Search results for: multi variable decision making
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12451

Search results for: multi variable decision making

9781 A Review of the Parameters Used in Gateway Selection Schemes for Internet Connected MANETs

Authors: Zainab S. Mahmood, Aisha H. Hashim, Wan Haslina Hassan, Farhat Anwar

Abstract:

The wide use of the internet-based applications bring many challenges to the researchers to guarantee the continuity of the connections needed by the mobile hosts and provide reliable Internet access for them. One of proposed solutions by Internet Engineering Task Force (IETF) is to connect the local, multi-hop, and infrastructure-less Mobile Ad hoc Network (MANET) with Internet structure. This connection is done through multi-interface devices known as Internet Gateways. Many issues are related to this connection like gateway discovery, hand off, address auto-configuration and selecting the optimum gateway when multiple gateways exist. Many studies were done proposing gateway selection schemes with a single selection criterion or weighted multiple criteria. In this research, a review of some of these schemes is done showing the differences, the features, the challenges and the drawbacks of each of them.

Keywords: Internet Gateway, MANET, mobility, selection criteria

Procedia PDF Downloads 426
9780 Opportunity Cost of Producing Sugarcane, Sweet Orange and Soybean in Sri Lankan Context: An Economic Analysis

Authors: Tharsinithevy Kirupananthan

Abstract:

This study analyzed the decision on growing three different crops which suit dry zone of Sri Lanka using the opportunity cost concept in economics. The variable cost of production of sugar cane, sweet orange, and soybean was 112,418.76, 13,463 and 10,928.08 Sri Lankan Rs. (LKR) per acre in the dry zone of Sri Lanka. The yield of the sugar cane, sweet orange, and soybean were 49.33 tons, 25,595 fruits, and 1032 kg per acre. The market price of the sugar cane, sweet orange, and soybean were 4200 LKR/ton, LKR 14.66 per fruit and LKR 89.69 per kg. The market value or the total income of the sugar cane, sweet orange, and soybean were LKR 207194.4, 283090.74, and 92560.08. The accounting profit of the sugar cane, sweet orange, and soybean was 94,775.64, 269,627.74, and 81,632 LKR per acre. Therefore, the opportunity cost of sugarcane per acre in terms of accounting profit was LKR. 269,627.74 from sweet orange and LKR 81,632 from soybean. The highest opportunity cost per acre in terms of accounting profit was found when soybean is produced instead of sweet orange. The opportunity cost which compared among the crops in terms of market value for sugar cane per acre was LKR 283090.74 of sweet orange and LKR 92560.08 of soybean. The highest opportunity cost both in terms of accounting profit and market value was found when growing soybean instead of sweet orange by using the resource per acre of land. The economic profit of sugar cane production in place of sweet orange was LKR -188315.1 per acre. The highest economic profit LKR 177067.66 was found when sweet orange is produced in place of soybean. A positive value of economic profit was found in all combination of sweet orange production without considering the first harvest duration of the crop.

Keywords: agricultural economics, crop, opportunity cost, Sri Lanka

Procedia PDF Downloads 347
9779 Automatic Multi-Label Image Annotation System Guided by Firefly Algorithm and Bayesian Method

Authors: Saad M. Darwish, Mohamed A. El-Iskandarani, Guitar M. Shawkat

Abstract:

Nowadays, the amount of available multimedia data is continuously on the rise. The need to find a required image for an ordinary user is a challenging task. Content based image retrieval (CBIR) computes relevance based on the visual similarity of low-level image features such as color, textures, etc. However, there is a gap between low-level visual features and semantic meanings required by applications. The typical method of bridging the semantic gap is through the automatic image annotation (AIA) that extracts semantic features using machine learning techniques. In this paper, a multi-label image annotation system guided by Firefly and Bayesian method is proposed. Firstly, images are segmented using the maximum variance intra cluster and Firefly algorithm, which is a swarm-based approach with high convergence speed, less computation rate and search for the optimal multiple threshold. Feature extraction techniques based on color features and region properties are applied to obtain the representative features. After that, the images are annotated using translation model based on the Net Bayes system, which is efficient for multi-label learning with high precision and less complexity. Experiments are performed using Corel Database. The results show that the proposed system is better than traditional ones for automatic image annotation and retrieval.

Keywords: feature extraction, feature selection, image annotation, classification

Procedia PDF Downloads 588
9778 Euthanasia as a Case of Judicial Entrepreneurship in India: Analyzing the Role of the Supreme Court in the Policy Process of Euthanasia

Authors: Aishwarya Pothula

Abstract:

Euthanasia in India is a politically dormant policy issue in the sense that discussions around it are sporadic in nature (usually with developments in specific cases) and it stays as a dominant issue in the public domain for a fleeting period. In other words, it is a non-political issue that has been unable to successfully get on the policy agenda. This paper studies how the Supreme Court of India (SC) plays a role in euthanasia’s policy making. In 2011, the SC independently put a law in place that legalized passive euthanasia through its judgement in the Aruna Shanbaug v. Union of India case. According to this, it is no longer illegal to withhold/withdraw a patient’s medical treatment in certain cases. This judgement, therefore, is the empirical focus of this paper. The paper essentially employs two techniques of discourse analysis to study the SC’s system of argumentation. The two methods, Text Analysis using Gasper’s Analysis Table and Frame Analysis – are complemented by two discourse techniques called metaphor analysis and lexical analysis. The framework within which the analysis is conducted lies in 1) the judicial process of India, i.e. the SC procedures and the Constitutional rules and provisions, and 2) John W. Kingdon’s theory of policy windows and policy entrepreneurs. The results of this paper are three-fold: first, the SC dismiss the petitioner’s request for passive euthanasia on inadequate and weak grounds, thereby setting no precedent for the historic law they put in place. In other words, they leave the decision open for the Parliament to act upon. Hence the judgement, as opposed to arguments by many, is by no means an instance of judicial activism/overreach. Second, they define euthanasia in a way that resonates with existing broader societal themes. They combine this with a remarkable use of authoritative and protective tones/stances to settle at an intermediate position that balances the possible opposition to their role in the process and what they (perhaps) perceive to be an optimal solution. Third, they soften up the policy community (including the public) to the idea of passive euthanasia leading it towards a Parliamentarian legislation. They achieve this by shaping prevalent principles, provisions and worldviews through an astute use of the legal instruments at their disposal. This paper refers to this unconventional role of the SC as ‘judicial entrepreneurship’ which is also the first scholarly contribution towards research on euthanasia as a policy issue in India.

Keywords: argumentation analysis, Aruna Ramachandra Shanbaug, discourse analysis, euthanasia, judicial entrepreneurship, policy-making process, supreme court of India

Procedia PDF Downloads 271
9777 Effect of Microfiltration on the Composition and Ripening of Iranian Fetta Cheese

Authors: M. Dezyani, R. Ezzati belvirdi, M. Shakerian, H. Mirzaei

Abstract:

The effect of Microfiltration (MF) on proteolysis, hardness, and flavor of Feta cheese during 6 mo of aging was determined. Raw skim milk was microfiltered two-fold in two cheese making trials. In trial 1, four vats of cheese were made in 1 d using unconcentrated milk (1X), 1.26X, 1.51X, and 1.82X Concentration Factors (CF). Casein-(CN)-to-fat ratio was constant among treatments. Proteolysis during cheese aging decreased with increasing CF due to either limitation of substrate availability for chymosin due to low moisture in the nonfat substance (MNFS), inhibition of chymosin activity by high molecular weight milk serum proteins, such as α2-macroglobulin, retained in the cheese or low residual chymosin in the cheese. Hardness of fresh cheese increased, and cheese flavor intensity decreased with increasing CF. In trial 2, the 1X and 1.8X CF were compared directly. Changes made in the cheese making procedure for the 1.8X CF (more chymosin and less cooking) increased the MNFS and made proteolysis during aging more comparable for the 1X and 1.8X cheeses. The significant difference in cheese hardness due to CF in trial 1 was eliminated in trial 2. In a triangle test, panelists could not differentiate between the 1X and 1.8X cheeses. Therefore, increasing chymosin and making the composition of the two cheeses more similar allowed production of aged Fetta cheese from milk concentrated up to 1.8X by MF that was not perceived as different from aged feta cheese produced without MF.

Keywords: feta cheese, microfiltration, concentration factor, proteolysis

Procedia PDF Downloads 416
9776 Comprehensive Longitudinal Multi-omic Profiling in Weight Gain and Insulin Resistance

Authors: Christine Y. Yeh, Brian D. Piening, Sarah M. Totten, Kimberly Kukurba, Wenyu Zhou, Kevin P. F. Contrepois, Gucci J. Gu, Sharon Pitteri, Michael Snyder

Abstract:

Three million deaths worldwide are attributed to obesity. However, the biomolecular mechanisms that describe the link between adiposity and subsequent disease states are poorly understood. Insulin resistance characterizes approximately half of obese individuals and is a major cause of obesity-mediated diseases such as Type II diabetes, hypertension and other cardiovascular diseases. This study makes use of longitudinal quantitative and high-throughput multi-omics (genomics, epigenomics, transcriptomics, glycoproteomics etc.) methodologies on blood samples to develop multigenic and multi-analyte signatures associated with weight gain and insulin resistance. Participants of this study underwent a 30-day period of weight gain via excessive caloric intake followed by a 60-day period of restricted dieting and return to baseline weight. Blood samples were taken at three different time points per patient: baseline, peak-weight and post weight loss. Patients were characterized as either insulin resistant (IR) or insulin sensitive (IS) before having their samples processed via longitudinal multi-omic technologies. This comparative study revealed a wealth of biomolecular changes associated with weight gain after using methods in machine learning, clustering, network analysis etc. Pathways of interest included those involved in lipid remodeling, acute inflammatory response and glucose metabolism. Some of these biomolecules returned to baseline levels as the patient returned to normal weight whilst some remained elevated. IR patients exhibited key differences in inflammatory response regulation in comparison to IS patients at all time points. These signatures suggest differential metabolism and inflammatory pathways between IR and IS patients. Biomolecular differences associated with weight gain and insulin resistance were identified on various levels: in gene expression, epigenetic change, transcriptional regulation and glycosylation. This study was not only able to contribute to new biology that could be of use in preventing or predicting obesity-mediated diseases, but also matured novel biomedical informatics technologies to produce and process data on many comprehensive omics levels.

Keywords: insulin resistance, multi-omics, next generation sequencing, proteogenomics, type ii diabetes

Procedia PDF Downloads 432
9775 Intergenerational Succession within Family Businesses: The Role of Sharing and Creation Knowledge

Authors: Wissal Ben Arfi, Jean-Michel Sahut

Abstract:

The purpose of this paper is to provide a deeper understanding of the succession process from a knowledge management perspective. By doing that, succession process in family businesses, as an environment for creating and sharing knowledge, was explored. Design/Methodology/Approach: To support our reasoning, we collected qualitative data through 16 in-depth interviews conducted with all decision makers involved in the family businesses succession process in France. These open-ended responses were subsequently exposed to thematic discourse analysis. Findings: Central to this exhibit is the nature and magnitude of knowledge creation and sharing among the actors within the family succession context and how can tacit knowledge sharing facilitate the succession process. We also identified factors that inhibit down the knowledge creation and sharing processes. The sharing and creation of knowledge among members of a family business appear to be a complex process that must be part of a strategy for change. This implies that it requests trust and takes a certain amount of time because it requires organizational change and a clear and coherent strategic vision that is accepted and assimilated by all the members. Professional and leadership skills are of particular importance in knowledge sharing and creation processes. In most cases, tacit knowledge is crucial when it is shared and accumulated collectively. Our findings reveal that managers should find ways of implementing knowledge sharing and creation processes while acknowledging the succession process within family firms. This study highlights the importance of generating knowledge strategies in order to enhance the performance and the success of intergenerational succession. The empirical outcomes contribute to enrich the field of succession management process and enhance the role of knowledge in shaping family performance and longevity. To a large extent, the lessons learned from the study of succession processes in family-owned businesses are that when there is a deliberate effort to introduce a knowledge-based approach, this action becomes a seminal event in the life of the organization. Originality/Value: The paper contributes to the deep understanding of interactions among actors by examining the knowledge creation and sharing processes since current researches in family succession focused on aspects such as personal development of potential, intra-family succession intention, decision-making processes in family businesses. Besides, as succession is one of the key factors that determine the longevity and the performance of family businesses, it also contributes to literature by examining how tacit knowledge is transferred, shared and created in family businesses and how this can facilitate the intergenerational succession process.

Keywords: family-owned businesses, succession process, knowledge, performance

Procedia PDF Downloads 212
9774 The Influence of Advertising Captions on the Internet through the Consumer Purchasing Decision

Authors: Suwimol Apapol, Punrapha Praditpong

Abstract:

The objectives of the study were to find out the frequencies of figures of speech in fragrance advertising captions as well as the types of figures of speech most commonly applied in captions. The relation between figures of speech and fragrance was also examined in order to analyze how figures of speech were used to represent fragrance. Thirty-five fragrance advertisements were randomly selected from the Internet. Content analysis was applied in order to consider the relation between figures of speech and fragrance. The results showed that figures of speech were found in almost every fragrance advertisement except one advertisement of several Goods service. Thirty-four fragrance advertising captions used at least one kind of figure of speech. Metaphor was most frequently found and also most frequently applied in fragrance advertising captions, followed by alliteration, rhyme, simile and personification, and hyperbole respectively which is in harmony with the research hypotheses as well.

Keywords: advertising captions, captions on internet, consumer purchasing decision, e-commerce

Procedia PDF Downloads 272
9773 Non-Convex Multi Objective Economic Dispatch Using Ramp Rate Biogeography Based Optimization

Authors: Susanta Kumar Gachhayat, S. K. Dash

Abstract:

Multi objective non-convex economic dispatch problems of a thermal power plant are of grave concern for deciding the cost of generation and reduction of emission level for diminishing the global warming level for improving green-house effect. This paper deals with ramp rate constraints for achieving better inequality constraints so as to incorporate valve point loading for cost of generation in thermal power plant through ramp rate biogeography based optimization involving mutation and migration. Through 50 out of 100 trials, the cost function and emission objective function were found to have outperformed other classical methods such as lambda iteration method, quadratic programming method and many heuristic methods like particle swarm optimization method, weight improved particle swarm optimization method, constriction factor based particle swarm optimization method, moderate random particle swarm optimization method etc. Ramp rate biogeography based optimization applications prove quite advantageous in solving non convex multi objective economic dispatch problems subjected to nonlinear loads that pollute the source giving rise to third harmonic distortions and other such disturbances.

Keywords: economic load dispatch, ELD, biogeography-based optimization, BBO, ramp rate biogeography-based optimization, RRBBO, valve-point loading, VPL

Procedia PDF Downloads 383
9772 The Relationship between Basic Human Needs and Opportunity Based on Social Progress Index

Authors: Ebru Ozgur Guler, Huseyin Guler, Sera Sanli

Abstract:

Social Progress Index (SPI) whose fundamentals have been thrown in the World Economy Forum is an index which aims to form a systematic basis for guiding strategy for inclusive growth which requires achieving both economic and social progress. In this research, it has been aimed to determine the relations among “Basic Human Needs” (BHN) (including four variables of ‘Nutrition and Basic Medical Care’, ‘Water and Sanitation’, ‘Shelter’ and ‘Personal Safety’) and “Opportunity” (OPT) (that is composed of ‘Personal Rights’, ‘Personal Freedom and Choice’, ‘Tolerance and Inclusion’, and ‘Access to Advanced Education’ components) dimensions of 2016 SPI for 138 countries which take place in the website of Social Progress Imperative by carrying out canonical correlation analysis (CCA) which is a data reduction technique that operates in a way to maximize the correlation between two variable sets. In the interpretation of results, the first pair of canonical variates pointing to the highest canonical correlation has been taken into account. The first canonical correlation coefficient has been found as 0.880 indicating to the high relationship between BHN and OPT variable sets. Wilk’s Lambda statistic has revealed that an overall effect of 0.809 is highly large for the full model in order to be counted as statistically significant (with a p-value of 0.000). According to the standardized canonical coefficients, the largest contribution to BHN set of variables has come from ‘shelter’ variable. The most effective variable in OPT set has been detected to be ‘access to advanced education’. Findings based on canonical loadings have also confirmed these results with respect to the contributions to the first canonical variates. When canonical cross loadings (structure coefficients) are examined, for the first pair of canonical variates, the largest contributions have been provided by ‘shelter’ and ‘access to advanced education’ variables. Since the signs for structure coefficients have been found to be negative for all variables; all OPT set of variables are positively related to all of the BHN set of variables. In case canonical communality coefficients which are the sum of the squares of structure coefficients across all interpretable functions are taken as the basis; amongst all variables, ‘personal rights’ and ‘tolerance and inclusion’ variables can be said not to be useful in the model with 0.318721 and 0.341722 coefficients respectively. On the other hand, while redundancy index for BHN set has been found to be 0.615; OPT set has a lower redundancy index with 0.475. High redundancy implies high ability for predictability. The proportion of the total variation in BHN set of variables that is explained by all of the opposite canonical variates has been calculated as 63% and finally, the proportion of the total variation in OPT set that is explained by all of the canonical variables in BHN set has been determined as 50.4% and a large part of this proportion belongs to the first pair. The results suggest that there is a high and statistically significant relationship between BHN and OPT. This relationship is generally accounted by ‘shelter’ and ‘access to advanced education’.

Keywords: canonical communality coefficient, canonical correlation analysis, redundancy index, social progress index

Procedia PDF Downloads 223
9771 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments

Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard

Abstract:

With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.

Keywords: activities of daily living, classification, internet of things, machine learning, prediction, smart home

Procedia PDF Downloads 359
9770 Analyze Long-Term Shoreline Change at Yi-Lan Coast, Taiwan Using Multiple Sources

Authors: Geng-Gui Wang, Chia-Hao Chang, Jee-Cheng Wu

Abstract:

A shoreline is a line where a body of water and the shore meet. It provides economic and social security to coastal habitations. However, shorelines face multiple threats due to both natural processes and man-made effects because of disasters, rapid urbanization, industrialization, and sand deposition and erosion, etc. In this study, we analyzed multi-temporal satellite images of the Yilan coast, Taiwan from 1978 to 2016, using the United States Geological Survey (USGS) Digital Shoreline Analysis System (DSAS), weather information (as rainfall records and typhoon routes), and man-made construction project data to explore the causes of shoreline changes. The results showed that the shoreline at Yilan coast is greatly influenced by typhoons and anthropogenic interventions.

Keywords: shoreline change, multi-temporal satellite, digital shoreline analysis system, DSAS, Yi-Lan coast

Procedia PDF Downloads 166
9769 Dynamic Soil Structure Interaction in Buildings

Authors: Shreya Thusoo, Karan Modi, Ankit Kumar Jha, Rajesh Kumar

Abstract:

Since the evolution of computational tools and simulation software, there has been considerable increase in research on Soil Structure Interaction (SSI) to decrease the computational time and increase accuracy in the results. To aid the designer with a proper understanding of the response of structure in different soil types, the presented paper compares the deformation, shear stress, acceleration and other parameters of multi-storey building for a specific input ground motion using Response-spectrum Analysis (RSA) method. The response of all the models of different heights have been compared in different soil types. Finite Element Simulation software, ANSYS, has been used for all the computational purposes. Overall, higher response is observed with SSI, while it increases with decreasing stiffness of soil.

Keywords: soil-structure interaction, response spectrum, analysis, finite element method, multi-storey buildings

Procedia PDF Downloads 484
9768 Industrial Waste Multi-Metal Ion Exchange

Authors: Thomas S. Abia II

Abstract:

Intel Chandler Site has internally developed its first-of-kind (FOK) facility-scale wastewater treatment system to achieve multi-metal ion exchange. The process was carried out using a serial process train of carbon filtration, pH / ORP adjustment, and cationic exchange purification to treat dilute metal wastewater (DMW) discharged from a substrate packaging factory. Spanning a trial period of 10 months, a total of 3,271 samples were collected and statistically analyzed (average baseline + standard deviation) to evaluate the performance of a 95-gpm, multi-reactor continuous copper ion exchange treatment system that was consequently retrofitted for manganese ion exchange to meet environmental regulations. The system is also equipped with an inline acid and hot caustic regeneration system to rejuvenate exhausted IX resins and occasionally remove surface crud. Data generated from lab-scale studies was transferred to system operating modifications following multiple trial-and-error experiments. Despite the DMW treatment system failing to meet internal performance specifications for manganese output, it was observed to remove the cation notwithstanding the prevalence of copper in the waste stream. Accordingly, the average manganese output declined from 6.5 + 5.6 mg¹L⁻¹ at pre-pilot to 1.1 + 1.2 mg¹L⁻¹ post-pilot (83% baseline reduction). This milestone was achieved regardless of the average influent manganese to DMW increasing from 1.0 + 13.7 mg¹L⁻¹ at pre-pilot to 2.1 + 0.2 mg¹L⁻¹ post-pilot (110% baseline uptick). Likewise, the pre-trial and post-trial average influent copper values to DMW were 22.4 + 10.2 mg¹L⁻¹ and 32.1 + 39.1 mg¹L⁻¹, respectively (43% baseline increase). As a result, the pre-trial and post-trial average copper output values were 0.1 + 0.5 mg¹L⁻¹ and 0.4 + 1.2 mg¹L⁻¹, respectively (300% baseline uptick). Conclusively, the operating pH range upstream of treatment (between 3.5 and 5) was shown to be the largest single point of influence for optimizing manganese uptake during multi-metal ion exchange. However, the high variability of the influent copper-to-manganese ratio was observed to adversely impact the system functionality. The journal herein intends to discuss the operating parameters such as pH and oxidation-reduction potential (ORP) that were shown to influence the functional versatility of the ion exchange system significantly. The literature also proposes to discuss limitations of the treatment system such as influent copper-to-manganese ratio variations, operational configuration, waste by-product management, and system recovery requirements to provide a balanced assessment of the multi-metal ion exchange process. The take-away from this literature is intended to analyze the overall feasibility of ion exchange for metals manufacturing facilities that lack the capability to expand hardware due to real estate restrictions, aggressive schedules, or budgetary constraints.

Keywords: copper, industrial wastewater treatment, multi-metal ion exchange, manganese

Procedia PDF Downloads 146
9767 Experimental Investigation on Variable Compression Ratio of Single Cylinder Four Stroke SI Engine Working under Ethanol – Gasoline Blend

Authors: B. V. Lande, Suhas Kongare

Abstract:

Fuel blend of alcohol and conventional hydrocarbon fuels for a spark ignition engine can increase the fuel octane rating and the power for a given engine displacement and compression ratio. The greatest advantage of ethanol as a fuel in SI Engines is its high octane number. The efficiency of an SI engine that is the ability to convert fuel energy to mechanical energy, mainly depends on the compression ratio. It is, therefore, an advantage to increase this as much as possible. The major restraint is the fuel octane number – high octane fuels can be used with high compression ratios, thus yielding higher energy efficiency. This work investigates to suggest suitable ethanol gasoline blend and compression ratio for single cylinder four strokes SI Engine on the basis of performance and exhaust emissions. A single cylinder four stroke SI Engine was tested with different blend of ethanol – gasoline like E5 (5% ethanol +95% gasoline), E10 (10% ethanol + 90% gasoline) E15 (15% ethanol + 85% petrol) and E20 ( 20% + 80% gasoline) with Variable compression ratio. The performance parameter evaluated BSFC, Brake thermal efficiency and also exhaust emission CO2, Co & HC%. The result showed that higher compression ratio improved engine Performance and reduction in exhaust emission.

Keywords: blend, compression ratio, ethanol, performance, blend

Procedia PDF Downloads 410
9766 Configuration as a Service in Multi-Tenant Enterprise Resource Planning System

Authors: Mona Misfer Alshardan, Djamal Ziani

Abstract:

Enterprise resource planning (ERP) systems are the organizations tickets to the global market. With the implementation of ERP, organizations can manage and coordinate all functions, processes, resources and data from different departments by a single software. However, many organizations consider the cost of traditional ERP to be expensive and look for alternative affordable solutions within their budget. One of these alternative solutions is providing ERP over a software as a service (SaaS) model. This alternative could be considered as a cost effective solution compared to the traditional ERP system. A key feature of any SaaS system is the multi-tenancy architecture where multiple customers (tenants) share the system software. However, different organizations have different requirements. Thus, the SaaS developers accommodate each tenant’s unique requirements by allowing tenant-level customization or configuration. While customization requires source code changes and in most cases a programming experience, the configuration process allows users to change many features within a predefined scope in an easy and controlled manner. The literature provides many techniques to accomplish the configuration process in different SaaS systems. However, the nature and complexity of SaaS ERP needs more attention to the details regarding the configuration process which is merely described in previous researches. Thus, this research is built on strong knowledge regarding the configuration in SaaS to define specifically the configuration borders in SaaS ERP and to design a configuration service with the consideration of the different configuration aspects. The proposed architecture will ensure the easiness of the configuration process by using wizard technology. Also, the privacy and performance are guaranteed by adopting the databases isolation technique.

Keywords: configuration, software as a service, multi-tenancy, ERP

Procedia PDF Downloads 398
9765 First-Principles Calculations of Hydrogen Adsorbed in Multi-Layer Graphene

Authors: Mohammad Shafiul Alam, Mineo Saito

Abstract:

Graphene-based materials have attracted much attention because they are candidates for post silicon materials. Since controlling of impurities is necessary to achieve nano device, we study hydrogen impurity in multi-layer graphene. We perform local spin Density approximation (LSDA) in which the plane wave basis set and pseudopotential are used. Previously hydrogen monomer and dimer in graphene is well theoretically studied. However, hydrogen on multilayer graphene is still not clear. By using first-principles electronic structure calculations based on the LSDA within the density functional theory method, we studied hydrogen monomers and dimers in two-layer graphene. We found that the monomers are spin-polarized and have magnetic moment 1 µB. We also found that most stable dimer is much more stable than monomer. In the most stable structures of the dimers in two-layer graphene, the two hydrogen atoms are bonded to the host carbon atoms which are nearest-neighbors. In this case two hydrogen atoms are located on the opposite sides. Whereas, when the two hydrogen atoms are bonded to the same sublattice of the host materials, magnetic moments of 2 µB appear in two-layer graphene. We found that when the two hydrogen atoms are bonded to third-nearest-neighbor carbon atoms, the electronic structure is nonmagnetic. We also studied hydrogen monomers and dimers in three-layer graphene. The result is same as that of two-layer graphene. These results are very important in the field of carbon nanomaterials as it is experimentally difficult to show the magnetic state of those materials.

Keywords: first-principles calculations, LSDA, multi-layer gra-phene, nanomaterials

Procedia PDF Downloads 334
9764 A Multi Objective Reliable Location-Inventory Capacitated Disruption Facility Problem with Penalty Cost Solve with Efficient Meta Historic Algorithms

Authors: Elham Taghizadeh, Mostafa Abedzadeh, Mostafa Setak

Abstract:

Logistics network is expected that opened facilities work continuously for a long time horizon without any failure; but in real world problems, facilities may face disruptions. This paper studies a reliable joint inventory location problem to optimize cost of facility locations, customers’ assignment, and inventory management decisions when facilities face failure risks and doesn’t work. In our model we assume when a facility is out of work, its customers may be reassigned to other operational facilities otherwise they must endure high penalty costs associated with losing service. For defining the model closer to real world problems, the model is proposed based on p-median problem and the facilities are considered to have limited capacities. We define a new binary variable (Z_is) for showing that customers are not assigned to any facilities. Our problem involve a bi-objective model; the first one minimizes the sum of facility construction costs and expected inventory holding costs, the second one function that mention for the first one is minimizes maximum expected customer costs under normal and failure scenarios. For solving this model we use NSGAII and MOSS algorithms have been applied to find the pareto- archive solution. Also Response Surface Methodology (RSM) is applied for optimizing the NSGAII Algorithm Parameters. We compare performance of two algorithms with three metrics and the results show NSGAII is more suitable for our model.

Keywords: joint inventory-location problem, facility location, NSGAII, MOSS

Procedia PDF Downloads 529
9763 Robust Shrinkage Principal Component Parameter Estimator for Combating Multicollinearity and Outliers’ Problems in a Poisson Regression Model

Authors: Arum Kingsley Chinedu, Ugwuowo Fidelis Ifeanyi, Oranye Henrietta Ebele

Abstract:

The Poisson regression model (PRM) is a nonlinear model that belongs to the exponential family of distribution. PRM is suitable for studying count variables using appropriate covariates and sometimes experiences the problem of multicollinearity in the explanatory variables and outliers on the response variable. This study aims to address the problem of multicollinearity and outliers jointly in a Poisson regression model. We developed an estimator called the robust modified jackknife PCKL parameter estimator by combining the principal component estimator, modified jackknife KL and transformed M-estimator estimator to address both problems in a PRM. The superiority conditions for this estimator were established, and the properties of the estimator were also derived. The estimator inherits the characteristics of the combined estimators, thereby making it efficient in addressing both problems. And will also be of immediate interest to the research community and advance this study in terms of novelty compared to other studies undertaken in this area. The performance of the estimator (robust modified jackknife PCKL) with other existing estimators was compared using mean squared error (MSE) as a performance evaluation criterion through a Monte Carlo simulation study and the use of real-life data. The results of the analytical study show that the estimator outperformed other existing estimators compared with by having the smallest MSE across all sample sizes, different levels of correlation, percentages of outliers and different numbers of explanatory variables.

Keywords: jackknife modified KL, outliers, multicollinearity, principal component, transformed M-estimator.

Procedia PDF Downloads 71
9762 The Fusion of Blockchain and AI in Supply Chain Finance: Scalability in Distributed Systems

Authors: Wu You, Burra Venkata Durga Kumar

Abstract:

This study examines the promising potential of integrating Blockchain and Artificial Intelligence (AI) technologies to scalability in Distributed Systems within the field of supply chain finance. The finance industry is continually confronted with scalability challenges in its Distributed Systems, particularly within the supply chain finance sector, impacting efficiency and security. Blockchain, with its inherent attributes of high scalability and secure distributed ledger system, coupled with AI's strengths in optimizing data processing and decision-making, holds the key to innovating the industry's approach to these issues. This study elucidates the synergistic interplay between Blockchain and AI, detailing how their fusion can drive a significant transformation in the supply chain finance sector's Distributed Systems. It offers specific use-cases within this field to illustrate the practical implications and potential benefits of this technological convergence. The study also discusses future possibilities and current challenges in implementing this groundbreaking approach within the context of supply chain finance. It concludes that the intersection of Blockchain and AI could ignite a new epoch of enhanced efficiency, security, and transparency in the Distributed Systems of supply chain finance within the financial industry.

Keywords: blockchain, artificial intelligence (AI), scaled distributed systems, supply chain finance, efficiency and security

Procedia PDF Downloads 96
9761 The Layout Analysis of Handwriting Characters and the Fusion of Multi-style Ancient Books’ Background

Authors: Yaolin Tian, Shanxiong Chen, Fujia Zhao, Xiaoyu Lin, Hailing Xiong

Abstract:

Ancient books are significant culture inheritors and their background textures convey the potential history information. However, multi-style texture recovery of ancient books has received little attention. Restricted by insufficient ancient textures and complex handling process, the generation of ancient textures confronts with new challenges. For instance, training without sufficient data usually brings about overfitting or mode collapse, so some of the outputs are prone to be fake. Recently, image generation and style transfer based on deep learning are widely applied in computer vision. Breakthroughs within the field make it possible to conduct research upon multi-style texture recovery of ancient books. Under the circumstances, we proposed a network of layout analysis and image fusion system. Firstly, we trained models by using Deep Convolution Generative against Networks (DCGAN) to synthesize multi-style ancient textures; then, we analyzed layouts based on the Position Rearrangement (PR) algorithm that we proposed to adjust the layout structure of foreground content; at last, we realized our goal by fusing rearranged foreground texts and generated background. In experiments, diversified samples such as ancient Yi, Jurchen, Seal were selected as our training sets. Then, the performances of different fine-turning models were gradually improved by adjusting DCGAN model in parameters as well as structures. In order to evaluate the results scientifically, cross entropy loss function and Fréchet Inception Distance (FID) are selected to be our assessment criteria. Eventually, we got model M8 with lowest FID score. Compared with DCGAN model proposed by Radford at el., the FID score of M8 improved by 19.26%, enhancing the quality of the synthetic images profoundly.

Keywords: deep learning, image fusion, image generation, layout analysis

Procedia PDF Downloads 163
9760 Optimization of Multi-Disciplinary Expertise and Resource for End-Stage Renal Failure (ESRF) Patient Care

Authors: Mohamed Naser Zainol, P. P. Angeline Song

Abstract:

Over the years, the profile of end-stage renal patients placed under The National Kidney Foundation Singapore (NKFS) dialysis program has evolved, with a gradual incline in the number of patients with behavior-related issues. With these challenging profiles, social workers and counsellors are often expected to oversee behavior management, through referrals from its partnering colleagues. Due to the segregation of tasks usually found in many hospital-based multi-disciplinary settings, social workers’ and counsellors’ interventions are often seen as an endpoint, limiting other stakeholders’ involvement that could otherwise be potentially crucial in managing such patients. While patients’ contact in local hospitals often leads to eventual discharge, NKFS patients are mostly long term. It is interesting to note that these patients are regularly seen by a team of professionals that includes doctors, nurses, dietitians, exercise specialists in NKFS. The dynamism of relationships presents an opportunity for any of these professionals to take ownership of their potentials in leading interventions that can be helpful to patients. As such, it is important to have a framework that incorporates the strength of these professionals and also channels empowerment across the multi-disciplinary team in working towards wholistic patient care. This paper would like to suggest a new framework for NKFS’s multi-disciplinary team, where the group synergy and dynamics are used to encourage ownership and promote empowerment. The social worker and counsellor use group work skills and his/her knowledge of its members’ strengths, to generate constructive solutions that are centered towards patient’s growth. Using key ideas from Karl’s Tomm Interpersonal Communications, the Communication Management of Meaning and Motivational Interviewing, the social worker and counsellor through a series of guided meeting with other colleagues, facilitates the transmission of understanding, responsibility sharing and tapping on team resources for patient care. As a result, the patient can experience personal and concerted approach and begins to flow in a direction that is helpful for him. Using seven case studies of identified patients with behavioral issues, the social worker and counsellor apply this framework for a period of six months. Patient’s overall improvement through interventions as a result of this framework are recorded using the AB single case design, with baseline measured three months before referral. Interviews with patients and their families, as well as other colleagues that are not part of the multi-disciplinary team are solicited at mid and end points to gather their experiences about patient’s progress as a by-product of this framework. Expert interviews will be conducted on each member of the multi-disciplinary team to study their observations and experience in using this new framework. Hence, this exploratory framework hopes to identify the inherent usefulness in managing patients with behavior related issues. Moreover, it would provide indicators in improving aspects of the framework when applied to a larger population.

Keywords: behavior management, end-stage renal failure, satellite dialysis, multi-disciplinary team

Procedia PDF Downloads 153
9759 Singular Perturbed Vector Field Method Applied to the Problem of Thermal Explosion of Polydisperse Fuel Spray

Authors: Ophir Nave

Abstract:

In our research, we present the concept of singularly perturbed vector field (SPVF) method, and its application to thermal explosion of diesel spray combustion. Given a system of governing equations, which consist of hidden Multi-scale variables, the SPVF method transfer and decompose such system to fast and slow singularly perturbed subsystems (SPS). The SPVF method enables us to understand the complex system, and simplify the calculations. Later powerful analytical, numerical and asymptotic methods (e.g method of integral (invariant) manifold (MIM), the homotopy analysis method (HAM) etc.) can be applied to each subsystem. We compare the results obtained by the methods of integral invariant manifold and SPVF apply to spray droplets combustion model. The research deals with the development of an innovative method for extracting fast and slow variables in physical mathematical models. The method that we developed called singular perturbed vector field. This method based on a numerical algorithm applied to global quasi linearization applied to given physical model. The SPVF method applied successfully to combustion processes. Our results were compared to experimentally results. The SPVF is a general numerical and asymptotical method that reveals the hierarchy (multi-scale system) of a given system.

Keywords: polydisperse spray, model reduction, asymptotic analysis, multi-scale systems

Procedia PDF Downloads 222
9758 A Fuzzy Programming Approach for Solving Intuitionistic Fuzzy Linear Fractional Programming Problem

Authors: Sujeet Kumar Singh, Shiv Prasad Yadav

Abstract:

This paper develops an approach for solving intuitionistic fuzzy linear fractional programming (IFLFP) problem where the cost of the objective function, the resources, and the technological coefficients are triangular intuitionistic fuzzy numbers. Here, the IFLFP problem is transformed into an equivalent crisp multi-objective linear fractional programming (MOLFP) problem. By using fuzzy mathematical programming approach the transformed MOLFP problem is reduced into a single objective linear programming (LP) problem. The proposed procedure is illustrated through a numerical example.

Keywords: triangular intuitionistic fuzzy number, linear programming problem, multi objective linear programming problem, fuzzy mathematical programming, membership function

Procedia PDF Downloads 571
9757 Estimation of Harmonics in Three-Phase and Six-Phase-Phase (Multi-Phase) Load Circuits

Authors: Zakir Husain, Deepak Kumar

Abstract:

The harmonics are very harmful within an electrical system and can have serious consequences such as reducing the life of apparatus, stress on cable and equipment etc. This paper cites extensive analytical study of harmonic characteristics of multiphase (six-phase) and three-phase system equipped with two and three level inverters for non-linear loads. Multilevel inverter has elevated voltage capability with voltage limited devices, low harmonic distortion, abridged switching losses. Multiphase technology also pays a promising role in harmonic reduction. Matlab simulation is carried out to compare the advantage of multi-phase over three phase systems equipped with two or three level inverters for non-linear load harmonic reduction. The extensive simulation results are presented based on case studies.

Keywords: fast Fourier transform (FFT), harmonics, inverter, ripples, total harmonic distortion (THD)

Procedia PDF Downloads 556
9756 Surviral: An Agent-Based Simulation Framework for Sars-Cov-2 Outcome Prediction

Authors: Sabrina Neururer, Marco Schweitzer, Werner Hackl, Bernhard Tilg, Patrick Raudaschl, Andreas Huber, Bernhard Pfeifer

Abstract:

History and the current outbreak of Covid-19 have shown the deadly potential of infectious diseases. However, infectious diseases also have a serious impact on areas other than health and healthcare, such as the economy or social life. These areas are strongly codependent. Therefore, disease control measures, such as social distancing, quarantines, curfews, or lockdowns, have to be adopted in a very considerate manner. Infectious disease modeling can support policy and decision-makers with adequate information regarding the dynamics of the pandemic and therefore assist in planning and enforcing appropriate measures that will prevent the healthcare system from collapsing. In this work, an agent-based simulation package named “survival” for simulating infectious diseases is presented. A special focus is put on SARS-Cov-2. The presented simulation package was used in Austria to model the SARS-Cov-2 outbreak from the beginning of 2020. Agent-based modeling is a relatively recent modeling approach. Since our world is getting more and more complex, the complexity of the underlying systems is also increasing. The development of tools and frameworks and increasing computational power advance the application of agent-based models. For parametrizing the presented model, different data sources, such as known infections, wastewater virus load, blood donor antibodies, circulating virus variants and the used capacity for hospitalization, as well as the availability of medical materials like ventilators, were integrated with a database system and used. The simulation result of the model was used for predicting the dynamics and the possible outcomes and was used by the health authorities to decide on the measures to be taken in order to control the pandemic situation. The survival package was implemented in the programming language Java and the analytics were performed with R Studio. During the first run in March 2020, the simulation showed that without measures other than individual personal behavior and appropriate medication, the death toll would have been about 27 million people worldwide within the first year. The model predicted the hospitalization rates (standard and intensive care) for Tyrol and South Tyrol with an accuracy of about 1.5% average error. They were calculated to provide 10-days forecasts. The state government and the hospitals were provided with the 10-days models to support their decision-making. This ensured that standard care was maintained for as long as possible without restrictions. Furthermore, various measures were estimated and thereafter enforced. Among other things, communities were quarantined based on the calculations while, in accordance with the calculations, the curfews for the entire population were reduced. With this framework, which is used in the national crisis team of the Austrian province of Tyrol, a very accurate model could be created on the federal state level as well as on the district and municipal level, which was able to provide decision-makers with a solid information basis. This framework can be transferred to various infectious diseases and thus can be used as a basis for future monitoring.

Keywords: modelling, simulation, agent-based, SARS-Cov-2, COVID-19

Procedia PDF Downloads 178
9755 The Impact of Illegal Firearms Possession, Limited Security Staff and Porosity of Border on Human Security in Ipokia Local Government Area, Ogun State

Authors: Ogunmefun Folorunsho Muyideen, Aluko Tolulope Evelyn

Abstract:

One of the trending menaces faced in the world today is centered on the porosity of borders and proliferation of illegal weapons among the state members without the state authorizations. The proliferation of weapons along porous borders remains a germane and unsolvable question among developed and developing nations due to crisis degenerated from the menace (loss of lives, properties, traumatization, civil unrest and retrogressive economic development). A mixed method was adopted while the survey method was used for communities’ selection (Oke-Odan, Ajilete, Illaise, Lanlate) at Ipokia Local Government as a sample frame. Multi-stage sampling was employed to break down the site into wards, streets, and different house numbers before randomizing administration of the questionnaires using face to face method, while purposive sampling was used for collecting verbal information through an in-depth interviews method. The population size for the site is 150.398, while 399 was the sample size derived from the use of Yamane sample size formula. After retrieval of structured questionnaires, 346 were found useful, while 10 percent (399) of the quantitative instruments was summed to 30 participants that were interviewed using the in-depth interviews technique. The result of the first hypothesis shows a composite relationship between the variables tested (independents and dependent). The result indicated that the porosity of the border, illegal possession of guns, and limited security staff jointly predispose insecurity among the residents of the selected study site. The result of the second hypothesis deciphers that the illegal gun possession (independent) variable predict business outcome among the residents of the study site because sporadic gun shoot will regress the business activities in the study area. The result of third result indicated that the independent (porosity of borders) variable predict social bonding network because a high level of insecurity will destroy the level of trust in the communication among the residents of the study area. The last questions give comprehensive meaning to one of the recommendations derived using content systematic analysis, which explains that out of 30 participants interviewed, 18 submitted individual involvement in monitoring communities will solve the problem, 7 out of 30 opines that governmental agents are to be trained for effective combat, 3 participants out 30 submits that the fight is for both government and the citizens while 2 participants out of 30 claimed that there must be an agreement between Nigerian and neighbouring countries on border security. International donors must totally control the sales of weapons to unauthorized personalities. Criminal cases must be treated with deterrence measures and target hardened procedures through decoying and blending, stakeout, and sting tactics.

Keywords: human security, illegal weapons, porous borders, development

Procedia PDF Downloads 189
9754 Marketing and Business Intelligence and Their Impact on Products and Services Through Understanding Based on Experiential Knowledge of Customers in Telecommunications Companies

Authors: Ali R. Alshawawreh, Francisco Liébana-Cabanillas, Francisco J. Blanco-Encomienda

Abstract:

Collaboration between marketing and business intelligence (BI) is crucial in today's ever-evolving business landscape. These two domains play pivotal roles in molding customers' experiential knowledge. Marketing insights offer valuable information regarding customer needs, preferences, and behaviors. Conversely, BI facilitates data-driven decision-making, leading to heightened operational efficiency, product quality, and customer satisfaction. Customer experiential knowledge (CEK) encompasses customers' implicit comprehension of consumption experiences influenced by diverse factors, including social and cultural influences. This study primarily focuses on telecommunications companies in Jordan, scrutinizing how experiential customer knowledge mediates the relationship between marketing intelligence and business intelligence. Drawing on theoretical frameworks such as the resource-based view (RBV) and service-dominant logic (SDL), the research aims to comprehend how organizations utilize their resources, particularly knowledge, to foster Evolution. Employing a quantitative research approach, the study collected and analyzed primary data to explore hypotheses. Structural equation modeling (SEM) facilitated by Smart PLS software evaluated the relationships between the constructs, followed by mediation analysis to assess the indirect associations in the model. The study findings offer insights into the intricate dynamics of organizational Creation, uncovering the interconnected relationships between business intelligence, customer experiential knowledge-based innovation (CEK-DI), marketing intelligence (MI), and product and service innovation (PSI), underscoring the pivotal role of advanced intelligence capabilities in developing innovative practices rooted in a profound understanding of customer experiences. Furthermore, the positive impact of BI on PSI reaffirms the significance of data-driven decision-making in shaping the innovation landscape. The significant impact of CEK-DI on PSI highlights the critical role of customer experiences in driving an organization. Companies that actively integrate customer insights into their opportunity creation processes are more likely to create offerings that match customer expectations, which drives higher levels of product and service sophistication. Additionally, the positive and significant impact of MI on CEK-DI underscores the critical role of market insights in shaping evolutionary strategies. While the relationship between MI and PSI is positive, the slightly weaker significance level indicates a subtle association, suggesting that while MI contributes to the development of ideas, In conclusion, the study emphasizes the fundamental role of intelligence capabilities, especially artificial intelligence, emphasizing the need for organizations to leverage market and customer intelligence to achieve effective and competitive innovation practices. Collaborative efforts between marketing and business intelligence serve as pivotal drivers of development, influencing customer experiential knowledge and shaping organizational strategies and practices. Future research could adopt longitudinal designs and gather data from various sectors to offer broader insights. Additionally, the study focuses on the effects of marketing intelligence, business intelligence, customer experiential knowledge, and innovation, but other unexamined variables may also influence innovation processes. Future studies could investigate additional factors, mediators, or moderators, including the role of emerging technologies like AI and machine learning in driving innovation.

Keywords: marketing intelligence, business intelligence, product, customer experiential knowledge-driven innovation

Procedia PDF Downloads 37
9753 Identifying Physical and Psycho-Social Issues Facing Breast Cancer Survivors after Definitive Treatment for Early Breast Cancer: A Nurse-Led Clinic Model

Authors: A. Dean, M. Pitcher, L. Storer, K. Shanahan, I. Rio, B. Mann

Abstract:

Purpose: Breast cancer survivors are at risk of specific physical and psycho-social issues, such as arm swelling, fatigue, and depression. Firstly, we investigate symptoms reported by Australia breast cancer survivors upon completion of definitive treatment. Secondly, we evaluate the appropriateness and effectiveness of a multi-centre pilot program nurse-led clinic to identify these issues and make timely referrals to available services. Methods: Patients post-definitive treatment (excluding ongoing hormonal therapy) for early breast cancer or ductal carcinoma in situ were invited to participate. An hour long appointment with a breast care nurse (BCN) was scheduled. In preparation, patients completed validated quality-of-life surveys (FACT-B, Menopause Rating Scale, Distress Thermometer). During the appointment, issues identified in the surveys were addressed and referrals to appropriate services arranged. Results: 183 of 274 (67%) eligible patients attended a nurse-led clinic. Mean age 56.8 years (range 29-87 years), 181/183 women, 105/183 post-menopausal. 96 (55%) participants reported significant level of distress; 31 (18%) participants reported extreme distress or depression. Distress stemmed from a lack of energy (56/175); poor quality of sleep (50/176); inability to work or participate in household activities (35/172) and problems with sex life (28/89). 166 referrals were offered; 94% of patients accepted the referrals. 65% responded to a follow-up survey: the majority of women either strongly agreed or agreed that the BCN was overwhelmingly supportive, helpful in making referrals, and compassionate towards them. 39% reported making lifestyle changes as a result of the BCN. Conclusion: Breast cancer survivors experience a unique set of challenges, including low mood, difficulty sleeping, problems with sex life and fear of disease recurrence. The nurse-led clinic model is an appropriate and effective method to ensure physical and psycho-social issues are identified and managed in a timely manner. This model empowers breast cancer survivors with information about their diagnosis and available services.

Keywords: early breast cancer, survivorship, breast care nursing, oncology nursing and cancer care

Procedia PDF Downloads 403
9752 A Range of Steel Production in Japan towards 2050

Authors: Reina Kawase

Abstract:

Japan set the goal of 80% reduction in GHG emissions by 2050. To consider countermeasures for reducing GHG emission, the production estimation of energy intensive materials, such as steel, is essential. About 50% of steel production is exported in Japan, so it is necessary to consider steel production including export. Steel productions from 2005-2050 in Japan were estimated under various global assumptions based on combination of scenarios such as goods trade scenarios and steel making process selection scenarios. Process selection scenarios decide volume of steel production by process (basic oxygen furnace and electric arc furnace) with considering steel consumption projection, supply-demand balance of steel, and scrap surplus. The range of steel production by process was analyzed. Maximum steel production was estimated under the scenario which consumes scrap in domestic steel production at maximum level. In 2035, steel production reaches 149 million ton because of increase in electric arc furnace steel. However, it decreases towards 2050 and amounts to 120 million ton, which is almost same as a current level. Minimum steel production is under the scenario which assumes technology progress in steel making and supply-demand balance consideration in each region. Steel production decreases from base year and is 44 million ton in 2050.

Keywords: goods trade scenario, steel making process selection scenario, steel production, global warming

Procedia PDF Downloads 388