Search results for: stack ventilation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 503

Search results for: stack ventilation

263 Networking the Biggest Challenge in Hybrid Cloud Deployment

Authors: Aishwarya Shekhar, Devesh Kumar Srivastava

Abstract:

Cloud computing has emerged as a promising direction for cost efficient and reliable service delivery across data communication networks. The dynamic location of service facilities and the virtualization of hardware and software elements are stressing the communication networks and protocols, especially when data centres are interconnected through the internet. Although the computing aspects of cloud technologies have been largely investigated, lower attention has been devoted to the networking services without involving IT operating overhead. Cloud computing has enabled elastic and transparent access to infrastructure services without involving IT operating overhead. Virtualization has been a key enabler for cloud computing. While resource virtualization and service abstraction have been widely investigated, networking in cloud remains a difficult puzzle. Even though network has significant role in facilitating hybrid cloud scenarios, it hasn't received much attention in research community until recently. We propose Network as a Service (NaaS), which forms the basis of unifying public and private clouds. In this paper, we identify various challenges in adoption of hybrid cloud. We discuss the design and implementation of a cloud platform.

Keywords: cloud computing, networking, infrastructure, hybrid cloud, open stack, naas

Procedia PDF Downloads 428
262 Metabolic Cost and Perceived Exertion during Progressive and Randomized Walking Protocols

Authors: Simeon E. H. Davies

Abstract:

This study investigated whether selected metabolic responses and the perception of effort varied during four different walk protocols where speed increased progressively 3, 4, 5, 6, and 7 km/hr (progressive treadmill walk (PTW); and progressive land walk (PLW); or where the participant adjusted to random changes of speed e.g. 6, 3, 7, 4, and 5 km/hr during a randomized treadmill walk (RTW); and a randomized land walk (RLW). Mean stature and mass of the seven participants was 1.75m and 70kg respectively, with a mean body fat of 15%. Metabolic measures including heart rate, relative oxygen uptake, ventilation, increased in a linear fashion up to 6 km/hr, however at 7 km/hr there was a significant increase in metabolic response notably during the PLW, and to a similar, although lesser extent in RLW, probably as a consequence of the loss of kinetic energy when turning at each cone in order to maintain the speed during each shuttle. Respiration frequency appeared to be a more sensitive indicator of physical exertion, exhibiting a rapid elevation at 5 km/hr. The perception of effort during each mode and at each speed was largely congruent during each walk protocol.

Keywords: exertion, metabolic, progressive, random, walking

Procedia PDF Downloads 464
261 Design of Residential Geothermal Cooling System in Kuwait

Authors: Tebah KH A AlFouzan, Meznah Dahlous Ali Alkreebani, Fatemah Salem Dekheel Alrasheedi, Hanadi Bandar Rughayan AlNomas, Muneerah Mohammad Sulaiman ALOjairi

Abstract:

Article spotlights the heat transfer process based beneath the earth’s surface. The process starts by exchanging the heat found in the building as fluid in the pipes absorbs it, then transports it down the soil consuming cool temperature exchange, recirculating, and rebounding to deliver cool air. This system is a renewable energy that is reliable and sustainable. The analysis showed the disposal of fossil fuels, energy preservation, 400% efficiency, long lifespan, and lower maintenance. Investigation displays the system’s types of design, whether open or closed loop and piping layout. Finally, the geothermal cooling study presents the challenges of creating a prototype in Kuwait, as constraints are applicable due to geography.

Keywords: cooling system, engineering, geothermal cooling, natural ventilation, renewable energy

Procedia PDF Downloads 87
260 Sperm Flagellum Center-Line Tracing in 4D Stacks Using an Iterative Minimal Path Method

Authors: Paul Hernandez-Herrera, Fernando Montoya, Juan Manuel Rendon, Alberto Darszon, Gabriel Corkidi

Abstract:

Intracellular calcium ([Ca2+]i) regulates sperm motility. The analysis of [Ca2+]i has been traditionally achieved in two dimensions while the real movement of the cell takes place in three spatial dimensions. Due to optical limitations (high speed cell movement and low light emission) important data concerning the three dimensional movement of these flagellated cells had been neglected. Visualizing [Ca2+]i in 3D is not a simple matter since it requires complex fluorescence microscopy techniques where the resulting images have very low intensity and consequently low SNR (Signal to Noise Ratio). In 4D sequences, this problem is magnified since the flagellum oscillates (for human sperm) at least at an average frequency of 15 Hz. In this paper, a novel approach to extract the flagellum’s center-line in 4D stacks is presented. For this purpose, an iterative algorithm based on the fast-marching method is proposed to extract the flagellum’s center-line. Quantitative and qualitative results are presented in a 4D stack to demonstrate the ability of the proposed algorithm to trace the flagellum’s center-line. The method reached a precision and recall of 0.96 as compared with a semi-manual method.

Keywords: flagellum, minimal path, segmentation, sperm

Procedia PDF Downloads 285
259 Thermomechanical Coupled Analysis of Fiber Reinforced Polymer Composite Square Tube: A Finite Element Study

Authors: M. Ali, K. Alam, E. Ohioma

Abstract:

This paper presents a numerical investigation on the behavior of fiber reinforced polymer composite tubes (FRP) under thermomechanical coupled loading using finite element software ABAQUS and a special add-on subroutine, CZone. Three cases were explored; pure mechanical loading, pure thermal loading, and coupled thermomechanical loading. The failure index (Tsai-Wu) under all three loading cases was assessed for all plies in the tube walls. The simulation results under pure mechanical loading showed that composite tube failed at a tensile load of 3.1 kN. However, with the superposition of thermal load on mechanical load on the composite tube, the failure index of the previously failed plies in tube walls reduced significantly causing the tube to fail at 6 kN. This showed 93% improvement in the load carrying capacity of the composite tube in present study. The increase in load carrying capacity was attributed to the stress effects of the coefficients of thermal expansion (CTE) on the laminate as well as the inter-lamina stresses induced due to the composite stack layup.

Keywords: thermal, mechanical, composites, square tubes

Procedia PDF Downloads 387
258 Effects of Ergonomics on Labor Productivity in Office Design

Authors: Abdullah Erden, Filiz Erden

Abstract:

In the present information society era, a change is seen in every field together with changing technology. Along with this change, importance given to information and human who is the producer of information increased. Work life and working conditions included in these changes have also been affected. The most important factors that disturb employees in offices are lighting, ventilation, noise and office furniture. Upon arrangement of these according to ergonomic principles, performance and efficiency of employees will increase. Fatigue and stress resulting from office environment are harmful for employees. Attention and efficiency of employee who feels bad will decrease. It should be noted that office employees are human and affected from environment. It should be allowed them to work in comfortable, healthy and peaceful environment. As a result, efficiency will increase and target will be reached. In this study, it has been focused on basic concepts such as office management and efficiency, effects of ergonomics on office efficiency has been examined. Also, a place is given to the factors affecting operational efficiency and effects of physical environment on employees.

Keywords: ergonomics, efficiency, office design, office

Procedia PDF Downloads 467
257 Mind Care Assistant - Companion App

Authors: Roshani Gusain, Deep Sinha, Karan Nayal, Anmol Kumar Mishra, Manav Singh

Abstract:

In this research paper, we introduce "Mind Care Assistant - Companion App", which is a Flutter and Firebase-based mental health monitor. The app wants to improve and monitor the mental health of its users, it uses noninvasive ways to check for a change in their emotional state. By responding to questions, the app will provide individualized suggestions ᅳ tasks and mindfulness exercises ᅳ for users who are depressed or anxious. The app features a chat-bot that incorporates cognitive behavioural therapy (CBT) principles and combines natural language processing with machine learning to develop personalised responses. The feature of the app that makes it easy for us to choose between iOS and Android is cross-platform, which allows users from both mobile systems to experience almost no changes in their interfaces. With Firebase integration synchronized and real-time data storage, security is easily possible. The paper covers the architecture of the app, how it was developed and some important features. The primary research result presents the promise of a "Mind Care Assistant" in mental health care using new wait-for-health technology, proposing a full stack application to be able to manage depression/anxiety and overall Mental well-being very effectively.

Keywords: mental health, mobile application, flutter, firebase, Depression, Anxiety

Procedia PDF Downloads 19
256 Application of Terminal Sliding Mode Control to the Stabilization of the Indoor Temperature in Buildings

Authors: Pawel Skruch, Marek Dlugosz

Abstract:

The paper starts with a general model of the temperature dynamics in buildings. The modelling approach relies on thermodynamics, in particular heat transfer, principles. The model considers heat loses by conduction and ventilation and internal heat gains. The parameters of the model can be determined uniquely from the geometry of the building and from thermal properties of construction materials. The model is presented using state space notation and this form is used in the control design procedure. A sliding surface is defined by the system output and the desired trajectory. The control law is designed to force the trajectory of the system from any initial condition to the sliding surface in finite time. The trajectory of the system after reaching the sliding surface remains on it. A simulation example is included to verify the approach and to demonstrate the achievable performance improvement by the proposed solution in the temperature control in buildings.

Keywords: modelling, building, temperature dynamics, sliding-mode control, sliding surface

Procedia PDF Downloads 550
255 Simulation-Based Optimization of a Non-Uniform Piezoelectric Energy Harvester with Stack Boundary

Authors: Alireza Keshmiri, Shahriar Bagheri, Nan Wu

Abstract:

This research presents an analytical model for the development of an energy harvester with piezoelectric rings stacked at the boundary of the structure based on the Adomian decomposition method. The model is applied to geometrically non-uniform beams to derive the steady-state dynamic response of the structure subjected to base motion excitation and efficiently harvest the subsequent vibrational energy. The in-plane polarization of the piezoelectric rings is employed to enhance the electrical power output. A parametric study for the proposed energy harvester with various design parameters is done to prepare the dataset required for optimization. Finally, simulation-based optimization technique helps to find the optimum structural design with maximum efficiency. To solve the optimization problem, an artificial neural network is first trained to replace the simulation model, and then, a genetic algorithm is employed to find the optimized design variables. Higher geometrical non-uniformity and length of the beam lowers the structure natural frequency and generates a larger power output.

Keywords: piezoelectricity, energy harvesting, simulation-based optimization, artificial neural network, genetic algorithm

Procedia PDF Downloads 123
254 Research on the Transformation of Bottom Space in the Teaching Area of Zijingang Campus, Zhejiang University

Authors: Jia Xu

Abstract:

There is a lot of bottom space in the teaching area of Zijingang Campus of Zhejiang University, which benefits to the ventilation, heat dissipation, circulation, partition of quiet and noisy areas and diversification of spaces. Hangzhou is hot in summer but cold in winter, so teachers and students spend much less time in the bottom space of buildings in winter than in summer. Recently, depending on the teachers and students’ proposals, the school transformed the bottom space in the teaching area to provide space for relaxing, chatting and staying in winter. Surveying and analyzing the existing ways to transform, the paper researches deeply on the transformation projects of bottom space in the teaching buildings. It is believed that this paper can be a salutary lesson to make the bottom space in the teaching areas of universities richer and bring more diverse activities for teachers and students.

Keywords: bottom space, teaching area, transformation, Zijingang Campus of Zhejiang University

Procedia PDF Downloads 398
253 Thermodynamic Modeling of Three Pressure Level Reheat HRSG, Parametric Analysis and Optimization Using PSO

Authors: Mahmoud Nadir, Adel Ghenaiet

Abstract:

The main purpose of this study is the thermodynamic modeling, the parametric analysis, and the optimization of three pressure level reheat HRSG (Heat Recovery Steam Generator) using PSO method (Particle Swarm Optimization). In this paper, a parametric analysis followed by a thermodynamic optimization is presented. The chosen objective function is the specific work of the steam cycle that may be, in the case of combined cycle (CC), a good criterion of thermodynamic performance analysis, contrary to the conventional steam turbines in which the thermal efficiency could be also an important criterion. The technologic constraints such as maximal steam cycle temperature, minimal steam fraction at steam turbine outlet, maximal steam pressure, minimal stack temperature, minimal pinch point, and maximal superheater effectiveness are also considered. The parametric analyses permitted to understand the effect of design parameters and the constraints on steam cycle specific work variation. PSO algorithm was used successfully in HRSG optimization, knowing that the achieved results are in accordance with those of the previous studies in which genetic algorithms were used. Moreover, this method is easy to implement comparing with the other methods.

Keywords: combined cycle, HRSG thermodynamic modeling, optimization, PSO, steam cycle specific work

Procedia PDF Downloads 382
252 Development of Calcium Carbonate Molecular Sheets via Wet Chemical Route

Authors: Sudhir Kumar Sharma, Ramesh Jagannathan

Abstract:

The interaction of organic and inorganic matrices of biological origin resulting in self-assembled structures with unique properties is well established. The development of such self-assembled nanostructures by synthetic and bio-inspired techniques is an established field of active research. Among bio-materials, nacre, a laminar stack of calcium carbonate nanosheets, which are interleaved with organic material, has long been focused research due to its unique mechanical properties. In this paper, we present the development of nacre-like lamellar structures made up of calcium carbonate via a wet chemical route. We used the binding affinity of carboxylate anions and calcium cations using poly (acrylic) acid (PAA) to lead CaCO₃ crystallization. In these experiments, we selected calcium acetate as the precursor molecule along with PAA (Mw ~ 8000 Da). We found that Ca⁺²/COO⁻ ratio provided a tunable control for the morphology and growth of CaCO₃ nanostructures. Drop casting one such formulation on a silicon substrate followed by calcination resulted in co-planner, molecular sheets of CaCO₃, separated by a spacer layer of carbon. The scope of our process could be expanded to produce unit cell thick molecular sheets of other important inorganic materials.

Keywords: self-assembled structures, bio-inspired materials, calcium carbonate, wet chemical route

Procedia PDF Downloads 139
251 Fault Diagnosis and Fault-Tolerant Control of Bilinear-Systems: Application to Heating, Ventilation, and Air Conditioning Systems in Multi-Zone Buildings

Authors: Abderrhamane Jarou, Dominique Sauter, Christophe Aubrun

Abstract:

Over the past decade, the growing demand for energy efficiency in buildings has attracted the attention of the control community. Failures in HVAC (heating, ventilation and air conditioning) systems in buildings can have a significant impact on the desired and expected energy performance of buildings and on the user's comfort as well. FTC is a recent technology area that studies the adaptation of control algorithms to faulty operating conditions of a system. The application of Fault-Tolerant Control (FTC) in HVAC systems has gained attention in the last two decades. The objective is to maintain the variations in system performance due to faults within an acceptable range with respect to the desired nominal behavior. This paper considers the so-called active approach, which is based on fault and identification scheme combined with a control reconfiguration algorithm that consists in determining a new set of control parameters so that the reconfigured performance is "as close as possible, "in some sense, to the nominal performance. Thermal models of buildings and their HVAC systems are described by non-linear (usually bi-linear) equations. Most of the works carried out so far in FDI (fault diagnosis and isolation) or FTC consider a linearized model of the studied system. However, this model is only valid in a reduced range of variation. This study presents a new fault diagnosis (FD) algorithm based on a bilinear observer for the detection and accurate estimation of the magnitude of the HVAC system failure. The main contribution of the proposed FD algorithm is that instead of using specific linearized models, the algorithm inherits the structure of the actual bilinear model of the building thermal dynamics. As an immediate consequence, the algorithm is applicable to a wide range of unpredictable operating conditions, i.e., weather dynamics, outdoor air temperature, zone occupancy profile. A bilinear fault detection observer is proposed for a bilinear system with unknown inputs. The residual vector in the observer design is decoupled from the unknown inputs and, under certain conditions, is made sensitive to all faults. Sufficient conditions are given for the existence of the observer and results are given for the explicit computation of observer design matrices. Dedicated observer schemes (DOS) are considered for sensor FDI while unknown input bilinear observers are considered for actuator or system components FDI. The proposed strategy for FTC works as follows: At a first level, FDI algorithms are implemented, making it also possible to estimate the magnitude of the fault. Once the fault is detected, the fault estimation is then used to feed the second level and reconfigure the control low so that that expected performances are recovered. This paper is organized as follows. A general structure for fault-tolerant control of buildings is first presented and the building model under consideration is introduced. Then, the observer-based design for Fault Diagnosis of bilinear systems is studied. The FTC approach is developed in Section IV. Finally, a simulation example is given in Section V to illustrate the proposed method.

Keywords: bilinear systems, fault diagnosis, fault-tolerant control, multi-zones building

Procedia PDF Downloads 173
250 Site Selection and Construction Mechanism of the Island Settlements in China Based on CFD-GIS Technology

Authors: Weng Jiantao, Wu Yiqun

Abstract:

The efficiency of natural ventilation, wind pressure distribution on building surface, wind comfort for pedestrians and buildings’ wind tolerance in traditional settlements are closely related to the pattern of terrain. On the basis of field research on the typical island terrain in China, the physical and mathematical models are established by using CFD software, and then the simulation results of the wind field are exported. We discuss the relationship between wind direction and wind field results. Furthermore simulation results are imported into ArcGIS platform. The evaluation model of island site selection is established with considering slope factor. We realize the visual model of site selection on complex island terrain. The multi-plans of certain residential are discussed based on wind simulation; at last the optimal project is selected. Results can provide the theory guidance for settlement planning and construction in China's traditional island.

Keywords: CFD, island terrain, site selection, construction mechanism

Procedia PDF Downloads 513
249 Time Series Analysis of Radon Concentration at Different Depths in an Underground Goldmine

Authors: Theophilus Adjirackor, Frederic Sam, Irene Opoku-Ntim, David Okoh Kpeglo, Prince K. Gyekye, Frank K. Quashie, Kofi Ofori

Abstract:

Indoor radon concentrations were collected monthly over a period of one year in 10 different levels in an underground goldmine, and the data was analyzed using a four-moving average time series to determine the relationship between the depths of the underground mine and the indoor radon concentration. The detectors were installed in batches within four quarters. The measurements were carried out using LR115 solid-state nuclear track detectors. Statistical models are applied in the prediction and analysis of the radon concentration at various depths. The time series model predicted a positive relationship between the depth of the underground mine and the indoor radon concentration. Thus, elevated radon concentrations are expected at deeper levels of the underground mine, but the relationship was insignificant at the 5% level of significance with a negative adjusted R2 (R2 = – 0.021) due to an appropriate engineering and adequate ventilation rate in the underground mine.

Keywords: LR115, radon concentration, rime series, underground goldmine

Procedia PDF Downloads 47
248 Investigation of Thermal Comfort Conditions of Vernacular Buildings Taking into Consideration Various Use Patterns: A Case Study

Authors: Christina Kalogirou

Abstract:

The main goal of this paper is to explore the thermal comfort conditions in traditional buildings during all seasons of the year taking into consideration various use patterns. For this purpose a dwelling of vernacular architecture is selected and data regarding the indoor and outdoor air and surface temperature as well as the relative humidity are collected. These measurements are conducted in situ during the period of a year. Also, this building is occupied periodically and a calendar of occupancy was kept (duration of residence, hours of heating system operation, hours of natural ventilation, etc.) in order to correlate the indoor conditions recorded with the use patterns via statistical analysis. Furthermore, the effect of the high thermal inertia of the stone masonry walls and the different orientation of the rooms is addressed. Thus, this paper concludes in some interesting results on the effect of the users in the indoor climate conditions in the case of buildings with high thermal inertia envelops.

Keywords: thermal comfort, in situ measurements, occupant behaviour, vernacular architecture

Procedia PDF Downloads 443
247 Efficient Solid Oxide Electrolysers for Syn-Gas Generation Using Renewable Energy

Authors: G. Kaur, A. P. Kulkarni, S. Giddey

Abstract:

Production of fuels and chemicals using renewable energy is a promising way for large-scale energy storage and export. Solid oxide electrolysers (SOEs) integrated with renewable source of energy can produce 'Syngas' H₂/CO from H₂O/CO₂ in the desired ratio for further conversion to liquid fuels. As only a waste CO₂ from industrial and power generation processes is utilized in these processes, this approach is CO₂ neutral compared to using fossil fuel feedstock. In addition, the waste heat from industrial processes or heat from solar thermal concentrators can be effectively utilised in SOEs to further reduce the electrical requirements by up to 30% which boosts overall energy efficiency of the process. In this paper, the electrochemical performance of various novel steam/CO₂ reduction electrodes (cathode) would be presented. The efficiency and lifetime degradation data for single cells and a stack would be presented along with the response of cells to variable electrical load input mimicking the intermittent nature of the renewable energy sources. With such optimisation, newly developed electrodes have been tested for 500+ hrs with Faraday efficiency (electricity to fuel conversion efficiency) up to 95%, and thermal efficiency in excess of 70% based upon energy content of the syngas produced.

Keywords: carbon dioxide, steam conversion, electrochemical system, energy storage, fuel production, renewable energy

Procedia PDF Downloads 238
246 Design and Simulation of Variable Air Volume Air Conditioning System Based on Improved Sliding Mode Control

Authors: Abbas Anser, Ahmad Irfan

Abstract:

The main purpose of the VAV (Variable Air Volume) in Heating, Ventilation, and Air Conditioning (HVAC) system is to reduce energy consumption and make the buildings comfortable for the occupants. For better performance of the air conditioning system, different control techniques have been developed. In this paper, an Improved Sliding Mode Control (ISMC), based on Power Rate Exponential Reaching Law (PRERL), has been implemented on a VAV air conditioning system. Through the proposed technique, fast response and robustness have been achieved. To verify the efficacy of ISMC, a comparison of the suggested control technique has been made with Exponential Reaching Law (ERL) based SMC. And secondly, chattering, which is unfavorable as it deteriorates the mechanical parts of the air conditioning system by the continuous movement of the mechanical parts and consequently it increases the energy loss in the air conditioning system, has been alleviated. MATLAB/SIMULINK results show the effectiveness of the utilized scheme, which ensures the enhancement of the energy efficiency of the VAV air conditioning system.

Keywords: PID, SMC, HVAC, PRERL, feedback linearization, VAV, chattering

Procedia PDF Downloads 125
245 To Design a Full Stack Online Educational Website Using HTML, CSS and Java Script

Authors: Yash Goyal, Manish Korde, Juned Siddiqui

Abstract:

Today online education has gained more popularity so that people can easily complete their curriculum on their own time. Virtual learning has been widely used by many educators, especially in higher education institutions due to its benefits to students and faculty. A good knowledge of teaching theory and instructional design systems is required to experience meaningful learning. However, most educational websites are not designed to adapt to all screen sizes. Making the website accessible on all screen sizes is our main objective, so we have created a website that is readily accessible across all screen sizes and accepts all types of payment methods. And we see generally educational websites interface is simple and unexciting. So, we have made a user interface attractive and user friendly. It is not enough for a website to be user-friendly, but also to be familiar to admins and to reduce the workload of the admin as well. We visited so many popular websites under development that they all had issues like responsiveness, simple interface, security measures, payment methods, etc. To overcome this limitation, we have created a website which has taken care of security issues that is why we have created only one admin id and it can be control from that only. And if the user has successfully done the payment, then the admin can send him a username and password through mail individually so there will no fraud in the payment of the course.

Keywords: responsive, accessible, attractive, interface, objective, security.

Procedia PDF Downloads 104
244 Characterization of Mg/Sc System for X-Ray Spectroscopy in the Water Window Range

Authors: Hina Verma, Karine Le Guen, Mohammed H. Modi, Rajnish Dhawan, Philippe Jonnard

Abstract:

Periodic multilayer mirrors have potential application as optical components in X-ray microscopy, particularly working in the water window region. The water window range, located between the absorption edges of carbon (285 eV) and oxygen (530eV), along with the presence of nitrogen K absorption edge (395 eV), makes it a powerful method for imaging biological samples due to the natural optical contrast between water and carbon. We characterized bilayer, trilayer, quadrilayer, and multilayer systems of Mg/Sc with ZrC thin layers introduced as a barrier layer and capping layer prepared by ion beam sputtering. The introduction of ZrC as a barrier layer is expected to improve the structure of the Mg/Sc system. The ZrC capping layer also prevents the stack from oxidation. The structural analysis of the Mg/Sc systems was carried out by using grazing incidence X-ray reflectivity (GIXRR) to obtain non-destructively a first description of the structural parameters, thickness, roughness, and density of the layers. Resonant soft X-ray reflectivity measurements in the vicinity of Sc L-absorption edge were performed to investigate and quantify the atomic distribution of deposited layers. Near absorption edge, the atomic scattering factor of an element changes sharply depending on its chemical environment inside the structure.

Keywords: buried interfaces, resonant soft X-ray reflectivity, X-ray optics, X-ray reflectivity

Procedia PDF Downloads 179
243 Scientific Linux Cluster for BIG-DATA Analysis (SLBD): A Case of Fayoum University

Authors: Hassan S. Hussein, Rania A. Abul Seoud, Amr M. Refaat

Abstract:

Scientific researchers face in the analysis of very large data sets that is increasing noticeable rate in today’s and tomorrow’s technologies. Hadoop and Spark are types of software that developed frameworks. Hadoop framework is suitable for many Different hardware platforms. In this research, a scientific Linux cluster for Big Data analysis (SLBD) is presented. SLBD runs open source software with large computational capacity and high performance cluster infrastructure. SLBD composed of one cluster contains identical, commodity-grade computers interconnected via a small LAN. SLBD consists of a fast switch and Gigabit-Ethernet card which connect four (nodes). Cloudera Manager is used to configure and manage an Apache Hadoop stack. Hadoop is a framework allows storing and processing big data across the cluster by using MapReduce algorithm. MapReduce algorithm divides the task into smaller tasks which to be assigned to the network nodes. Algorithm then collects the results and form the final result dataset. SLBD clustering system allows fast and efficient processing of large amount of data resulting from different applications. SLBD also provides high performance, high throughput, high availability, expandability and cluster scalability.

Keywords: big data platforms, cloudera manager, Hadoop, MapReduce

Procedia PDF Downloads 361
242 Applications of Green Technology and Biomimicry in Civil Engineering with a Maglev Car Elevator

Authors: Sameer Ansari, Suhas Nitsure

Abstract:

Biomimicry has made a big move into the built environment by adapting nature's solutions to human designs and inventions. We can examine numerous aspects of the built environment right from generating energy, fed by rainwater and powered by sun to over all land use impacts. This paper discusses the potential of a man made building which will work for the welfare of humans and reduce the impact of the harmful environment on us which we ourselves created for us. Building services inspired by nature such as building walls from homeostasis in organisms, natural ventilation from termites, artificial aggregates from natural aggregates, solar panels from photosynthesis and building structure itself compared to tree as a cantilever. Environmental services such as using CO2 as a feedstock for construction related activities, using Ornilux glasses and  saving birds from collision with buildings, using prefabricated steel for fast building members- save time and also negligible waste as no formwork is used. Maglev inspired car elevators in building which is unique and giving all together new direction to technology.

Keywords: biomimicry, green technology, maglev car elevator, civil engineering

Procedia PDF Downloads 576
241 The Effect of PM10 Dispersion from Industrial, Residential and Commercial Areas in Arid Environment

Authors: Meshari Al-Harbi

Abstract:

A comparative area-season-elemental-wise time series analysis by Dust Track monitor (2012-2013) revealed high PM10 dispersion in the outdoor environment in the sequence of industrial> express highways>residential>open areas. Time series analysis from 7AM-6AM (until next day), 30d (monthly), 3600sec. (for any given period of a month), and 12 months (yearly) showed peak PM10 dispersion during 1AM-7AM, 1d-4d and 25d-31d of every month, 1500-3600 with the exception in PM10 dispersion in residential areas, and in the months-March to June, respectively. This time-bound PM10 dispersion suggests the primary influence of human activities (peak mobility and productivity period for a given time frame) besides the secondary influence of meteorological parameters (high temperature and wind action) and, occasional dust storms. Whereas, gravimetric analysis reveals the influence of precipitation, low temperature and low volatility resulting high trace metals in PM10 during winter than in summer and primarily attributes to the influence of nature besides, the secondary attributes of smoke stack emission from various industries and automobiles. Furthermore, our study recommends residents to limit outdoor air pollution exposures and take precautionary measures to inhale PM10 pollutants from the atmosphere.

Keywords: aerosol, pollution, respirable particulates, trace-metals

Procedia PDF Downloads 307
240 Investigation of Effects and Hazards of Wind Flow on Buildings in Multiple Arrangements Using CFD

Authors: S. C. Gupta

Abstract:

The wind flow over several buildings lying in close vicinity in urban areas generates flow interference effects causing problems related to pedestrian comfort and ventilation within the buildings. This promoted a lot of research interest in the recent years. Airflow over a building creates a positive pressure zone on the upstream side and negative pressure zones (cavities or eddy zones) on the roof and all other sides. Large eddy simulation model is used along with sub-grid-scale model to numerically simulate turbulence for this purpose. The basis of flow outside the building is the pressure difference (between the wind and building interior). Wind Tunnel models are fabricated and tested in the subsonic wind tunnel. Theoretical results are compared with the experimental data. Newer configuration is tried for favorable effects in recovering static pressure values. Results obtained are seen very encouraging. The proposed exhaustive research investigation through numerical simulations and the experimental work are described and some interesting findings are brought out.

Keywords: wind flow, buildings, static pressure wind tunnel testing, CFD

Procedia PDF Downloads 498
239 Influence of Driving Strategy on Power and Fuel Consumption of Lightweight PEM Fuel Cell Vehicle Powertrain

Authors: Suhadiyana Hanapi, Alhassan Salami Tijani, W. A. N Wan Mohamed

Abstract:

In this paper, a prototype PEM fuel cell vehicle integrated with a 1 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack as a main power sources has been developed for a lightweight cruising vehicle. The test vehicle is equipped with a PEM fuel cell system that provides electric power to a brushed DC motor. This vehicle was designed to compete with industrial lightweight vehicle with the target of consuming least amount of energy and high performance. Individual variations in driving style have a significant impact on vehicle energy efficiency and it is well established from the literature. The primary aim of this study was to assesses the power and fuel consumption of a hydrogen fuel cell vehicle operating at three difference driving technique (i.e. 25 km/h constant speed, 22-28 km/h speed range, 20-30 km/h speed range). The goal is to develop the best driving strategy to maximize performance and minimize fuel consumption for the vehicle system. The relationship between power demand and hydrogen consumption has also been discussed. All the techniques can be evaluated and compared on broadly similar terms. Automatic intelligent controller for driving prototype fuel cell vehicle on different obstacle while maintaining all systems at maximum efficiency was used. The result showed that 25 km/h constant speed was identified for optimal driving with less fuel consumption.

Keywords: prototype fuel cell electric vehicles, energy efficient, control/driving technique, fuel economy

Procedia PDF Downloads 441
238 Economical Analysis of Optimum Insulation Thickness for HVAC Duct

Authors: D. Kumar, S. Kumar, A. G. Memon, R. A. Memon, K. Harijan

Abstract:

A considerable amount of energy is usually lost due to compression of insulation in Heating, ventilation, and air conditioning (HVAC) duct. In this paper, the economic impact of compression of insulation is estimated. Relevant mathematical models were used to estimate the optimal thickness at the points of compression. Furthermore, the payback period is calculated for the optimal thickness at the critical parts of supply air duct (SAD) and return air duct (RAD) considering natural gas (NG) and liquefied petroleum gas (LPG) as fuels for chillier operation. The mathematical model is developed using preliminary data obtained for an HVAC system of a pharmaceutical company. The higher heat gain and cooling loss, due to compression of thermal insulation, is estimated using relevant heat transfer equations. The results reveal that maximum energy savings (ES) in SAD is 34.5 and 40%, while in RAD is 22.9% and 29% for NG and LPG, respectively. Moreover, the minimum payback period (PP) for SAD is 2 and 1.6years, while in RAD is 4.3 and 2.7years for NG and LPG, respectively. The optimum insulation thickness (OIT) corresponding to maximum ES and minimum PP is estimated to be 35 and 42mm for SAD, while 30 and 38mm for RAD in case of NG and LPG, respectively.

Keywords: optimum insulation thickness, life cycle cost analysis, payback period, HVAC system

Procedia PDF Downloads 216
237 Cost-Effective Indoor-Air Quality (IAQ) Monitoring via Cavity Enhanced Photoacoustic Technology

Authors: Jifang Tao, Fei Gao, Hong Cai, Yuan Jin Zheng, Yuan Dong Gu

Abstract:

Photoacoustic technology is used to measure effect absorption of a light by means of acoustic detection, which provides a high sensitive, low-cross response, cost-effective solution for gas molecular detection. In this paper, we proposed an integrated photoacoustic sensor for Indoor-air quality (IAQ) monitoring. The sensor consists of an acoustically resonant cavity, a high silicon acoustic transducer chip, and a low-cost light source. The light is modulated at the resonant frequency of the cavity to create an enhanced periodic heating and result in an amplified acoustic pressure wave. The pressure is readout by a novel acoustic transducer with low noise. Based on this photoacoustic sensor, typical indoor gases, including CO2, CO, O2, and H2O have been successfully detected, and their concentration are also evaluated with very high accuracy. It has wide potential applications in IAQ monitoring for agriculture, food industry, and ventilation control systems used in public places, such as schools, hospitals and airports.

Keywords: indoor-air quality (IAQ) monitoring, photoacoustic gas sensor, cavity enhancement, integrated gas sensor

Procedia PDF Downloads 659
236 Design-Analysis and Optimization of 10 MW Permanent Magnet Surface Mounted Off-Shore Wind Generator

Authors: Mamidi Ramakrishna Rao, Jagdish Mamidi

Abstract:

With advancing technology, the market environment for wind power generation systems has become highly competitive. The industry has been moving towards higher wind generator power ratings, in particular, off-shore generator ratings. Current off-shore wind turbine generators are in the power range of 10 to 12 MW. Unlike traditional induction motors, slow-speed permanent magnet surface mounted (PMSM) high-power generators are relatively challenging and designed differently. In this paper, PMSM generator design features have been discussed and analysed. The focus attention is on armature windings, harmonics, and permanent magnet. For the power ratings under consideration, the generator air-gap diameters are in the range of 8 to 10 meters, and active material weigh ~60 tons and above. Therefore, material weight becomes one of the critical parameters. Particle Swarm Optimization (PSO) technique is used for weight reduction and performance improvement. Four independent variables have been considered, which are air gap diameter, stack length, magnet thickness, and winding current density. To account for core and teeth saturation, preventing demagnetization effects due to short circuit armature currents, and maintaining minimum efficiency, suitable penalty functions have been applied. To check for performance satisfaction, a detailed analysis and 2D flux plotting are done for the optimized design.

Keywords: offshore wind generator, PMSM, PSO optimization, design optimization

Procedia PDF Downloads 156
235 Study of Buried Interfaces in Fe/Si Multilayer by Hard X-Ray Emission Spectroscopy

Authors: Hina Verma, Karine Le Guen, Renaud Dalaunay, Iyas Ismail, Vita Ilakovac, Jean Pascal Rueff, Yunlin Jacques Zheng, Philippe Jonnard

Abstract:

To the extent of our knowledge, X-ray emission spectroscopy (XES) has been applied in the soft x-ray region (photon energy ≤ 2 keV) to study the buried layers and interfaces of stacks of nanometer-thin films. Now we extend the methodology to study the buried interfaces in the hard X-ray region (i.e., ≥ five keV). The emission spectra allow us to study the interactions between elements in the buried layers from the analysis of their valence states, thereby providing sensitive information about the physical-chemical environment of the emitting element in multilayers. We exploit the chemical sensitivity of XES to study the interfaces between Fe and Si layers in the Fe/Si multilayer from the Fe Kβ₂,₅ emission spectra (7108 eV). The Fe Kβ₅ emission line results from the electronic transition from occupied 3d to 1s levels (i.e., valence to core transition) and is hence sensitive to the chemical state of emitting Fe atoms. The comparison of emission spectra recorded for Fe/Si multilayer with Fe and FeSi₂ references reveal the formation of FeSi₂ at the Fe-Si interfaces inside the multilayer stack. The interfacial thickness was calculated to be 1.4 ± 0.2 nm by taking into consideration the intensity of Fe atoms emitted from the interface and the Fe layer. The formation of FeSi₂ at the interface was further confirmed by the X-ray diffraction and X-ray photoelectron spectroscopy done on the Fe/Si multilayer. Hence, we can conclude that the XES in the hard X-ray range could be used to study multilayers and their interfaces and obtain information both qualitatively and quantitatively.

Keywords: buried interfaces, hard X-ray emission spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy

Procedia PDF Downloads 143
234 Anesthesia for Spinal Stabilization Using Neuromuscular Blocking Agents in Dog: Case Report

Authors: Agata Migdalska, Joanna Berczynska, Ewa Bieniek, Jacek Sterna

Abstract:

Muscle relaxation is considered important during general anesthesia for spine stabilization. In a presented case peripherally acting muscle relaxant was applied during general anesthesia for spine stabilization surgery. The patient was a dog, 11-years old, 26 kg, male, mix breed. Spine fracture was situated between Th13-L1-L2, probably due to the car accident. Preanesthetic physical examination revealed no sign underlying health issues. The dog was premedicated with midazolam 0.2 mg IM and butorphanol 2.4 mg IM. General anesthesia was induced with propofol IV. After the induction, the dog was intubated with an endotracheal tube and connected to an open-ended rebreathing system and maintained with the use of inhalation anesthesia with isoflurane in oxygen. 0,5 mg/ kg of rocuronium was given IV. Use of muscle relaxant was accompanied by an assessment of the degree of neuromuscular blockade by peripheral nerve stimulator. Electrodes were attached to the skin overlying at the peroneal nerve at the lateral cranial tibia. Four electrical pulses were applied to the nerve over a 2 second period. When satisfying nerve block was detected dog was prepared for the surgery. No further monitoring of the effectiveness of blockade was performed during surgery. Mechanical ventilation was kept during anesthesia. During surgery dog maintain stable, and no anesthesiological complication occur. Intraoperatively surgeon claimed that neuromuscular blockade results in a better approach to the spine and easier muscle manipulation which was helpful in order to see the fracture and replace bone fragments. Finally, euthanasia was performed intraoperatively as a result of vast myelomalacia process of the spinal cord. This prevented examination of the recovering process. Neuromuscular blocking agents act at the neuromuscular junction to provide profound muscle relaxation throughout the body. Muscle blocking agents are neither anesthetic nor analgesic; therefore inappropriately used may cause paralysis in fully conscious and feeling pain patient. They cause paralysis of all skeletal muscles, also diaphragm and intercostal muscles when given in higher doses. Intraoperative management includes maintaining stable physiological conditions, which involves adjusting hemodynamic parameters, ensuring proper ventilation, avoiding variations in temperature, maintain normal blood flow to promote proper oxygen exchange. Neuromuscular blocking agent can cause many side effects like residual paralysis, anaphylactic or anaphylactoid reactions, delayed recovery from anesthesia, histamine release, recurarization. Therefore reverse drug like neostigmine (with glikopyrolat) or edrofonium (with atropine) should be used in case of a life-threatening situation. Another useful drug is sugammadex, although the cost of this drug strongly limits its use. Muscle relaxant improves surgical conditions during spinal surgery, especially in heavily muscled individuals. They are also used to facilitate the replacement of dislocated joints as they improve conditions during fracture reduction. It is important to emphasize that in a patient with muscle weakness neuromuscular blocking agents may result in intraoperative and early postoperative cardiovascular and respiratory complications, as well as prolonged recovery from anesthesia. This should not appear in patients with recent spine fracture or luxation. Therefore it is believed that neuromuscular blockers could be useful during spine stabilization procedures.

Keywords: anesthesia, dog, neuromuscular block, spine surgery

Procedia PDF Downloads 181