Search results for: temperature dependent dielectric constant
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10745

Search results for: temperature dependent dielectric constant

10505 Influences of Thermal Treatments on Dielectric Behaviors of Carbon Nanotubes-BaTiO₃ Hybrids Reinforced Polyvinylidene Fluoride Composites

Authors: Benhui Fan, Fahmi Bedoui, Jinbo Bai

Abstract:

Incorporated carbon nanotube-BaTiO₃ hybrids (H-CNT-BT) with core-shell structure, a better dispersion of CNTs can be achieved in a semi-crystalline polymeric matrix, polyvinylidene fluoride (PVDF). Carried by BT particles, CNTs are easy to mutually connect which helps to obtain an extremely low percolation threshold (fc). After thermal treatments, the dielectric constants (ε’) of samples further increase which depends on the conditions of thermal treatments such as annealing temperatures, annealing durations and cooling ways. Thus, in order to study more comprehensively about the influence of thermal treatments on composite’s dielectric behaviors, in situ synchrotron X-ray is used to detect re-crystalline behavior of PVDF. Results of wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) show that after the thermal treatment, the content of β polymorph (the polymorph with the highest ε’ among all the polymorphs of PVDF’s crystalline structure) has increased nearly double times at the interfacial region of CNT-PVDF, and the thickness of amorphous layers (La) in PVDF’s long periods (Lp) has shrunk around 10 Å. The evolution of CNT’s network possibly occurs in the procedure of La shrinkage, where the strong interfacial polarization may be aroused and increases ε’ at low frequency. Moreover, an increase in the thickness of crystalline lamella may also arouse more orientational polarization and improve ε’ at high frequency.

Keywords: dielectric properties, thermal treatments, carbon nanotubes, crystalline structure

Procedia PDF Downloads 313
10504 Sensitivity Analysis of the Thermal Properties in Early Age Modeling of Mass Concrete

Authors: Farzad Danaei, Yilmaz Akkaya

Abstract:

In many civil engineering applications, especially in the construction of large concrete structures, the early age behavior of concrete has shown to be a crucial problem. The uneven rise in temperature within the concrete in these constructions is the fundamental issue for quality control. Therefore, developing accurate and fast temperature prediction models is essential. The thermal properties of concrete fluctuate over time as it hardens, but taking into account all of these fluctuations makes numerical models more complex. Experimental measurement of the thermal properties at the laboratory conditions also can not accurately predict the variance of these properties at site conditions. Therefore, specific heat capacity and the heat conductivity coefficient are two variables that are considered constant values in many of the models previously recommended. The proposed equations demonstrate that these two quantities are linearly decreasing as cement hydrates, and their value are related to the degree of hydration. The effects of changing the thermal conductivity and specific heat capacity values on the maximum temperature and the time it takes for concrete to reach that temperature are examined in this study using numerical sensibility analysis, and the results are compared to models that take a fixed value for these two thermal properties. The current study is conducted in 7 different mix designs of concrete with varying amounts of supplementary cementitious materials (fly ash and ground granulated blast furnace slag). It is concluded that the maximum temperature will not change as a result of the constant conductivity coefficient, but variable specific heat capacity must be taken into account, also about duration when a concrete's central node reaches its max value again variable specific heat capacity can have a considerable effect on the final result. Also, the usage of GGBFS has more influence compared to fly ash.

Keywords: early-age concrete, mass concrete, specific heat capacity, thermal conductivity coefficient

Procedia PDF Downloads 64
10503 Energy and Exergy Analyses of Thin-Layer Drying of Pineapple Slices

Authors: Apolinar Picado, Steve Alfaro, Rafael Gamero

Abstract:

Energy and exergy analyses of thin-layer drying of pineapple slices (Ananas comosus L.) were conducted in a laboratory tunnel dryer. Drying experiments were carried out at three temperatures (100, 115 and 130 °C) and an air velocity of 1.45 m/s. The effects of drying variables on energy utilisation, energy utilisation ratio, exergy loss and exergy efficiency were studied. The enthalpy difference of the gas increased as the inlet gas temperature increase. It is observed that at the 75 minutes of the drying process the outlet gas enthalpy achieves a maximum value that is very close to the inlet value and remains constant until the end of the drying process. This behaviour is due to the reduction of the total enthalpy within the system, or in other words, the reduction of the effective heat transfer from the hot gas flow to the vegetable being dried. Further, the outlet entropy exhibits a significant increase that is not only due to the temperature variation, but also to the increase of water vapour phase contained in the hot gas flow. The maximum value of the exergy efficiency curve corresponds to the maximum value observed within the drying rate curves. This maximum value represents the stage when the available energy is efficiently used in the removal of the moisture within the solid. As the drying rate decreases, the available energy is started to be less employed. The exergetic efficiency was directly dependent on the evaporation flux and since the convective drying is less efficient that other types of dryer, it is likely that the exergetic efficiency has relatively low values.

Keywords: efficiency, energy, exergy, thin-layer drying

Procedia PDF Downloads 238
10502 Influence of Moringa Leaves Extract on the Response of Hb Molecule to Dose Rates’ Changes: II. Relaxation Time and Its Thermodynamic Driven State Functions

Authors: Mohamed M. M. Elnasharty, Azhar M. Elwan

Abstract:

Irradiation deposits energy through ionisation changing the bio-system’s net dipole, allowing the use of dielectric parameters and thermodynamic state functions related to these parameters as biophysical detectors to electrical inhomogeneity within the biosystem. This part is concerned with the effect of Moringa leaves extract, natural supplement, on the response of the biosystem to two different dose rates of irradiation. Having Hb molecule as a representative to the biosystem to be least invasive to the biosystem, dielectric measurements were used to extract the relaxation time of certain process found in the Hb spectrum within the indicated frequency window and the interrelated thermodynamic state functions were calculated from the deduced relaxation time. The results showed that relaxation time was decreased for both dose rates indicating a strong influence of Moringa on the response of biosystem and consequently Hb molecule. This influence was presented in the relaxation time and other parameters as well.

Keywords: activation energy, DC conductivity, dielectric relaxation, enthalpy change, Moringa leaves extract, relaxation time

Procedia PDF Downloads 133
10501 CFD Studies on Forced Convection Nanofluid Flow Inside a Circular Conduit

Authors: M. Khalid, W. Rashmi, L. L. Kwan

Abstract:

This work provides an overview on the experimental and numerical simulations of various nanofluids and their flow and heat transfer behavior. It was further extended to study the effect of nanoparticle concentration, fluid flow rates and thermo-physical properties on the heat transfer enhancement of Al2O3/water nanofluid in a turbulent flow circular conduit using ANSYS FLUENT™ 14.0. Single-phase approximation (homogeneous model) and two-phase (mixture and Eulerian) models were used to simulate the nanofluid flow behavior in the 3-D horizontal pipe. The numerical results were further validated with experimental correlations reported in the literature. It was found that heat transfer of nanofluids increases with increasing particle volume concentration and Reynolds number, respectively. Results showed good agreement (~9% deviation) with the experimental correlations, especially for a single-phase model with constant properties. Among two-phase models, mixture model (~14% deviation) showed better prediction compared to Eulerian-dispersed model (~18% deviation) when temperature independent properties were used. Non-drag forces were also employed in the Eulerian two-phase model. However, the two-phase mixture model with temperature dependent nanofluid properties gave slightly closer agreement (~12% deviation).

Keywords: nanofluid, CFD, heat transfer, forced convection, circular conduit

Procedia PDF Downloads 511
10500 Increased Nitrogen Removal in Cold Deammonification Biofilm Reactor (9-15°C) by Smooth Temperature Decreasing

Authors: Ivar Zekker, Ergo Rikmann, Anni Mandel, Markus Raudkivi, Kristel Kroon, Liis Loorits, Andrus Seiman, Hannu Fritze, Priit Vabamäe, Toomas Tenno, Taavo Tenno

Abstract:

The anaerobic ammonium oxidation (anammox) and nitritation-anammox (deammonification) processes are widely used for N-rich wastewater treatment nowadays. A deammonification moving bed biofilm reactor (MBBR) with a high maximum total nitrogen removal rate (TNRR) of 1.5 g N m-2 d-1 was started up and similarly high TNRR was sustained at low temperature of 15°C. During biofilm cultivation, temperature in MBBR was lowered by 0.5° C week-1 sustaining the high TNRR. To study the short-term effect of temperature on the TNRR, a series of batch-scale experiments performed showed sufficient TNRRs even at 9-15° C (4.3-5.4 mg N L-1 h-1, respectively). After biomass was adapted to lower temperature (15°C), the TNRR increase at lower temperature (15°C) was relatively higher (15-20%) than with biomass adapted to higher temperatures (17-18°C). Anammox qPCR showed increase of Candidatus Brocadia quantities from 5×103 to 1×107 anammox gene copies g-1 TSS despite temperature lowered to 15°C. Modeling confirmed causes of stable and unstable periods in the reactor and in batch test high Arrhenius constant of 29.7 kJ mol-1 of the process as high as at 100 mg NO2--N L-1 were determined. 

Keywords: deammonification, reject water, intermittent aeration, nitrite inhibition

Procedia PDF Downloads 402
10499 Thermal Analysis of Friction Stir Welded Dissimilar Materials with Different Preheating Conditions

Authors: Prashant S. Humnabad

Abstract:

The objective of this work is to carry out a thermal heat transfer analysis to obtain the time dependent temperature field in welding process friction stir welded dissimilar materials with different preheating temperature. A series of joints were made on four mm thick aluminum and steel plates. The temperature used was 100ºC, 150ºC and 200ºC. The welding operation was performed with different rotational speeds and traverse speed (1000, 1400 and 2000 rmp and 16, 20 and 25 mm/min..). In numerical model, the welded plate was modeled as the weld line is the symmetric line. The work-piece has dimensions of 100x100x4 mm. The obtained result was compared with experimental result, which shows good agreement and within the acceptable limit. The peak temperature at the weld zone increases significantly with respect to increase in process time.

Keywords: FEA, thermal analysis, preheating, friction stir welding

Procedia PDF Downloads 177
10498 Hydrogel Hybridizing Temperature-Cured Dissolvable Gelatin Microspheres as Non-Anchorage Dependent Cell Carriers for Tissue Engineering Applications

Authors: Dong-An Wang

Abstract:

All kinds of microspheres have been extensively employed as carriers for drug, gene and therapeutic cell delivery. Most therapeutic cell delivery microspheres rely on a two-step methodology: fabrication of microspheres and subsequent seeding of cells onto them. In this study, we have developed a novel one-step cell encapsulation technique using a convenient and instant water-in-oil single emulsion approach to form cell-encapsulated gelatin microspheres. This technology is adopted for hyaline cartilage tissue engineering, in which autologous chondrocytes are used as therapeutic cells. Cell viability was maintained throughout and after the microsphere formation (75-100 µm diameters) process that avoids involvement of any covalent bonding reactions or exposure to any further chemicals. Further encapsulation of cell-laden microspheres in alginate gels were performed under 4°C via a prompt process. Upon the formation of alginate constructs, they were immediately relocated into CO2 incubator where the temperature was maintained at 37°C; under this temperature, the cell-laden gelatin microspheres dissolved within hours to yield similarly sized cavities and the chondrocytes were therefore suspended within the cavities inside the alginate gel bulk. Hence, the gelatin cell-laden microspheres served two roles: as cell delivery vehicles which can be removable through temperature curing, and as porogens within an alginate hydrogel construct to provide living space for cell growth and tissue development as well as better permeability for mutual diffusions. These cell-laden microspheres, namely “temperature-cured dissolvable gelatin microsphere based cell carriers” (tDGMCs), were further encapsulated in a chondrocyte-laden alginate scaffold system and analyzed by WST-1, gene expression analyses, biochemical assays, histology and immunochemistry stains. The positive results consistently demonstrated the promise of tDGMC technology in delivering these non-anchorage dependent cells (chondrocytes). It can be further conveniently translated into delivery of other non-anchorage dependent cell species, including stem cells, progenitors or iPS cells, for regeneration of tissues in internal organs, such as engineered hepatogenesis or pancreatic regeneration.

Keywords: biomaterials, tissue engineering, microsphere, hydrogel, porogen, anchorage dependence

Procedia PDF Downloads 379
10497 Experimental Squeeze Flow of Bitumen: Rheological Properties

Authors: A. Kraiem, A. Ayadi

Abstract:

The squeeze flow tests were studied by many authors to measure the rheological properties of fluid. Experimental squeezing flow test with constant area between two parallel disks of bitumen is investigated in the present work. The effect of the temperature, the process of preparing the sample and the gap between the discs were discussed. The obtained results were compared with the theoretical models. The behavior of bitumen depends on the viscosity and the yield stress. Thus, the bitumen was presented as a power law for a small power law exponent and as a biviscous fluid when the viscosity ratio was smaller than one. Also, the influence of the ambient temperature is required for the compression test. Therefore, for a high temperature the yield stress decrease.

Keywords: bitumen, biviscous fluid, squeeze flow, viscosity, yield stress

Procedia PDF Downloads 124
10496 Simulation and Analysis of Mems-Based Flexible Capacitive Pressure Sensors with COMSOL

Authors: Ding Liangxiao

Abstract:

The technological advancements in Micro-Electro-Mechanical Systems (MEMS) have significantly contributed to the development of new, flexible capacitive pressure sensors,which are pivotal in transforming wearable and medical device technologies. This study employs the sophisticated simulation tools available in COMSOL Multiphysics® to develop and analyze a MEMS-based sensor with a tri-layered design. This sensor comprises top and bottom electrodes made from gold (Au), noted for their excellent conductivity, a middle dielectric layer made from a composite of Silver Nanowires (AgNWs) embedded in Thermoplastic Polyurethane (TPU), and a flexible, durable substrate of Polydimethylsiloxane (PDMS). This research was directed towards understanding how changes in the physical characteristics of the AgNWs/TPU dielectric layer—specifically, its thickness and surface area—impact the sensor's operational efficacy. We assessed several key electrical properties: capacitance, electric potential, and membrane displacement under varied pressure conditions. These investigations are crucial for enhancing the sensor's sensitivity and ensuring its adaptability across diverse applications, including health monitoring systems and dynamic user interface technologies. To ensure the reliability of our simulations, we applied the Effective Medium Theory to calculate the dielectric constant of the AgNWs/TPU composite accurately. This approach is essential for predicting how the composite material will perform under different environmental and operational stresses, thus facilitating the optimization of the sensor design for enhanced performance and longevity. Moreover, we explored the potential benefits of innovative three-dimensional structures for the dielectric layer compared to traditional flat designs. Our hypothesis was that 3D configurations might improve the stress distribution and optimize the electrical field interactions within the sensor, thereby boosting its sensitivity and accuracy. Our simulation protocol includes comprehensive performance testing under simulated environmental conditions, such as temperature fluctuations and mechanical pressures, which mirror the actual operational conditions. These tests are crucial for assessing the sensor's robustness and its ability to function reliably over extended periods, ensuring high reliability and accuracy in complex real-world environments. In our current research, although a full dynamic simulation analysis of the three-dimensional structures has not yet been conducted, preliminary explorations through three-dimensional modeling have indicated the potential for mechanical and electrical performance improvements over traditional planar designs. These initial observations emphasize the potential advantages and importance of incorporating advanced three-dimensional modeling techniques in the development of Micro-Electro-Mechanical Systems (MEMS)sensors, offering new directions for the design and functional optimization of future sensors. Overall, this study not only highlights the powerful capabilities of COMSOL Multiphysics® for modeling sophisticated electronic devices but also underscores the potential of innovative MEMS technology in advancing the development of more effective, reliable, and adaptable sensor solutions for a broad spectrum of technological applications.

Keywords: MEMS, flexible sensors, COMSOL Multiphysics, AgNWs/TPU, PDMS, 3D modeling, sensor durability

Procedia PDF Downloads 25
10495 Interesting Behavior of Non-Thermal Plasma Photonic Crystals

Authors: A. Mousavi, S. Sadegzadeh

Abstract:

In this research, the effect of non-thermal micro plasma with non-Maxwellian distribution function on the one dimensional plasma photonic crystals containing alternate plasma-dielectric layers, has been studied. By using Kronig Penny model, the dispersion relation of electromagnetic modes for such a periodic structure is obtained. In this study we take two plasma photonic crystals with different dielectric layers: the first one with Silicon monoxide named PPCI, and the second one with Tellurium dioxide named PPCII. The effects of the plasma layer thickness and the material of the dielectric layer on the plasma photonic crystal band gaps have been illustrated in the dispersion relation and the group velocity figures. Results revealed that in such a system, the non-thermal plasma exerts stronger limit on the wave’s propagation. In another word, for the non-thermal plasma photonic crystals (NPPC), there are two distinct regions in the dispersion plot. The upper region consists of alternate band gaps in such a way that both width and length of the bands decrease gradually as the band gaps order increases. Whereas in the lower region where v_ph > 20 c (for PPCI), waves will not be allowed to propagate.

Keywords: band gap, dispersion relation, non-thermal plasma, plasma photonic crystal

Procedia PDF Downloads 528
10494 Effect of Microstructure on Transition Temperature of Austempered Ductile Iron (ADI)

Authors: A. Ozel

Abstract:

The ductile to brittle transition temperature is a very important criterion that is used for selection of materials in some applications, especially in low-temperature conditions. For that reason, in this study transition temperature of as-cast and austempered unalloyed ductile iron in the temperature interval from -60 to +100 degrees C have been investigated. The microstructures of samples were examined by light microscope. The impact energy values obtained from the experiments were found to depend on the austempering time and temperature.

Keywords: Austempered Ductile Iron (ADI), Charpy test, microstructure, transition temperature

Procedia PDF Downloads 491
10493 Faithful Extension of Constant Height and Constant Width between Finite Posets

Authors: Walied Hazim Sharif

Abstract:

The problem of faithful extension with the condition of keeping constant height h and constant width w, i.e. for hw-inextensibility, seems more interesting than the brute extension of finite poset (partially ordered set). We shall investigate some theorems of hw-inextensive and hw-extensive posets that can be used to formulate the faithful extension problem. A theorem in its general form of hw-inextensive posets are given to implement the presented theorems.

Keywords: faithful extension, poset, extension, inextension, height, width, hw-extensive, hw-inextensive

Procedia PDF Downloads 250
10492 Temperature Dependent Current-Voltage (I-V) Characteristics of CuO-ZnO Nanorods Based Heterojunction Solar Cells

Authors: Venkatesan Annadurai, Kannan Ethirajalu, Anu Roshini Ramakrishnan

Abstract:

Copper oxide (CuO) and zinc oxide (ZnO) based coaxial (CuO-ZnO nanorods) heterojunction has been the interest of various research communities for solar cells, light emitting diodes (LEDs) and photodetectors applications. Copper oxide (CuO) is a p-type material with the band gap of 1.5 eV and it is considered to be an attractive absorber material in solar cells applications due to its high absorption coefficient and long minority carrier diffusion length. Similarly, n-type ZnO nanorods possess many attractive advantages over thin films such as, the light trapping ability and photosensitivity owing to the presence of oxygen related hole-traps at the surface. Moreover, the abundant availability, non-toxicity, and inexpensiveness of these materials make them suitable for potentially cheap, large area, and stable photovoltaic applications. However, the efficiency of the CuO-ZnO nanorods heterojunction based devices is greatly affected by interface defects which generally lead to the poor performance. In spite of having much potential, not much work has been carried out to understand the interface quality and transport mechanism involved across the CuO-ZnO nanorods heterojunction. Therefore, a detailed investigation of CuO-ZnO heterojunction is needed to understand the interface which affects its photovoltaic performance. Herein, we have fabricated the CuO-ZnO nanorods based heterojunction by simple hydrothermal and electrodeposition technique and investigated its interface quality by carrying out temperature (300 –10 K) dependent current-voltage (I-V) measurements under dark and illumination of visible light. Activation energies extracted from the temperature dependent I-V characteristics reveals that recombination and tunneling mechanism across the interfacial barrier plays a significant role in the current flow.

Keywords: heterojunction, electrical transport, nanorods, solar cells

Procedia PDF Downloads 215
10491 The Effect of Aluminum Oxide Nanoparticles on the Optical Properties of (PVP-PEG) Blend

Authors: Hussein Hakim, Zainab Al-Ramadhan, Ahmed Hashim

Abstract:

Polymer nano composites of polyvinylpyrrolidone and poly-ethylene glycol with different concentrations of aluminum oxide (Al2O3) nano particles have been prepared by solution cast method. The optical characterizations have been done by analyzing the absorption (A) spectra in the 300–800 nm spectral region. It was found that the optical energy gap decreases with the increasing of Al2O3 nano particles content. The optical constants (refractive index, extinction coefficient, real and imaginary parts of the dielectric constant) are changing with increasing aluminum oxide nano particle concentrations.

Keywords: nanocomposites, polyvinylpyrrolidone, optical constants, polymers, blend

Procedia PDF Downloads 410
10490 Multi-Analyte Indium Gallium Zinc Oxide-Based Dielectric Electrolyte-Insulator-Semiconductor Sensing Membranes

Authors: Chyuan Haur Kao, Hsiang Chen, Yu Sheng Tsai, Chen Hao Hung, Yu Shan Lee

Abstract:

Dielectric electrolyte-insulator-semiconductor sensing membranes-based biosensors have been intensively investigated because of their simple fabrication, low cost, and fast response. However, to enhance their sensing performance, it is worthwhile to explore alternative materials, distinct processes, and novel treatments. An ISFET can be viewed as a variation of MOSFET with the dielectric oxide layer as the sensing membrane. Then, modulation on the work function of the gate caused by electrolytes in various ion concentrations could be used to calculate the ion concentrations. Recently, owing to the advancement of CMOS technology, some high dielectric materials substrates as the sensing membranes of electrolyte-insulator-semiconductor (EIS) structures. The EIS with a stacked-layer of SiO₂ layer between the sensing membrane and the silicon substrate exhibited a high pH sensitivity and good long-term stability. IGZO is a wide-bandgap (~3.15eV) semiconductor of the III-VI semiconductor group with several preferable properties, including good transparency, high electron mobility, wide band gap, and comparable with CMOS technology. IGZO was sputtered by reactive radio frequency (RF) on a p-type silicon wafer with various gas ratios of Ar:O₂ and was treated with rapid thermal annealing in O₂ ambient. The sensing performance, including sensitivity, hysteresis, and drift rate was measured and XRD, XPS, and AFM analyses were also used to study the material properties of the IGZO membrane. Moreover, IGZO was used as a sensing membrane in dielectric EIS bio-sensor structures. In addition to traditional pH sensing capability, detection for concentrations of Na+, K+, urea, glucose, and creatinine was performed. Moreover, post rapid thermal annealing (RTA) treatment was confirmed to improve the material properties and enhance the multi-analyte sensing capability for various ions or chemicals in solutions. In this study, the IGZO sensing membrane with annealing in O₂ ambient exhibited a higher sensitivity, higher linearity, higher H+ selectivity, lower hysteresis voltage and lower drift rate. Results indicate that the IGZO dielectric sensing membrane on the EIS structure is promising for future bio-medical device applications.

Keywords: dielectric sensing membrane, IGZO, hydrogen ion, plasma, rapid thermal annealing

Procedia PDF Downloads 243
10489 From Liquid to Solid: Advanced Characterization of Glass Applying Oscillatory Rheometry

Authors: Christopher Giehl, Anja Allabar, Daniela Ehgartner

Abstract:

Rotational rheometry is standard practice for the viscosity measurement of molten glass, neglecting the viscoelastic properties of this material, especially at temperatures approaching the glass transition. Oscillatory rheometry serves as a powerful toolbox for glass melt characterization beyond viscosity measurements. Heating and cooling rates and the time-dependent visco-elastic behavior influence the temperature where materials undergo the glass transition. This study presents quantitative thermo-mechanical visco-elasticity measurements on three samples in the Na-K-Al-Si-O system. The measurements were performed with a Furnace Rheometer System combined with an air-bearing DSR 502 measuring head (Anton Paar) and a Pt90Rh10 measuring geometry. Temperature ramps were conducted in rotation and oscillation, and the (complex) viscosity values were compared to calculated viscosity values based on sample composition. Furthermore, temperature ramps with different frequencies were conducted, also revealing the frequency-dependence of the shear loss modulus G’’ and the shear storage modulus G’. Here, lower oscillatory frequency results in lower glass transition temperature, as defined by the G’-G’’ crossover point. This contribution demonstrates that oscillatory rheometry serves as a powerful toolbox beyond viscosity measurements, as it considers the visco-elasticity of glass melts quantifying viscous and elastic moduli. Further, it offers a strong definition of Tg beyond the 10^12 Pas concept, which cannot be utilized with rotational viscometry data.

Keywords: frequency dependent glass transition, Na-K-Al-Si-O glass melts, oscillatory rheometry, visco-elasticity

Procedia PDF Downloads 89
10488 Thermodynamics of Aqueous Solutions of Organic Molecule and Electrolyte: Use Cloud Point to Obtain Better Estimates of Thermodynamic Parameters

Authors: Jyoti Sahu, Vinay A. Juvekar

Abstract:

Electrolytes are often used to bring about salting-in and salting-out of organic molecules and polymers (e.g. polyethylene glycols/proteins) from the aqueous solutions. For quantification of these phenomena, a thermodynamic model which can accurately predict activity coefficient of electrolyte as a function of temperature is needed. The thermodynamics models available in the literature contain a large number of empirical parameters. These parameters are estimated using lower/upper critical solution temperature of the solution in the electrolyte/organic molecule at different temperatures. Since the number of parameters is large, inaccuracy can bethe creep in during their estimation, which can affect the reliability of prediction beyond the range in which these parameters are estimated. Cloud point of solution is related to its free energy through temperature and composition derivative. Hence, the Cloud point measurement can be used for accurate estimation of the temperature and composition dependence of parameters in the model for free energy. Hence, if we use a two pronged procedure in which we first use cloud point of solution to estimate some of the parameters of the thermodynamic model and determine the rest using osmotic coefficient data, we gain on two counts. First, since the parameters, estimated in each of the two steps, are fewer, we achieve higher accuracy of estimation. The second and more important gain is that the resulting model parameters are more sensitive to temperature. This is crucial when we wish to use the model outside temperatures window within which the parameter estimation is sought. The focus of the present work is to prove this proposition. We have used electrolyte (NaCl/Na2CO3)-water-organic molecule (Iso-propanol/ethanol) as the model system. The model of Robinson-Stokes-Glukauf is modified by incorporating the temperature dependent Flory-Huggins interaction parameters. The Helmholtz free energy expression contains, in addition to electrostatic and translational entropic contributions, three Flory-Huggins pairwise interaction contributions viz., and (w-water, p-polymer, s-salt). These parameters depend both on temperature and concentrations. The concentration dependence is expressed in the form of a quadratic expression involving the volume fractions of the interacting species. The temperature dependence is expressed in the form .To obtain the temperature-dependent interaction parameters for organic molecule-water and electrolyte-water systems, Critical solution temperature of electrolyte -water-organic molecules is measured using cloud point measuring apparatus The temperature and composition dependent interaction parameters for electrolyte-water-organic molecule are estimated through measurement of cloud point of solution. The model is used to estimate critical solution temperature (CST) of electrolyte water-organic molecules solution. We have experimentally determined the critical solution temperature of different compositions of electrolyte-water-organic molecule solution and compared the results with the estimates based on our model. The two sets of values show good agreement. On the other hand when only osmotic coefficients are used for estimation of the free energy model, CST predicted using the resulting model show poor agreement with the experiments. Thus, the importance of the CST data in the estimation of parameters of the thermodynamic model is confirmed through this work.

Keywords: concentrated electrolytes, Debye-Hückel theory, interaction parameters, Robinson-Stokes-Glueckauf model, Flory-Huggins model, critical solution temperature

Procedia PDF Downloads 374
10487 Buckling Resistance of GFRP Sandwich Infill Panels with Different Cores under Increased Temperatures

Authors: WooYoung Jung, V. Sim

Abstract:

This paper presents numerical analysis in terms of buckling resistance strength of polymer matrix composite (PMC) infill panels system under the influence of temperature on the foam core. Failure mode under in-plane compression is investigated by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length and both the type of foam for core and the variation of its Young's Modulus under the thermal influence. Variation of temperature is considered in static cases and only applied to core. Indeed, it is shown that the effect of temperature on the panel system mechanical properties is significance. Moreover, the variations of temperature result in the decrements of the system strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on performance of infill panel. Their significance factors are based on type of polymer for core. Hence, by comparing difference type of core material, the variation can be reducing.

Keywords: buckling, contact length, foam core, temperature dependent

Procedia PDF Downloads 279
10486 Non-Autonomous Seasonal Variation Model for Vector-Borne Disease Transferral in Kampala of Uganda

Authors: Benjamin Aina Peter, Amos Wale Ogunsola

Abstract:

In this paper, a mathematical model of malaria transmission was presented with the effect of seasonal shift, due to global fluctuation in temperature, on the increase of conveyor of the infectious disease, which probably alters the region transmission potential of malaria. A deterministic compartmental model was proposed and analyzed qualitatively. Both qualitative and quantitative approaches of the model were considered. The next-generation matrix is employed to determine the basic reproduction number of the model. Equilibrium points of the model were determined and analyzed. The numerical simulation is carried out using Excel Micro Software to validate and support the qualitative results. From the analysis of the result, the optimal temperature for the transmission of malaria is between and . The result also shows that an increase in temperature due to seasonal shift gives rise to the development of parasites which consequently leads to an increase in the widespread of malaria transmission in Kampala. It is also seen from the results that an increase in temperature leads to an increase in the number of infectious human hosts and mosquitoes.

Keywords: seasonal variation, indoor residual spray, efficacy of spray, temperature-dependent model

Procedia PDF Downloads 158
10485 Synthesis and Functionalization of MnFe₂O₄ Nano−Hollow Spheres for Optical and Catalytic Properties

Authors: Indranil Chakraborty, Kalyan Mandal

Abstract:

Herein, we synthesize MnFe₂O₄ nano−hollow spheres (NHSs) of average diameter 100 nm through a facile template free solvothermal process and carry out a time dependent morphological study to investigate their process of core excavation. Further, a surface engineering of as−synthesized MnFe₂O₄ NHSs has been executed with organic disodium tartrate dihydrate ligand and interestingly, the surface modified MnFe₂O₄ NHSs are found to capable of emerging multicolor fluorescence starting from blue, green to red. The magnetic measurements through vibrating sample magnetometer demonstrate that room temperature superparamagnetic nature of MnFe₂O₄ NHSs remains unaltered after surface modification. Moreover, functionalized MnFe₂O₄ NHSs are found to exhibit excellent reusable photocatalytic efficiency in the degradation of cationic dye, methylene blue with rate constant of 2.64×10−2 min.

Keywords: nano hollow sphere, tartrate modification, multiple fluorescence, catalytic property

Procedia PDF Downloads 171
10484 Effect of Substrate Temperature on Some Physical Properties of Doubly doped Tin Oxide Thin Films

Authors: Ahmet Battal, Demet Tatar, Bahattin Düzgün

Abstract:

Various transparent conducting oxides (TCOs) are mostly used much applications due to many properties such as cheap, high transmittance/electrical conductivity etc. One of the clearest among TCOs, indium tin oxide (ITO), is the most widely used in many areas. However, as ITO is expensive and very low regarding reserve, other materials with suitable properties (especially SnO2 thin films) are be using instead of it. In this report, tin oxide thin films doubly doped with antimony and fluorine (AFTO) were deposited by spray at different substrate temperatures on glass substrate. It was investigated their structural, optical, electrical and luminescence properties. The substrate temperature was varied from 320 to 480 ˚C at the interval of 40 (±5) ºC. X-ray results were shown that the films are polycrystalline with tetragonal structure and oriented preferentially along (101), (200) and (210) directions. It was observed that the preferential orientations of crystal growth are not dependent on substrate temperature, but the intensity of preferential orientation was increased with increasing substrate temperature until 400 ºC. After this substrate temperature, they decreased. So, substrate temperature impact structure of these thin films. It was known from SEM analysis, the thin films have rough and homogenous and the surface of the films was affected by the substrate temperature i.e. grain size are increasing with increasing substrate temperature until 400 ºC. Also, SEM and AFM studies revealed the surface of AFTO thin films to be made of nanocrystalline particles. The average transmittance of the films in the visible range is 70-85%. Eg values of the films were investigated using the absorption spectra and found to be in the range 3,20-3,93 eV. The electrical resistivity decreases with increasing substrate temperature, then the electrical resistivity increases. PL spectra were found as a function of substrate temperature. With increasing substrate temperature, emission spectra shift a little bit to a UV region. Finally, tin oxide thin films were successfully prepared by this method and a spectroscopic characterization of the obtained films was performed. It was found that the films have very good physical properties. It was concluded that substrate temperature impacts thin film structure.

Keywords: thin films, spray pyrolysis, SnO2, doubly doped

Procedia PDF Downloads 465
10483 Magnetization Studies and Vortex Phase Diagram of Oxygenated YBa₂Cu₃₋ₓAlₓO₆₊δ Single Crystal

Authors: Ashna Babu, Deepshikha Jaiswal Nagar

Abstract:

Cuprate high-temperature superconductors (HTSCs) have been immensely studied during the past few decades because of their structure which is described as a superlattice of superconducting CuO₂ layers. In particular, YBa₂Cu₃O₆₊δ (YBCO), with its critical temperature of 93 K, has received the most attention due to its well-defined metal stoichiometry and variable oxygen content that determines the carrier doping level. Substitution of metal ions at the Cu site is known to increase the critical current density without destroying superconductivity in YBCO. The construction of vortex phase diagrams is very important for such doped YBCO materials both from a fundamental perspective as well as from a technological perspective. By measuring field-dependent magnetization on annealed single crystals of Al-doped YBCO, YBa₂Cu₃₋ₓAlₓO₆₊δ (Al-YBCO), we were able to observe a second magnetization peak anomaly (SMP) in a very large part of the phase diagram. We were also able to observe the SMP anomaly in temperature-dependent magnetization measurements, the first observation to our knowledge. Critical current densities were calculated using Bean’s critical state model, flux jumps associated with symmetry reorientation of vortex lattice were studied, the oxygen cluster distribution was also analysed, and by incorporating all observations, we made a vortex phase diagram for oxygenated Al-YBCO single crystal.

Keywords: oxygen deficient clusters, second magnetization peak anomaly, flux jumps, vortex phase diagram

Procedia PDF Downloads 56
10482 Performance Analysis of BPJLT with Different Gate and Spacer Materials

Authors: Porag Jyoti Ligira, Gargi Khanna

Abstract:

The paper presents a simulation study of the electrical characteristic of Bulk Planar Junctionless Transistor (BPJLT) using spacer. The BPJLT is a transistor without any PN junctions in the vertical direction. It is a gate controlled variable resistor. The characteristics of BPJLT are analyzed by varying the oxide material under the gate. It can be shown from the simulation that an ideal subthreshold slope of ~60 mV/decade can be achieved by using highk dielectric. The effects of variation of spacer length and material on the electrical characteristic of BPJLT are also investigated in the paper. The ION / IOFF ratio improvement is of the order of 107 and the OFF current reduction of 10-4 is obtained by using gate dielectric of HfO2 instead of SiO2.

Keywords: spacer, BPJLT, high-k, double gate

Procedia PDF Downloads 418
10481 High Temperature Creep Analysis for Lower Head of Reactor Pressure Vessel

Authors: Dongchuan Su, Hai Xie, Naibin Jiang

Abstract:

Under severe accident cases, the nuclear reactor core may meltdown inside the lower head of the reactor pressure vessel (RPV). Retaining the melt pool inside the RPV is an important strategy of severe accident management. During this process, the inner wall of the lower head will be heated to high temperature of a thousand centigrade, and the outer wall is immersed in a large amount of cooling water. The material of the lower head will have serious creep damage under the high temperature and the temperature difference, and this produces a great threat to the integrity of the RPV. In this paper, the ANSYS program is employed to build the finite element method (FEM) model of the lower head, the creep phenomena is simulated under the severe accident case, the time dependent strain and stress distribution is obtained, the creep damage of the lower head is investigated, the integrity of the RPV is evaluated and the theoretical basis is provided for the optimized design and safety assessment of the RPV.

Keywords: severe accident, lower head of RPV, creep, FEM

Procedia PDF Downloads 220
10480 Modeling of Age Hardening Process Using Adaptive Neuro-Fuzzy Inference System: Results from Aluminum Alloy A356/Cow Horn Particulate Composite

Authors: Chidozie C. Nwobi-Okoye, Basil Q. Ochieze, Stanley Okiy

Abstract:

This research reports on the modeling of age hardening process using adaptive neuro-fuzzy inference system (ANFIS). The age hardening output (Hardness) was predicted using ANFIS. The input parameters were ageing time, temperature and percentage composition of cow horn particles (CHp%). The results show the correlation coefficient (R) of the predicted hardness values versus the measured values was of 0.9985. Subsequently, values outside the experimental data points were predicted. When the temperature was kept constant, and other input parameters were varied, the average relative error of the predicted values was 0.0931%. When the temperature was varied, and other input parameters kept constant, the average relative error of the hardness values predictions was 80%. The results show that ANFIS with coarse experimental data points for learning is not very effective in predicting process outputs in the age hardening operation of A356 alloy/CHp particulate composite. The fine experimental data requirements by ANFIS make it more expensive in modeling and optimization of age hardening operations of A356 alloy/CHp particulate composite.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), age hardening, aluminum alloy, metal matrix composite

Procedia PDF Downloads 141
10479 Extreme Temperature Forecast in Mbonge, Cameroon Through Return Level Analysis of the Generalized Extreme Value (GEV) Distribution

Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph

Abstract:

In this paper, temperature extremes are forecast by employing the block maxima method of the generalized extreme value (GEV) distribution to analyse temperature data from the Cameroon Development Corporation (CDC). By considering two sets of data (raw data and simulated data) and two (stationary and non-stationary) models of the GEV distribution, return levels analysis is carried out and it was found that in the stationary model, the return values are constant over time with the raw data, while in the simulated data the return values show an increasing trend with an upper bound. In the non-stationary model, the return levels of both the raw data and simulated data show an increasing trend with an upper bound. This clearly shows that although temperatures in the tropics show a sign of increase in the future, there is a maximum temperature at which there is no exceedance. The results of this paper are very vital in agricultural and environmental research.

Keywords: forecasting, generalized extreme value (GEV), meteorology, return level

Procedia PDF Downloads 461
10478 Impact of the Xanthan Gum on Rheological Properties of Ceramic Slip

Authors: Souad Hassene Daouadji, Larbi Hammadi, Abdelkrim Hazzab

Abstract:

The slips intended for the manufacture of ceramics must have rheological properties well-defined in order to bring together the qualities required for the casting step (good fluidity for feeding the molds easily settles while generating a regular settling of the dough and for the dehydration phase of the dough in the mold a setting time relatively short is required to have a sufficient refinement which allows demolding both easy and fast). Many additives haveadded in slip of ceramic in order to improve their rheological properties. In this study, we investigated the impact of xanthan gumon rheological properties of ceramic Slip. The modified Cross model is used to fit the stationary flow curves of ceramic slip at different concentration of xanthan added. The thixotropic behavior studied of mixture ceramic slip-xanthan gumat constant temperature is analyzed by using a structural kinetic model (SKM) in order to account for time dependent effect.

Keywords: ceramic slip, xanthan gum, modified cross model, thixotropy, viscosity

Procedia PDF Downloads 174
10477 Statistical Modelling of Maximum Temperature in Rwanda Using Extreme Value Analysis

Authors: Emmanuel Iyamuremye, Edouard Singirankabo, Alexis Habineza, Yunvirusaba Nelson

Abstract:

Temperature is one of the most important climatic factors for crop production. However, severe temperatures cause drought, feverish and cold spells that have various consequences for human life, agriculture, and the environment in general. It is necessary to provide reliable information related to the incidents and the probability of such extreme events occurring. In the 21st century, the world faces a huge number of threats, especially from climate change, due to global warming and environmental degradation. The rise in temperature has a direct effect on the decrease in rainfall. This has an impact on crop growth and development, which in turn decreases crop yield and quality. Countries that are heavily dependent on agriculture use to suffer a lot and need to take preventive steps to overcome these challenges. The main objective of this study is to model the statistical behaviour of extreme maximum temperature values in Rwanda. To achieve such an objective, the daily temperature data spanned the period from January 2000 to December 2017 recorded at nine weather stations collected from the Rwanda Meteorological Agency were used. The two methods, namely the block maxima (BM) method and the Peaks Over Threshold (POT), were applied to model and analyse extreme temperature. Model parameters were estimated, while the extreme temperature return periods and confidence intervals were predicted. The model fit suggests Gumbel and Beta distributions to be the most appropriate models for the annual maximum of daily temperature. The results show that the temperature will continue to increase, as shown by estimated return levels.

Keywords: climate change, global warming, extreme value theory, rwanda, temperature, generalised extreme value distribution, generalised pareto distribution

Procedia PDF Downloads 162
10476 Morphological Characterization and Gas Permeation of Commercially Available Alumina Membrane

Authors: Ifeyinwa Orakwe, Ngozi Nwogu, Edward Gobina

Abstract:

This work presents experimental results relating to the structural characterization of a commercially available alumina membrane. A γ-alumina mesoporous tubular membrane has been used. Nitrogen adsorption-desorption, scanning electron microscopy and gas permeability test has been carried out on the alumina membrane to characterize its structural features. Scanning electron microscopy (SEM) was used to determine the pore size distribution of the membrane. Pore size, specific surface area and pore size distribution were also determined with the use of the Nitrogen adsorption-desorption instrument. Gas permeation tests were carried out on the membrane using a variety of single and mixed gases. The permeabilities at different pressure between 0.05-1 bar and temperature range of 25-200oC were used for the single and mixed gases: nitrogen (N2), helium (He), oxygen (O2), carbon dioxide (CO2), 14%CO₂/N₂, 60%CO₂/N₂, 30%CO₂/CH4 and 21%O₂/N₂. Plots of flow rate verses pressure were obtained. Results got showed the effect of temperature on the permeation rate of the various gases. At 0.5 bar for example, the flow rate for N2 was relatively constant before decreasing with an increase in temperature, while for O2, it continuously decreased with an increase in temperature. In the case of 30%CO₂/CH4 and 14%CO₂/N₂, the flow rate showed an increase then a decrease with increase in temperature. The effect of temperature on the membrane performance of the various gases is presented and the influence of the trans membrane pressure drop will be discussed in this paper.

Keywords: alumina membrane, Nitrogen adsorption-desorption, scanning electron microscopy, gas permeation, temperature

Procedia PDF Downloads 311