are indiscriminately used in African agriculture. Drawing on social practice theory, this study is about pesticide use practices in smallholder farms and its adverse impacts on women’s health and the environment, with reference to Africa, with an empirical focus on Ethiopia. Data have been collected via integrating diverse quantitative and qualitative approaches such as household surveys (n= 318), focus group discussions (n=6), field observations (n=30), and key informant interviews (n=18), with people along the pesticide value chain, including sellers and extension workers up to women farmers. A binary logistic regression model was used to investigate the factors that influence the adoption of personal protective equipment among female headed households. The findings show that Female-headed households carried out risky and unsafe practices from pesticide purchasing up to disposal, largely motivated by material elements (such as labor, income, time, and the provisioning system) but were notably shaped by competences (skills and knowledge), and meanings (norms, values, rules, and shared ideas). The main meaning or material aspect for pesticide purchasing were the perceptions of efficacy on pests, diseases, and weeds (65%), cost and availability in smaller quantities (60.7%), and a woman’s available time and mobility (58.9%). Pesticide hazards to human health or the environment seem not to be relevant for most female headed households. Unsafe practices of pesticide use among women led to the loss of biodiversity and ecosystem degradation, let alone their and family’s health. As the regression results show, the significant factors that influenced PPE adoption among female headed households were age and retailer information (p < 0.05). In line with the empirical finding, in addition to changing individual competences through advisory services and training, a foundational shift is needed in the sociocultural environment (e.g., policy, advisory), or a change in the meanings (social norms), where women are living and working.

Keywords: biodiversity, competences, ecosystems, ethiopia, female headed households, materials, meanings, pesticide purchasing, pesticide using, social practice theory

Procedia PDF Downloads 53
347 Effect of Enzymatic Hydrolysis and Ultrasounds Pretreatments on Biogas Production from Corn Cob

Authors: N. Pérez-Rodríguez, D. García-Bernet, A. Torrado-Agrasar, J. M. Cruz, A. B. Moldes, J. M. Domínguez

Abstract:

World economy is based on non-renewable, fossil fuels such as petroleum and natural gas, which entails its rapid depletion and environmental problems. In EU countries, the objective is that at least 20% of the total energy supplies in 2020 should be derived from renewable resources. Biogas, a product of anaerobic degradation of organic substrates, represents an attractive green alternative for meeting partial energy needs. Nowadays, trend to circular economy model involves efficiently use of residues by its transformation from waste to a new resource. In this sense, characteristics of agricultural residues (that are available in plenty, renewable, as well as eco-friendly) propitiate their valorisation as substrates for biogas production. Corn cob is a by-product obtained from maize processing representing 18 % of total maize mass. Corn cob importance lies in the high production of this cereal (more than 1 x 109 tons in 2014). Due to its lignocellulosic nature, corn cob contains three main polymers: cellulose, hemicellulose and lignin. Crystalline, highly ordered structures of cellulose and lignin hinders microbial attack and subsequent biogas production. For the optimal lignocellulose utilization and to enhance gas production in anaerobic digestion, materials are usually submitted to different pretreatment technologies. In the present work, enzymatic hydrolysis, ultrasounds and combination of both technologies were assayed as pretreatments of corn cob for biogas production. Enzymatic hydrolysis pretreatment was started by adding 0.044 U of Ultraflo® L feruloyl esterase per gram of dry corncob. Hydrolyses were carried out in 50 mM sodium-phosphate buffer pH 6.0 with a solid:liquid proportion of 1:10 (w/v), at 150 rpm, 40 ºC and darkness for 3 hours. Ultrasounds pretreatment was performed subjecting corn cob, in 50 mM sodium-phosphate buffer pH 6.0 with a solid: liquid proportion of 1:10 (w/v), at a power of 750W for 1 minute. In order to observe the effect of the combination of both pretreatments, some samples were initially sonicated and then they were enzymatically hydrolysed. In terms of methane production, anaerobic digestion of the corn cob pretreated by enzymatic hydrolysis was positive achieving 290 L CH4 kg MV-1 (compared with 267 L CH4 kg MV-1 obtained with untreated corn cob). Although the use of ultrasound as the only pretreatment resulted detrimentally (since gas production decreased to 244 L CH4 kg MV-1 after 44 days of anaerobic digestion), its combination with enzymatic hydrolysis was beneficial, reaching the highest value (300.9 L CH4 kg MV-1). Consequently, the combination of both pretreatments improved biogas production from corn cob.

Keywords: biogas, corn cob, enzymatic hydrolysis, ultrasound

Procedia PDF Downloads 250
346 Economic Evaluation of Degradation by Corrosion of an On-Grid Battery Energy Storage System: A Case Study in Algeria Territory

Authors: Fouzia Brihmat

Abstract:

Economic planning models, which are used to build microgrids and distributed energy resources, are the current norm for expressing such confidence (DER). These models often decide both short-term DER dispatch and long-term DER investments. This research investigates the most cost-effective hybrid (photovoltaic-diesel) renewable energy system (HRES) based on Total Net Present Cost (TNPC) in an Algerian Saharan area, which has a high potential for solar irradiation and has a production capacity of 1GW/h. Lead-acid batteries have been around much longer and are easier to understand, but have limited storage capacity. Lithium-ion batteries last longer, are lighter, but generally more expensive. By combining the advantages of each chemistry, we produce cost-effective high-capacity battery banks that operate solely on AC coupling. The financial implications of this research describe the corrosion process that occurs at the interface between the active material and grid material of the positive plate of a lead-acid battery. The best cost study for the HRES is completed with the assistance of the HOMER Pro MATLAB Link. Additionally, during the course of the project's 20 years, the system is simulated for each time step. In this model, which takes into consideration decline in solar efficiency, changes in battery storage levels over time, and rises in fuel prices above the rate of inflation. The trade-off is that the model is more accurate, but it took longer to compute. As a consequence, the model is more precise, but the computation takes longer. We initially utilized the Optimizer to run the model without MultiYear in order to discover the best system architecture. The optimal system for the single-year scenario is the Danvest generator, which has 760 kW, 200 kWh of the necessary quantity of lead-acid storage, and a somewhat lower COE of $0.309/kWh. Different scenarios that account for fluctuations in the gasified biomass generator's production of electricity have been simulated, and various strategies to guarantee the balance between generation and consumption have been investigated. The technological optimization of the same system has been finished and is being reviewed in a recent paper study.

Keywords: battery, corrosion, diesel, economic planning optimization, hybrid energy system, lead-acid battery, multi-year planning, microgrid, price forecast, PV, total net present cost

Procedia PDF Downloads 70
345 Influence of High-Resolution Satellites Attitude Parameters on Image Quality

Authors: Walid Wahballah, Taher Bazan, Fawzy Eltohamy

Abstract:

One of the important functions of the satellite attitude control system is to provide the required pointing accuracy and attitude stability for optical remote sensing satellites to achieve good image quality. Although offering noise reduction and increased sensitivity, time delay and integration (TDI) charge coupled devices (CCDs) utilized in high-resolution satellites (HRS) are prone to introduce large amounts of pixel smear due to the instability of the line of sight. During on-orbit imaging, as a result of the Earth’s rotation and the satellite platform instability, the moving direction of the TDI-CCD linear array and the imaging direction of the camera become different. The speed of the image moving on the image plane (focal plane) represents the image motion velocity whereas the angle between the two directions is known as the drift angle (β). The drift angle occurs due to the rotation of the earth around its axis during satellite imaging; affecting the geometric accuracy and, consequently, causing image quality degradation. Therefore, the image motion velocity vector and the drift angle are two important factors used in the assessment of the image quality of TDI-CCD based optical remote sensing satellites. A model for estimating the image motion velocity and the drift angle in HRS is derived. The six satellite attitude control parameters represented in the derived model are the (roll angle φ, pitch angle θ, yaw angle ψ, roll angular velocity φ֗, pitch angular velocity θ֗ and yaw angular velocity ψ֗ ). The influence of these attitude parameters on the image quality is analyzed by establishing a relationship between the image motion velocity vector, drift angle and the six satellite attitude parameters. The influence of the satellite attitude parameters on the image quality is assessed by the presented model in terms of modulation transfer function (MTF) in both cross- and along-track directions. Three different cases representing the effect of pointing accuracy (φ, θ, ψ) bias are considered using four different sets of pointing accuracy typical values, while the satellite attitude stability parameters are ideal. In the same manner, the influence of satellite attitude stability (φ֗, θ֗, ψ֗) on image quality is also analysed for ideal pointing accuracy parameters. The results reveal that cross-track image quality is influenced seriously by the yaw angle bias and the roll angular velocity bias, while along-track image quality is influenced only by the pitch angular velocity bias.

Keywords: high-resolution satellites, pointing accuracy, attitude stability, TDI-CCD, smear, MTF

Procedia PDF Downloads 380
344 A Seven Year Single-Centre Study of Dental Implant Survival in Head and Neck Oncology Patients

Authors: Sidra Suleman, Maliha Suleman, Stephen Brindley

Abstract:

Oral rehabilitation of head and neck cancer patients plays a crucial role in the quality of life for such individuals post-treatment. Placement of dental implants or implant-retained prostheses can help restore oral function and aesthetics, which is often compromised following surgery. Conventional prosthodontic techniques can be insufficient in rehabilitating such patients due to their altered anatomy and reduced oral competence. Hence, there is a strong clinical need for the placement of dental implants. With an increasing incidence of head and neck cancer patients, the demand for such treatment is rising. Aim: The aim of the study was to determine the survival rate of dental implants in head and neck cancer patients placed at the Restorative and Maxillofacial Department, Royal Stoke University Hospital (RSUH), United Kingdom. Methodology: All patients who received dental implants between January 1, 2013 to December 31, 2020 were identified. Patients were excluded based on three criteria: 1) non-head and neck cancer patients, 2) no outpatient follow-up post-implant placement 3) provision of non-dental implants. Scanned paper notes and electronic records were extracted and analyzed. Implant survival was defined as fixtures that had remained in-situ / not required removal. Sample: Overall, 61 individuals were recruited from the 143 patients identified. The mean age was 64.9 years, with a range of 35 – 89 years. The sample included 37 (60.7%) males and 24 (39.3%) females. In total, 211 implants were placed, of which 40 (19.0%) were in the maxilla, 152 (72.0%) in the mandible and 19 (9.0%) in autogenous bone graft sites. Histologically 57 (93.4%) patients had squamous cell carcinoma, with 43 (70.5%) patients having either stage IVA or IVB disease. As part of treatment, 42 (68.9%) patients received radiotherapy, which was carried out post-operatively for 29 (69.0%) cases. Whereas 21 (34.4%) patients underwent chemotherapy, 13 (61.9%) of which were post-operative. The Median follow-up period was 21.9 months with a range from 0.9 – 91.4 months. During the study, 23 (37.7%) patients died and their data was censored beyond the date of death. Results: In total, four patients who had received radiotherapy had one implant failure each. Two mandibular implants failed secondary to osteoradionecrosis, and two maxillary implants did not survive as a result of failure to osseointegrate. The overall implant survival rates were 99.1% at three years and 98.1% at both 5 and 7 years. Conclusions: Although this data shows that implant failure rates are low, it highlights the difficulty in predicting which patients will be affected. Future studies involving larger cohorts are warranted to further analyze factors affecting outcomes.

Keywords: oncology, dental implants, survival, restorative

Procedia PDF Downloads 214
343 Walking across the Government of Egypt: A Single Country Comparative Study of the Past and Current Condition of the Government of Egypt

Authors: Homyr L. Garcia, Jr., Anne Margaret A. Rendon, Carla Michaela B. Taguinod

Abstract:

Nothing is constant in this world but change. This is the reality wherein a lot of people fail to recognize and maybe, it is because of the fact that some see things that are happening with little value or no value at all until it’s gone. For the past years, Egypt was known for its stable government. It was able to withstand a lot of problems and crisis which challenged their country in ways which can never be imagined. In the present time, it seems like in just a snap of a finger, the said stability vanished and it was immediately replaced by a crisis which resulted to a failure in some parts of their government. In addition, this problem continued to worsen and the current situation of Egypt is just a reflection or a result of it. On the other hand, as the researchers continued to study the reasons why the government of Egypt is unstable, they concluded that there might be a possibility that they will be able to produce ways in which their country could be helped or improved. The instability of the government of Egypt is the product of combining all the problems which affects the lives of the people. Some of the reasons that the researchers found are the following: 1) unending doubts of the people regarding the ruling capacity of elected presidents, 2) removal of President Mohamed Morsi in position, 3) economic crisis, 4) a lot of protests and revolution happened, 5) resignation of the long term President Hosni Mubarak and 6) the office of the President is most likely available only to the chosen successor. Also, according to previous researches, there are two plausible scenarios for the instability of Egypt: 1) a military intervention specifically the Supreme Council of the Armed Forces or SCAF, resulting from a contested succession and 2) an Islamist push for political power which highlights the claim that religion is a hindrance towards the development of their country and government. From the eight possible reasons, the researchers decided that they will be focusing on economic crisis since the instability is more clearly seen in the country’s economy which directly affects the people and the government itself. In addition, they made a hypothesis which states that stable economy is a prerequisite towards a stable government. If they will be able to show how this claim is true by using the Social Autopsy Research Design for the qualitative method and Pearson’s correlation coefficient for the quantitative method, the researchers might be able to produce a proposal on how Egypt can stabilize their government and avoid such problems. Also, the hypothesis will be based from the Rational Action Theory which is a theory for understanding and modeling social and economy as well as individual behavior.

Keywords: Pearson’s correlation coefficient, rational action theory, social autopsy research design, supreme council of the armed forces (SCAF)

Procedia PDF Downloads 388
342 Comparative Study of Equivalent Linear and Non-Linear Ground Response Analysis for Rapar District of Kutch, India

Authors: Kulin Dave, Kapil Mohan

Abstract:

Earthquakes are considered to be the most destructive rapid-onset disasters human beings are exposed to. The amount of loss it brings in is sufficient to take careful considerations for designing of structures and facilities. Seismic Hazard Analysis is one such tool which can be used for earthquake resistant design. Ground Response Analysis is one of the most crucial and decisive steps for seismic hazard analysis. Rapar district of Kutch, Gujarat falls in Zone 5 of earthquake zone map of India and thus has high seismicity because of which it is selected for analysis. In total 8 bore-log data were studied at different locations in and around Rapar district. Different soil engineering properties were analyzed and relevant empirical correlations were used to calculate maximum shear modulus (Gmax) and shear wave velocity (Vs) for the soil layers. The soil was modeled using Pressure-Dependent Modified Kodner Zelasko (MKZ) model and the reference curve used for fitting was Seed and Idriss (1970) for sand and Darendeli (2001) for clay. Both Equivalent linear (EL), as well as Non-linear (NL) ground response analysis, has been carried out with Masing Hysteretic Re/Unloading formulation for comparison. Commercially available DEEPSOIL v. 7.0 software is used for this analysis. In this study an attempt is made to quantify ground response regarding generated acceleration time-history at top of the soil column, Response spectra calculation at 5 % damping and Fourier amplitude spectrum calculation. Moreover, the variation of Peak Ground Acceleration (PGA), Maximum Displacement, Maximum Strain (in %), Maximum Stress Ratio, Mobilized Shear Stress with depth is also calculated. From the study, PGA values estimated in rocky strata are nearly same as bedrock motion and marginal amplification is observed in sandy silt and silty clays by both analyses. The NL analysis gives conservative results of maximum displacement as compared to EL analysis. Maximum strain predicted by both studies is very close to each other. And overall NL analysis is more efficient and realistic because it follows the actual hyperbolic stress-strain relationship, considers stiffness degradation and mobilizes stresses generated due to pore water pressure.

Keywords: DEEPSOIL v 7.0, ground response analysis, pressure-dependent modified Kodner Zelasko model, MKZ model, response spectra, shear wave velocity

Procedia PDF Downloads 118
341 Human Insecurity and Migration in the Horn of Africa: Causes and Decision Processes

Authors: Belachew Gebrewold

Abstract:

The Horn of Africa is marred by complex and systematic internal and external political, economic and social-cultural causes of conflict that result in internal displacement and migration. This paper engages with them and shows how such a study can help us to understand migration, both in this region and more generally. The conflict has occurred within states, between states, among proxies, between armies. Human insecurities as a result of the state collapse of Somalia, the rise of Islamic fundamentalism in the whole region, recurrent drought affecting the livelihoods of subsistence farmers as well as nomads, exposure to hunger, environmental degradation, youth unemployment, rapid growth of slums around big cities, and political repression (especially in Eritrea) have been driving various segments of the regional population into regional and international migration. Eritrea has been going through a brutal dictatorship which pushes many Eritreans to flee their country and be exposed to human trafficking, torture, detention, and agony on their way to Europe mainly through Egypt, Libya and Israel. Similarly, Somalia has been devastated since 1991 by unending civil war, state collapse, and radical Islamists. There are some important aspects to highlight in the conflict-migration nexus in the Horn of Africa: first, the main push factor for the Somalis and Eritreans to leave their countries and risk their lives is the physical insecurity they have been facing in their countries. Secondly, as a result of the conflict the economic infrastructure is massively destroyed. Investment is rare; job opportunities are out of sight. Thirdly, in such a grim situation the politically and economically induced decision to migrate is a household decision, not only an individual decision. Based on this third point this research study took place in the Horn of Africa between 2014 and 2016 during different occasions. The main objective of the research was to understanding how the increasing migration is affecting the socio-economic and socio-political environment, and conversely how the socio-economic and socio-political environments are increasing migration decisions; and whether and how these decisions are individual or family decisions. The main finding is the higher the human insecurity, the higher the family decision; the lower the human insecurity, the higher the individual decision. These findings apply not only to the Eritrean, Somali migrants but also to Ethiopian migrants. But the general impacts of migration on sending countries’ human security is quite mixed and complex.

Keywords: Eritrea, Ethiopia, Horn of Africa, insecurity, migration, Somalia

Procedia PDF Downloads 257
340 Integrated Passive Cooling Systems for Tropical Residential Buildings: A Review through the Lens of Latent Heat Assessment

Authors: O. Eso, M. Mohammadi, J. Darkwa, J. Calautit

Abstract:

Residential buildings are responsible for 22% of the global end-use energy demand and 17% of global CO₂ emissions. Tropical climates particularly present higher latent heat gains, leading to more cooling loads. However, the cooling processes are all based on conventional mechanical air conditioning systems which are energy and carbon intensive technologies. Passive cooling systems have in the past been considered as alternative technologies for minimizing energy consumption in buildings. Nevertheless, replacing mechanical cooling systems with passive ones will require a careful assessment of the passive cooling system heat transfer to determine if suitable to outperform their conventional counterparts. This is because internal heat gains, indoor-outdoor heat transfer, and heat transfer through envelope affects the performance of passive cooling systems. While many studies have investigated sensible heat transfer in passive cooling systems, not many studies have focused on their latent heat transfer capabilities. Furthermore, combining heat prevention, heat modulation and heat dissipation to passively cool indoor spaces in the tropical climates is critical to achieve thermal comfort. Since passive cooling systems use only one of these three approaches at a time, integrating more than one passive cooling system for effective indoor latent heat removal while still saving energy is studied. This study is a systematic review of recently published peer review journals on integrated passive cooling systems for tropical residential buildings. The missing links in the experimental and numerical studies with regards to latent heat reduction interventions are presented. Energy simulation studies of integrated passive cooling systems in tropical residential buildings are also discussed. The review has shown that comfortable indoor environment is attainable when two or more passive cooling systems are integrated in tropical residential buildings. Improvement occurs in the heat transfer rate and cooling performance of the passive cooling systems when thermal energy storage systems like phase change materials are included. Integrating passive cooling systems in tropical residential buildings can reduce energy consumption by 6-87% while achieving up to 17.55% reduction in indoor heat flux. The review has highlighted a lack of numerical studies regarding passive cooling system performance in tropical savannah climates. In addition, detailed studies are required to establish suitable latent heat transfer rate in passive cooling ventilation devices under this climate category. This should be considered in subsequent studies. The conclusions and outcomes of this study will help researchers understand the overall energy performance of integrated passive cooling systems in tropical climates and help them identify and design suitable climate specific options for residential buildings.

Keywords: energy savings, latent heat, passive cooling systems, residential buildings, tropical residential buildings

Procedia PDF Downloads 124
339 Stilbenes as Sustainable Antimicrobial Compounds to Control Vitis Vinifera Diseases

Authors: David Taillis, Oussama Becissa, Julien Gabaston, Jean-Michel Merillon, Tristan Richard, Stephanie Cluzet

Abstract:

Nowadays, there is a strong pressure to reduce the phytosanitary inputs of synthetic chemistry in vineyards. It is, therefore, necessary to find viable alternatives in order to protect the vine against its major diseases. For this purpose, we suggest the use of a plant extract enriched in antimicrobial compounds. Being produced from vine trunks and roots, which are co-products of wine production, the extract produced is part of a circular economy. The antimicrobial molecules present in this plant material are polyphenols and, more particularly, stilbenes, which are derived from a common base, the resveratrol unit, and that are well known vine phytoalexins. The stilbenoids were extracted from trunks and roots (30/70, w/w) by a double extraction with ethyl acetate followed by enrichment by liquid-liquid extraction. The produced extract was characterized by UHPLC-MS, then its antimicrobial activities were tested on Plasmopara viticola and Botrytis cinerea in the laboratory and/or in greenhouse and in vineyard. The major compounds were purified, and their antimicrobial activity was evaluated on B. cinerea. Moreover, after its spraying, the effect of the stilbene extract on the plant defence status was evaluated by analysis of defence gene expression. UHPLC-MS analysis revealed that the extract contains 50% stilbenes with resveratrol, ε-viniferin and r-viniferin as major compounds. The extract showed antimicrobial activities on P. viticola with IC₅₀ and IC₁₀₀ respectively of 90 and 300 mg/L in the laboratory. In addition, it inhibited 40% of downy mildew development in greenhouse. However, probably because of the sensitivity of stilbenes to the environment, such as UV degradation, no activity has been observed in vineyard towards P. viticola development. For B. cinerea, the extract IC50 was 123 mg/L, with resveratrol and ε-viniferin being the most active stilbenes (IC₅₀ of 88 and 142 mg/L, respectively). The analysis of the expression of defence genes revealed that the extract can induce the expression of some defence genes 24, 48, and 72 hours after treatment, meaning that the extract has a defence-stimulating effect at least for the first three days after treatment. In conclusion, we produced a plant extract enriched in stilbenes with antimicrobial properties against two major grapevine pathogenic agents P. viticola and B. cinerea. In addition, we showed that this extract displayed eliciting activity of plant defences. This extract can therefore represent, after formulation development, a viable eco-friendly alternative for vineyard protection. Subsequently, the effect of the stilbenoid extract on primary metabolism will be evaluated by quantitative NMR.

Keywords: antimicrobial, bioprotection, grapevine, Plasmopara viticola, stilbene

Procedia PDF Downloads 191
338 Characterization of a Lipolytic Enzyme of Pseudomonas nitroreducens Isolated from Mealworm's Gut

Authors: Jung-En Kuan, Whei-Fen Wu

Abstract:

In this study, a symbiotic bacteria from yellow mealworm's (Tenebrio molitor) mid-gut was isolated with characteristics of growth on minimal-tributyrin medium. After a PCR-amplification of its 16s rDNA, the resultant nucleotide sequences were then analyzed by schemes of the phylogeny trees. Accordingly, it was designated as Pseudomonas nitroreducens D-01. Next, by searching the lipolytic enzymes in its protein data bank, one of those potential lipolytic α/β hydrolases was identified, again using PCR-amplification and nucleotide-sequencing methods. To construct an expression of this lipolytic gene in plasmids, the target-gene primers were then designed, carrying the C-terminal his-tag sequences. Using the vector pET21a, a recombinant lipolytic hydrolase D gene with his-tag nucleotides was successfully cloned into it, of which the lipolytic D gene is under a control of the T7 promoter. After transformation of the resultant plasmids into Eescherichia coli BL21 (DE3), an IPTG inducer was used for the induction of the recombinant proteins. The protein products were then purified by metal-ion affinity column, and the purified proteins were found capable of forming a clear zone on tributyrin agar plate. Shortly, its enzyme activities were determined by degradation of p-nitrophenyl ester(s), and the substantial yellow end-product, p-nitrophenol, was measured at O.D.405 nm. Specifically, this lipolytic enzyme efficiently targets p-nitrophenyl butyrate. As well, it shows the most reactive activities at 40°C, pH 8 in potassium phosphate buffer. In thermal stability assays, the activities of this enzyme dramatically drop when the temperature is above 50°C. In metal ion assays, MgCl₂ and NH₄Cl induce the enzyme activities while MnSO₄, NiSO₄, CaCl₂, ZnSO₄, CoCl₂, CuSO₄, FeSO₄, and FeCl₃ reduce its activities. Besides, NaCl has no effects on its enzyme activities. Most organic solvents decrease the activities of this enzyme, such as hexane, methanol, ethanol, acetone, isopropanol, chloroform, and ethyl acetate. However, its enzyme activities increase when DMSO exists. All the surfactants like Triton X-100, Tween 80, Tween 20, and Brij35 decrease its lipolytic activities. Using Lineweaver-Burk double reciprocal methods, the function of the enzyme kinetics were determined such as Km = 0.488 (mM), Vmax = 0.0644 (mM/min), and kcat = 3.01x10³ (s⁻¹), as well the total efficiency of kcat/Km is 6.17 x10³ (mM⁻¹/s⁻¹). Afterwards, based on the phylogenetic analyses, this lipolytic protein is classified to type IV lipase by its homologous conserved region in this lipase family.

Keywords: enzyme, esterase, lipotic hydrolase, type IV

Procedia PDF Downloads 118
337 Combining Bio-Molecular and Isotopic Tools to Determine the Fate of Halogenated Compounds in Polluted Groundwater

Authors: N. Balaban, A. Buernstein, F. Gelman, Z. Ronen

Abstract:

Brominated flame retardants are widespread pollutants, and are known to be toxic, carcinogenic, endocrinic disrupting as well as recalcitrant. The industrial complex Neot Hovav, in the Northern Negev, Israel, is situated above a fractured chalk aquitard, which is polluted by a wide variety of halogenated organic compounds. Two of the abundant pollutants found in the site are Dibromoneopentyl-glycol (DBNPG) and tribromoneopentyl-alcohol (TBNPA). Due to the elusive nature of the groundwater flow, it is difficult to connect between the spatial changes in contaminant concentrations to degradation. In this study, we attempt to determine whether these compounds are biodegraded in the groundwater, and to gain a better understanding concerning the bacterial community in the groundwater. This was achieved through the application of compound-specific isotope analysis (CSIA) of carbon (13^C/12^C) and bromine (81^Br/79^Br), and new-generation MiSeq pyrosequencing. The sampled boreholes were distributed among three main areas of the industrial complex: around the production plant of TBNPA and DBNPG; along the Hovav Wadi (small ephemeral stream) which crosses and drains the industrial complex; and downstream to the industrial area. TBNPA and DBNPG are found in all three areas, with no clear connection to the proximity of the borehole to the production plant. Initial isotopic data of TBNPA from boreholes in the area surrounding the production plant, reveal no changes in the carbon and bromine isotopic values. When observing the microbial groundwater community, the dominant phylum is Proteobacteria. Known anaerobic dehalogenating bacteria such as Dehalococcoides from the Chloroflexi phylum have also been detected. A statistical comparison of the groundwater microbial diversity using a multi-variant ordination of non-metric multidimensional scaling (NMDS) reveals three main clusters in accordance to spatial location in the industrial complex: all the boreholes sampled adjacent to the production plant cluster together and separately from the Wadi Hovav boreholes cluster and the downstream to the industrial area borehole cluster. This work provides the basis for the development and implication of an isotopic fractionation based tool for assessing the biodegradation of brominated organic compounds in contaminated environments, and a novel attempt to characterize the spatial microbial diversity in the contaminated site.

Keywords: biodegradation, brominated flame retardants, groundwater, isotopic fractionation, microbial diversity

Procedia PDF Downloads 217
336 Kinetic, Equilibrium and Thermodynamic Studies of the Adsorption of Crystal Violet Dye Using Groundnut Hulls

Authors: Olumuyiwa Ayoola Kokapi, Olugbenga Solomon Bello

Abstract:

Dyes are organic compounds with complex aromatic molecular structure that resulted in fast colour on a substance. Dye effluent found in wastewater generated from the dyeing industries is one of the greatest contributors to water pollution. Groundnut hull (GH) is an agricultural material that constitutes waste in the environment. Environmental contamination by hazardous organic chemicals is an urgent problem, which is partially solved through adsorption technologies. The choice of groundnut hull was promised on the understanding that some materials of agricultural origin have shown potentials to act as Adsorbate for hazardous organic chemicals. The aim of this research is to evaluate the potential of groundnut hull to adsorb Crystal violet dye through kinetic, isotherm and thermodynamic studies. The prepared groundnut hulls was characterized using Brunauer, Emmett and Teller (BET), Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). Operational parameters such as contact time, initial dye concentration, pH, and effect of temperature were studied. Equilibrium time for the adsorption process was attained in 80 minutes. Adsorption isotherms used to test the adsorption data were Langmuir and Freundlich isotherms model. Thermodynamic parameters such as ∆G°, ∆H°, and ∆S° of the adsorption processes were determined. The results showed that the uptake of dye by groundnut hulls occurred at a faster rate, corresponding to an increase in adsorption capacity at equilibrium time of 80 min from 0.78 to 4.45 mg/g and 0.77 to 4.45mg/g with an increase in the initial dye concentration from 10 to 50 mg/L for pH 3.0 and 8.0 respectively. High regression values obtained for pseudo-second-order kinetic model, sum of square error (SSE%) values along with strong agreement between experimental and calculated values of qe proved that pseudo second-order kinetic model fitted more than pseudo first-order kinetic model. The result of Langmuir and Freundlich model showed that the adsorption data fit the Langmuir model more than the Freundlich model. Thermodynamic study demonstrated the feasibility, spontaneous and endothermic nature of the adsorption process due to negative values of free energy change (∆G) at all temperatures and positive value of enthalpy change (∆H) respectively. The positive values of ∆S showed that there was increased disorderliness and randomness at the solid/solution interface of crystal violet dye and groundnut hulls. The present investigation showed that, groundnut hulls (GH) is a good low-cost alternative adsorbent for the removal of Crystal Violet (CV) dye from aqueous solution.

Keywords: adsorption, crystal violet dye, groundnut halls, kinetics

Procedia PDF Downloads 351
335 A Green Process for Drop-In Liquid Fuels from Carbon Dioxide, Water, and Solar Energy

Authors: Jian Yu

Abstract:

Carbo dioxide (CO2) from fossil fuel combustion is a prime green-house gas emission. It can be mitigated by microalgae through conventional photosynthesis. The algal oil is a feedstock of biodiesel, a carbon neutral liquid fuel for transportation. The conventional CO2 fixation, however, is quite slow and affected by the intermittent solar irradiation. It is also a technical challenge to reform the bio-oil into a drop-in liquid fuel that can be directly used in the modern combustion engines with expected performance. Here, an artificial photosynthesis system is presented to produce a biopolyester and liquid fuels from CO2, water, and solar power. In this green process, solar energy is captured using photovoltaic modules and converted into hydrogen as a stable energy source via water electrolysis. The solar hydrogen is then used to fix CO2 by Cupriavidus necator, a hydrogen-oxidizing bacterium. Under the autotrophic conditions, CO2 was reduced to glyceraldehyde-3-phosphate (G3P) that is further utilized for cell growth and biosynthesis of polyhydroxybutyrate (PHB). The maximum cell growth rate reached 10.1 g L-1 day-1, about 25 times faster than that of a typical bio-oil-producing microalga (Neochloris Oleoabundans) under stable indoor conditions. With nitrogen nutrient limitation, a large portion of the reduced carbon is stored in PHB (C4H6O2)n, accounting for 50-60% of dry cell mass. PHB is a biodegradable thermoplastic that can find a variety of environmentally friendly applications. It is also a platform material from which small chemicals can be derived. At a high temperature (240 - 290 oC), the biopolyester is degraded into crotonic acid (C4H6O2). On a solid phosphoric acid catalyst, PHB is deoxygenated via decarboxylation into a hydrocarbon oil (C6-C18) at 240 oC or so. Aromatics and alkenes are the major compounds, depending on the reaction conditions. A gasoline-grade liquid fuel (77 wt% oil) and a biodiesel-grade fuel (23 wt% oil) were obtained from the hydrocarbon oil via distillation. The formation routes of hydrocarbon oil from crotonic acid, the major PHB degradation intermediate, are revealed and discussed. This work shows a novel green process from which biodegradable plastics and high-grade liquid fuels can be directly produced from carbon dioxide, water and solar power. The productivity of the green polyester (5.3 g L-1 d-1) is much higher than that of microalgal oil (0.13 g L-1 d-1). Other technical merits of the new green process may include continuous operation under intermittent solar irradiation and convenient scale up in outdoor.

Keywords: bioplastics, carbon dioxide fixation, drop-in liquid fuels, green process

Procedia PDF Downloads 168
334 Synthesis, Physicochemical Characterization and Study of the Antimicrobial Activity of Chlorobutanol

Authors: N. Hadhoum, B. Guerfi, T. M. Sider, Z. Yassa, T. Djerboua, M. Boursouti, M. Mamou, F. Z. Hadjadj Aoul, L. R. Mekacher

Abstract:

Introduction and objectives: Chlorobutanol is a raw material, mainly used as an antiseptic and antimicrobial preservative in injectable and ophthalmic preparations. The main objective of our study was the synthesis and evaluation of the antimicrobial activity of chlorobutanol hemihydrates. Material and methods: Chlorobutanol was synthesized according to the nucleophilic addition reaction of chloroform to acetone, identified by an infrared absorption using Spectrum One FTIR spectrometer, melting point, Scanning electron microscopy and colorimetric reactions. The dosage of carvedilol active substance was carried out by assaying the degradation products of chlorobutanol in a basic solution. The chlorobutanol obtained was subjected to bacteriological tests in order to study its antimicrobial activity. The antibacterial activity was evaluated against strains such as Escherichia coli (ATCC 25 922), Staphylococcus aureus (ATCC 25 923) and Pseudomonas aeroginosa (ATCC = American type culture collection). The antifungal activity was evaluated against human pathogenic fungal strains, such as Candida albicans and Aspergillus niger provided by the parasitology laboratory of the Hospital of Tizi-Ouzou, Algeria. Results and discussion: Chlorobutanol was obtained in an acceptable yield. The characterization tests of the product obtained showed a white and crystalline appearance (confirmed by scanning electron microscopy), solubilities (in water, ethanol and glycerol), and a melting temperature in accordance with the requirements of the European pharmacopoeia. The colorimetric reactions were directed towards the presence of a trihalogenated carbon and an alcohol function. The spectral identification (IR) showed the presence of characteristic chlorobutanol peaks and confirmed the structure of the latter. The microbiological study revealed an antimicrobial effect on all strains tested (Sataphylococcus aureus (MIC = 1250 µg/ml), E. coli (MIC = 1250 µg/ml), Pseudomonas aeroginosa (MIC = 1250 µg/ml), Candida albicans (MIC =2500 µg/ml), Aspergillus niger (MIC =2500 µg/ml)) with MIC values close to literature data. Conclusion: Thus, on the whole, the synthesized chlorobutanol satisfied the requirements of the European Pharmacopoeia, and possesses antibacterial and antifungal activity; nevertheless, it is necessary to insist on the purification step of the product in order to eliminate the maximum impurities.

Keywords: antimicrobial agent, bacterial and fungal strains, chlorobutanol, MIC, minimum inhibitory concentration

Procedia PDF Downloads 143
333 Quantifying the Aspect of ‘Imagining’ in the Map of Dialogical inquiry

Authors: Chua Si Wen Alicia, Marcus Goh Tian Xi, Eunice Gan Ghee Wu, Helen Bound, Lee Liang Ying, Albert Lee

Abstract:

In a world full of rapid changes, people often need a set of skills to help them navigate an ever-changing workscape. These skills, often known as “future-oriented skills,” include learning to learn, critical thinking, understanding multiple perspectives, and knowledge creation. Future-oriented skills are typically assumed to be domain-general, applicable to multiple domains, and can be cultivated through a learning approach called Dialogical Inquiry. Dialogical Inquiry is known for its benefits of making sense of multiple perspectives, encouraging critical thinking, and developing learner’s capability to learn. However, it currently exists as a quantitative tool, which makes it hard to track and compare learning processes over time. With these concerns, the present research aimed to develop and validate a quantitative tool for the Map of Dialogical Inquiry, focusing Imagining aspect of learning. The Imagining aspect four dimensions: 1) speculative/ look for alternatives, 2) risk taking/ break rules, 3) create/ design, and 4) vision/ imagine. To do so, an exploratory literature review was conducted to better understand the dimensions of Imagining. This included deep-diving into the history of the creation of the Map of Dialogical Inquiry and a review on how “Imagining” has been conceptually defined in the field of social psychology, education, and beyond. Then, we synthesised and validated scales. These scales measured the dimension of Imagination and related concepts like creativity, divergent thinking regulatory focus, and instrumental risk. Thereafter, items were adapted from the aforementioned procured scales to form items that would contribute to the preliminary version of the Imagining Scale. For scale validation, 250 participants were recruited. A Confirmatory Factor Analysis (CFA) sought to establish dimensionality of the Imagining Scale with an iterative procedure in item removal. Reliability and validity of the scale’s dimensions were sought through measurements of Cronbach’s alpha, convergent validity, and discriminant validity. While CFA found that the distinction of Imagining’s four dimensions could not be validated, the scale was able to establish high reliability with a Cronbach alpha of .96. In addition, the convergent validity of the Imagining scale was established. A lack of strong discriminant validity may point to overlaps with other components of the Dialogical Map as a measure of learning. Thus, a holistic approach to forming the tool – encompassing all eight different components may be preferable.

Keywords: learning, education, imagining, pedagogy, dialogical teaching

Procedia PDF Downloads 73
332 Legal Implications of a Single African Air Transport Market on Airlines and Passengers in Nigeria

Authors: Adejoke Omowumi Adediran

Abstract:

The commitment of African states to liberalise civil aviation in Africa through the implementation of the Yamoussoukro Decision of 1999 was reiterated in 2015 at the African Union Assembly meeting. A declaration was made by African Heads of government at the meeting to ensure the immediate implementation of the decision towards the establishment of a Single African Air Transport Market (SAATM) by 2017. A SAATM will imply among others, a removal of all commercial restrictions for African airlines in Africa; access to any route in Africa by African airlines without any required permit or authorisation; and a common set of regulations for airlines in African member states. As the envisioned 2017 date for launching the SAATM could not be met, a new date of January 2018 has been set. The lack of political will by African States, however, remains a prominent challenge to the realisation of the SAATM. As at June 2017, only twenty-one states had signed the commitment to actualise the decision creating the SAATM. In actualisation of the SAATM, a regulatory framework has been established to efficiently manage the new African airline industry, and regulatory texts have been adopted as part of the legal regime. This legal regime is to regulate both interstate and domestic operations. Airlines in Nigeria are currently faced with certain challenges which ultimately affect their effectiveness and passengers as well do not enjoy utmost customer satisfaction with services rendered by the airlines. Although Nigeria has demonstrated support for the SAATM since 2015, as Nigeria alongside ten other states, signed the initial commitment, whether or not SAATM will eventually be beneficial to airlines and passengers has become an issue in the light of the challenges of the Nigerian airline industry. Remarkably, the benefit of the SAATM is to a large extent ultimately determined by its legal framework. Using doctrinal research, this paper examines the legal implications of the SAATM on airlines and passengers in Nigeria. This paper analyses the legal framework of SAATM and juxtaposes this with the particular issues affecting airlines and passengers in Nigeria such as financial difficulties on the part of airlines and consumer protection as regards passengers. Among others, it can be asserted that the legal regime affords an opportunity for business expansion and creates a fair environment for competition. This is beneficial not only to the airlines but to passengers as well. In addition, in the interest of passengers, consumer rights are prescribed, and the regulations also cater for situations where airlines interrupt their services, as losses arising from these situations will be mitigated. There is indeed no doubt that the SAATM will be of great utility to both airlines and passengers in Nigeria.

Keywords: airlines, civil aviation, competition, consumer protection, passengers, single African air transport market, yamoussoukro decision

Procedia PDF Downloads 116
331 Pushover Analysis of Masonry Infilled Reinforced Concrete Frames for Performance Based Design for near Field Earthquakes

Authors: Alok Madan, Ashok Gupta, Arshad K. Hashmi

Abstract:

Non-linear dynamic time history analysis is considered as the most advanced and comprehensive analytical method for evaluating the seismic response and performance of multi-degree-of-freedom building structures under the influence of earthquake ground motions. However, effective and accurate application of the method requires the implementation of advanced hysteretic constitutive models of the various structural components including masonry infill panels. Sophisticated computational research tools that incorporate realistic hysteresis models for non-linear dynamic time-history analysis are not popular among the professional engineers as they are not only difficult to access but also complex and time-consuming to use. And, commercial computer programs for structural analysis and design that are acceptable to practicing engineers do not generally integrate advanced hysteretic models which can accurately simulate the hysteresis behavior of structural elements with a realistic representation of strength degradation, stiffness deterioration, energy dissipation and ‘pinching’ under cyclic load reversals in the inelastic range of behavior. In this scenario, push-over or non-linear static analysis methods have gained significant popularity, as they can be employed to assess the seismic performance of building structures while avoiding the complexities and difficulties associated with non-linear dynamic time-history analysis. “Push-over” or non-linear static analysis offers a practical and efficient alternative to non-linear dynamic time-history analysis for rationally evaluating the seismic demands. The present paper is based on the analytical investigation of the effect of distribution of masonry infill panels over the elevation of planar masonry infilled reinforced concrete (R/C) frames on the seismic demands using the capacity spectrum procedures implementing nonlinear static analysis (pushover analysis) in conjunction with the response spectrum concept. An important objective of the present study is to numerically evaluate the adequacy of the capacity spectrum method using pushover analysis for performance based design of masonry infilled R/C frames for near-field earthquake ground motions.

Keywords: nonlinear analysis, capacity spectrum method, response spectrum, seismic demand, near-field earthquakes

Procedia PDF Downloads 384
330 Multi-Objective Optimization of the Thermal-Hydraulic Behavior for a Sodium Fast Reactor with a Gas Power Conversion System and a Loss of off-Site Power Simulation

Authors: Avent Grange, Frederic Bertrand, Jean-Baptiste Droin, Amandine Marrel, Jean-Henry Ferrasse, Olivier Boutin

Abstract:

CEA and its industrial partners are designing a gas Power Conversion System (PCS) based on a Brayton cycle for the ASTRID Sodium-cooled Fast Reactor. Investigations of control and regulation requirements to operate this PCS during operating, incidental and accidental transients are necessary to adapt core heat removal. To this aim, we developed a methodology to optimize the thermal-hydraulic behavior of the reactor during normal operations, incidents and accidents. This methodology consists of a multi-objective optimization for a specific sequence, whose aim is to increase component lifetime by reducing simultaneously several thermal stresses and to bring the reactor into a stable state. Furthermore, the multi-objective optimization complies with safety and operating constraints. Operating, incidental and accidental sequences use specific regulations to control the thermal-hydraulic reactor behavior, each of them is defined by a setpoint, a controller and an actuator. In the multi-objective problem, the parameters used to solve the optimization are the setpoints and the settings of the controllers associated with the regulations included in the sequence. In this way, the methodology allows designers to define an optimized and specific control strategy of the plant for the studied sequence and hence to adapt PCS piloting at its best. The multi-objective optimization is performed by evolutionary algorithms coupled to surrogate models built on variables computed by the thermal-hydraulic system code, CATHARE2. The methodology is applied to a loss of off-site power sequence. Three variables are controlled: the sodium outlet temperature of the sodium-gas heat exchanger, turbomachine rotational speed and water flow through the heat sink. These regulations are chosen in order to minimize thermal stresses on the gas-gas heat exchanger, on the sodium-gas heat exchanger and on the vessel. The main results of this work are optimal setpoints for the three regulations. Moreover, Proportional-Integral-Derivative (PID) control setting is considered and efficient actuators used in controls are chosen through sensitivity analysis results. Finally, the optimized regulation system and the reactor control procedure, provided by the optimization process, are verified through a direct CATHARE2 calculation.

Keywords: gas power conversion system, loss of off-site power, multi-objective optimization, regulation, sodium fast reactor, surrogate model

Procedia PDF Downloads 286
329 Narcissism and Kohut's Self-Psychology: Self Practices in Service of Self-Transcendence

Authors: Noelene Rose

Abstract:

The DSM has been plagued with conceptual issues since its inception, not least discriminant validity and comorbidity issues. An attempt to remain a-theoretical in the divide between the psycho-dynamicists and the behaviourists contributed to much of this, in particular relating to the Personality Disorders. With the DSM-5, although the criterion have remained unchanged, major conceptual and structural directions have been flagged and proposed in section III. The biggest changes concern the Personality Disorders. While Narcissistic Personality Disorder (NPD) was initially tagged for removal, instead the addition of section III proposes a move away from a categorical approach to a more dimensional approach, with a measure of Global Function of Personality. This global measure is an assessment of impairment of self-other relations; a measure of trait narcissism. In the same way mainstream psychology has struggled in its diagnosis of narcissism, so too in its treatment. Kohut’s self psychology represents the most significant inroad in theory and treatment for the narcissistic disorders. Kohut had moved away from a categorical system, towards disorders of the self. According to this theory, disorders of the self are the result of childhood trauma (impaired attunement) resulting in a developmental arrest. Self-psychological, Psychodynamic treatment of narcissism, however, is expensive, in time and money and outside the awareness or access of most people. There is more than a suggestion that narcissism is on the increase, created in trauma and worsened by a fearful world climate. A dimensional model of narcissism, from mild to severe, requires cut off points for diagnosis. But where do we draw the line? Mainstream psychology is inclined to set it high when there is some degree of impairment in functioning in daily life. Transpersonal Psychology is inclined to set it low, with the concept that we all have some degree of narcissism and that it is the point and the path of our life journey to transcend our focus on our selves. Mainstream psychology stops its focus on trait narcissism with a healthy level of self esteem, but it is at this point that Transpersonal Psychology can complement the discussion. From a Transpersonal point of view, failure to begin the process of self-transcendence will also create emotional symptoms of meaning or purpose, often later in our lives, and is also conceived of as a developmental arrest. The maps for this transcendence are hidden in plain sight; in the chakras of kundalini yoga, in the sacraments of the Catholic Church, in the Kabbalah tree of life of Judaism, in Maslow’s hierarchy of needs, to name a few. This paper outlines some proposed research exploring the use of daily practices that can be incorporated into the therapy room; practices that utilise meditation, visualisation and imagination: that are informed by spiritual technology and guided by the psychodynamic theory of Self Psychology.

Keywords: narcissism, self-psychology, self-practice, self-transcendence

Procedia PDF Downloads 240
328 Physical, Chemical and Mechanical Properties of Different Varieties of Jatropha curcas Cultivated in Pakistan

Authors: Mehmood Ali, Attaullah Khan, Md. Abul Kalam

Abstract:

Petroleum crude oil reserves are going to deplete in future due to the consumption of fossil fuels in transportation and energy generating sector. Thus, increasing the fossil fuel prices and also causing environmental degradation issues such as climate change and global warming due to air pollution. Therefore, to tackle these issues the environmentally friendly fuels are the potential substitute with lower emissions of toxic gases. A non-edible vegetable oilseed crop, Jatropha curcas, from different origins such as Malaysia, Thailand and India were cultivated in Pakistan. The harvested seeds physical, chemical and mechanical properties were measured, having an influence on the post-harvesting machines design parameters for dehulling, storing bins, drying, oil extraction from seeds with a screw expeller and in-situ transesterification reaction to produce biodiesel fuel. The seed variety from Thailand was found better in comparison of its properties with other varieties from Malaysia and India. The seed yield from these three varieties i.e. Malaysia, Thailand and India were 829, 943 and 735 kg/ acre/ year respectively. While the oil extraction yield from Thailand variety seed was found higher (i.e. 32.61 % by wt.) as compared to other two varieties from Malaysia and India were 27.96 and 24.96 % by wt respectively. The physical properties investigated showed the geometric mean diameter of seeds from three varieties Malaysia, Thailand and India were 11.350, 10.505 and 11.324 mm, while the sphericity of seeds were found 0.656, 0.664 and 0.655. The bulk densities of the powdered seeds from three varieties Malaysia, Thailand and India, were found as 0.9697, 0.9932 and 0.9601 g/cm³ and % passing was obtained with sieve test were 78.7, 87.1 and 79.3 respectively. The densities of the extracted oil from three varieties Malaysia, Thailand and India were found 0.902, 0.898 and 0.902 g/ mL with corresponding kinematic viscosities 54.50, 49.18 and 48.16 mm2/sec respectively. The higher heating values (HHV) of extracted oil from Malaysia, Thailand and India seed varieties were measured as 40.29, 36.41 and 34.27 MJ/ kg, while the HHV of de-oiled cake from these varieties were 21.23, 20.78 and 17.31 MJ/kg respectively. The de-oiled cake can be used as compost with nutrients and carbon content to enhance soil fertility to grow future Jatropha curcas oil seed crops and also can be used as a fuel for heating and cooking purpose. Moreover, the mechanical parameter micro Vickers hardness of Malaysia seed was found lowest 16.30 HV measured with seed in a horizontal position to the loading in comparison to other two varieties as 25.2 and 18.7 HV from Thailand and India respectively. The fatty acid composition of three varieties of seed oil showed the presence of C8-C22, required to produce good quality biodiesel fuel. In terms of physicochemical properties of seeds and its extracted oil, the variety from Thailand was found better as compared to the other two varieties.

Keywords: biodiesel, Jatropha curcas, mechanical property, physico-chemical properties

Procedia PDF Downloads 118
327 Modification of Aliphatic-Aromatic Copolyesters with Polyether Block for Segmented Copolymers with Elastothemoplastic Properties

Authors: I. Irska, S. Paszkiewicz, D. Pawlikowska, E. Piesowicz, A. Linares, T. A. Ezquerra

Abstract:

Due to the number of advantages such as high tensile strength, sensitivity to hydrolytic degradation, and biocompatibility poly(lactic acid) (PLA) is one of the most common polyesters for biomedical and pharmaceutical applications. However, PLA is a rigid, brittle polymer with low heat distortion temperature and slow crystallization rate. In order to broaden the range of PLA applications, it is necessary to improve these properties. In recent years a number of new strategies have been evolved to obtain PLA-based materials with improved characteristics, including manipulation of crystallinity, plasticization, blending, and incorporation into block copolymers. Among the other methods, synthesis of aliphatic-aromatic copolyesters has been attracting considerable attention as they may combine the mechanical performance of aromatic polyesters with biodegradability known from aliphatic ones. Given the need for highly flexible biodegradable polymers, in this contribution, a series of aromatic-aliphatic based on poly(butylene terephthalate) and poly(lactic acid) (PBT-b-PLA) copolyesters exhibiting superior mechanical properties were copolymerized with an additional poly(tetramethylene oxide) (PTMO) soft block. The structure and properties of both series were characterized by means of attenuated total reflectance – Fourier transform infrared spectroscopy (ATR-FTIR), nuclear magnetic resonance spectroscopy (¹H NMR), differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS) and dynamic mechanical, thermal analysis (DMTA). Moreover, the related changes in tensile properties have been evaluated and discussed. Lastly, the viscoelastic properties of synthesized poly(ester-ether) copolymers were investigated in detail by step cycle tensile tests. The block lengths decreased with the advance of treatment, and the block-random diblock terpolymers of (PBT-ran-PLA)-b-PTMO were obtained. DSC and DMTA analysis confirmed unambiguously that synthesized poly(ester-ether) copolymers are microphase-separated systems. The introduction of polyether co-units resulted in a decrease in crystallinity degree and melting temperature. X-ray diffraction patterns revealed that only PBT blocks are able to crystallize. The mechanical properties of (PBT-ran-PLA)-b-PTMO copolymers are a result of a unique arrangement of immiscible hard and soft blocks, providing both strength and elasticity.

Keywords: aliphatic-aromatic copolymers, multiblock copolymers, phase behavior, thermoplastic elastomers

Procedia PDF Downloads 118