Search results for: water quantity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9182

Search results for: water quantity

6512 Climate Change and Migration from Ngala and Kala-Balge LGAs, North-Eastern Borno State, Nigeria

Authors: Adam Modu Abbas

Abstract:

Nigeria, due to its location, size and population is very vulnerable to the impact of climate change. Little effort is however made to address most of the problems, despite the fact that sufficient understanding is made on the impact of climate change and problems emanating from it are also always being propagated. Migration, one of the resultant effects of climate change is however given less attention. This paper focuses on the climate change impact and one of resulting effects, migration and its associated problems. Purposive sampling technique was adopted in sampling 250 respondents who were mainly family members of out-migrants from Ngala and Kala-Balge LGAs of North-eastern Borno State, Nigeria. Available literatures were consulted for the types of climate change impacts. The results revealed that, climate change leads to climatic variation over the space with numerous effects on the environment such as intermittent droughts, desertification/deforestation, low water table and establishment of dams across the courses of the main sources of water supply to the Lake Chad. Many people in the study area either migrated to Cameroon’s Darrak, Lake Doi and Mayo Mbund, Lagos, Nigeria, leaving some members of their families at home. More than half of respondents indicated that the heads of the households migrated as a result of poor harvest due to diminishing or fluctuating rains/drought and/or drying of river Surbewel. It is recommended that; inter-basin water transfers should be embarked upon.

Keywords: climate, change, migration, dam, intermittent

Procedia PDF Downloads 428
6511 Assessment of Vermiculite Concrete Containing Bio-Polymer Aggregate

Authors: Aliakbar Sayadi, Thomas R. Neitzert, G. Charles Clifton, Min Cheol Han

Abstract:

The present study aims to assess the performance of vermiculite concrete containing poly-lactic acid beads as an eco-friendly aggregate. Vermiculite aggregate was replaced by poly-lactic acid in percentages of 0%, 20%, 40%, 60% and 80%. Mechanical and thermal properties of concrete were investigated. Test results indicated that the inclusion of poly-lactic acid decreased the PH value of concrete and all the poly-lactic acid particles were dissolved due to the formation of sodium lactide and lactide oligomers when subjected to the high alkaline environment of concrete. In addition, an increase in thermal conductivity value of concrete was observed as the ratio of poly-lactic acid increased. Moreover, a set of equations was proposed to estimate the water-cement ratio, cement content and water absorption ratio of concrete.

Keywords: poly-lactic acid (PLA), vermiculite concrete, eco-friendly, mechanical properties

Procedia PDF Downloads 383
6510 Study of Frequency and Distribution of Skin Ionocytes in Caspian Sea Zander Larvae during Acclimation to Different Salinity

Authors: Mohaddeseh Ahmadnezhad, Shahrbano Oryan, Mahmoud Bahmani, Mohammadd Sayad Bourani

Abstract:

Changes in abundance and size of skin ionocytes were investigated in two larval stage of Caspian sea zander, Sander lucioperca, before and after yolk sac absorption, at 96h after transfer from fresh water (FW; <0.5‰) to 7‰ (estuary) and 12‰ (Caspian sea water=CW) salinity. Survival rate in the stage of after yolk sac absorption were more than larval pre-absorbed yolk sac in condition of salinity (p<0.05). Ionocyte abundance increased significantly in 7 and 12‰ salinity (p<0.05), but not about ionocyte size. The results of this study suggest that development of skin Ionocyte osmoregulatory function and osmoregulation capability of Caspian Sea zander larvae increased with growth of the larvae.

Keywords: Caspian Sea, larvae, Sander lucioperca, salinity, skin ionocyte

Procedia PDF Downloads 278
6509 A Case Study on Smart Energy City of the UK: Based on Business Model Innovation

Authors: Minzheong Song

Abstract:

The purpose of this paper is to see a case of smart energy evolution of the UK along with government projects and smart city project like 'Smart London Plan (SLP)' in 2013 with the logic of business model innovation (BMI). For this, it discusses the theoretical logic and formulates a research framework of evolving smart energy from silo to integrated system. The starting point is the silo system with no connection and in second stage, the private investment in smart meters, smart grids implementation, energy and water nexus, adaptive smart grid systems, and building marketplaces with platform leadership. As results, the UK’s smart energy sector has evolved from smart meter device installation through smart grid to new business models such as water-energy nexus and microgrid service within the smart energy city system.

Keywords: smart city, smart energy, business model, business model innovation (BMI)

Procedia PDF Downloads 136
6508 Deep Injection Wells for Flood Prevention and Groundwater Management

Authors: Mohammad R. Jafari, Francois G. Bernardeau

Abstract:

With its arid climate, Qatar experiences low annual rainfall, intense storms, and high evaporation rates. However, the fast-paced rate of infrastructure development in the capital city of Doha has led to recurring instances of surface water flooding as well as rising groundwater levels. Public Work Authority (PWA/ASHGHAL) has implemented an approach to collect and discharge the flood water into a) positive gravity systems; b) Emergency Flooding Area (EFA) – Evaporation, Infiltration or Storage off-site using tankers; and c) Discharge to deep injection wells. As part of the flood prevention scheme, 21 deep injection wells have been constructed to discharge the collected surface and groundwater table in Doha city. These injection wells function as an alternative in localities that do not possess either positive gravity systems or downstream networks that can accommodate additional loads. These injection wells are 400-m deep and are constructed in a complex karstic subsurface condition with large cavities. The injection well system will discharge collected groundwater and storm surface runoff into the permeable Umm Er Radhuma Formation, which is an aquifer present throughout the Persian Gulf Region. The Umm Er Radhuma formation contains saline water that is not being used for water supply. The injection zone is separated by an impervious gypsum formation which acts as a barrier between upper and lower aquifer. State of the art drilling, grouting, and geophysical techniques have been implemented in construction of the wells to assure that the shallow aquifer would not be contaminated and impacted by injected water. Injection and pumping tests were performed to evaluate injection well functionality (injectability). The results of these tests indicated that majority of the wells can accept injection rate of 200 to 300 m3 /h (56 to 83 l/s) under gravity with average value of 250 m3 /h (70 l/s) compared to design value of 50 l/s. This paper presents design and construction process and issues associated with these injection wells, performing injection/pumping tests to determine capacity and effectiveness of the injection wells, the detailed design of collection system and conveying system into the injection wells, and the operation and maintenance process. This system is completed now and is under operation, and therefore, construction of injection wells is an effective option for flood control.

Keywords: deep injection well, flood prevention scheme, geophysical tests, pumping and injection tests, wellhead assembly

Procedia PDF Downloads 101
6507 Improving the Penalty-free Multi-objective Evolutionary Design Optimization of Water Distribution Systems

Authors: Emily Kambalame

Abstract:

Water distribution networks necessitate many investments for construction, prompting researchers to seek cost reduction and efficient design solutions. Optimization techniques are employed in this regard to address these challenges. In this context, the penalty-free multi-objective evolutionary algorithm (PFMOEA) coupled with pressure-dependent analysis (PDA) was utilized to develop a multi-objective evolutionary search for the optimization of water distribution systems (WDSs). The aim of this research was to find out if the computational efficiency of the PFMOEA for WDS optimization could be enhanced. This was done by applying real coding representation and retaining different percentages of feasible and infeasible solutions close to the Pareto front in the elitism step of the optimization. Two benchmark network problems, namely the Two-looped and Hanoi networks, were utilized in the study. A comparative analysis was then conducted to assess the performance of the real-coded PFMOEA in relation to other approaches described in the literature. The algorithm demonstrated competitive performance for the two benchmark networks by implementing real coding. The real-coded PFMOEA achieved the novel best-known solutions ($419,000 and $6.081 million) and a zero-pressure deficit for the two networks, requiring fewer function evaluations than the binary-coded PFMOEA. In previous PFMOEA studies, elitism applied a default retention of 30% of the least cost-feasible solutions while excluding all infeasible solutions. It was found in this study that by replacing 10% and 15% of the feasible solutions with infeasible ones that are close to the Pareto front with minimal pressure deficit violations, the computational efficiency of the PFMOEA was significantly enhanced. The configuration of 15% feasible and 15% infeasible solutions outperformed other retention allocations by identifying the optimal solution with the fewest function evaluation

Keywords: design optimization, multi-objective evolutionary, penalty-free, water distribution systems

Procedia PDF Downloads 35
6506 Thermodynamic Evaluation of Coupling APR-1400 with a Thermal Desalination Plant

Authors: M. Gomaa Abdoelatef, Robert M. Field, Lee, Yong-Kwan

Abstract:

Growing human populations have placed increased demands on water supplies and a heightened interest in desalination infrastructure. Key elements of the economics of desalination projects are thermal and electrical inputs. With growing concerns over the use of fossil fuels to (indirectly) supply these inputs, coupling of desalination with nuclear power production represents a significant opportunity. Individually, nuclear and desalination technologies have a long history and are relatively mature. For desalination, Reverse Osmosis (RO) has the lowest energy inputs. However, the economically driven output quality of the water produced using RO, which uses only electrical inputs, is lower than the output water quality from thermal desalination plants. Therefore, modern desalination projects consider that RO should be coupled with thermal desalination technologies (MSF, MED, or MED-TVC) with attendant steam inputs to permit blending to produce various qualities of water. A large nuclear facility is well positioned to dispatch large quantities of both electrical and thermal power. This paper considers the supply of thermal energy to a large desalination facility to examine heat balance impact on the nuclear steam cycle. The APR1400 nuclear plant is selected as prototypical from both a capacity and turbine cycle heat balance perspective to examine steam supply and the impact on electrical output. Extraction points and quantities of steam are considered parametrically along with various types of thermal desalination technologies to form the basis for further evaluations of economically optimal approaches to the interface of nuclear power production with desalination projects. In our study, the thermodynamic evaluation will be executed by DE-TOP which is the IAEA desalination program, it is approved to be capable of analyzing power generation systems coupled to desalination systems through various steam extraction positions, taking into consideration the isolation loop between the APR-1400 and the thermal desalination plant for safety concern.

Keywords: APR-1400, desalination, DE-TOP, IAEA, MSF, MED, MED-TVC, RO

Procedia PDF Downloads 510
6505 Thermal Performance of the Extensive Wetland Green Roofs in Winter in Humid Subtropical Climate

Authors: Yi-Yu Huang, Chien-Kuo Wang, Sreerag Chota Veettil, Hang Zhang, Hu Yike

Abstract:

Regarding the pressing issue of reducing energy consumption and carbon footprint of buildings, past research has focused more on analyzing the thermal performance of the extensive terrestrial green roofs with sedum plants in summer. However, the disadvantages of this type of green roof are relatively limited thermal performance, low extreme weather adaptability, relatively higher demands in maintenance, and lower added value in healing landscape. In view of this, this research aims to develop the extensive wetland green roofs with higher thermal performance, high extreme weather adaptability, low demands in maintenance, and high added value in healing landscape, and to measure its thermal performance for buildings in winter. The following factors are considered including the type and mixing formula of growth medium (light weight soil, akadama, creek gravel, pure water) and the type of aquatic plants. The research adopts a four-stage field experiment conducting on the rooftop of a building in a humid subtropical climate. The results found that emergent (Roundleaf rotala), submerged (Ribbon weed), floating-leaved (Water lily) wetland green roofs had similar thermal performance, and superior over wetland green roof without plant, traditional terrestrial green roof (without plant), and pure water green roof (without plant, nighttime only) in terms of overall passive cooling (8.00C) and thermal insulation (4.50C) effects as well as a reduction in heat amplitude (77-85%) in winter in a humid subtropical climate. The thermal performance of the free-floating (Water hyacinth) wetland green roof is inferior to that of the other three types of wetland green roofs, whether in daytime or nighttime.

Keywords: thermal performance, extensive wetland green roof, Aquatic plant, Winter , Humid subtropical climate

Procedia PDF Downloads 153
6504 Mechanical Behavior of Recycled Mortars Manufactured from Moisture Correction Using the Halogen Light Thermogravimetric Balance as an Alternative to the Traditional ASTM C 128 Method

Authors: Diana Gomez-Cano, J. C. Ochoa-Botero, Roberto Bernal Correa, Yhan Paul Arias

Abstract:

To obtain high mechanical performance, the fresh conditions of a mortar are decisive. Measuring the absorption of aggregates used in mortar mixes is a fundamental requirement for proper design of the mixes prior to their placement in construction sites. In this sense, absorption is a determining factor in the design of a mix because it conditions the amount of water, which in turn affects the water/cement ratio and the final porosity of the mortar. Thus, this work focuses on the mechanical behavior of recycled mortars manufactured from moisture correction using the Thermogravimetric Balancing Halogen Light (TBHL) technique in comparison with the traditional ASTM C 128 International Standard method. The advantages of using the TBHL technique are favorable in terms of reduced consumption of resources such as materials, energy, and time. The results show that in contrast to the ASTM C 128 method, the TBHL alternative technique allows obtaining a higher precision in the absorption values of recycled aggregates, which is reflected not only in a more efficient process in terms of sustainability in the characterization of construction materials but also in an effect on the mechanical performance of recycled mortars.

Keywords: alternative raw materials, halogen light, recycled mortar, resources optimization, water absorption

Procedia PDF Downloads 98
6503 Seawater Desalination for Production of Highly Pure Water Using a Hydrophobic PTFE Membrane and Direct Contact Membrane Distillation (DCMD)

Authors: Ahmad Kayvani Fard, Yehia Manawi

Abstract:

Qatar’s primary source of fresh water is through seawater desalination. Amongst the major processes that are commercially available on the market, the most common large scale techniques are Multi-Stage Flash distillation (MSF), Multi Effect distillation (MED), and Reverse Osmosis (RO). Although commonly used, these three processes are highly expensive down to high energy input requirements and high operating costs allied with maintenance and stress induced on the systems in harsh alkaline media. Beside that cost, environmental footprint of these desalination techniques are significant; from damaging marine eco-system, to huge land use, to discharge of tons of GHG and huge carbon footprint. Other less energy consuming techniques based on membrane separation are being sought to reduce both the carbon footprint and operating costs is membrane distillation (MD). Emerged in 1960s, MD is an alternative technology for water desalination attracting more attention since 1980s. MD process involves the evaporation of a hot feed, typically below boiling point of brine at standard conditions, by creating a water vapor pressure difference across the porous, hydrophobic membrane. Main advantages of MD compared to other commercially available technologies (MSF and MED) and specially RO are reduction of membrane and module stress due to absence of trans-membrane pressure, less impact of contaminant fouling on distillate due to transfer of only water vapor, utilization of low grade or waste heat from oil and gas industries to heat up the feed up to required temperature difference across the membrane, superior water quality, and relatively lower capital and operating cost. To achieve the objective of this study, state of the art flat-sheet cross-flow DCMD bench scale unit was designed, commissioned, and tested. The objective of this study is to analyze the characteristics and morphology of the membrane suitable for DCMD through SEM imaging and contact angle measurement and to study the water quality of distillate produced by DCMD bench scale unit. Comparison with available literature data is undertaken where appropriate and laboratory data is used to compare a DCMD distillate quality with that of other desalination techniques and standards. Membrane SEM analysis showed that the PTFE membrane used for the study has contact angle of 127º with highly porous surface supported with less porous and bigger pore size PP membrane. Study on the effect of feed solution (salinity) and temperature on water quality of distillate produced from ICP and IC analysis showed that with any salinity and different feed temperature (up to 70ºC) the electric conductivity of distillate is less than 5 μS/cm with 99.99% salt rejection and proved to be feasible and effective process capable of consistently producing high quality distillate from very high feed salinity solution (i.e. 100000 mg/L TDS) even with substantial quality difference compared to other desalination methods such as RO and MSF.

Keywords: membrane distillation, waste heat, seawater desalination, membrane, freshwater, direct contact membrane distillation

Procedia PDF Downloads 211
6502 A Problem on Homogeneous Isotropic Microstretch Thermoelastic Half Space with Mass Diffusion Medium under Different Theories

Authors: Devinder Singh, Rajneesh Kumar, Arvind Kumar

Abstract:

The present investigation deals with generalized model of the equations for a homogeneous isotropic microstretch thermoelastic half space with mass diffusion medium. Theories of generalized thermoelasticity Lord-Shulman (LS) Green-Lindsay (GL) and Coupled Theory (CT) theories are applied to investigate the problem. The stresses in the considered medium have been studied due to normal force and tangential force. The normal mode analysis technique is used to calculate the normal stress, shear stress, couple stresses and microstress. A numerical computation has been performed on the resulting quantity. The computed numerical results are shown graphically.

Keywords: microstretch, thermoelastic, normal mode analysis, normal and tangential force, microstress force

Procedia PDF Downloads 515
6501 A Study on Removal of SO3 in Flue Gas Generated from Power Plant

Authors: E. Y. Jo, S. M. Park, I. S. Yeo, K. K. Kim, S. J. Park, Y. K. Kim, Y. D. Kim, C. G. Park

Abstract:

SO3 is created in small quantities during the combustion of fuel that contains sulfur, with the quantity produced a function of the boiler design, fuel sulfur content, excess air level, and the presence of oxidizing agents. Typically, about 1% of the fuel sulfur will be oxidized to SO3, but it can range from 0.5% to 1.5% depending on various factors. Combustion of fuels that contain oxidizing agents, such as certain types of fuel oil or petroleum coke, can result in even higher levels of oxidation. SO3 levels in the flue gas emitted by combustion are very high, which becomes a cause of machinery corrosion or a visible blue plume. Because of that, power plants firing petroleum residues need to installation of SO3 removal system. In this study, SO3 removal system using salt solution was developed and several salts solutions were tested for obtain optimal solution for SO3 removal system. Response surface methodology was used to optimize the operation parameters such as gas-liquid ratio, concentration of salts.

Keywords: flue gas desulfurization, petroleum cokes, Sulfur trioxide, SO3 removal

Procedia PDF Downloads 496
6500 A Fuzzy Control System for Reducing Urban Stormwater Runoff by a Stormwater Storage Tank

Authors: Pingping Zhang, Yanpeng Cai, Jianlong Wang

Abstract:

Stormwater storage tank (SST) is a popular low impact development technology for reducing stormwater runoff in the construction of sponge city. At present, it is difficult to perform the automatic control of SST for reducing peak flow. In this paper, fuzzy control was introduced into the peak control of SST to improve the efficiency of reducing stormwater runoff. Firstly, the design of SST was investigated. A catchment area and a return period were assumed, a SST model was manufactured, and then the storage capacity of the SST was verified. Secondly, the control parameters of the SST based on reducing stormwater runoff were analyzed, and a schematic diagram of real-time control (RTC) system based on peak control SST was established. Finally, fuzzy control system of a double input (flow and water level) and double output (inlet and outlet valve) was designed. The results showed that 1) under the different return periods (one year, three years, five years), the SST had the effect of delayed peak control and storage by increasing the detention time, 2) rainfall, pipeline flow, the influent time and the water level in the SST could be used as RTC parameters, and 3) the response curves of flow velocity and water level fluctuated very little and reached equilibrium in a short time. The combination of online monitoring and fuzzy control was feasible to control the SST automatically. This paper provides a theoretical reference for reducing stormwater runoff and improving the operation efficiency of SST.

Keywords: stormwater runoff, stormwater storage tank, real-time control, fuzzy control

Procedia PDF Downloads 181
6499 Evaluation of Invasive Tree Species for Production of Phosphate Bonded Composites

Authors: Stephen Osakue Amiandamhen, Schwaller Andreas, Martina Meincken, Luvuyo Tyhoda

Abstract:

Invasive alien tree species are currently being cleared in South Africa as a result of the forest and water imbalances. These species grow wildly constituting about 40% of total forest area. They compete with the ecosystem for natural resources and are considered as ecosystem engineers by rapidly changing disturbance regimes. As such, they are harvested for commercial uses but much of it is wasted because of their form and structure. The waste is being sold to local communities as fuel wood. These species can be considered as potential feedstock for the production of phosphate bonded composites. The presence of bark in wood-based composites leads to undesirable properties, and debarking as an option can be cost implicative. This study investigates the potentials of these invasive species processed without debarking on some fundamental properties of wood-based panels. Some invasive alien tree species were collected from EC Biomass, Port Elizabeth, South Africa. They include Acacia mearnsii (Black wattle), A. longifolia (Long-leaved wattle), A. cyclops (Red-eyed wattle), A. saligna (Golden-wreath wattle) and Eucalyptus globulus (Blue gum). The logs were chipped as received. The chips were hammer-milled and screened through a 1 mm sieve. The wood particles were conditioned and the quantity of bark in the wood was determined. The binding matrix was prepared using a reactive magnesia, phosphoric acid and class S fly ash. The materials were mixed and poured into a metallic mould. The composite within the mould was compressed at room temperature at a pressure of 200 KPa. After initial setting which took about 5 minutes, the composite board was demoulded and air-cured for 72 h. The cured product was thereafter conditioned at 20°C and 70% relative humidity for 48 h. Test of physical and strength properties were conducted on the composite boards. The effect of binder formulation and fly ash content on the properties of the boards was studied using fitted response surface technology, according to a central composite experimental design (CCD) at a fixed wood loading of 75% (w/w) of total inorganic contents. The results showed that phosphate/magnesia ratio of 3:1 and fly ash content of 10% was required to obtain a product of good properties and sufficient strength for intended applications. The proposed products can be used for ceilings, partitioning and insulating wall panels.

Keywords: invasive alien tree species, phosphate bonded composites, physical properties, strength

Procedia PDF Downloads 275
6498 Hard Sludge Formation and Consolidation in Pressurized Water Reactor Steam Generators: An Experimental Study

Authors: R. Fernandez-Saavedra, M. B. Gomez-Mancebo, D. Gomez-Briceno

Abstract:

The gradual corrosion of PWR (Pressurized Water Reactor) feedwater, condensate and drain systems results in the inevitable liberation of corrosion products, principally metallic oxides, to the secondary circuit. In addition, other contaminants and impurities are introduced into the makeup water, auxiliary feedwater and by condenser leaks. All these compounds circulating in the secondary flow can eventually be transported to steam generators and be transformed into deposits on their surfaces. Deposits that accumulate on the tube sheet are known as sludge piles and when they consolidate and harden become into hard sludge. Hard sludge is especially detrimental because it favors tube deformation or denting at the top of tube sheet and further stress corrosion cracking (SCC). These failures affect the efficiency of nuclear power plants. In a recent work, a model for the formation and consolidation of hard sludge has been formulated, highlighting the influence of aluminum and silicon compounds in the initial formation of hard sludge. In this work, an experimental study has been performed in order to get a deeper understanding of the behavior of Al and Si species in hard sludge formation and consolidation. For this purpose, the key components of hard sludge (magnetite, aluminum and/or silicon sources) have been isothermally autoclaved in representative secondary circuit conditions during one week, and the resulting products have been chemically and structurally characterized by XRF and XRD techniques, respectively.

Keywords: consolidation, hard sludge, secondary circuit, steam generator

Procedia PDF Downloads 174
6497 Research on the Path of Renewal and Activation of Public Space in Guangzhou Historical City under the Guidance of Public Art

Authors: Jingjing Li, Shifu Wang

Abstract:

After the irreversible consequences of the traditional renewal mode of ‘function first and then beautification’, such as the constructive destruction, social differentiation, and cultural, ecological imbalance, the renewal of the historical urban area began to pay attention to the excavation of cultural connotation, and entered a new stage from the pursuit of ‘quantity’ growth to the promotion of ‘quality’, expecting to rejuvenate the old city through the intervention of public art. This paper interprets the cases at home and abroad, summarizes the different forms of expression and application strategies of public art in the renewal of historical urban areas, and combs the limitations of the existing practice in Guangzhou through observation. Finally, it puts forward suggestions from three aspects of the system, implementation strategy, and implementation path, respectively, and explores the path of simultaneous rejuvenation of material space and cultural space in historical urban areas under the intervention of public art.

Keywords: public art, historic city, public space, renewal activation

Procedia PDF Downloads 115
6496 Study Variation of Blade Angle on the Performance of the Undershot Waterwheel on the Pico Scale

Authors: Warjito, Kevin Geraldo, Budiarso, Muhammad Mizan, Rafi Adhi Pranata, Farhan Rizqi Syahnakri

Abstract:

According to data from 2021, the number of households in Indonesia that have access to on-grid electricity is claimed to have reached 99.28%, which means that around 0.7% of Indonesia's population (1.95 million people) still have no proper access to electricity and 38.1% of it comes from remote areas in Nusa Tenggara Timur. Remote areas are classified as areas with a small population of 30 to 60 families, have limited infrastructure, have scarce access to electricity and clean water, have a relatively weak economy, are behind in access to technological innovation, and earn a living mostly as farmers or fishermen. These people still need electricity but can’t afford the high cost of electricity from national on-grid sources. To overcome this, it is proposed that a hydroelectric power plant driven by a pico-hydro turbine with an undershot water wheel will be a suitable pico-hydro turbine technology because of the design, materials and installation of the turbine that is believed to be easier (i.e., operational and maintenance) and cheaper (i.e., investment and operating costs) than any other type. The comparative study of the angle of the undershot water wheel blades will be discussed comprehensively. This study will look into the best variation of curved blades on an undershot water wheel that produces maximum hydraulic efficiency. In this study, the blade angles were varied by 180 ̊, 160 ̊, and 140 ̊. Two methods of analysis will be used, which are analytical and numerical methods. The analytical method will be based on calculations of the amount of torque and rotational speed of the turbine, which is used to obtain the input and output power of the turbine. Whereas the numerical method will use the ANSYS application to simulate the flow during the collision with the designed turbine blades. It can be concluded, based on the analytical and numerical methods, that the best angle for the blade is 140 ̊, with an efficiency of 43.52% for the analytical method and 37.15% for the numerical method.

Keywords: pico hydro, undershot waterwheel, blade angle, computational fluid dynamics

Procedia PDF Downloads 63
6495 Oxyhydrogen Gas (HHO) as Replacement to Gasoline Fuel

Authors: Rishabh Pandey, Umang Kumar Yadav

Abstract:

In today’s era of technological advancement, we come across incalculable innovations, almost every day. No doubt that the society has developed a lot in learning and technology, but we should also take into account the problems and inflictions that are occurring. Focusing on the petroleum sector a trending global concern is toward lowering fuel consumption and emissions. It is well known that gasoline is non-renewable source of energy and its burning produces harmful emissions which are adversely affecting the environment, such issues are motivating us to seek alternative solutions that would not require much modification in engine design and help us come out with an outcome. Keeping in mind the importance of environment and human race, we present a factious idea of use of oxyhydrogen gas or HHO gas in place of gasoline in the vehicles and petroleum industry. This technology is prospering, highly efficient, could be used economically and safe, and it will be responsible for changing the future of oil and gas sector in accordance with protection to the environment. In the coming future, we will check the compatibility of HHO generator with fuel engine for production of oxyhydrogen gas with use of water and effect of introducing HHO gas to the combustion on both thermal efficiency and specific fuel consumption. We will also work on the comparison of HHO gas and commercially available gasoline fuel in support of their chemical structures; ignition rate; octane rating; knocking properties; storage; transportation and cost effectiveness and it is trusted that use of HHO gas will be ecofriendly as no harmful emissions are produced, rather the only emission is water. Additionally, this paper will include the use of HHO cell in fuel engines and challenges faced in installing it in the current period and provide effective solutions for the same.

Keywords: fuel, gas, generator, water

Procedia PDF Downloads 309
6494 Management Practices in Holding Pens in Pig’s Slaughterhouses in the Valle De Aburrá, Antioquia and Animal Welfare

Authors: Natalia Uribe Corrales, Santiago Henao Villegas

Abstract:

Introduction: The management of pigs in the holding pens at the slaughterhouses is a key point to minimize levels of stress and fear, improve efficiency, maintain a good quality of meat and avoid economic losses. Holding pens should guarantee drinking water continuously, a minimum space of 1.2 m2/ animal; As well as an adequate management in the conduction of the animals towards stun. Objective: To characterize the management practices in holding pens in slaughterhouses in the Valle de Aburrá. Methods: A descriptive cross - sectional study was carried out in Valle de Aburrá benefit plants, which were authorized by National Institute for Food and Medicine Surveillance (INVIMA). Variables such as management mechanisms to the pens, time of housing, water supply, load density, vocalization, slips and falls of the animals in the pens and mechanism of conduction towards desensitization were analyzed. Results: 225 pigs were analyzed, finding that 35.6% were lowered with slaps from the trucks to the waiting pens; The lairage time was greater than 10 hours in 16% of the animals; 12.9% of pigs had no water permanently; 40.9% was subjected to a high load density, while 19.6% had a low load density. Regarding aspects of animal welfare, 37.3% presented high vocalizations; 29.3% and 14.2% presented slips or falls respectively. Regarding the mechanism of conduction towards desensitization, slapping was used in 56% and electrical prod in 4%. Conclusions: It is necessary to continue promoting the learning of the densities of load, since both high and low densities generate inconveniences in animal welfare, favoring the appearance of lesions and stress in the animals. Also, to promote the rule of permanent water in the pens and a time of housing less than 10 hours. In relation to the driving mechanisms, it is necessary to continue animal husbandry campaigns, encouraging the use of other alternatives such as boards or panels to assist the movement of pigs.

Keywords: animal welfare, quality of meat, swine, waiting pens

Procedia PDF Downloads 179
6493 Evaluation of Parameters of Subject Models and Their Mutual Effects

Authors: A. G. Kovalenko, Y. N. Amirgaliyev, A. U. Kalizhanova, L. S. Balgabayeva, A. H. Kozbakova, Z. S. Aitkulov

Abstract:

It is known that statistical information on operation of the compound multisite system is often far from the description of actual state of the system and does not allow drawing any conclusions about the correctness of its operation. For example, from the world practice of operation of systems of water supply, water disposal, it is known that total measurements at consumers and at suppliers differ between 40-60%. It is connected with mathematical measure of inaccuracy as well as ineffective running of corresponding systems. Analysis of widely-distributed systems is more difficult, in which subjects, which are self-maintained in decision-making, carry out economic interaction in production, act of purchase and sale, resale and consumption. This work analyzed mathematical models of sellers, consumers, arbitragers and the models of their interaction in the provision of dispersed single-product market of perfect competition. On the basis of these models, the methods, allowing estimation of every subject’s operating options and systems as a whole are given.

Keywords: dispersed systems, models, hydraulic network, algorithms

Procedia PDF Downloads 272
6492 Nonlinear Free Surface Flow Simulations Using Smoothed Particle Hydrodynamics

Authors: Abdelraheem M. Aly, Minh Tuan Nguyen, Sang-Wook Lee

Abstract:

The incompressible smoothed particle hydrodynamics (ISPH) is used to simulate impact free surface flows. In the ISPH, pressure is evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection method. The current ISPH method is applied to simulate dam break flow over an inclined plane with different inclination angles. The effects of inclination angle in the velocity of wave front and pressure distribution is discussed. The impact of circular cylinder over water in tank has also been simulated using ISPH method. The computed pressures on the solid boundaries is studied and compared with the experimental results.

Keywords: incompressible smoothed particle hydrodynamics, free surface flow, inclined plane, water entry impact

Procedia PDF Downloads 384
6491 Experimental and Theoretical Studies for Removal of Dyes from Industrial Wastewater Using Bioremediation

Authors: Sakshi Batra, Suresh Gupta, Pratik Pande, Navneet Kaur, Lovdeep Kaur

Abstract:

The objective of this study is removal of Methylene blue dye or reactive orange-16 from industrial waste water or from soil using bioremediation technique. As huge amount of dyes are releasing from textile industry in water and soil environment during dyeing process. In this study, we focused on removal of Methylene blue dye and Reactive orange dye from industrial soil at different initial concentration of dye. An experiment study was carried out at methylene blue dye or Reactive orange-16 dye at varying concentration of both the dye as 50 ppm, 100ppm, 200 ppm, 300 ppm and 400 ppm. Maximum removal is obtained at 16-20 hours Experiments are carried out for pH, Temperature and MSM composition. The final concentration has been observed by UV-VIS. The two species has been isolated from the Industrial effluent. Finally the product analysis has been done by GC-MS.

Keywords: bioremediation, cultural growth, dyes, environment

Procedia PDF Downloads 295
6490 Compromising of Vacuum Sewerage System in Developing Regions and the Impact on Environmet

Authors: Abdelsalam Elawwad, Mostafa Ragab, Hisham Abdel-Halim

Abstract:

Leakage in sewerage system can cause groundwater and soil contamination in urban areas, especially in area with a high groundwater table. This is a serious problem in small villages in developing countries that rely on ground water as a source for irrigation and drinking purposes. In the developed countries, the recent trend in areas with low population densities is vacuum sewerage system, which is environmentally safer than conventional gravity system, protecting public health, preventing exfiltration to the ground water, very easily applied in a relatively short time and can cope with a faster expansion of the urbanized areas. The aim of this work is to assess the feasibility of using vacuum sewerage in developing country, such as Egypt. Knowledge of local conditions can determine the most suitable sewer system for a specific region. Technical, environmental and financial comparisons between conventional sewerage system and vacuum sewerage system were held using statistical analysis. Different conditions, such as population densities, geometry of area, and ground water depths were evaluated. Sample comprising of 30 Egyptian villages was selected, where a complete design for conventional sewerage system and vacuum sewerage system was done. Based on this study, it is recommended from the environmental point of view to construct the vacuum sewerage system in such villages with low population densities; however, it is not economic for all cases. From financial point of view, vacuum sewerage system was a good competitor to conventional systems in flat areas and areas with high groundwater table. The local market supplying of the construction equipment especially collection chambers will greatly affect the investment cost. Capacity building and social mobilization will also play a great role in sustainability of this system. At the end, it is noteworthy that environmental sustainability and public health are more important than the financial aspects.

Keywords: ground water, conventional system, vacuum system, statistics, cost, density, terrain

Procedia PDF Downloads 259
6489 Zinc Adsorption Determination of H2SO4 Activated Pomegranate Peel

Authors: S. N. Turkmen Koc, A. S. Kipcak, M. B. Piskin, E. Moroydor Derun, N. Tugrul

Abstract:

Active carbon can be obtained from agricultural sources. Due to the high surface area, the production of activated carbon from cheap resources is very important. Since the surface area of 1 g activated carbon is approximately between 300 and 2000 m2, it can be used to remove both organic and inorganic impurities. In this study, the adsorption of Zn metal was studied with the product of activated carbon, which is obtained from pomegranate peel by microwave and chemical activation methods. The microwave process of pomegranate peel was carried out under constant microwave power of 800 W and 1 to 4 minutes. After the microwave process, samples were treated with H2SO4 for 3 h. Then prepared product was used in synthetic waste water including 40 ppm Zn metal. As a result, removal of waste Zn in waste water ranged from 91% to 93%.

Keywords: activated carbon, chemical activation, H₂SO₄, microwave, pomegranate peel

Procedia PDF Downloads 138
6488 Assessment of N₂ Fixation and Water-Use Efficiency in a Soybean-Sorghum Rotation System

Authors: Mmatladi D. Mnguni, Mustapha Mohammed, George Y. Mahama, Alhassan L. Abdulai, Felix D. Dakora

Abstract:

Industrial-based nitrogen (N) fertilizers are justifiably credited for the current state of food production across the globe, but their continued use is not sustainable and has an adverse effect on the environment. The search for greener and sustainable technologies has led to an increase in exploiting biological systems such as legumes and organic amendments for plant growth promotion in cropping systems. Although the benefits of legume rotation with cereal crops have been documented, the full benefits of soybean-sorghum rotation systems have not been properly evaluated in Africa. This study explored the benefits of soybean-sorghum rotation through assessing N₂ fixation and water-use efficiency of soybean in rotation with sorghum with and without organic and inorganic amendments. The field trials were conducted from 2017 to 2020. Sorghum was grown on plots previously cultivated to soybean and vice versa. The succeeding sorghum crop received fertilizer amendments [organic fertilizer (5 tons/ha as poultry litter, OF); inorganic fertilizer (80N-60P-60K) IF; organic + inorganic fertilizer (OF+IF); half organic + inorganic fertilizer (HIF+OF); organic + half inorganic fertilizer (OF+HIF); half organic + half inorganic (HOF+HIF) and control] and was arranged in a randomized complete block design. The soybean crop succeeding fertilized sorghum received a blanket application of triple superphosphate at 26 kg P ha⁻¹. Nitrogen fixation and water-use efficiency were respectively assessed at the flowering stage using the ¹⁵N and ¹³C natural abundance techniques. The results showed that the shoot dry matter of soybean plants supplied with HOF+HIF was much higher (43.20 g plant-1), followed by OF+HIF (36.45 g plant⁻¹), and HOF+IF (33.50 g plant⁻¹). Shoot N concentration ranged from 1.60 to 1.66%, and total N content from 339 to 691 mg N plant⁻¹. The δ¹⁵N values of soybean shoots ranged from -1.17‰ to -0.64‰, with plants growing on plots previously treated to HOF+HIF exhibiting much higher δ¹⁵N values, and hence lower percent N derived from N₂ fixation (%Ndfa). Shoot %Ndfa values varied from 70 to 82%. The high %Ndfa values obtained in this study suggest that the previous year’s organic and inorganic fertilizer amendments to sorghum did not inhibit N₂ fixation in the following soybean crop. The amount of N-fixed by soybean ranged from 106 to 197 kg N ha⁻¹. The treatments showed marked variations in carbon (C) content, with HOF+HIF treatment recording the highest C content. Although water-use efficiency varied from -29.32‰ to -27.85‰, shoot water-use efficiency, C concentration, and C:N ratio were not altered by previous fertilizer application to sorghum. This study provides strong evidence that previous HOF+HIF sorghum residues can enhance N nutrition and water-use efficiency in nodulated soybean.

Keywords: ¹³C and ¹⁵N natural abundance, N-fixed, organic and inorganic fertilizer amendments, shoot %Ndfa

Procedia PDF Downloads 145
6487 The Effect of Mineral Addition (Natural Pozzolana) on the Capillary Absorption and Compressive Strength of Environmental Mortar

Authors: W. Deboucha, M. N. Oudjit, A. Bouzid, L. Belagraa, A.Noui

Abstract:

The cement manufacturing is the one of the factors that pollutes the atmosphere in the industrial sector. The common way to reduce this pollution is using mineral additions as partial replacement of Portland cement. Particularly, natural pozzolana (NP) is component in which they can be used to decrease the rate of pollution. The main objective of this experimental work is the study of the effect of mineral addition (natural pozzolana) on the capillary water absorption and compressive-flexural strength of cement mortar. The results obtained in the present research showed that the higher dosages of natural pozzolana added could be the principal parameter of such decrease in strength at early and medium term. Further, this increase of incorporated addition has been believed to reduce the capillary water absorption.

Keywords: Natural pozzolana, mortar, strength, capillary absorption

Procedia PDF Downloads 324
6486 Shear Strength Parameters of an Unsaturated Lateritic Soil

Authors: Jeferson Brito Fernades, Breno Padovezi Rocha, Roger Augusto Rodrigues, Heraldo Luiz Giacheti

Abstract:

The geotechnical projects demand the appropriate knowledge of soil characteristics and parameters. The determination of geotechnical soil parameters can be done by means of laboratory or in situ tests. In countries with tropical weather, like Brazil, unsaturated soils are very usual. In these soils, the soil suction has been recognized as an important stress state variable, which commands the geo-mechanical behavior. Triaxial and direct shear tests on saturated soils samples allow determine only the minimal soil shear strength, in other words, no suction contribution. This paper briefly describes the triaxial test with controlled suction as well as discusses the influence of suction on the shear strength parameters of a lateritic tropical sandy soil from a Brazilian research site. In this site, a sample pit was excavated to retrieve disturbed and undisturbed soil blocks. The samples extracted from these blocks were tested in laboratory to represent the soil from 1.5, 3.0 and 5.0 m depth. The stress curves and shear strength envelopes determined by triaxial tests varying suction and confining pressure are presented and discussed. The water retention characteristics on this soil complement this analysis. In situ CPT tests were also carried out at this site in different seasons of the year. In this case, the soil suction profile was determined by means of the soil water retention. This extra information allowed assessing how soil suction also affected the CPT data and the shear strength parameters estimative via correlation. The major conclusions of this paper are: the undisturbed soil samples contracted before shearing and the soil shear strength increased hyperbolically with suction; and it was possible to assess how soil suction also influenced CPT test data based on the water content soil profile as well as the water retention curve. This study contributed with a better understanding of the shear strength parameters and the soil variability of a typical unsaturated tropical soil.

Keywords: site characterization, triaxial test, CPT, suction, variability

Procedia PDF Downloads 395
6485 POSS as Modifiers and Additives for Elastomer Composites

Authors: Anna Strąkowska, Marian Zaborski

Abstract:

The studies were focused on POSS application with methylvinylsilicone rubber (MVQ). The obtained results indicate that they can be successfully incorporated into silica-filled rubbers as modifying agents since they enhance cross-link density and improve most properties of the resulting network. It is also worth noting that the incorporation of POSS molecules resulted in stabilizing effect against adverse changes induced by the climatic, ozone or UV ageing of the rubbers. Furthermore, we obtained interesting results of rubbers surface modification using POSS functionalised with halogen groups (Cl, F, and Br). As the results, surface energy of the elastomeric composites and their hydrophobicity increased, barrier properties improved and thermal stability increased as well. Additionally, the studies with silicone rubber and POSS containing acidic and alkaline groups revealed composites with self-healing properties. The observed effects strictly depend on a kind and quantity of functional groups present in angles of POSS cages.

Keywords: elastomeric composites, POSS, properties modyfication, silicone rubber

Procedia PDF Downloads 339
6484 River Network Delineation from Sentinel 1 Synthetic Aperture Radar Data

Authors: Christopher B. Obida, George A. Blackburn, James D. Whyatt, Kirk T. Semple

Abstract:

In many regions of the world, especially in developing countries, river network data are outdated or completely absent, yet such information is critical for supporting important functions such as flood mitigation efforts, land use and transportation planning, and the management of water resources. In this study, a method was developed for delineating river networks using Sentinel 1 imagery. Unsupervised classification was applied to multi-temporal Sentinel 1 data to discriminate water bodies from other land covers then the outputs were combined to generate a single persistent water bodies product. A thinning algorithm was then used to delineate river centre lines, which were converted into vector features and built into a topologically structured geometric network. The complex river system of the Niger Delta was used to compare the performance of the Sentinel-based method against alternative freely available water body products from United States Geological Survey, European Space Agency and OpenStreetMap and a river network derived from a Shuttle Rader Topography Mission Digital Elevation Model. From both raster-based and vector-based accuracy assessments, it was found that the Sentinel-based river network products were superior to the comparator data sets by a substantial margin. The geometric river network that was constructed permitted a flow routing analysis which is important for a variety of environmental management and planning applications. The extracted network will potentially be applied for modelling dispersion of hydrocarbon pollutants in Ogoniland, a part of the Niger Delta. The approach developed in this study holds considerable potential for generating up to date, detailed river network data for the many countries where such data are deficient.

Keywords: Sentinel 1, image processing, river delineation, large scale mapping, data comparison, geometric network

Procedia PDF Downloads 120
6483 The Effect of Water and Fines Content on Shear Strength of Silty Soils

Authors: Dellal Seyyid Ali

Abstract:

This work Contains an experimental study of the behavior of Chlef sand under effect of various parameters influencing on shear strength. Because of their distinct nature, sands, silts and clays exhibit completely different behavior (shear strength, the Contracting and dilatancy, the angle of internal friction and cohesion ...). By cons when these materials are mixed, their behavior will become different from each considered alone. The behavior of these mixtures (silty sands ...) is currently the state of several studies to better use. We have studied in this work: The influence of the following factors on the shear strength: The density (loose and dense), the fines content (silt), the water content. The apparatus used for the tests is the casagrande shear box. This device, although one may have some disadvantages and modern instrumentation is appropriate used to study the shear strength of soils.

Keywords: shear strength, sand, silt, contractanct, dilatancy, friction angle, cohesion, fines content

Procedia PDF Downloads 241