Search results for: finite elements method
20065 The Derivation of a Four-Strain Optimized Mohr's Circle for Use in Experimental Reinforced Concrete Research
Authors: Edvard P. G. Bruun
Abstract:
One of the best ways of improving our understanding of reinforced concrete is through large-scale experimental testing. The gathered information is critical in making inferences about structural mechanics and deriving the mathematical models that are the basis for finite element analysis programs and design codes. An effective way of measuring the strains across a region of a specimen is by using a system of surface mounted Linear Variable Differential Transformers (LVDTs). While a single LVDT can only measure the linear strain in one direction, by combining several measurements at known angles a Mohr’s circle of strain can be derived for the whole region under investigation. This paper presents a method that can be used by researchers, which improves the accuracy and removes experimental bias in the calculation of the Mohr’s circle, using four rather than three independent strain measurements. Obtaining high quality strain data is essential, since knowing the angular deviation (shear strain) and the angle of principal strain in the region are important properties in characterizing the governing structural mechanics. For example, the Modified Compression Field Theory (MCFT) developed at the University of Toronto, is a rotating crack model that requires knowing the direction of the principal stress and strain, and then calculates the average secant stiffness in this direction. But since LVDTs can only measure average strains across a plane (i.e., between discrete points), localized cracking and spalling that typically occur in reinforced concrete, can lead to unrealistic results. To build in redundancy and improve the quality of the data gathered, the typical experimental setup for a large-scale shell specimen has four independent directions (X, Y, H, and V) that are instrumented. The question now becomes, which three should be used? The most common approach is to simply discard one of the measurements. The problem is that this can produce drastically different answers, depending on the three strain values that are chosen. To overcome this experimental bias, and to avoid simply discarding valuable data, a more rigorous approach would be to somehow make use of all four measurements. This paper presents the derivation of a method to draw what is effectively a Mohr’s circle of 'best-fit', which optimizes the circle by using all four independent strain values. The four-strain optimized Mohr’s circle approach has been utilized to process data from recent large-scale shell tests at the University of Toronto (Ruggiero, Proestos, and Bruun), where analysis of the test data has shown that the traditional three-strain method can lead to widely different results. This paper presents the derivation of the method and shows its application in the context of two reinforced concrete shells tested in pure torsion. In general, the constitutive models and relationships that characterize reinforced concrete are only as good as the experimental data that is gathered – ensuring that a rigorous and unbiased approach exists for calculating the Mohr’s circle of strain during an experiment, is of utmost importance to the structural research community.Keywords: reinforced concrete, shell tests, Mohr’s circle, experimental research
Procedia PDF Downloads 23820064 A New Method for Estimating the Mass Recession Rate for Ablator Systems
Authors: Bianca A. Szasz, Keiichi Okuyama
Abstract:
As the human race will continue to explore the space by creating new space transportation means and sending them to other planets, the enhance of atmospheric reentry study is crucial. In this context, an analysis of mass recession rate of ablative materials for thermal shields of reentry spacecrafts is important to be carried out. The paper describes a new estimation method for calculating the mass recession of an ablator system, this method combining an old method with a new one, which was recently elaborated by Okuyama et al. The space mission of USERS spacecraft is taken as a case study and the possibility of implementing lighter ablative materials in future space missions is taking into consideration.Keywords: ablator system, mass recession, reentry spacecraft, ablative materials
Procedia PDF Downloads 27720063 Statistical Correlation between Ply Mechanical Properties of Composite and Its Effect on Structure Reliability
Authors: S. Zhang, L. Zhang, X. Chen
Abstract:
Due to the large uncertainty on the mechanical properties of FRP (fibre reinforced plastic), the reliability evaluation of FRP structures are currently receiving much attention in industry. However, possible statistical correlation between ply mechanical properties has been so far overlooked, and they are mostly assumed to be independent random variables. In this study, the statistical correlation between ply mechanical properties of uni-directional and plain weave composite is firstly analyzed by a combination of Monte-Carlo simulation and finite element modeling of the FRP unit cell. Large linear correlation coefficients between the in-plane mechanical properties are observed, and the correlation coefficients are heavily dependent on the uncertainty of the fibre volume ratio. It is also observed that the correlation coefficients related to Poisson’s ratio are negative while others are positive. To experimentally achieve the statistical correlation coefficients between in-plane mechanical properties of FRP, all concerned in-plane mechanical properties of the same specimen needs to be known. In-plane shear modulus of FRP is experimentally derived by the approach suggested in the ASTM standard D5379M. Tensile tests are conducted using the same specimens used for the shear test, and due to non-uniform tensile deformation a modification factor is derived by a finite element modeling. Digital image correlation is adopted to characterize the specimen non-uniform deformation. The preliminary experimental results show a good agreement with the numerical analysis on the statistical correlation. Then, failure probability of laminate plates is calculated in cases considering and not considering the statistical correlation, using the Monte-Carlo and Markov Chain Monte-Carlo methods, respectively. The results highlight the importance of accounting for the statistical correlation between ply mechanical properties to achieve accurate failure probability of laminate plates. Furthermore, it is found that for the multi-layer laminate plate, the statistical correlation between the ply elastic properties significantly affects the laminate reliability while the effect of statistical correlation between the ply strength is minimal.Keywords: failure probability, FRP, reliability, statistical correlation
Procedia PDF Downloads 16620062 Numerical Analysis of Internal Cooled Turbine Blade Using Conjugate Heat Transfer
Authors: Bhavesh N. Bhatt, Zozimus D. Labana
Abstract:
This work is mainly focused on the analysis of heat transfer of blade by using internal cooling method. By using conjugate heat transfer technology we can effectively compute the cooling and heat transfer analysis of blade. Here blade temperature is limited by materials melting temperature. By using CFD code, we will analyze the blade cooling with the help of CHT method. There are two types of CHT methods. In the first method, we apply coupled CHT method in which all three domains modeled at once, and in the second method, we will first model external domain and then, internal domain of cooling channel. Ten circular cooling channels are used as a cooling method with different mass flow rate and temperature value. This numerical simulation is applied on NASA C3X turbine blade, and results are computed. Here results are showing good agreement with experimental results. Temperature and pressure are high at the leading edge of the blade on stagnation point due to its first faces the flow. On pressure side, shock wave is formed which also make a sudden change in HTC and other parameters. After applying internal cooling, we are succeeded in reducing the metal temperature of blade by some extends.Keywords: gas turbine, conjugate heat transfer, NASA C3X Blade, circular film cooling channel
Procedia PDF Downloads 33920061 Investigation of the Corroded Steel Beam
Authors: Hesamaddin Khoshnoodi, Ahmad Rahbar Ranji
Abstract:
Corrosion in steel structures is one of the most important issues that should be considered in designing and constructing. Corrosion reduces the cross section and load capacity of element and leads to costly damage of structures. In this paper, the corrosion has been modeled for moment stresses. Moreover, the steel beam has been modeled using ABAQUS advanced finite element software. The conclusions of this study demonstrated that the displacement of the analyzed composite steel girder bridge might increase.Keywords: Abaqus, Corrosion, deformation, Steel Beam
Procedia PDF Downloads 35920060 Investigation of Factors Influencing Perceived Comfort During Take-Over in Automated Driving
Authors: Miriam Schäffer, Vinayak Mudgal, Wolfram Remlinger
Abstract:
The functions of automated driving will initially be limited to certain so-called Operating Driving Domains (ODD). Within the ODDs, the automated vehicle can handle all situations autonomously. In the event of a critical system failure, the vehicle will establish a condition of minimal risk or offer the driver to take over control of the vehicle. When the vehicle leaves the ODD, the driver is also prompted to take over vehicle control. During automated driving, the driver is legally allowed to perform non-driving-related activities (NDRAs) for the first time. When requested to take over, the driver must return from the NDRA state to a driving-ready state. The driver’s NDRA state may imply the use of items that are necessary for the NDRA or interior modifications. Since perceived comfort is an important factor in both manual and automated driving, a study was conducted in a static driving simulator to investigate factors that influence perceived comfort during the take-over process. Based on a literature review of factors influencing perceived comfort in different domains, selected parameters such as the TOR modality or elements to support handing over the item used for the NDRA to the interior were varied. Perceived comfort and discomfort were assessed using an adapted version of a standardized comfort questionnaire, as well as other previously identified aspects of comfort. The NDRA conducted was Using a Smartphone (playing Tetris) because of its high relevance as a future NDRA. The results show the potential to increase perceived comfort through interior adaptations and support elements. Further research should focus on different layouts of the investigated factors, as well as under different conditions, such as time budget, actions required within the intervention in the vehicle control system, and vehicle interior dimensions.Keywords: automated driving, comfort, take-over, vehicle interior
Procedia PDF Downloads 2620059 A Designing 3D Model: Castle of the Mall-Dern
Authors: Nanadcha Sinjindawong
Abstract:
This article discusses the design process of a community mall called Castle of The Mall-dern. The concept behind this mall is to combine elements of a medieval castle with modern architecture. The author aims to create a building that fits into the surroundings while also providing users with the vibes of the ancient era. The total area used for the mall is 4,000 square meters, with three floors. The first floor is 1,500 square meters, the second floor is 1,750 square meters, and the third floor is 750 square meters. Research Aim: The aim of this research is to design a community mall that sells ancient clothes and accessories, and to combine sustainable architectural design with the ideas of ancient architecture in an urban area with convenient transportation. Methodology: The research utilizes qualitative research methods in architectural design. The process begins with calculating the given area and dividing it into different zones. The author then sketches and draws the plan of each floor, adding the necessary rooms based on the floor areas mentioned earlier. The program "SketchUp" is used to create an online 3D model of the community mall, and a physical model is built for presentation purposes on A1 paper, explaining all the details. Findings: The result of this research is a community mall with various amenities. The first floor includes retail shops, clothing stores, a food center, and a service zone. Additionally, there is an indoor garden with a fountain and a tree for relaxation. The second and third floors feature a void in the middle, with a few stores, cafes, restaurants, and studios on the second floor. The third floor is home to the administration and security control room, as well as a community gathering area designed as a public library with a café inside. Theoretical Importance: This research contributes to the field of sustainable architectural design by combining ancient architectural ideas with modern elements. It showcases the potential for creating buildings that blend historical aesthetics with contemporary functionality. Data Collection and Analysis Procedures: The data for this research is collected through a combination of area calculation, sketching, and building a 3D model. The analysis involves evaluating the design based on the allocated area, zoning, and functional requirements for a community mall. Question Addressed: The research addresses the question of how to design a community mall with a theme of ancient Medieval and Victorian eras. It explores how to combine sustainable architectural design principles with historical aesthetics to create a functional and visually appealing space. Conclusion: In conclusion, this research successfully designs a community mall called “Castle of The Mall-dern” that incorporates elements of Medieval and Victorian architecture. The building encompasses various zones, including retail shops, restaurants, community gathering areas, and service zones. It also features an interior garden and a public library within the mall. The research contributes to the field of sustainable architectural design by showcasing the potential for combining ancient architectural ideas with modern elements in an urban setting.Keywords: 3D model, community mall, modern architecture, medieval architecture
Procedia PDF Downloads 11120058 Bi-Dimensional Spectral Basis
Authors: Abdelhamid Zerroug, Mlle Ismahene Sehili
Abstract:
Spectral methods are usually applied to solve uni-dimensional boundary value problems. With the advantage of the creation of multidimensional basis, we propose a new spectral method for bi-dimensional problems. In this article, we start by creating bi-spectral basis by different ways, we developed also a new relations to determine the expressions of spectral coefficients in different partial derivatives expansions. Finally, we propose the principle of a new bi-spectral method for the bi-dimensional problems.Keywords: boundary value problems, bi-spectral methods, bi-dimensional Legendre basis, spectral method
Procedia PDF Downloads 40520057 Mixed-Sub Fractional Brownian Motion
Authors: Mounir Zili
Abstract:
We will introduce a new extension of the Brownian motion, that could serve to get a good model of many natural phenomena. It is a linear combination of a finite number of sub-fractional Brownian motions; that is why we will call it the mixed sub-fractional Brownian motion. We will present some basic properties of this process. Among others, we will check that our process is non-markovian and that it has non-stationary increments. We will also give the conditions under which it is a semi-martingale. Finally, the main features of its sample paths will be specified.Keywords: fractal dimensions, mixed gaussian processes, sample paths, sub-fractional brownian motion
Procedia PDF Downloads 42320056 Study of Evapotranspiration for Pune District
Authors: Ranjeet Sable, Mahotsavi Patil, Aadesh Nimbalkar, Prajakta Palaskar, Ritu Sagar
Abstract:
The exact amount of water used by various crops in different climatic conditions is necessary to step for design, planning, and management of irrigation schemes, water resources, scheduling of irrigation systems. Evaporation and transpiration are combinable called as evapotranspiration. Water loss from trees during photosynthesis is called as transpiration and when water gets converted into gaseous state is called evaporation. For calculation of correct evapotranspiration, we have to choose the method in such way that is should be suitable and require minimum climatic data also it should be applicable for wide range of climatic conditions. In hydrology, there are multiple correlations and regression is generally used to develop relationships between three or more hydrological variables by knowing the dependence between them. This research work includes the study of various methods for calculation of evapotranspiration and selects reasonable and suitable one Pune region (Maharashtra state). As field methods are very costly, time-consuming and not give appropriate results if the suitable climate is not maintained. Observation recorded at Pune metrological stations are used to calculate evapotranspiration with the help of Radiation Method (RAD), Modified Penman Method (MPM), Thornthwaite Method (THW), Blaney-Criddle (BCL), Christiansen Equation (CNM), Hargreaves Method (HGM), from which Hargreaves and Thornthwaite are temperature based methods. Performance of all these methods are compared with Modified Penman method and method which showing less variation with standard Modified Penman method (MPM) is selected as the suitable one. Evapotranspiration values are estimated on a monthly basis. Comparative analysis in this research used for selection for raw data-dependent methods in case of missing data.Keywords: Blaney-Criddle, Christiansen equation evapotranspiration, Hargreaves method, precipitations, Penman method, water use efficiency
Procedia PDF Downloads 27320055 Understanding Seismic Behavior of Masonry Buildings in Earthquake
Authors: Alireza Mirzaee, Soosan Abdollahi, Mohammad Abdollahi
Abstract:
Unreinforced Masonry (URM) wall is vulnerable in resisting horizontal load such as wind and seismic loading. It is due to the low tensile strength of masonry, the mortar connection between the brick units. URM structures are still widely used in the world as an infill wall and commonly constructed with door and window openings. This research aimed to investigate the behavior of URM wall with openings when horizontal load acting on it and developed load-drift relationship of the wall. The finite element (FE) method was chosen to numerically simulate the behavior of URM with openings. In this research, ABAQUS, commercially available FE software with explicit solver was employed. In order to ensure the numerical model can accurately represent the behavior of an URM wall, the model was validated for URM wall without openings using available experimental results. Load-displacement relationship of numerical model is well agreed with experimental results. Evidence shows the same load displacement curve shape obtained from the FE model. After validating the model, parametric study conducted on URM wall with openings to investigate the influence of area of openings and pre-compressive load on the horizontal load capacity of the wall. The result showed that the increasing of area of openings decreases the capacity of the wall in resisting horizontal loading. It is also well observed from the result that capacity of the wall increased with the increasing of pre-compressive load applied on the top of the walls.Keywords: masonry constructions, performance at earthquake, MSJC-08 (ASD), bearing wall, tie-column
Procedia PDF Downloads 25320054 Design and Implementation of a Fan Coil Unit Controller Based on the Duty Ratio Fuzzy Method
Authors: Liang Zhao, Jili Zhang, Kai Li
Abstract:
A microcontroller-based fan coil unit (FCU) fuzzy controller is designed and implemented in this paper. The controller employs the concept of duty ratio on the electric valve control, which could make full use of the cooling and dehumidifying capacity of the FCU when the valve is off. The traditional control method and its limitations are analyzed. The hardware and software design processes are introduced in detail. The experimental results show that the proposed method is more energy efficient compared to the traditional controlling strategy. Furthermore, a more comfortable room condition could be achieved by the proposed method. The proposed low-cost FCU fuzzy controller deserves to be widely used in engineering applications.Keywords: fan coil unit, duty ratio, fuzzy controller, experiment
Procedia PDF Downloads 34320053 Drastic Increase of Wave Dissipation within Metastructures Having Negative Stiffness Inclusions
Authors: D. Chronopoulos, I. Antoniadis, V. Spitas, D. Koulocheris, V. Polenta
Abstract:
A concept of a simple linear oscillator, incorporating a negative stiffness element is demonstrated to exhibit extraordinary damping properties. This oscillator shares the same overall (static) stiffness, the same mass and the same damping element with a reference classical linear SDOF oscillator. However, it differs from the original SDOF oscillator by appropriately redistributing the component spring stiffness elements and by re-allocating the damping element. Despite the fact that the proposed oscillator incorporates a negative stiffness element, it is designed to be both statically and dynamically stable. Once such an oscillator is optimally designed, it is shown to exhibit an extraordinary apparent damping ratio, which is even several orders of magnitude higher than that of the original SDOF system, especially in cases where the original damping of the SDOF system is low. This damping behavior is not a result of a novel additional extraordinary energy dissipation mechanism, but a result of the phase difference between the positive and the negative stiffness elastic forces, which is in turn a consequence of the proper re-distribution of the stiffness and the damper elements. This fact ensures that an adequate level of elastic forces exists throughout the entire frequency range, able to counteract the inertial and the excitation forces. Next, Acoustic or Phononic Meta-materials are considered, in which one atom is replaced by the concept of the above simple linear oscillator. The results indicate that not only the damping of the meta-material verifies and exceeds the one expected from the so-called "meta-damping" behavior, but also that the band gap of the meta-material can be significantly increased.Keywords: wave propagation, periodic structures, wave damping, mechanical engineering
Procedia PDF Downloads 36120052 Swastika Shape Multiband Patch Antenna for Wireless Applications on Low Cost Substrate
Authors: Md. Samsuzzaman, M. T. Islam, J. S. Mandeep, N. Misran
Abstract:
In this article, a compact simple structure modified Swastika shape patch multiband antenna on a substrate of available low cost polymer resin composite material is designed for Wi-Fi and WiMAX applications. The substrate material consists of an epoxy matrix reinforced by woven glass. The designed micro-strip line fed compact antenna comprises of a planar wide square slot ground with four slits and Swastika shape radiation patch with a rectangular slot. The effect of the different substrate materials on the reflection coefficients of the proposed antennas was also analyzed. It can be clearly seen that the proposed antenna provides a wider bandwidth and acceptable return loss value compared to other reported materials. The simulation results exhibits that the antenna has an impedance bandwidth with -10 dB return loss at 3.01-3.89 GHz and 4.88-6.10 GHz which can cover both the WLAN, WiMAX and public safety WLAN bands. The proposed swastika shape antenna was designed and analyzed by using a finite element method based simulator HFSS and designed on a low cost FR4 (polymer resin composite material) printed circuit board. The electrical performances and superior frequency characteristics make the proposed material antenna desirable for wireless communications.Keywords: epoxy resin polymer, multiband, swastika shaped, wide slot, WLAN/WiMAX
Procedia PDF Downloads 45620051 Investigation of Mode II Fracture Toughness in Orthotropic Materials
Authors: Mahdi Fakoor, Nabi Mehri Khansari, Ahmadreza Farokhi
Abstract:
Evaluation of mode II fracture toughness (KIIC) in composite materials is very hard problem to be solved, since it can be affected by many mechanisms of dissipation. Furthermore, non-linearity in its behavior can offer an extra difficulty to obtain accuracy in the results. Different reported values for KIIC in various references can prove the mentioned assertion. In this research, some solutions proposed based on the form of necessary corrections that should be executed on the common test fixtures. Due to the fact that the common test fixtures are not able to active toughening mechanisms in pure Mode II correctly, we have employed some structural modifications on common fixtures. Particularly, the Iosipescu test is used as start point. The tests are applied on graphite/epoxy; PMMA and Western White Pine Wood. Also, mixed mode I/II fracture limit curves are used to indicate the scattering in test results are really relevant to the creation of Fracture Process Zone (FPZ). In the present paper, shear load consideration applied at the predicted shear zone by considering some significant structural amendments that can active mode II toughening mechanisms. Indeed, the employed empirical method causes significant developing in repeatability and reproducibility as well. Moreover, a 3D Finite Element (FE) is performed for verification of the obtained results. Eventually, it is figured out that, a remarkable precision can be obtained in common test fixture in comparison with the previous one.Keywords: FPZ, shear test fixture, mode II fracture toughness, composite material, FEM
Procedia PDF Downloads 36420050 Historical Development of Negative Emotive Intensifiers in Hungarian
Authors: Martina Katalin Szabó, Bernadett Lipóczi, Csenge Guba, István Uveges
Abstract:
In this study, an exhaustive analysis was carried out about the historical development of negative emotive intensifiers in the Hungarian language via NLP methods. Intensifiers are linguistic elements which modify or reinforce a variable character in the lexical unit they apply to. Therefore, intensifiers appear with other lexical items, such as adverbs, adjectives, verbs, infrequently with nouns. Due to the complexity of this phenomenon (set of sociolinguistic, semantic, and historical aspects), there are many lexical items which can operate as intensifiers. The group of intensifiers are admittedly one of the most rapidly changing elements in the language. From a linguistic point of view, particularly interesting are a special group of intensifiers, the so-called negative emotive intensifiers, that, on their own, without context, have semantic content that can be associated with negative emotion, but in particular cases, they may function as intensifiers (e.g.borzasztóanjó ’awfully good’, which means ’excellent’). Despite their special semantic features, negative emotive intensifiers are scarcely examined in literature based on large Historical corpora via NLP methods. In order to become better acquainted with trends over time concerning the intensifiers, The exhaustively analysed a specific historical corpus, namely the Magyar TörténetiSzövegtár (Hungarian Historical Corpus). This corpus (containing 3 millions text words) is a collection of texts of various genres and styles, produced between 1772 and 2010. Since the corpus consists of raw texts and does not contain any additional information about the language features of the data (such as stemming or morphological analysis), a large amount of manual work was required to process the data. Thus, based on a lexicon of negative emotive intensifiers compiled in a previous phase of the research, every occurrence of each intensifier was queried, and the results were stored in a separate data frame. Then, basic linguistic processing (POS-tagging, lemmatization etc.) was carried out automatically with the ‘magyarlanc’ NLP-toolkit. Finally, the frequency and collocation features of all the negative emotive words were automatically analyzed in the corpus. Outcomes of the research revealed in detail how these words have proceeded through grammaticalization over time, i.e., they change from lexical elements to grammatical ones, and they slowly go through a delexicalization process (their negative content diminishes over time). What is more, it was also pointed out which negative emotive intensifiers are at the same stage in this process in the same time period. Giving a closer look to the different domains of the analysed corpus, it also became certain that during this process, the pragmatic role’s importance increases: the newer use expresses the speaker's subjective, evaluative opinion at a certain level.Keywords: historical corpus analysis, historical linguistics, negative emotive intensifiers, semantic changes over time
Procedia PDF Downloads 23820049 A Qualitative Look at Mental Health Stressors in Response to COVID-19
Authors: Gabriel G. Gaft, Xayvinay Xiong, Amanda Sunday
Abstract:
The emergent pandemic from COVID-19 virus has forced people to adjust to major changes. These changes include all elements of family and work life and required people to engage in novel behaviors. For many people, the social norms to which they have been accustomed no longer prevail. Not surprisingly, such enormous changes in daily life have been associated with greater problems in mental health; and research regarding ways in which mental health professionals can support people is more necessary than ever before. It is often useful to assess people’s reactions through surveys and utilize quantitative data to answer questions about coping strategies etc. It is also likely, however, that a host of individual factors are going to contribute to what might be considered 'good' or 'bad' coping mechanisms to a worldwide pandemic. To this end, qualitative studies—where the individual’s subjective experience is highlighted—are likely to provide more vital information for mental health professionals interested in supporting the particular person in front of them. This study reports on qualitative data, where X participants were asked questions about social distancing, coping strategies, and general attitudes towards social changes resulting from the COVID-19 pandemic. Informal interviews were conducted during the months of June-July 2020. Data were analyzed using Interpretative Phenomenological Analyses. Themes were identified first for each participant and then compared across different individual participants. Several findings emerged. First, all participants understood major health messages being imparted by governing bodies such as the CDC and WHO. The researchers feel this finding is important as it suggests health messages are at least being effectively communicated. Second, there was a clear trend for themes which highlighted the conflicting emotions participants felt about the changes they were expected to endure: positive and negative elements were identified, although a participant who had pre-existing conditions placed greater emphasis on the negative elements. One participant who was particularly interested in impression management also exclusively emphasized negative emotions. Third, participants who were able to reevaluate priorities—what Lazarus might call secondary appraisals—experienced social distancing as a positive rather than negative phenomenon. Finally, participants who were able to develop specific strategies—such as boundaries for work and self-care—reported themes of adjustment and contentment. Taken together, these findings suggest mental health practitioners can assist people to adjust more positively through specific techniques focusing on re-evaluation of life priorities and strategic coping skills.Keywords: COVID-19, pandemic, phenomenology, virus
Procedia PDF Downloads 12320048 Sentiment Classification Using Enhanced Contextual Valence Shifters
Authors: Vo Ngoc Phu, Phan Thi Tuoi
Abstract:
We have explored different methods of improving the accuracy of sentiment classification. The sentiment orientation of a document can be positive (+), negative (-), or neutral (0). We combine five dictionaries from [2, 3, 4, 5, 6] into the new one with 21137 entries. The new dictionary has many verbs, adverbs, phrases and idioms, that are not in five ones before. The paper shows that our proposed method based on the combination of Term-Counting method and Enhanced Contextual Valence Shifters method has improved the accuracy of sentiment classification. The combined method has accuracy 68.984% on the testing dataset, and 69.224% on the training dataset. All of these methods are implemented to classify the reviews based on our new dictionary and the Internet Movie data set.Keywords: sentiment classification, sentiment orientation, valence shifters, contextual, valence shifters, term counting
Procedia PDF Downloads 50720047 Spillage Prediction Using Fluid-Structure Interaction Simulation with Coupled Eulerian-Lagrangian Technique
Authors: Ravi Soni, Irfan Pathan, Manish Pande
Abstract:
The current product development process needs simultaneous consideration of different physics. The performance of the product needs to be considered under both structural and fluid loads. Examples include ducts and valves where structural behavior affects fluid motion and vice versa. Simulation of fluid-structure interaction involves modeling interaction between moving components and the fluid flow. In these scenarios, it is difficult to calculate the damping provided by fluid flow because of dynamic motions of components and the transient nature of the flow. Abaqus Explicit offers general capabilities for modeling fluid-structure interaction with the Coupled Eulerian-Lagrangian (CEL) method. The Coupled Eulerian-Lagrangian technique has been used to simulate fluid spillage through fuel valves during dynamic closure events. The technique to simulate pressure drops across Eulerian domains has been developed using stagnation pressure. Also, the fluid flow is calculated considering material flow through elements at the outlet section of the valves. The methodology has been verified on Eaton products and shows a good correlation with the test results.Keywords: Coupled Eulerian-Lagrangian Technique, fluid structure interaction, spillage prediction, stagnation pressure
Procedia PDF Downloads 38220046 A Hybrid Block Multistep Method for Direct Numerical Integration of Fourth Order Initial Value Problems
Authors: Adamu S. Salawu, Ibrahim O. Isah
Abstract:
Direct solution to several forms of fourth-order ordinary differential equations is not easily obtained without first reducing them to a system of first-order equations. Thus, numerical methods are being developed with the underlying techniques in the literature, which seeks to approximate some classes of fourth-order initial value problems with admissible error bounds. Multistep methods present a great advantage of the ease of implementation but with a setback of several functions evaluation for every stage of implementation. However, hybrid methods conventionally show a slightly higher order of truncation for any k-step linear multistep method, with the possibility of obtaining solutions at off mesh points within the interval of solution. In the light of the foregoing, we propose the continuous form of a hybrid multistep method with Chebyshev polynomial as a basis function for the numerical integration of fourth-order initial value problems of ordinary differential equations. The basis function is interpolated and collocated at some points on the interval [0, 2] to yield a system of equations, which is solved to obtain the unknowns of the approximating polynomial. The continuous form obtained, its first and second derivatives are evaluated at carefully chosen points to obtain the proposed block method needed to directly approximate fourth-order initial value problems. The method is analyzed for convergence. Implementation of the method is done by conducting numerical experiments on some test problems. The outcome of the implementation of the method suggests that the method performs well on problems with oscillatory or trigonometric terms since the approximations at several points on the solution domain did not deviate too far from the theoretical solutions. The method also shows better performance compared with an existing hybrid method when implemented on a larger interval of solution.Keywords: Chebyshev polynomial, collocation, hybrid multistep method, initial value problems, interpolation
Procedia PDF Downloads 12920045 Assessment of Residual Stress on HDPE Pipe Wall Thickness
Authors: D. Sersab, M. Aberkane
Abstract:
Residual stresses, in high-density polyethylene (HDPE) pipes, result from a nonhomogeneous cooling rate that occurs between the inner and outer surfaces during the extrusion process in manufacture. Most known methods of measurements to determine the magnitude and profile of the residual stresses in the pipe wall thickness are layer removal and ring slitting method. The combined layer removal and ring slitting methods described in this paper involves measurement of the circumferential residual stresses with minimal local disturbance. The existing methods used for pipe geometry (ring slitting method) gives a single residual stress value at the bore. The layer removal method which is used more in flat plate specimen is implemented with ring slitting method. The method permits stress measurements to be made directly at different depth in the pipe wall and a well-defined residual stress profile was consequently obtained.Keywords: residual stress, layer removal, ring splitting, HDPE, wall thickness
Procedia PDF Downloads 34320044 A Look at the History of Calligraphy in Decoration of Mosques in Iran: 630-1630 AD
Authors: Cengiz Tavşan, Niloufar Akbarzadeh
Abstract:
Architecture in Iran has a continuous history from at least 5000 BC to the present, and numerous Iranian pre-Islamic elements have contributed significantly to the formation of Islamic art. At first, decoration was limited to small objects and containers and then progressed in the art of plaster and brickwork. They later applied in architecture as well. The art of gypsum and brickwork, which was prevalent in the form of motifs (animals and plants) in pre-Islam, was used in the aftermath of Islam with the art of calligraphy in decorations. The splendor and beauty of Iranian architecture, especially during the Islamic era, are related to decoration and design. After the invasion of Iran by the Arabs and the introduction of Islam to Iran, the arrival of the Iranian classical architecture significantly changed, and we saw the Arabic calligraphy decoration of the mosques in Iran. The principles of aesthetics in the art of calligraphy in Iran are based precisely on the principles of the beauty of ancient Iranian and Islamic art. On the other hand, after Islam, calligraphy was one of the most important sources of Islamic art in Islam and one of the important features of Islamic culture. First, the calligraphy had no cultural meaning and was only for decoration and beautification, it had the same meaning only in the inscriptions; however, over time, it became meaningful. This article provides a summary of the history of calligraphy in the mosques (from the entrance to Islam until the Safavid period), which cannot ignore the role of the calligraphy in their decorative ideas; and also, the important role that decorative elements play in creating a public space in terms of social and aesthetic performance. This study was conducted using library studies and field studies. The purpose of this study is to show the characteristics of architecture and art of decorations in Iran, especially in the mosque's architecture, which reaches the pinnacle of progress. We will see that religious beliefs and artistic practices are merging and trying to bring a single concept.Keywords: Islamic art, Islamic architecture, decorations in Iranian mosques, calligraphy
Procedia PDF Downloads 27820043 Model Canvas and Process for Educational Game Design in Outcome-Based Education
Authors: Ratima Damkham, Natasha Dejdumrong, Priyakorn Pusawiro
Abstract:
This paper explored the solution in game design to help game designers in the educational game designing using digital educational game model canvas (DEGMC) and digital educational game form (DEGF) based on Outcome-based Education program. DEGMC and DEGF can help designers develop an overview of the game while designing and planning their own game. The way to clearly assess players’ ability from learning outcomes and support their game learning design is by using the tools. Designers can balance educational content and entertainment in designing a game by using the strategies of the Business Model Canvas and design the gameplay and players’ ability assessment from learning outcomes they need by referring to the Constructive Alignment. Furthermore, they can use their design plan in this research to write their Game Design Document (GDD). The success of the research was evaluated by four experts’ perspectives in the education and computer field. From the experiments, the canvas and form helped the game designers model their game according to the learning outcomes and analysis of their own game elements. This method can be a path to research an educational game design in the future.Keywords: constructive alignment, constructivist theory, educational game, outcome-based education
Procedia PDF Downloads 36020042 On a Generalization of the Spectral Dichotomy Method of a Matrix With Respect to Parabolas
Authors: Mouhamadou Dosso
Abstract:
This paper presents methods of spectral dichotomy of a matrix which compute spectral projectors on the subspace associated with the eigenvalues external to the parabolas described by a general equation. These methods are modifications of the one proposed in [A. N. Malyshev and M. Sadkane, SIAM J. MATRIX ANAL. APPL. 18 (2), 265-278, 1997] which uses the spectral dichotomy method of a matrix with respect to the imaginary axis. Theoretical and algorithmic aspects of the methods are developed. Numerical results obtained by applying methods presented on matrices are reported.Keywords: spectral dichotomy method, spectral projector, eigensubspaces, eigenvalue
Procedia PDF Downloads 9620041 On Algebraic Structure of Improved Gauss-Seide Iteration
Authors: O. M. Bamigbola, A. A. Ibrahim
Abstract:
Analysis of real life problems often results in linear systems of equations for which solutions are sought. The method to employ depends, to some extent, on the properties of the coefficient matrix. It is not always feasible to solve linear systems of equations by direct methods, as such the need to use an iterative method becomes imperative. Before an iterative method can be employed to solve a linear system of equations there must be a guaranty that the process of solution will converge. This guaranty, which must be determined a priori, involve the use of some criterion expressible in terms of the entries of the coefficient matrix. It is, therefore, logical that the convergence criterion should depend implicitly on the algebraic structure of such a method. However, in deference to this view is the practice of conducting convergence analysis for Gauss-Seidel iteration on a criterion formulated based on the algebraic structure of Jacobi iteration. To remedy this anomaly, the Gauss-Seidel iteration was studied for its algebraic structure and contrary to the usual assumption, it was discovered that some property of the iteration matrix of Gauss-Seidel method is only diagonally dominant in its first row while the other rows do not satisfy diagonal dominance. With the aid of this structure we herein fashion out an improved version of Gauss-Seidel iteration with the prospect of enhancing convergence and robustness of the method. A numerical section is included to demonstrate the validity of the theoretical results obtained for the improved Gauss-Seidel method.Keywords: linear algebraic system, Gauss-Seidel iteration, algebraic structure, convergence
Procedia PDF Downloads 46720040 An Approach to Practical Determination of Fair Premium Rates in Crop Hail Insurance Using Short-Term Insurance Data
Authors: Necati Içer
Abstract:
Crop-hail insurance plays a vital role in managing risks and reducing the financial consequences of hail damage on crop production. Predicting insurance premium rates with short-term data is a major difficulty in numerous nations because of the unique characteristics of hailstorms. This study aims to suggest a feasible approach for establishing equitable premium rates in crop-hail insurance for nations with short-term insurance data. The primary goal of the rate-making process is to determine premium rates for high and zero loss costs of villages and enhance their credibility. To do this, a technique was created using the author's practical knowledge of crop-hail insurance. With this approach, the rate-making method was developed using a range of temporal and spatial factor combinations with both hypothetical and real data, including extreme cases. This article aims to show how to incorporate the temporal and spatial elements into determining fair premium rates using short-term insurance data. The article ends with a suggestion on the ultimate premium rates for insurance contracts.Keywords: crop-hail insurance, premium rate, short-term insurance data, spatial and temporal parameters
Procedia PDF Downloads 5920039 Numerical Investigation of Nanofluid Based Thermosyphon System
Authors: Kiran Kumar K., Ramesh Babu Bejjam, Atul Najan
Abstract:
A thermosyphon system is a heat transfer loop which operates on the basis of gravity and buoyancy forces. It guarantees a good reliability and low maintenance cost as it does not involve any mechanical pump. Therefore it can be used in many industrial applications such as refrigeration and air conditioning, electronic cooling, nuclear reactors, geothermal heat extraction, etc. But flow instabilities and loop configuration are the major problems in this system. Several previous researchers studied that stabilities can be suppressed by using nanofluids as loop fluid. In the present study a rectangular thermosyphon loop with end heat exchangers are considered for the study. This configuration is more appropriate for many practical applications such as solar water heater, geothermal heat extraction, etc. In the present work, steady-state analysis is carried out on thermosyphon loop with parallel flow coaxial heat exchangers at heat source and heat sink. In this loop nano fluid is considered as the loop fluid and water is considered as the external fluid in both hot and cold heat exchangers. For this analysis one-dimensional homogeneous model is developed. In this model, conservation equations like conservation of mass, momentum, energy are discretized using finite difference method. A computer code is written in MATLAB to simulate the flow in thermosyphon loop. A comparison in terms of heat transfer is made between water and nano fluid as working fluids in the loop.Keywords: heat exchanger, heat transfer, nanofluid, thermosyphon loop
Procedia PDF Downloads 47820038 Application of Agile Project Management to Construction Projects: Case Study
Authors: Ran Etgar, Sarit Freund
Abstract:
Agile project management (APM) has been developed originally for software development project. Construction projects seemed to be more apt to traditional water-fall approach than to APM. However, Construction project suffers from similar problems that necessitated the invention of APM, mainly the need to break down the project structure to small increments, thus minimizing the needed managerial planning and design. Since the classical structure of APM is not applicable the way it is to construction project, a modified version of APM was devised. This method, nicknamed 'The anchor method', exploits the fundamentals of APM (i.e., iterations, or sprints of short time frames or timeboxes, cross-functional teams, risk reduction and adaptation to changes) and adjust them to the construction world. The projects had to be structured appropriately to proactively and quickly adapt to change. The method aims to encompass human behavior and lean towards adaptivity rather than predictability. To enable smooth application of the method, a special project management software was developed, so as to provide solid administrational help and accurate data. The method is tested on a bunch of construction projects and some key performance indicators (KPIs) are collected. According to preliminary results the method is indeed very advantageous and with proper assimilation can radically change the construction project management paradigm.Keywords: agile project management, construction, information systems, project management
Procedia PDF Downloads 13520037 Evaluation of the Ardabil City Environmental Potential for Urban Development
Authors: Seiied Taghi Seiied Safavian, Ebrahim Fataei, Taghi Ebadi
Abstract:
Urbanized population increasing has been a major driving force for physical development and expansion. In this regard, selecting optimal management strategies for sustainable development of cities as the most important population centers has gotten more attention by the city managers. One of the most important issues in planning a sustainable development is environmental sustainability. In this research, identifying the optimal physical development strategies of Ardabil city in the future condition have been investigated based on land-use planning principles and regularities. Determination of suitable lands of urban development was conducted through natural variables comprised of slope, topography, geology, distance from fault, underground water's depth, land-use strategies and earth shape using hierarchical process method (AHP) in Geographical information system (GIS). Region's potential capabilities and talents were estimated by environmental elements extraction and its measurement based on environmental criteria. Consequently, specified suitable areas for Ardabil city development were introduced. Results of this research showed that the northern part of the Ardabil city is the most suitable sites for physical development of this city regarding the environmental sustainability criteria.Keywords: urban development, environmental sustainability, Ardabil city, AHP, GIS
Procedia PDF Downloads 43320036 Thermal Analysis and Experimental Procedure of Integrated Phase Change Material in a Storage Tank
Authors: Chargui Ridha, Agrebi Sameh
Abstract:
The integration of phase change materials (PCM) for the storage of thermal energy during the period of sunshine before being released during the night is a complement of free energy to improve the system formed by a solar collector, tank storage, and a heat exchanger. This paper is dedicated to the design of a thermal storage tank based on a PCM-based heat exchanger. The work is divided into two parts: an experimental part using paraffin as PCM was carried out within the Laboratory of Thermal Processes of Borj Cedria in order to improve the performance of the system formed by the coupling of a flat solar collector and a thermal storage tank and to subsequently determine the influence of PCM on the whole system. This phase is based on the measurement instrumentation, namely, a differential scanning calorimeter (DSC) and the thermal analyzer (hot disk: HOT DISK) in order to determine the physical properties of the paraffin (PCM), which has been chosen. The second phase involves the detailed design of the PCM heat exchanger, which is incorporated into a thermal storage tank and coupled with a solar air collector installed at the Research and Technology Centre of Energy (CRTEn). A numerical part based on the TRANSYS and Fluent software, as well as the finite volume method, was carried out for the storage reservoir systems in order to determine the temperature distribution in each chosen system.Keywords: phase change materials, storage tank, heat exchanger, flat plate collector
Procedia PDF Downloads 100