Search results for: dissolved oxygen profiles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2951

Search results for: dissolved oxygen profiles

221 Application of a Submerged Anaerobic Osmotic Membrane Bioreactor Hybrid System for High-Strength Wastewater Treatment and Phosphorus Recovery

Authors: Ming-Yeh Lu, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu

Abstract:

Recently, anaerobic membrane bioreactors (AnMBRs) has been widely utilized, which combines anaerobic biological treatment process and membrane filtration, that can be present an attractive option for wastewater treatment and water reuse. Conventional AnMBR is having several advantages, such as improving effluent quality, compact space usage, lower sludge yield, without aeration and production of energy. However, the removal of nitrogen and phosphorus in the AnMBR permeate was negligible which become the biggest disadvantage. In recent years, forward osmosis (FO) is an emerging technology that utilizes osmotic pressure as driving force to extract clean water without additional external pressure. The pore size of FO membrane is kindly mentioned the pore size, so nitrogen or phosphorus could effectively improve removal of nitrogen or phosphorus. Anaerobic bioreactor with FO membrane (AnOMBR) can retain the concentrate organic matters and nutrients. However, phosphorus is a non-renewable resource. Due to the high rejection property of FO membrane, the high amount of phosphorus could be recovered from the combination of AnMBR and FO. In this study, development of novel submerged anaerobic osmotic membrane bioreactor integrated with periodic microfiltration (MF) extraction for simultaneous phosphorus and clean water recovery from wastewater was evaluated. A laboratory-scale AnOMBR utilizes cellulose triacetate (CTA) membranes with effective membrane area of 130 cm² was fully submerged into a 5.5 L bioreactor at 30-35℃. Active layer-facing feed stream orientation was utilized, for minimizing fouling and scaling. Additionally, a peristaltic pump was used to circulate draw solution (DS) at a cross flow velocity of 0.7 cm/s. Magnesium sulphate (MgSO₄) solution was used as DS. Microfiltration membrane periodically extracted about 1 L solution when the TDS reaches to 5 g/L to recover phosphorus and simultaneous control the salt accumulation in the bioreactor. During experiment progressed, the average water flux was achieved around 1.6 LMH. The AnOMBR process show greater than 95% removal of soluble chemical oxygen demand (sCOD), nearly 100% of total phosphorous whereas only partial removal of ammonia, and finally average methane production of 0.22 L/g sCOD was obtained. Therefore, AnOMBR system periodically utilizes MF membrane extracted for phosphorus recovery with simultaneous pH adjustment. The overall performance demonstrates that a novel submerged AnOMBR system is having potential for simultaneous wastewater treatment and resource recovery from wastewater, and hence, the new concept of this system can be used to replace for conventional AnMBR in the future.

Keywords: anaerobic treatment, forward osmosis, phosphorus recovery, membrane bioreactor

Procedia PDF Downloads 271
220 Association of Zinc with New Generation Cardiovascular Risk Markers in Childhood Obesity

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Zinc is a vital element required for growth and development. This fact makes zinc important, particularly for children. It maintains normal cellular structure and functions. This essential element appears to have protective effects against coronary artery disease and cardiomyopathy. Higher serum zinc levels are associated with lower risk of cardiovascular diseases (CVDs). There is a significant association between low serum zinc levels and heart failure. Zinc may be a potential biomarker of cardiovascular health. High sensitive cardiac troponin T (hs-cTnT) and cardiac myosin binding protein C (cMyBP-C) are new generation markers used for prediagnosis, diagnosis, and prognosis of CVDs. The aim of this study is to determine zinc as well as new generation cardiac markers profiles in children with normal body mass index (N-BMI), obese (OB), morbid obese (MO) children, and children with metabolic syndrome (MetS) findings. The association among them will also be investigated. Four study groups were constituted. The study protocol was approved by the institutional Ethics Committee of Tekirdag Namik Kemal University. Parents of the participants filled informed consent forms to participate in the study. Group 1 is composed of 44 children with N-BMI. Group 2 and Group 3 comprised 43 OB and 45 MO children, respectively. Forty-five MO children with MetS findings were included in Group 4. World Health Organization age- and sex-adjusted BMI percentile tables were used to constitute groups. These values were 15-85, 95-99, and above 99 for N-BMI, OB, and MO, respectively. Criteria for MetS findings were determined. Routine biochemical analyses, including zinc, were performed. High sensitive-cTnT and cMyBP-C concentrations were measured by kits based on enzyme-linked immunosorbent assay principle. Appropriate statistical tests within the scope of SPSS were used for the evaluation of the study data. p<0.05 was accepted as statistically significant. Four groups were matched for age and gender. Decreased zinc concentrations were measured in Groups 2, 3, and 4 compared to Group 1. Groups did not differ from one another in terms of hs-cTnT. There were statistically significant differences between cMyBP-C levels of MetS group and N-BMI as well as OB groups. There was an increasing trend going from N-BMI group to MetS group. There were statistically significant negative correlations between zinc and hs-cTnT as well as cMyBP-C concentrations in MetS group. In conclusion, inverse correlations detected between zinc and new generation cardiac markers (hs-TnT and cMyBP-C) have pointed out that decreased levels of this physiologically essential trace element accompany increased levels of hs-cTnT as well as cMyBP-C in children with MetS. This finding emphasizes that both zinc and these new generation cardiac markers may be evaluated as biomarkers of cardiovascular health during severe childhood obesity precipitated with MetS findings and also suggested as the messengers of the future risk in the adulthood periods of children with MetS.

Keywords: cardiac myosin binding protein-C, cardiovascular diseases, children, high sensitive cardiac troponin T, obesity

Procedia PDF Downloads 111
219 In-Situ Formation of Particle Reinforced Aluminium Matrix Composites by Laser Powder Bed Fusion of Fe₂O₃/AlSi12 Powder Mixture Using Consecutive Laser Melting+Remelting Strategy

Authors: Qimin Shi, Yi Sun, Constantinus Politis, Shoufeng Yang

Abstract:

In-situ preparation of particle-reinforced aluminium matrix composites (PRAMCs) by laser powder bed fusion (LPBF) additive manufacturing is a promising strategy to strengthen traditional Al-based alloys. The laser-driven thermite reaction can be a practical mechanism to in-situ synthesize PRAMCs. However, introducing oxygen elements through adding Fe₂O₃ makes the powder mixture highly sensitive to form porosity and Al₂O₃ film during LPBF, bringing challenges to producing dense Al-based materials. Therefore, this work develops a processing strategy combined with consecutive high-energy laser melting scanning and low-energy laser remelting scanning to prepare PRAMCs from a Fe₂O₃/AlSi12 powder mixture. The powder mixture consists of 5 wt% Fe₂O₃ and the remainder AlSi12 powder. The addition of 5 wt% Fe₂O₃ aims to achieve balanced strength and ductility. A high relative density (98.2 ± 0.55 %) was successfully obtained by optimizing laser melting (Emelting) and laser remelting surface energy density (Eremelting) to Emelting = 35 J/mm² and Eremelting = 5 J/mm². Results further reveal the necessity of increasing Emelting, to improve metal liquid’s spreading/wetting by breaking up the Al₂O₃ films surrounding the molten pools; however, the high-energy laser melting produced much porosity, including H₂₋, O₂₋ and keyhole-induced pores. The subsequent low-energy laser remelting could close the resulting internal pores, backfill open gaps and smoothen solidified surfaces. As a result, the material was densified by repeating laser melting and laser remelting layer by layer. Although with two-times laser scanning, the microstructure still shows fine cellular Si networks with Al grains inside (grain size of about 370 nm) and in-situ nano-precipitates (Al₂O₃, Si, and Al-Fe(-Si) intermetallics). Finally, the fine microstructure, nano-structured dispersion strengthening, and high-level densification strengthened the in-situ PRAMCs, reaching yield strength of 426 ± 4 MPa and tensile strength of 473 ± 6 MPa. Furthermore, the results can expect to provide valuable information to process other powder mixtures with severe porosity/oxide-film formation potential, considering the evidenced contribution of laser melting/remelting strategy to densify material and obtain good mechanical properties during LPBF.

Keywords: densification, laser powder bed fusion, metal matrix composites, microstructures, mechanical properties

Procedia PDF Downloads 156
218 Fabrication of Highly Conductive Graphene/ITO Transparent Bi-Film through Chemical Vapor Deposition (CVD) and Organic Additives-Free Sol-Gel Techniques

Authors: Bastian Waduge Naveen Harindu Hemasiri, Jae-Kwan Kim, Ji-Myon Lee

Abstract:

Indium tin oxide (ITO) remains the industrial standard transparent conducting oxides with better performances. Recently, graphene becomes as a strong material with unique properties to replace the ITO. However, graphene/ITO hybrid composite material is a newly born field in the electronic world. In this study, the graphene/ITO composite bi-film was synthesized by a two steps process. 10 wt.% tin-doped, ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO3)3.H2O and SnCl4 without using organic additives. The wettability and surface free energy (97.6986 mJ/m2) enhanced oxygen plasma treated glass substrates were used to form voids free continuous ITO film. The spin-coated samples were annealed at 600 0C for 1 hour under low vacuum conditions to obtained crystallized, ITO film. The crystal structure and crystalline phases of ITO thin films were analyzed by X-ray diffraction (XRD) technique. The Scherrer equation was used to determine the crystallite size. Detailed information about chemical composition and elemental composition of the ITO film were determined by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) coupled with FE-SEM respectively. Graphene synthesis was done under chemical vapor deposition (CVD) method by using Cu foil at 1000 0C for 1 min. The quality of the synthesized graphene was characterized by Raman spectroscopy (532nm excitation laser beam) and data was collected at room temperature and normal atmosphere. The surface and cross-sectional observation were done by using FE-SEM. The optical transmission and sheet resistance were measured by UV-Vis spectroscopy and four point probe head at room temperature respectively. Electrical properties were also measured by using V-I characteristics. XRD patterns reveal that the films contain the In2O3 phase only and exhibit the polycrystalline nature of the cubic structure with the main peak of (222) plane. The peak positions of In3d5/2 (444.28 eV) and Sn3d5/2 (486.7 eV) in XPS results indicated that indium and tin are in the oxide form only. The UV-visible transmittance shows 91.35 % at 550 nm with 5.88 x 10-3 Ωcm specific resistance. The G and 2D band in Raman spectroscopy of graphene appear at 1582.52 cm-1 and 2690.54 cm-1 respectively when the synthesized CVD graphene on SiO2/Si. The determined intensity ratios of 2D to G (I2D/IG) and D to G (ID/IG) were 1.531 and 0.108 respectively. However, the above-mentioned G and 2D peaks appear at 1573.57 cm-1 and 2668.14 cm-1 respectively when the CVD graphene on the ITO coated glass, the positions of G and 2D peaks were red shifted by 8.948 cm-1 and 22.396 cm-1 respectively. This graphene/ITO bi-film shows modified electrical properties when compares with sol-gel derived ITO film. The reduction of sheet resistance in the bi-film was 12.03 % from the ITO film. Further, the fabricated graphene/ITO bi-film shows 88.66 % transmittance at 550 nm wavelength.

Keywords: chemical vapor deposition, graphene, ITO, Raman Spectroscopy, sol-gel

Procedia PDF Downloads 260
217 Monitoring of Wound Healing Through Structural and Functional Mechanisms Using Photoacoustic Imaging Modality

Authors: Souradip Paul, Arijit Paramanick, M. Suheshkumar Singh

Abstract:

Traumatic injury is the leading worldwide health problem. Annually, millions of surgical wounds are created for the sake of routine medical care. The healing of these unintended injuries is always monitored based on visual inspection. The maximal restoration of tissue functionality remains a significant concern of clinical care. Although minor injuries heal well with proper care and medical treatment, large injuries negatively influence various factors (vasculature insufficiency, tissue coagulation) and cause poor healing. Demographically, the number of people suffering from severe wounds and impaired healing conditions is burdensome for both human health and the economy. An incomplete understanding of the functional and molecular mechanism of tissue healing often leads to a lack of proper therapies and treatment. Hence, strong and promising medical guidance is necessary for monitoring the tissue regeneration processes. Photoacoustic imaging (PAI), is a non-invasive, hybrid imaging modality that can provide a suitable solution in this regard. Light combined with sound offers structural, functional and molecular information from the higher penetration depth. Therefore, molecular and structural mechanisms of tissue repair will be readily observable in PAI from the superficial layer and in the deep tissue region. Blood vessel formation and its growth is an essential tissue-repairing components. These vessels supply nutrition and oxygen to the cell in the wound region. Angiogenesis (formation of new capillaries from existing blood vessels) contributes to new blood vessel formation during tissue repair. The betterment of tissue healing directly depends on angiogenesis. Other optical microscopy techniques can visualize angiogenesis in micron-scale penetration depth but are unable to provide deep tissue information. PAI overcomes this barrier due to its unique capability. It is ideally suited for deep tissue imaging and provides the rich optical contrast generated by hemoglobin in blood vessels. Hence, an early angiogenesis detection method provided by PAI leads to monitoring the medical treatment of the wound. Along with functional property, mechanical property also plays a key role in tissue regeneration. The wound heals through a dynamic series of physiological events like coagulation, granulation tissue formation, and extracellular matrix (ECM) remodeling. Therefore tissue elasticity changes, can be identified using non-contact photoacoustic elastography (PAE). In a nutshell, angiogenesis and biomechanical properties are both critical parameters for tissue healing and these can be characterized in a single imaging modality (PAI).

Keywords: PAT, wound healing, tissue coagulation, angiogenesis

Procedia PDF Downloads 106
216 Comprehensive, Up-to-Date Climate System Change Indicators, Trends and Interactions

Authors: Peter Carter

Abstract:

Comprehensive climate change indicators and trends inform the state of the climate (system) with respect to present and future climate change scenarios and the urgency of mitigation and adaptation. With data records now going back for many decades, indicator trends can complement model projections. They are provided as datasets by several climate monitoring centers, reviewed by state of the climate reports, and documented by the IPCC assessments. Up-to-date indicators are provided here. Rates of change are instructive, as are extremes. The indicators include greenhouse gas (GHG) emissions (natural and synthetic), cumulative CO2 emissions, atmospheric GHG concentrations (including CO2 equivalent), stratospheric ozone, surface ozone, radiative forcing, global average temperature increase, land temperature increase, zonal temperature increases, carbon sinks, soil moisture, sea surface temperature, ocean heat content, ocean acidification, ocean oxygen, glacier mass, Arctic temperature, Arctic sea ice (extent and volume), northern hemisphere snow cover, permafrost indices, Arctic GHG emissions, ice sheet mass, sea level rise, and stratospheric and surface ozone. Global warming is not the most reliable single metric for the climate state. Radiative forcing, atmospheric CO2 equivalent, and ocean heat content are more reliable. Global warming does not provide future commitment, whereas atmospheric CO2 equivalent does. Cumulative carbon is used for estimating carbon budgets. The forcing of aerosols is briefly addressed. Indicator interactions are included. In particular, indicators can provide insight into several crucial global warming amplifying feedback loops, which are explained. All indicators are increasing (adversely), most as fast as ever and some faster. One particularly pressing indicator is rapidly increasing global atmospheric methane. In this respect, methane emissions and sources are covered in more detail. In their application, indicators used in assessing safe planetary boundaries are included. Indicators are considered with respect to recent published papers on possible catastrophic climate change and climate system tipping thresholds. They are climate-change-policy relevant. In particular, relevant policies include the 2015 Paris Agreement on “holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels” and the 1992 UN Framework Convention on Climate change, which has “stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system.”

Keywords: climate change, climate change indicators, climate change trends, climate system change interactions

Procedia PDF Downloads 105
215 Measurement of Influence of the COVID-19 Pandemic on Efficiency of Japan’s Railway Companies

Authors: Hideaki Endo, Mika Goto

Abstract:

The global outbreak of the COVID-19 pandemic has seriously affected railway businesses. The number of railway passengers decreased due to the decline in the number of commuters and business travelers to avoid crowded trains and a sharp drop in inbound tourists visiting Japan. This has affected not only railway businesses but also related businesses, including hotels, leisure businesses, and retail businesses at station buildings. In 2021, the companies were divided into profitable and loss-making companies. This division suggests that railway companies, particularly loss-making companies, needed to decrease operational inefficiency. To measure the impact of COVID-19 and discuss the sustainable management strategies of railway companies, we examine the cost inefficiency of Japanese listed railway companies by applying stochastic frontier analysis (SFA) to their operational and financial data. First, we employ the stochastic frontier cost function approach to measure inefficiency. The cost frontier function is formulated as a Cobb–Douglas type, and we estimated parameters and variables for inefficiency. This study uses panel data comprising 26 Japanese-listed railway companies from 2005 to 2020. This period includes several events deteriorating the business environment, such as the financial crisis from 2007 to 2008 and the Great East Japan Earthquake of 2011, and we compare those impacts with those of the COVID-19 pandemic after 2020. Second, we identify the characteristics of the best-practice railway companies and examine the drivers of cost inefficiencies. Third, we analyze the factors influencing cost inefficiency by comparing the profiles of the top 10 railway companies and others before and during the pandemic. Finally, we examine the relationship between cost inefficiency and the implementation of efficiency measures for each railway company. We obtained the following four findings. First, most Japanese railway companies showed the lowest cost inefficiency (most efficient) in 2014 and the highest in 2020 (least efficient) during the COVID-19 pandemic. The second worst occurred in 2009 when it was affected by the financial crisis. However, we did not observe a significant impact of the 2011 Great East Japan Earthquake. This is because no railway company was influenced by the earthquake in this operating area, except for JR-EAST. Second, the best-practice railway companies are KEIO and TOKYU. The main reason for their good performance is that both operate in and near the Tokyo metropolitan area, which is densely populated. Third, we found that non-best-practice companies had a larger decrease in passenger kilometers than best-practice companies. This indicates that passengers made fewer long-distance trips because they refrained from inter-prefectural travel during the pandemic. Finally, we found that companies that implement more efficiency improvement measures had higher cost efficiency and they effectively used their customer databases through proactive DX investments in marketing and asset management.

Keywords: COVID-19 pandemic, stochastic frontier analysis, railway sector, cost efficiency

Procedia PDF Downloads 75
214 Efficient Synthesis of Highly Functionalized Biologically Important Spirocarbocyclic Oxindoles via Hauser Annulation

Authors: Kanduru Lokesh, Venkitasamy Kesavan

Abstract:

The unique structural features of spiro-oxindoles with diverse biological activities have made them privileged structures in new drug discovery. The key structural characteristic of these compounds is the spiro ring fused at the C-3 position of the oxindole core with varied heterocyclic motifs. Structural diversification of heterocyclic scaffolds to synthesize new chemical entities as pharmaceuticals and agrochemicals is one of the important goals of synthetic organic chemists. Nitrogen and oxygen containing heterocycles are by far the most widely occurring privileged structures in medicinal chemistry. The structural complexity and distinct three-dimensional arrangement of functional groups of these privileged structures are generally responsible for their specificity against biological targets. Structurally diverse compound libraries have proved to be valuable assets for drug discovery against challenging biological targets. Thus, identifying a new combination of substituents at C-3 position on oxindole moiety is of great importance in drug discovery to improve the efficiency and efficacy of the drugs. The development of suitable methodology for the synthesis of spiro-oxindole compounds has attracted much interest often in response to the significant biological activity displayed by the both natural and synthetic compounds. So creating structural diversity of oxindole scaffolds is need of the decade and formidable challenge. A general way to improve synthetic efficiency and also to access diversified molecules is through the annulation reactions. Annulation reactions allow the formation of complex compounds starting from simple substrates in a single transformation consisting of several steps in an ecologically and economically favorable way. These observations motivated us to develop the annulation reaction protocol to enable the synthesis of a new class of spiro-oxindole motifs which in turn would enable the enhancement of molecular diversity. As part of our enduring interest in the development of novel, efficient synthetic strategies to enable the synthesis of biologically important oxindole fused spirocarbocyclic systems, We have developed an efficient methodology for the construction of highly functionalized spirocarbocyclic oxindoles through [4+2] annulation of phthalides via Hauser annulation. functionalized spirocarbocyclic oxindoles was accomplished for the first time in the literature using Hauser annulation strategy. The reaction between methyleneindolinones and arylsulfonylphthalides catalyzed by cesium carbonate led to the access of new class of biologically important spiro[indoline-3,2'-naphthalene] derivatives in very good yields. The synthetic utility of the annulated product was further demonstrated by fluorination Using NFSI as a fluorinating agent to furnish corresponding fluorinated product.

Keywords: Hauser-Kraus annulation, spiro carbocyclic oxindoles, oxindole-ester, fluoridation

Procedia PDF Downloads 199
213 Getting to Know ICU Nurses and Their Duties

Authors: Masih Nikgou

Abstract:

ICU nurses or intensive care nurses are highly specialized and trained healthcare personnel. These nurses provide nursing care for patients with life-threatening illnesses or conditions. They provide the experience, knowledge and specialized skills that patients need to survive and recover. Intensive care nurses (ICU) are trained to make momentary decisions and act quickly when the patient's condition changes. Their primary work environment is in the hospital in intensive care units. Typically, ICU patients require a high level of care. ICU nurses work in challenging and complex fields in their nursing profession. They have the primary duty of caring for and saving patients who are fighting for their lives. Intensive care (ICU) nurses are highly trained to provide exceptional care to patients who depend on 24/7 nursing care. A patient in the ICU is often equipped with a ventilator, intubated and connected to several life support machines and medical equipment. Intensive Care Nurses (ICU) have full expertise in considering all aspects of bringing back their patients. Some of the specific responsibilities of ICU nurses include (a) Assessing and monitoring the patient's progress and identifying any sudden changes in the patient's medical condition. (b) Administration of drugs intravenously by injection or through gastric tubes. (c) Provide regular updates on patient progress to physicians, patients, and their families. (d) According to the clinical condition of the patient, perform the approved diagnostic or treatment methods. (e) In case of a health emergency, informing the relevant doctors. (f) To determine the need for emergency interventions, evaluate laboratory data and vital signs of patients. (g) Caring for patient needs during recovery in the ICU. (h) ICU nurses often provide emotional support to patients and their families. (i) Regulating and monitoring medical equipment and devices such as medical ventilators, oxygen delivery devices, transducers, and pressure lines. (j) Assessment of pain level and sedation needs of patients. (k) Maintaining patient reports and records. As the name suggests, critical care nurses work primarily in ICU health care units. ICUs are completely healthy and have proper lighting with strict adherence to health and safety from medical centers. ICU nurses usually move between the intensive care unit, the emergency department, the operating room, and other special departments of the hospital. ICU nurses usually follow a standard shift schedule that includes morning, afternoon, and night schedules. There are also other relocation programs depending on the hospital and region. Nurses who are passionate about data and managing a patient's condition and outcomes typically do well as ICU nurses. An inquisitive mind and attention to processes are equally important. ICU nurses are completely compassionate and are not afraid to advocate for their patients and family members. who are distressed.

Keywords: nursing, intensive care unit, pediatric intensive care unit, mobile intensive care unit, surgical intensive care unite

Procedia PDF Downloads 79
212 A Reusable Foundation Solution for Onshore Windmills

Authors: Wael Mohamed, Per-Erik Austrell, Ola Dahlblom

Abstract:

Wind farms repowering is a significant topic nowadays. Wind farms repowering means the complete dismantling of the existing turbine, tower and foundation at an existing site and replacing these units with taller and larger units. Modern wind turbines are designed to withstand approximately for 20~25 years. However, a very long design life of 100 years or more can be expected for high-quality concrete foundations. Based on that there are significant economic and environmental benefits of replacing the out-of-date wind turbine with a new turbine of better power generation capacity and reuse the foundation. The big difference in lifetime shows a potential for new foundation solution to allow wind farms to be updated with taller and larger units in order to increase the energy production. This also means a significant change in the design loads on the foundations. Therefore, the new foundation solution should be able to handle the additional overturning loads. A raft surrounded by an active stabilisation system is proposed in this study. The concept of an active stabilisation system is a novel idea using a movable load to stabilise against the overturning moment. The active stabilisation system consists of a water tank being divided into eight compartments. The system uses the water as a movable load by pumping it into two compartments to stabilise against the overturning moment. The position of the water will rely on the wind direction and a water movement system depending on a number of electric motors and pipes with electric valves is used. One of the advantages of this active foundation solution is that some cost-efficient adjustment could be done to make this foundation able to support larger and taller units. After the end of the first turbine lifetime, an option is presented here to reuse this foundation and make it able to support taller and larger units. This option is considered using extra water volume to fill four compartments instead of two compartments. This extra water volume will increase the stability moment by 41% compared to using water in two compartments. The geotechnical performance of the new foundation solution is investigated using two existing weak soil profiles in Egypt and Sweden. A comparative study of the new solution and a piled raft with long friction piles is performed using finite element simulations. The results show that using a raft surrounded by an active stabilisation system decreases the tilting compared to a piled raft with friction piles. Moreover, it is found that using a raft surrounded by an active stabilisation system decreases the foundation costs compared to a piled raft with friction piles. In term of the environmental impact, it is found that the new foundation has a beneficial impact on the CO2 emissions. It saves roughly from 296.1 tonnes-CO2 to 518.21 tonnes-CO2 from the manufacture of concrete if the new foundation solution is used for another turbine-lifetime.

Keywords: active stabilisation system, CO2 emissions, FE analysis, reusable, weak soils

Procedia PDF Downloads 217
211 Liquefaction Phenomenon in the Kathmandu Valley during the 2015 Earthquake of Nepal

Authors: Kalpana Adhikari, Mandip Subedi, Keshab Sharma, Indra P. Acharya

Abstract:

The Gorkha Nepal earthquake of moment magnitude (Mw) 7.8 struck the central region of Nepal on April 25, 2015 with the epicenter about 77 km northwest of Kathmandu Valley . Peak ground acceleration observed during the earthquake was 0.18g. This motion induced several geotechnical effects such as landslides, foundation failures liquefaction, lateral spreading and settlement, and local amplification. An aftershock of moment magnitude (Mw) 7.3 hit northeast of Kathmandu on May 12 after 17 days of main shock caused additional damages. Kathmandu is the largest city in Nepal, have a population over four million. As the Kathmandu Valley deposits are composed mainly of sand, silt and clay layers with a shallow ground water table, liquefaction is highly anticipated. Extensive liquefaction was also observed in Kathmandu Valley during the 1934 Nepal-Bihar earthquake. Field investigations were carried out in Kathmandu Valley immediately after Mw 7.8, April 25 main shock and Mw 7.3, May 12 aftershock. Geotechnical investigation of both liquefied and non-liquefied sites were conducted after the earthquake. This paper presents observations of liquefaction and liquefaction induced damage, and the liquefaction potential assessment based on Standard Penetration Tests (SPT) for liquefied and non-liquefied sites. SPT based semi-empirical approach has been used for evaluating liquefaction potential of the soil and Liquefaction Potential Index (LPI) has been used to determine liquefaction probability. Recorded ground motions from the event are presented. Geological aspect of Kathmandu Valley and local site effect on the occurrence of liquefaction is described briefly. Observed liquefaction case studies are described briefly. Typically, these are sand boils formed by freshly ejected sand forced out of over-pressurized sub-strata. At most site, sand was ejected to agricultural fields forming deposits that varied from millimetres to a few centimeters thick. Liquefaction-induced damage to structures in these areas was not significant except buildings on some places tilted slightly. Boiled soils at liquefied sites were collected and the particle size distributions of ejected soils were analyzed. SPT blow counts and the soil profiles at ten liquefied and non-liquefied sites were obtained. The factors of safety against liquefaction with depth and liquefaction potential index of the ten sites were estimated and compared with observed liquefaction after 2015 Gorkha earthquake. The liquefaction potential indices obtained from the analysis were found to be consistent with the field observation. The field observations along with results from liquefaction assessment were compared with the existing liquefaction hazard map. It was found that the existing hazard maps are unrepresentative and underestimate the liquefaction susceptibility in Kathmandu Valley. The lessons learned from the liquefaction during this earthquake are also summarized in this paper. Some recommendations are also made to the seismic liquefaction mitigation in the Kathmandu Valley.

Keywords: factor of safety, geotechnical investigation, liquefaction, Nepal earthquake

Procedia PDF Downloads 324
210 Advancements in Electronic Sensor Technologies for Tea Quality Evaluation

Authors: Raana Babadi Fathipour

Abstract:

Tea, second only to water in global consumption rates, holds a significant place as the beverage of choice for many around the world. The process of fermenting tea leaves plays a crucial role in determining its ultimate quality, traditionally assessed through meticulous observation by tea tasters and laboratory analysis. However, advancements in technology have paved the way for innovative electronic sensing platforms like the electronic nose (e-nose), electronic tongue (e-tongue), and electronic eye (e-eye). These cutting-edge tools, coupled with sophisticated data processing algorithms, not only expedite the assessment of tea's sensory qualities based on consumer preferences but also establish new benchmarks for this esteemed bioactive product to meet burgeoning market demands worldwide. By harnessing intricate data sets derived from electronic signals and deploying multivariate statistical techniques, these technological marvels can enhance accuracy in predicting and distinguishing tea quality with unparalleled precision. In this contemporary exploration, a comprehensive overview is provided of the most recent breakthroughs and viable solutions aimed at addressing forthcoming challenges in the realm of tea analysis. Utilizing bio-mimicking Electronic Sensory Perception systems (ESPs), researchers have developed innovative technologies that enable precise and instantaneous evaluation of the sensory-chemical attributes inherent in tea and its derivatives. These sophisticated sensing mechanisms are adept at deciphering key elements such as aroma, taste, and color profiles, transitioning valuable data into intricate mathematical algorithms for classification purposes. Through their adept capabilities, these cutting-edge devices exhibit remarkable proficiency in discerning various teas with respect to their distinct pricing structures, geographic origins, harvest epochs, fermentation processes, storage durations, quality classifications, and potential adulteration levels. While voltammetric and fluorescent sensor arrays have emerged as promising tools for constructing electronic tongue systems proficient in scrutinizing tea compositions, potentiometric electrodes continue to serve as reliable instruments for meticulously monitoring taste dynamics within different tea varieties. By implementing a feature-level fusion strategy within predictive models, marked enhancements can be achieved regarding efficiency and accuracy levels. Moreover, by establishing intrinsic linkages through pattern recognition methodologies between sensory traits and biochemical makeup found within tea samples, further strides are made toward enhancing our understanding of this venerable beverage's complex nature.

Keywords: classifier system, tea, polyphenol, sensor, taste sensor

Procedia PDF Downloads 0
209 Blue Hydrogen Production Via Catalytic Aquathermolysis Coupled with Direct Carbon Dioxide Capture Via Adsorption

Authors: Sherif Fakher

Abstract:

Hydrogen has been gaining a lot of global attention as an uprising contributor in the energy sector. Labeled as an energy carrier, hydrogen is used in many industries and can be used to generate electricity via fuel cells. Blue hydrogen involves the production of hydrogen from hydrocarbons using different processes that emit CO₂. However, the CO₂ is captured and stored. Hence, very little environmental damage occurs during the hydrogen production process. This research investigates the ability to use different catalysts for the production of hydrogen from different hydrocarbon sources, including coal, oil, and gas, using a two-step Aquathermolysis reaction. The research presents the results of experiments conducted to evaluate different catalysts and also highlights the main advantages of this process over other blue hydrogen production methods, including methane steam reforming, autothermal reforming, and oxidation. Two methods of hydrogen generation were investigated including partial oxidation and aquathermolysis. For those two reactions, the reaction kinetics, thermodynamics, and medium were all investigated. Following this, experiments were conducted to test the hydrogen generation potential from both methods. The porous media tested were sandstone, ash, and prozzolanic material. The spent oils used were spent motor oil and spent vegetable oil from cooking. Experiments were conducted at temperatures up to 250 C and pressures up to 3000 psi. Based on the experimental results, mathematical models were developed to predict the hydrogen generation potential at higher thermodynamic conditions. Since both partial oxidation and aquathermolysis require relatively high temperatures to undergo, it was important to devise a method by which these high temperatures can be generated at a low cost. This was done by investigating two factors, including the porous media used and the reliance on the spent oil. Of all the porous media used, the ash had the highest thermal conductivity. The second step was the partial combustion of part of the spent oil to generate the heat needed to reach the high temperatures. This reduced the cost of the heat generation significantly. For the partial oxidation reaction, the spent oil was burned in the presence of a limited oxygen concentration to generate carbon monoxide. The main drawback of this process was the need for burning. This resulted in the generation of other harmful and environmentally damaging gases. Aquathermolysis does not rely on burning, which makes it the cleaner alternative. However, it needs much higher temperatures to run the reaction. When comparing the hydrogen generation potential for both using gas chromatography, aquathermolysis generated 23% more hydrogen using the same volume of spent oil compared to partial oxidation. This research introduces the concept of using spent oil for hydrogen production. This can be a very promising method to produce a clean source of energy using a waste product. This can also help reduce the reliance on freshwater for hydrogen generation which can divert the usage of freshwater to other more important applications.

Keywords: blue hydrogen production, catalytic aquathermolysis, direct carbon dioxide capture, CCUS

Procedia PDF Downloads 33
208 Influence of Synergistic Modification with Tung Oil and Heat Treatment on Physicochemical Properties of Wood

Authors: Luxi He, Tianfang Zhang, Zhengbin He, Songlin Yi

Abstract:

Heat treatment has been widely recognized for its effectiveness in enhancing the physicochemical properties of wood, including hygroscopicity and dimensional stability. Nonetheless, the non-negligible volumetric shrinkage and loss of mechanical strength resulting from heat treatment may diminish the wood recovery and its product value. In this study, tung oil was used to alleviate heat-induced shrinkage and reduction in mechanical properties of wood during heat treatment. Tung oil was chosen as a modifier because it is a traditional Chinese plant oil that has been widely used for over a thousand years to protect wooden furniture and buildings due to its biodegradable and non-toxic properties. The effects of different heating media (air, tung oil) and their effective treatment parameters (temperature, duration) on the changes in the physical properties (morphological characteristics, pore structures, micromechanical properties), and chemical properties (chemical structures, chemical composition) of wood were investigated by using scanning electron microscopy, confocal laser scanning microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and dynamic vapor sorption. Meanwhile, the correlation between the mass changes and the color change, volumetric shrinkage, and hygroscopicity was also investigated. The results showed that the thermal degradation of wood cell wall components was the most important factor contributing to the changes in heat-induced shrinkage, color, and moisture adsorption of wood. In air-heat-treated wood samples, there was a significant correlation between mass change and heat-induced shrinkage, brightness, and moisture adsorption. However, the presence of impregnated tung oil in oil-heat-treated wood appears to disrupt these correlations among physical properties. The results of micromechanical properties demonstrated a significant decrease in elastic modulus following high-temperature heat treatment, which was mitigated by tung oil treatment. Chemical structure and compositional analyses indicated that the changes in chemical structure primarily stem from the degradation of hemicellulose and cellulose, and the presence of tung oil created an oxygen-insulating environment that slowed down this degradation process. Morphological observation results showed that tung oil permeated the wood structure and penetrated the cell walls through transportation channels, altering the micro-morphology of the cell wall surface, obstructing primary water passages (e.g., vessels and pits), and impeding the release of volatile degradation products as well as the infiltration and diffusion of water. In summary, tung oil treatment represents an environmentally friendly and efficient method for maximizing wood recovery and increasing product value. This approach holds significant potential for industrial applications in wood heat treatment.

Keywords: tung oil, heat treatment, physicochemical properties, wood cell walls

Procedia PDF Downloads 70
207 A Complex Network Approach to Structural Inequality of Educational Deprivation

Authors: Harvey Sanchez-Restrepo, Jorge Louca

Abstract:

Equity and education are major focus of government policies around the world due to its relevance for addressing the sustainable development goals launched by Unesco. In this research, we developed a primary analysis of a data set of more than one hundred educational and non-educational factors associated with learning, coming from a census-based large-scale assessment carried on in Ecuador for 1.038.328 students, their families, teachers, and school directors, throughout 2014-2018. Each participating student was assessed by a standardized computer-based test. Learning outcomes were calibrated through item response theory with two-parameters logistic model for getting raw scores that were re-scaled and synthetized by a learning index (LI). Our objective was to develop a network for modelling educational deprivation and analyze the structure of inequality gaps, as well as their relationship with socioeconomic status, school financing, and student's ethnicity. Results from the model show that 348 270 students did not develop the minimum skills (prevalence rate=0.215) and that Afro-Ecuadorian, Montuvios and Indigenous students exhibited the highest prevalence with 0.312, 0.278 and 0.226, respectively. Regarding the socioeconomic status of students (SES), modularity class shows clearly that the system is out of equilibrium: the first decile (the poorest) exhibits a prevalence rate of 0.386 while rate for decile ten (the richest) is 0.080, showing an intense negative relationship between learning and SES given by R= –0.58 (p < 0.001). Another interesting and unexpected result is the average-weighted degree (426.9) for both private and public schools attending Afro-Ecuadorian students, groups that got the highest PageRank (0.426) and pointing out that they suffer the highest educational deprivation due to discrimination, even belonging to the richest decile. The model also found the factors which explain deprivation through the highest PageRank and the greatest degree of connectivity for the first decile, they are: financial bonus for attending school, computer access, internet access, number of children, living with at least one parent, books access, read books, phone access, time for homework, teachers arriving late, paid work, positive expectations about schooling, and mother education. These results provide very accurate and clear knowledge about the variables affecting poorest students and the inequalities that it produces, from which it might be defined needs profiles, as well as actions on the factors in which it is possible to influence. Finally, these results confirm that network analysis is fundamental for educational policy, especially linking reliable microdata with social macro-parameters because it allows us to infer how gaps in educational achievements are driven by students’ context at the time of assigning resources.

Keywords: complex network, educational deprivation, evidence-based policy, large-scale assessments, policy informatics

Procedia PDF Downloads 125
206 Using the ISO 9705 Room Corner Test for Smoke Toxicity Quantification of Polyurethane

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

Polyurethane (PU) foam is typically sold as acoustic foam that is often used as sound insulation in settings such as night clubs and bars. As a construction product, PU is tested by being glued to the walls and ceiling of the ISO 9705 room corner test room. However, when heat is applied to PU foam, it melts and burns as a pool fire due to it being a thermoplastic. The current test layout is unable to accurately measure mass loss and doesn’t allow for the material to burn as a pool fire without seeping out of the test room floor. The lack of mass loss measurement means gas yields pertaining to smoke toxicity analysis can’t be calculated, which makes data comparisons from any other material or test method difficult. Additionally, the heat release measurements are not representative of the actual measurements taken as a lot of the material seeps through the floor (when a tray to catch the melted material is not used). This research aimed to modify the ISO 9705 test to provide the ability to measure mass loss to allow for better calculation of gas yields and understanding of decomposition. It also aimed to accurately measure smoke toxicity in both the doorway and duct and enable dilution factors to be calculated. Finally, the study aimed to examine if doubling the fuel loading would force under-ventilated flaming. The test layout was modified to be a combination of the SBI (single burning item) test set up inside oof the ISO 9705 test room. Polyurethane was tested in two different ways with the aim of altering the ventilation condition of the tests. Test one was conducted using 1 x SBI test rig aiming for well-ventilated flaming. Test two was conducted using 2 x SBI rigs (facing each other inside the test room) (doubling the fuel loading) aiming for under-ventilated flaming. The two different configurations used were successful in achieving both well-ventilated flaming and under-ventilated flaming, shown by the measured equivalence ratios (measured using a phi meter designed and created for these experiments). The findings show that doubling the fuel loading will successfully force under-ventilated flaming conditions to be achieved. This method can therefore be used when trying to replicate post-flashover conditions in future ISO 9705 room corner tests. The radiative heat generated by the two SBI rigs facing each other facilitated a much higher overall heat release resulting in a more severe fire. The method successfully allowed for accurate measurement of smoke toxicity produced from the PU foam in terms of simple gases such as oxygen depletion, CO and CO2. Overall, the proposed test modifications improve the ability to measure the smoke toxicity of materials in different fire conditions on a large-scale.

Keywords: flammability, ISO9705, large-scale testing, polyurethane, smoke toxicity

Procedia PDF Downloads 76
205 Biocompatibility of Calcium Phosphate Coatings With Different Crystallinity Deposited by Sputtering

Authors: Ekaterina S. Marchenko, Gulsharat A. Baigonakova, Kirill M. Dubovikov, Igor A. Khlusov

Abstract:

NiTi alloys combine biomechanical and biochemical properties. This makes them a perfect candidate for medical applications. However, there is a serious problem with these alloys, such as the release of Ni from the matrix. Ni ions are known to be toxic to living tissues and leach from the matrix into the surrounding implant tissues due to corrosion after prolonged use. To prevent the release of Ni ions, corrosive strong coatings are usually used. Titanium nitride-based coatings are perfect corrosion inhibitors and also have good bioactive properties. However, there is an opportunity to improve the biochemical compatibility of the surface by depositing another layer. This layer can consist of elements such as calcium and phosphorus. The Ca and P ions form different calcium phosphate phases, which are present in the mineral part of human bones. We therefore believe that these elements must promote osteogenesis and osteointegration. In view of the above, the aim of this study is to investigate the effect of crystallinity on the biocompatibility of a two-layer coating deposited on NiTi substrate by sputtering. The first step of the research, apart from the NiTi polishing, is the layer-by-layer deposition of Ti-Ni-Ti by magnetron sputtering and the subsequent synthesis of this composite in an N atmosphere at 900 °C. The total thickness of the corrosion resistant layer is 150 nm. Plasma assisted RF sputtering was then used to deposit a bioactive film on the titanium nitride layer. A Ca-P powder target was used to obtain such a film. We deposited three types of Ca-P layers with different crystallinity and compared them in terms of cytotoxicity. One group of samples had no Ca-P coating and was used as a control. We obtained different crystallinity by varying the sputtering parameters such as bias voltage, plasma source current and pressure. XRD analysis showed that all coatings are calcium phosphate, but the sample obtained at maximum bias and plasma source current and minimum pressure has the most intense peaks from the coating phase. SEM and EDS showed that all three coatings have a homogeneous and dense structure without cracks and consist of calcium, phosphorus and oxygen. Cytotoxic tests carried out on three types of samples with Ca-P coatings and a control group showed that the control sample and the sample with Ca-P coating obtained at maximum bias voltage and plasma source current and minimum pressure had the lowest number of dead cells on the surface, around 11 ± 4%. Two other types of samples with Ca-P coating have 40 ± 9% and 21 ± 7% dead cells on the surface. It can therefore be concluded that these two sputtering modes have a negative effect on the corrosion resistance of the whole samples. The third sputtering mode does not affect the corrosion resistance and has the same level of cytotoxicity as the control. It can be concluded that the most suitable sputtering mode is the third with maximum bias voltage and plasma source current and minimum pressure.

Keywords: calcium phosphate coating, cytotoxicity, NiTi alloy, two-layer coating

Procedia PDF Downloads 67
204 Multicultural Education in the National Context: A Study of Peoples' Friendship University of Russia

Authors: Maria V. Mishatkina

Abstract:

The modelling of dialogical environment is an essential feature of modern education. The dialogue of cultures is a foundation and an important prerequisite for a formation of a human’s main moral qualities such as an ability to understand another person, which is manifested in such values as tolerance, respect, mutual assistance and mercy. A formation of a modern expert occurs in an educational environment that is significantly different from what we had several years ago. Nowadays university education has qualitatively new characteristics. They may be observed in Peoples’ Friendship University of Russia (RUDN University), a top Russian higher education institution which unites representatives of more than 150 countries. The content of its educational strategies is not an adapted cultural experience but material between science and innovation. Besides, RUDN University’s profiles and specialization are not equal to the professional structures. People study not a profession in a strict sense but a basic scientific foundation of an activity in different socio-cultural areas (science, business and education). RUDN University also provides a considerable unit of professional education components. They are foreign languages skills, economic, political, ethnic, communication and computer culture, theory of information and basic management skills. Moreover, there is a rich social life (festive multicultural events, theme parties, journeys) and prospects concerning the inclusive approach to education (for example, a special course ‘Social Pedagogy: Issues of Tolerance’). In our research, we use such methods as analysis of modern and contemporary scientific literature, opinion poll (involving students, teachers and research workers) and comparative data analysis. We came to the conclusion that knowledge transfer of RUDN student in the activity happens through making goals, problems, issues, tasks and situations which simulate future innovative ambiguous environment that potentially prepares him/her to dialogical way of life. However, all these factors may not take effect if there is no ‘personal inspiration’ of students by communicative and dialogic values, their participation in a system of meanings and tools of learning activity that is represented by cooperation within the framework of scientific and pedagogical schools dialogue. We also found out that dominating strategies of ensuring the quality of education are those that put students in the position of the subject of their own education. Today these strategies and approaches should involve such approaches and methods as task, contextual, modelling, specialized, game-imitating and dialogical approaches, the method of practical situations, etc. Therefore, University in the modern sense is not only an educational institution, but also a generator of innovation, cooperation among nations and cultural progress. RUDN University has been performing exactly this mission for many decades.

Keywords: dialogical developing situation, dialogue of cultures, readiness for dialogue, university graduate

Procedia PDF Downloads 221
203 Choking among Babies, Toddlers and Children with Special Needs: A Review of Mechanisms, Implications, Incidence, and Recommendations of Professional Prevention Guidelines

Authors: Ella Abaev, Shany Segal, Miri Gabay

Abstract:

Background: Choking is a blockage of airways that prevents efficient breathing and air flow to the lungs. Choking may be partial or full and is an emergency situation. Complete or prolonged choking leads to apnea, lack of oxygen in the tissues of the body and brain, and can cause death. There are three mechanisms of choking: obstruction of internal respiratory tracts by food or object aspiration, any material that blocks or covers external air passages, external pressure on the neck or trapping between objects. Children's airways are narrower than that of adults and therefore the risk of choking is greater, due to the aspiration of food and other foreign bodies into the lungs. In the Child Development Center at Safra Children’s Hospital, Tel Hashomer in Israel are treated infants, toddlers, and children aged 0-18 years with various developmental disabilities. Due to the increase in reports of ‘almost an event’ of choking in the past year and the serious consequences of choking event, it was decided to give an emphasis to the issue. Incidence and methods: The number of reports of ‘almost an event’ or a choking event was examined at the center during the years 2013-2018 and a thorough research work was conducted on the subject in order to build a prevention program. Findings: Between 2013 and 2018 the center reported about ten cases of ‘almost choking events’. In the middle of 2018 alone three cases of ‘almost an event’ were reported. Objective: Providing knowledge leads to awareness raise, change of perception, change in behavior and prevention. The center employs more than 130 staff members from various sectors so that it is the work of multi-professional teams to promote the quality and safety of the treatment. The familiarity of the staff with risk factors, prevention guidelines, identification of choking signs, and treatment are most important and significant in determining the outcome of a choking event. Conclusions and recommendations: After in-depth research work was carried out in cooperation with the Risk Management Unit on the subject of choking, which include a description of the definitions, mechanisms, risk factors, treatment methods and extensive recommendations for prevention (e.g. using treatment and stimulation accessories with standards association stamps and adjustment of the type of food and the way it is served to match to the child's age and the ability to swallow). The expected stages of development and emphasis on the population of children with special needs were taken into account. The research findings will be published by the staff and parents of the patients, professional publications, and lectures and there is an expectation to decrease the number of choking events in the next years.

Keywords: children with special needs, choking, educational system, prevention guidelines

Procedia PDF Downloads 180
202 Study of the Kinetics of Formation of Carboxylic Acids Using Ion Chromatography during Oxidation Induced by Rancimat of the Oleic Acid, Linoleic Acid, Linolenic Acid, and Biodiesel

Authors: Patrícia T. Souza, Marina Ansolin, Eduardo A. C. Batista, Antonio J. A. Meirelles, Matthieu Tubino

Abstract:

Lipid oxidation is a major cause of the deterioration of the quality of the biodiesel, because the waste generated damages the engines. Among the main undesirable effects are the increase of viscosity and acidity, leading to the formation of insoluble gums and sediments which cause the blockage of fuel filters. The auto-oxidation is defined as the spontaneous reaction of atmospheric oxygen with lipids. Unsaturated fatty acids are usually the components affected by such reactions. They are present as free fatty acids, fatty esters and glycerides. To determine the oxidative stability of biodiesels, through the induction period, IP, the Rancimat method is used, which allows continuous monitoring of the induced oxidation process of the samples. During the oxidation of the lipids, volatile organic acids are produced as byproducts, in addition, other byproducts, including alcohols and carbonyl compounds, may be further oxidized to carboxylic acids. By the methodology developed in this work using ion chromatography, IC, analyzing the water contained in the conductimetric vessel, were quantified organic anions of carboxylic acids in samples subjected to oxidation induced by Rancimat. The optimized chromatographic conditions were: eluent water:acetone (80:20 v/v) with 0.5 mM sulfuric acid; flow rate 0.4 mL min-1; injection volume 20 µL; eluent suppressor 20 mM LiCl; analytical curve from 1 to 400 ppm. The samples studied were methyl biodiesel from soybean oil and unsaturated fatty acids standards: oleic, linoleic and linolenic. The induced oxidation kinetics curves were constructed by analyzing the water contained in the conductimetric vessels which were removed, each one, from the Rancimat apparatus at prefixed intervals of time. About 3 g of sample were used under the conditions of 110 °C and air flow rate of 10 L h-1. The water of each conductimetric Rancimat measuring vessel, where the volatile compounds were collected, was filtered through a 0.45 µm filter and analyzed by IC. Through the kinetic data of the formation of the organic anions of carboxylic acids, the formation rates of the same were calculated. The observed order of the rates of formation of the anions was: formate >>> acetate > hexanoate > valerate for the oleic acid; formate > hexanoate > acetate > valerate for the linoleic acid; formate >>> valerate > acetate > propionate > butyrate for the linolenic acid. It is possible to suppose that propionate and butyrate are obtained mainly from linolenic acid and that hexanoate is originated from oleic and linoleic acid. For the methyl biodiesel the order of formation of anions was: formate >>> acetate > valerate > hexanoate > propionate. According to the total rate of formation these anions produced during the induced degradation of the fatty acids can be assigned the order of reactivity: linolenic acid > linoleic acid >>> oleic acid.

Keywords: anions of carboxylic acids, biodiesel, ion chromatography, oxidation

Procedia PDF Downloads 475
201 Influence of Gamma-Radiation Dosimetric Characteristics on the Stability of the Persistent Organic Pollutants

Authors: Tatiana V. Melnikova, Lyudmila P. Polyakova, Alla A. Oudalova

Abstract:

As a result of environmental pollution, the production of agriculture and foodstuffs inevitably contain residual amounts of Persistent Organic Pollutants (POP). The special attention must be given to organic pollutants, including various organochlorinated pesticides (OCP). Among priorities, OCP is DDT (and its metabolite DDE), alfa-HCH, gamma-HCH (lindane). The control of these substances spends proceeding from requirements of sanitary norms and rules. During too time often is lost sight of that the primary product can pass technological processing (in particular irradiation treatment) as a result of which transformation of physicochemical forms of initial polluting substances is possible. The goal of the present work was to study the OCP radiation degradation at a various gamma-radiation dosimetric characteristics. The problems posed for goal achievement: to evaluate the content of the priority of OCPs in food; study the character the degradation of OCP in model solutions (with micro concentrations commensurate with the real content of their agricultural and food products) depending upon dosimetric characteristics of gamma-radiation. Qualitative and quantitative analysis of OCP in food and model solutions by gas chromatograph Varian 3400 (Varian, Inc. (USA)); chromatography-mass spectrometer Varian Saturn 4D (Varian, Inc. (USA)) was carried out. The solutions of DDT, DDE, alpha- and gamma- isomer HCH (0.01, 0.1, 1 ppm) were irradiated on "Issledovatel" (60Co) and "Luch - 1" (60Co) installations at a dose 10 kGy with a variation of dose rate from 0.0083 up to 2.33 kGy/sec. It was established experimentally that OCP residual concentration in individual samples of food products (fish, milk, cereal crops, meat, butter) are evaluated as 10-1-10-4 mg/kg, the value of which depends on the factor-sensations territory and natural migration processes. The results were used in the preparation of model solutions OCP. The dependence of a degradation extent of OCP from a dose rate gamma-irradiation has complex nature. According to our data at a dose 10 kGy, the degradation extent of OCP at first increase passes through a maximum (over the range 0.23 – 0.43 Gy/sec), and then decrease with the magnification of a dose rate. The character of the dependence of a degradation extent of OCP from a dose rate is kept for various OCP, in polar and nonpolar solvents and does not vary at the change of concentration of the initial substance. Also in work conditions of the maximal radiochemical yield of OCP which were observed at having been certain: influence of gamma radiation with a dose 10 kGy, in a range of doses rate 0.23 – 0.43 Gy/sec; concentration initial OCP 1 ppm; use of solvent - 2-propanol after preliminary removal of oxygen. Based on, that at studying model solutions of OCP has been established that the degradation extent of pesticides and qualitative structure of OCP radiolysis products depend on a dose rate, has been decided to continue researches radiochemical transformations OCP into foodstuffs at various of doses rate.

Keywords: degradation extent, dosimetric characteristics, gamma-radiation, organochlorinated pesticides, persistent organic pollutants

Procedia PDF Downloads 249
200 Radioprotective Efficacy of Costus afer against the Radiation-Induced Hematology and Histopathology Damage in Mice

Authors: Idowu R. Akomolafe, Naven Chetty

Abstract:

Background: The widespread medical application of ionizing radiation has raised public concern about radiation exposure and, thus, associated cancer risk. The production of reactive oxygen species and free radicals as a result of radiation exposure can cause severe damage to deoxyribonucleic acid (DNA) of cells, thus leading to biological effect. Radiotherapy is an excellent modality in the treatment of cancerous cells, comes with a few challenges. A significant challenge is the exposure of healthy cells surrounding the tumour to radiation. The last few decades have witnessed lots of attention shifted to plants, herbs, and natural product as an alternative to synthetic compound for radioprotection. Thus, the study investigated the radioprotective efficacy of Costus afer against whole-body radiation-induced haematological, histopathological disorder in mice. Materials and Method: Fifty-four mice were randomly divided into nine groups. Animals were pretreated with the extract of Costus afer by oral gavage for six days before irradiation. Control: 6 mice received feed and water only; 6 mice received feed, water, and 3Gy; 6 mice received feed, water, and 6Gy; experimental: 6 mice received 250 mg/kg extract; 6 mice received 500 mg/kg extract; 6 mice received 250 mg/kg extract and 3Gy; 6 mice received 500 mg/kg extract and 3Gy; 6 mice received 250 mg/kg extract and 6Gy; 6 mice received 500 mg/kg extract and 6Gy in addition to feeding and water. The irradiation was done at the Radiotherapy and Oncology Department of Grey's Hospital using linear accelerator (LINAC). Thirty-six mice were sacrificed by cervical dislocation 48 hours after irradiation, and blood was collected for haematology tests. Also, the liver and kidney of the sacrificed mice were surgically removed for histopathology tests. The remaining eighteen (18) mice were used for mortality and survival studies. Data were analysed by one-way ANOVA, followed by Tukey's multiple comparison test. Results: Prior administration of Costus afer extract decreased the symptoms of radiation sickness and caused a significant delay in the mortality as demonstrated in the experimental mice. The first mortality was recorded on day-5 post irradiation, and this happened to the group E- that is, mice that received 6Gy but no extract. There was significant protection in the experimental mice, as demonstrated in the blood counts against hematopoietic and gastrointestinal damage when compared with the control. The protection was seen in the increase in blood counts of experimental animals and the number of survivor. The protection offered by Costus afer may be due to its ability to scavenge free radicals and restore gastrointestinal and bone marrow damage produced by radiation. Conclusions: The study has demonstrated that exposure of mice to radiation could cause modifications in the haematological and histopathological parameters of irradiated mice. However, the changes were relieved by the methanol extract of Costus afer, probably through its free radical scavenging and antioxidant properties.

Keywords: costus afer, hematological, mortality, radioprotection, radiotherapy

Procedia PDF Downloads 142
199 3D CFD Model of Hydrodynamics in Lowland Dam Reservoir in Poland

Authors: Aleksandra Zieminska-Stolarska, Ireneusz Zbicinski

Abstract:

Introduction: The objective of the present work was to develop and validate a 3D CFD numerical model for simulating flow through 17 kilometers long dam reservoir of a complex bathymetry. In contrast to flowing waters, dam reservoirs were not emphasized in the early years of water quality modeling, as this issue has never been the major focus of urban development. Starting in the 1970s, however, it was recognized that natural and man-made lakes are equal, if not more important than estuaries and rivers from a recreational standpoint. The Sulejow Reservoir (Central Poland) was selected as the study area as representative of many lowland dam reservoirs and due availability of a large database of the ecological, hydrological and morphological parameters of the lake. Method: 3D, 2-phase and 1-phase CFD models were analysed to determine hydrodynamics in the Sulejow Reservoir. Development of 3D, 2-phase CFD model of flow requires a construction of mesh with millions of elements and overcome serious convergence problems. As 1-phase CFD model of flow in relation to 2-phase CFD model excludes from the simulations the dynamics of waves only, which should not change significantly water flow pattern for the case of lowland, dam reservoirs. In 1-phase CFD model, the phases (water-air) are separated by a plate which allows calculations of one phase (water) flow only. As the wind affects velocity of flow, to take into account the effect of the wind on hydrodynamics in 1-phase CFD model, the plate must move with speed and direction equal to the speed and direction of the upper water layer. To determine the velocity at which the plate will move on the water surface and interacts with the underlying layers of water and apply this value in 1-phase CFD model, the 2D, 2-phase model was elaborated. Result: Model was verified on the basis of the extensive flow measurements (StreamPro ADCP, USA). Excellent agreement (an average error less than 10%) between computed and measured velocity profiles was found. As a result of work, the following main conclusions can be presented: •The results indicate that the flow field in the Sulejow Reservoir is transient in nature, with swirl flows in the lower part of the lake. Recirculating zones, with the size of even half kilometer, may increase water retention time in this region •The results of simulations confirm the pronounced effect of the wind on the development of the water circulation zones in the reservoir which might affect the accumulation of nutrients in the epilimnion layer and result e.g. in the algae bloom. Conclusion: The resulting model is accurate and the methodology develop in the frame of this work can be applied to all types of storage reservoir configurations, characteristics, and hydrodynamics conditions. Large recirculating zones in the lake which increase water retention time and might affect the accumulation of nutrients were detected. Accurate CFD model of hydrodynamics in large water body could help in the development of forecast of water quality, especially in terms of eutrophication and water management of the big water bodies.

Keywords: CFD, mathematical modelling, dam reservoirs, hydrodynamics

Procedia PDF Downloads 401
198 Inpatient Glycemic Management Strategies and Their Association with Clinical Outcomes in Hospitalized SARS-CoV-2 Patients

Authors: Thao Nguyen, Maximiliano Hyon, Sany Rajagukguk, Anna Melkonyan

Abstract:

Introduction: Type 2 Diabetes is a well-established risk factor for severe SARS-CoV-2 infection. Uncontrolled hyperglycemia in patients with established or newly diagnosed diabetes is associated with poor outcomes, including increased mortality and hospital length of stay. Objectives: Our study aims to compare three different glycemic management strategies and their association with clinical outcomes in patients hospitalized for moderate to severe SARS-CoV-2 infection. Identifying optimal glycemic management strategies will improve the quality of patient care and improve their outcomes. Method: This is a retrospective observational study on patients hospitalized at Adventist Health White Memorial with severe SARS-CoV-2 infection from 11/1/2020 to 02/28/2021. The following inclusion criteria were used: positive SARS-CoV-2 PCR test, age >18 yrs old, diabetes or random glucose >200 mg/dL on admission, oxygen requirement >4L/min, and treatment with glucocorticoids. Our exclusion criteria included: ICU admission within 24 hours, discharge within five days, death within five days, and pregnancy. The patients were divided into three glycemic management groups: Group 1, managed solely by the Primary Team, Group 2, by Pharmacy; and Group 3, by Endocrinologist. Primary outcomes were average glucose on Day 5, change in glucose between Days 3 and 5, and average insulin dose on Day 5 among groups. Secondary outcomes would be upgraded to ICU, inpatient mortality, and hospital length of stay. For statistics, we used IBM® SPSS, version 28, 2022. Results: Most studied patients were Hispanic, older than 60, and obese (BMI >30). It was the first CV-19 surge with the Delta variant in an unvaccinated population. Mortality was markedly high (> 40%) with longer LOS (> 13 days) and a high ICU transfer rate (18%). Most patients had markedly elevated inflammatory markers (CRP, Ferritin, and D-Dimer). These, in combination with glucocorticoids, resulted in severe hyperglycemia that was difficult to control. Average glucose on Day 5 was not significantly different between groups primary vs. pharmacy vs. endocrine (220.5 ± 63.4 vs. 240.9 ± 71.1 vs. 208.6 ± 61.7 ; P = 0.105). Change in glucose from days 3 to 5 was not significantly different between groups but trended towards favoring the endocrinologist group (-26.6±73.6 vs. 3.8±69.5 vs. -32.2±84.1; P= 0.052). TDD insulin was not significantly different between groups but trended towards higher TDD for the endocrinologist group (34.6 ± 26.1 vs. 35.2 ± 26.4 vs. 50.5 ± 50.9; P=0.054). The endocrinologist group used significantly more preprandial insulin compared to other groups (91.7% vs. 39.1% vs. 65.9% ; P < 0.001). The pharmacy used more basal insulin than other groups (95.1% vs. 79.5% vs. 79.2; P = 0.047). There were no differences among groups in the clinical outcomes: LOS, ICU upgrade, or mortality. Multivariate regression analysis controlled for age, sex, BMI, HbA1c level, renal function, liver function, CRP, d-dimer, and ferritin showed no difference in outcomes among groups. Conclusion: Given high-risk factors in our population, despite efforts from the glycemic management teams, it’s unsurprising no differences in clinical outcomes in mortality and length of stay.

Keywords: glycemic management, strategies, hospitalized, SARS-CoV-2, outcomes

Procedia PDF Downloads 449
197 Neural Network Based Control Algorithm for Inhabitable Spaces Applying Emotional Domotics

Authors: Sergio A. Navarro Tuch, Martin Rogelio Bustamante Bello, Leopoldo Julian Lechuga Lopez

Abstract:

In recent years, Mexico’s population has seen a rise of different physiological and mental negative states. Two main consequences of this problematic are deficient work performance and high levels of stress generating and important impact on a person’s physical, mental and emotional health. Several approaches, such as the use of audiovisual stimulus to induce emotions and modify a person’s emotional state, can be applied in an effort to decreases these negative effects. With the use of different non-invasive physiological sensors such as EEG, luminosity and face recognition we gather information of the subject’s current emotional state. In a controlled environment, a subject is shown a series of selected images from the International Affective Picture System (IAPS) in order to induce a specific set of emotions and obtain information from the sensors. The raw data obtained is statistically analyzed in order to filter only the specific groups of information that relate to a subject’s emotions and current values of the physical variables in the controlled environment such as, luminosity, RGB light color, temperature, oxygen level and noise. Finally, a neural network based control algorithm is given the data obtained in order to feedback the system and automate the modification of the environment variables and audiovisual content shown in an effort that these changes can positively alter the subject’s emotional state. During the research, it was found that the light color was directly related to the type of impact generated by the audiovisual content on the subject’s emotional state. Red illumination increased the impact of violent images and green illumination along with relaxing images decreased the subject’s levels of anxiety. Specific differences between men and women were found as to which type of images generated a greater impact in either gender. The population sample was mainly constituted by college students whose data analysis showed a decreased sensibility to violence towards humans. Despite the early stage of the control algorithm, the results obtained from the population sample give us a better insight into the possibilities of emotional domotics and the applications that can be created towards the improvement of performance in people’s lives. The objective of this research is to create a positive impact with the application of technology to everyday activities; nonetheless, an ethical problem arises since this can also be applied to control a person’s emotions and shift their decision making.

Keywords: data analysis, emotional domotics, performance improvement, neural network

Procedia PDF Downloads 143
196 Magnetron Sputtered Thin-Film Catalysts with Low Noble Metal Content for Proton Exchange Membrane Water Electrolysis

Authors: Peter Kus, Anna Ostroverkh, Yurii Yakovlev, Yevheniia Lobko, Roman Fiala, Ivan Khalakhan, Vladimir Matolin

Abstract:

Hydrogen economy is a concept of low-emission society which harvests most of its energy from renewable sources (e.g., wind and solar) and in case of overproduction, electrochemically turns the excess amount into hydrogen, which serves as an energy carrier. Proton exchange membrane water electrolyzers (PEMWE) are the backbone of this concept. By fast-response electricity to hydrogen conversion, the PEMWEs will not only stabilize the electrical grid but also provide high-purity hydrogen for variety of fuel cell powered devices, ranging from consumer electronics to vehicles. Wider commercialization of PEMWE technology is however hindered by high prices of noble metals which are necessary for catalyzing the redox reactions within the cell. Namely, platinum for hydrogen evolution reaction (HER), running on cathode, and iridium for oxygen evolution reaction (OER) on anode. Possible way of how to lower the loading of Pt and Ir is by using conductive high-surface nanostructures as catalyst supports in conjunction with thin-film catalyst deposition. The presented study discusses unconventional technique of membrane electron assembly (MEA) preparation. Noble metal catalysts (Pt and Ir) were magnetron sputtered in very low loadings onto the surface of porous sublayers (located on gas diffusion layer or directly on membrane), forming so to say localized three-phase boundary. Ultrasonically sprayed corrosion resistant TiC-based sublayer was used as a support material on anode, whereas magnetron sputtered nanostructured etched nitrogenated carbon (CNx) served the same role on cathode. By using this configuration, we were able to significantly decrease the amount of noble metals (to thickness of just tens of nanometers), while keeping the performance comparable to that of average state-of-the-art catalysts. Complex characterization of prepared supported catalysts includes in-cell performance and durability tests, electrochemical impedance spectroscopy (EIS) as well as scanning electron microscopy (SEM) imaging and X-ray photoelectron spectroscopy (XPS) analysis. Our research proves that magnetron sputtering is a suitable method for thin-film deposition of electrocatalysts. Tested set-up of thin-film supported anode and cathode catalysts with combined loading of just 120 ug.cm⁻² yields remarkable values of specific current. Described approach of thin-film low-loading catalyst deposition might be relevant when noble metal reduction is the topmost priority.

Keywords: hydrogen economy, low-loading catalyst, magnetron sputtering, proton exchange membrane water electrolyzer

Procedia PDF Downloads 163
195 Profiling of Bacterial Communities Present in Feces, Milk, and Blood of Lactating Cows Using 16S rRNA Metagenomic Sequencing

Authors: Khethiwe Mtshali, Zamantungwa T. H. Khumalo, Stanford Kwenda, Ismail Arshad, Oriel M. M. Thekisoe

Abstract:

Ecologically, the gut, mammary glands and bloodstream consist of distinct microbial communities of commensals, mutualists and pathogens, forming a complex ecosystem of niches. The by-products derived from these body sites i.e. faeces, milk and blood, respectively, have many uses in rural communities where they aid in the facilitation of day-to-day household activities and occasional rituals. Thus, although livestock rearing plays a vital role in the sustenance of the livelihoods of rural communities, it may serve as a potent reservoir of different pathogenic organisms that could have devastating health and economic implications. This study aimed to simultaneously explore the microbial profiles of corresponding faecal, milk and blood samples from lactating cows using 16S rRNA metagenomic sequencing. Bacterial communities were inferred through the Divisive Amplicon Denoising Algorithm 2 (DADA2) pipeline coupled with SILVA database v138. All downstream analyses were performed in R v3.6.1. Alpha-diversity metrics showed significant differences between faeces and blood, faeces and milk, but did not vary significantly between blood and milk (Kruskal-Wallis, P < 0.05). Beta-diversity metrics on Principal Coordinate Analysis (PCoA) and Non-Metric Dimensional Scaling (NMDS) clustered samples by type, suggesting that microbial communities of the studied niches are significantly different (PERMANOVA, P < 0.05). A number of taxa were significantly differentially abundant (DA) between groups based on the Wald test implemented in the DESeq2 package (Padj < 0.01). The majority of the DA taxa were significantly enriched in faeces than in milk and blood, except for the genus Anaplasma, which was significantly enriched in blood and was, in turn, the most abundant taxon overall. A total of 30 phyla, 74 classes, 156 orders, 243 families and 408 genera were obtained from the overall analysis. The most abundant phyla obtained between the three body sites were Firmicutes, Bacteroidota, and Proteobacteria. A total of 58 genus-level taxa were simultaneously detected between the sample groups, while bacterial signatures of at least 8 of these occurred concurrently in corresponding faeces, milk and blood samples from the same group of animals constituting a pool. The important taxa identified in this study could be categorized into four potentially pathogenic clusters: i) arthropod-borne; ii) food-borne and zoonotic; iii) mastitogenic and; iv) metritic and abortigenic. This study provides insight into the microbial composition of bovine faeces, milk, and blood and its extent of overlapping. It further highlights the potential risk of disease occurrence and transmission between the animals and the inhabitants of the sampled rural community, pertaining to their unsanitary practices associated with the use of cattle by-products.

Keywords: microbial profiling, 16S rRNA, NGS, feces, milk, blood, lactating cows, small-scale farmers

Procedia PDF Downloads 112
194 Synthesis of Chitosan/Silver Nanocomposites: Antibacterial Properties and Tissue Regeneration for Thermal Burn Injury

Authors: B.L. España-Sánchez, E. Luna-Hernández, R.A. Mauricio-Sánchez, M.E. Cruz-Soto, F. Padilla-Vaca, R. Muñoz, L. Granados-López, L.R. Ovalle-Flores, J.L. Menchaca-Arredondo, G. Luna-Bárcenas

Abstract:

Treatment of burn injured has been considered an important clinical problem due to the fluid control and the presence of microorganisms during the healing process. Conventional treatment includes antiseptic techniques, topical medication and surgical removal of damaged skin, to avoid bacterial growth. In order to accelerate this process, different alternatives for tissue regeneration have been explored, including artificial skin, polymers, hydrogels and hybrid materials. Some requirements consider a nonreactive organic polymer with high biocompatibility and skin adherence, avoiding bacterial infections. Chitin-derivative biopolymer such as chitosan (CS) has been used in skin regeneration following third-degree burns. The biological interest of CS is associated with the improvement of tissue cell stimulation, biocompatibility and antibacterial properties. In particular, antimicrobial properties of CS can be significantly increased when is blended with nanostructured materials. Silver-based nanocomposites have gained attention in medicine due to their high antibacterial properties against pathogens, related to their high surface area/volume ratio at nanomolar concentrations. Silver nanocomposites can be blended or synthesized with chitin-derivative biopolymers in order to obtain a biodegradable/antimicrobial hybrid with improved physic-mechanical properties. In this study, nanocomposites based on chitosan/silver nanoparticles (CS/nAg) were synthesized by the in situ chemical reduction method, improving their antibacterial properties against pathogenic bacteria and enhancing the healing process in thermal burn injuries produced in an animal model. CS/nAg was prepared in solution by the chemical reduction method, using AgNO₃ as precursor. CS was dissolved in acetic acid and mixed with different molar concentrations of AgNO₃: 0.01, 0.025, 0.05 and 0.1 M. Solutions were stirred at 95°C during 20 hours, in order to promote the nAg formation. CS/nAg solutions were placed in Petri dishes and dried, to obtain films. Structural analyses confirm the synthesis of silver nanoparticles (nAg) by means of UV-Vis and TEM, with an average size of 7.5 nm and spherical morphology. FTIR analyses showed the complex formation by the interaction of hydroxyl and amine groups with metallic nanoparticles, and surface chemical analysis (XPS) shows low concentration of Ag⁰/Ag⁺ species. Topography surface analyses by means of AFM shown that hydrated CS form a mesh with an average diameter of 10 µm. Antibacterial activity against S. aureus and P. aeruginosa was improved in all evaluated conditions, such as nAg loading and interaction time. CS/nAg nanocomposites films did not show Ag⁰/Ag⁺ release in saline buffer and rat serum after exposition during 7 days. Healing process was significantly enhanced by the presence of CS/nAg nanocomposites, inducing the production of myofibloblasts, collagen remodelation, blood vessels neoformation and epidermis regeneration after 7 days of injury treatment, by means of histological and immunohistochemistry assays. The present work suggests that hydrated CS/nAg nanocomposites can be formed a mesh, improving the bacterial penetration and the contact with embedded nAg, producing complete growth inhibition after 1.5 hours. Furthermore, CS/nAg nanocomposites improve the cell tissue regeneration in thermal burn injuries induced in rats. Synthesis of antibacterial, non-toxic, and biocompatible nanocomposites can be an important issue in tissue engineering and health care applications.

Keywords: antibacterial, chitosan, healing process, nanocomposites, silver

Procedia PDF Downloads 288
193 Understanding the Cause(S) of Social, Emotional and Behavioural Difficulties of Adolescents with ADHD and Its Implications for the Successful Implementation of Intervention(S)

Authors: Elisavet Kechagia

Abstract:

Due to the interplay of different genetic and environmental risk factors and its heterogeneous nature, the concept of attention deficit hyperactivity disorder (ADHD) has shaped controversy and conflicts, which have been, in turn, reflected in the controversial arguments about its treatment. Taking into account recent well evidence-based researches suggesting that ADHD is a condition, in which biopsychosocial factors are all weaved together, the current paper explores the multiple risk-factors that are likely to influence ADHD, with a particular focus on adolescents with ADHD who might experience comorbid social, emotional and behavioural disorders (SEBD). In the first section of this paper, the primary objective was to investigate the conflicting ideas regarding the definition, diagnosis and treatment of ADHD at an international level as well as to critically examine and identify the limitations of the two most prevailing sets of diagnostic criteria that inform current diagnosis, the American Psychiatric Association’s (APA) diagnostic scheme, DSM-V, and the World Health Organisation’s (WHO) classification of diseases, ICD-10. Taking into consideration the findings of current longitudinal studies on ADHD association with high rates of comorbid conditions and social dysfunction, in the second section the author moves towards an investigation of the transitional points −physical, psychological and social ones− that students with ADHD might experience during early adolescence, as informed by neuroscience and developmental contextualism theory. The third section is an exploration of the different perspectives of ADHD as reflected in individuals’ with ADHD self-reports and the KENT project’s findings on school staff’s attitudes and practices. In the last section, given the high rates of SEBDs in adolescents with ADHD, it is examined how cognitive behavioural therapy (CBT), coupled with other interventions, could be effective in ameliorating anti-social behaviours and/or other emotional and behavioral difficulties of students with ADHD. The findings of a range of randomised control studies indicate that CBT might have positive outcomes in adolescents with multiple behavioural problems, hence it is suggested to be considered both in schools and other community settings. Finally, taking into account the heterogeneous nature of ADHD, the different biopsychosocial and environmental risk factors that take place during adolescence and the discourse and practices concerning ADHD and SEBD, it is suggested how it might be possible to make sense of and meaningful improvements to the education of adolescents with ADHD within a multi-modal and multi-disciplinary whole-school approach that addresses the multiple problems that not only students with ADHD but also their peers might experience. Further research that would be based on more large-scale controls and would investigate the effectiveness of various interventions, as well as the profiles of those students who have benefited from particular approaches and those who have not, will generate further evidence concerning the psychoeducation of adolescents with ADHD allowing for generalised conclusions to be drawn.

Keywords: adolescence, attention deficit hyperctivity disorder, cognitive behavioural theory, comorbid social emotional behavioural disorders, treatment

Procedia PDF Downloads 320
192 Upgrading of Bio-Oil by Bio-Pd Catalyst

Authors: Sam Derakhshan Deilami, Iain N. Kings, Lynne E. Macaskie, Brajendra K. Sharma, Anthony V. Bridgwater, Joseph Wood

Abstract:

This paper reports the application of a bacteria-supported palladium catalyst to the hydrodeoxygenation (HDO) of pyrolysis bio-oil, towards producing an upgraded transport fuel. Biofuels are key to the timely replacement of fossil fuels in order to mitigate the emissions of greenhouse gases and depletion of non-renewable resources. The process is an essential step in the upgrading of bio-oils derived from industrial by-products such as agricultural and forestry wastes, the crude oil from pyrolysis containing a large amount of oxygen that requires to be removed in order to create a fuel resembling fossil-derived hydrocarbons. The bacteria supported catalyst manufacture is a means of utilizing recycled metals and second life bacteria, and the metal can also be easily recovered from the spent catalysts after use. Comparisons are made between bio-Pd, and a conventional activated carbon supported Pd/C catalyst. Bio-oil was produced by fast pyrolysis of beechwood at 500 C at a residence time below 2 seconds, provided by Aston University. 5 wt % BioPd/C was prepared under reducing conditions, exposing cells of E. coli MC4100 to a solution of sodium tetrachloropalladate (Na2PdCl4), followed by rinsing, drying and grinding to form a powder. Pd/C was procured from Sigma-Aldrich. The HDO experiments were carried out in a 100 mL Parr batch autoclave using ~20g bio-crude oil and 0.6 g bio-Pd/C catalyst. Experimental variables investigated for optimization included temperature (160-350C) and reaction times (up to 5 h) at a hydrogen pressure of 100 bar. Most of the experiments resulted in an aqueous phase (~40%) and an organic phase (~50-60%) as well as gas phase (<5%) and coke (<2%). Study of the temperature and time upon the process showed that the degree of deoxygenation increased (from ~20 % up to 60 %) at higher temperatures in the region of 350 C and longer residence times up to 5 h. However minimum viscosity (~0.035 Pa.s) occurred at 250 C and 3 h residence time, indicating that some polymerization of the oil product occurs at the higher temperatures. Bio-Pd showed a similar degree of deoxygenation (~20 %) to Pd/C at lower temperatures of 160 C, but did not rise as steeply with temperature. More coke was formed over bio-Pd/C than Pd/C at temperatures above 250 C, suggesting that bio-Pd/C may be more susceptible to coke formation than Pd/C. Reactions occurring during bio-oil upgrading include catalytic cracking, decarbonylation, decarboxylation, hydrocracking, hydrodeoxygenation and hydrogenation. In conclusion, it was shown that bio-Pd/C displays an acceptable rate of HDO, which increases with residence time and temperature. However some undesirable reactions also occur, leading to a deleterious increase in viscosity at higher temperatures. Comparisons are also drawn with earlier work on the HDO of Chlorella derived bio-oil manufactured from micro-algae via hydrothermal liquefaction. Future work will analyze the kinetics of the reaction and investigate the effect of bi-metallic catalysts.

Keywords: bio-oil, catalyst, palladium, upgrading

Procedia PDF Downloads 176