Search results for: solution process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19366

Search results for: solution process

19126 The Influence of Water and Salt Crystals Content on Thermal Conductivity Coefficient of Red Clay Brick

Authors: Dalia Bednarska, Marcin Koniorczyk

Abstract:

This paper presents results of experiments aimed at studying hygro-thermal properties of red clay brick. The main objective of research was to investigate the relation between thermal conductivity coefficient of brick and its water or Na2SO4 solution content. The research was conducted using stationary technique for the totally dried specimens, as well as the ones 25%, 50%, 75% and 100% imbued with water or sodium sulfate solution. Additionally, a sorption isotherm test was conducted for seven relative humidity levels. Furthermore the change of red clay brick pore structure before and after imbuing with water and salt solution was investigated by multi-cycle mercury intrusion test. The experimental results confirm negative influence of water or sodium sulphate on thermal properties of material. The value of thermal conductivity coefficient increases along with growth of water or Na₂SO₄ solution content. The study shows that the presence of Na₂SO₄ solution has less negative influence on brick’s thermal conductivity coefficient than water.

Keywords: building materials, red clay brick, sodium sulfate, thermal conductivity coefficient

Procedia PDF Downloads 402
19125 Constant Order Predictor Corrector Method for the Solution of Modeled Problems of First Order IVPs of ODEs

Authors: A. A. James, A. O. Adesanya, M. R. Odekunle, D. G. Yakubu

Abstract:

This paper examines the development of one step, five hybrid point method for the solution of first order initial value problems. We adopted the method of collocation and interpolation of power series approximate solution to generate a continuous linear multistep method. The continuous linear multistep method was evaluated at selected grid points to give the discrete linear multistep method. The method was implemented using a constant order predictor of order seven over an overlapping interval. The basic properties of the derived corrector was investigated and found to be zero stable, consistent and convergent. The region of absolute stability was also investigated. The method was tested on some numerical experiments and found to compete favorably with the existing methods.

Keywords: interpolation, approximate solution, collocation, differential system, half step, converges, block method, efficiency

Procedia PDF Downloads 335
19124 Explicit Iterative Scheme for Approximating a Common Solution of Generalized Mixed Equilibrium Problem and Fixed Point Problem for a Nonexpansive Semigroup in Hilbert Space

Authors: Mohammad Farid

Abstract:

In this paper, we introduce and study an explicit iterative method based on hybrid extragradient method to approximate a common solution of generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup in Hilbert space. Further, we prove that the sequence generated by the proposed iterative scheme converge strongly to the common solution of generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup. This common solution is the unique solution of a variational inequality problem and is the optimality condition for a minimization problem. The results presented in this paper are the supplement, extension and generalization of the previously known results in this area.

Keywords: generalized mixed equilibrium problem, fixed-point problem, nonexpansive semigroup, variational inequality problem, iterative algorithms, hybrid extragradient method

Procedia PDF Downloads 474
19123 Study of Skid-Mounted Natural Gas Treatment Process

Authors: Di Han, Lingfeng Li

Abstract:

Selection of low-temperature separation dehydration and dehydrochlorination process applicable to skid design, using Hysys software to simulate the low-temperature separation dehydration and dehydrochlorination process under different refrigeration modes, focusing on comparing the refrigeration effect of different refrigeration modes, the condensation amount of hydrocarbon liquids and alcoholic wastewater, as well as the adaptability of the process, and determining the low-temperature separation process applicable to the natural gas dehydration and dehydrochlorination skid into the design of skid; and finally, to carry out the CNG recycling process calculations of the processed qualified natural gas and to determine the dehydration scheme and the key parameters of the compression process.

Keywords: skidding, dehydration and dehydrochlorination, cryogenic separation process, CNG recovery process calculations

Procedia PDF Downloads 140
19122 A Dissolution Mechanism of the Silicon Carbide in HF/K₂Cr₂O₇ Solutions

Authors: Karima Bourenane, Aissa Keffous

Abstract:

In this paper, we present an experimental method on the etching reaction of p-type 6H-SiC, etching that was carried out in HF/K₂Cr₂O₇ solutions. The morphology of the etched surface was examined with varying K₂Cr₂O₇ concentrations, etching time and temperature solution. The surfaces of the etched samples were analyzed using Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and Photoluminescence. The surface morphology of samples etched in HF/K₂Cr₂O₇ is shown to depend on the solution composition and bath temperature. The investigation of the HF/K₂Cr₂O₇ solutions on 6H-SiC surface shows that as K₂Cr₂O₇ concentration increases, the etch rate increases to reach a maximum value at about 0.75 M and then decreases. Similar behavior has been observed when the temperature of the solution is increased. The maximum etch rate is found for 80 °C. Taking into account the result, a polishing etching solution of 6H-SiC has been developed. In addition, the result is very interesting when, to date, no chemical polishing solution has been developed on silicon carbide (SiC). Finally, we have proposed a dissolution mechanism of the silicon carbide in HF/K₂Cr₂O₇ solutions.

Keywords: silicon carbide, dissolution, Chemical etching, mechanism

Procedia PDF Downloads 51
19121 An Application of Meta-Modeling Methods for Surrogating Lateral Dynamics Simulation in Layout-Optimization for Electric Drivetrains

Authors: Christian Angerer, Markus Lienkamp

Abstract:

Electric vehicles offer a high variety of possible drivetrain topologies with up to 4 motors. Multi-motor-designs can have several advantages regarding traction, vehicle dynamics, safety and even efficiency. With a rising number of motors, the whole drivetrain becomes more complex. All permutations of gearings, drivetrain-layouts, motor-types and –sizes lead up in a very large solution space. Single elements of this solution space can be analyzed by simulation methods. In addition to longitudinal vehicle behavior, which most optimization-approaches are restricted to, also lateral dynamics are important for vehicle dynamics, stability and efficiency. In order to compete large solution spaces and to find an optimal result, genetic algorithm based optimization is state-of-the-art. As lateral dynamics simulation is way more CPU-intensive, optimization takes much more time than in case of longitudinal-only simulation. Therefore, this paper shows an approach how to create meta-models from a 14-degree of freedom vehicle model in order to enable a numerically efficient drivetrain-layout optimization process under consideration of lateral dynamics. Different meta-modelling approaches such as neural networks or DoE are implemented and comparatively discussed.

Keywords: driving dynamics, drivetrain layout, genetic optimization, meta-modeling, lateral dynamicx

Procedia PDF Downloads 414
19120 Enhancing the Rollability of Cu-Ge-Ni Alloy through Heat Treatment Methods

Authors: Morteza Hadi

Abstract:

This research investigates the potential enhancement of the rollability of Cu-Ge-Ni alloy through the mitigation of microstructural and compositional inhomogeneities via two distinct heat treatment methods: homogenization and solution treatment. To achieve this objective, the alloy with the desired composition was fabricated using a vacuum arc remelting furnace (VAR), followed by sample preparation for microstructural, compositional, and heat treatment analyses at varying temperatures and durations. Characterization was conducted employing optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), and Vickers hardness testing. The results obtained indicate that a minimum duration of 10 hours is necessary for adequate homogenization of the alloy at 750°C. This heat treatment effectively removes coarse dendrites from the casting microstructure and significantly reduces elemental separations. However, despite these improvements, the presence of a second phase with markedly different hardness from the matrix results in poor rolling ability for the alloy. The optimal time for solution treatment at various temperatures was determined, with the most effective cycle identified as 750°C for 2 hours, followed by rapid quenching in water. This process induces the formation of a single-phase microstructure and complete elimination of the second  phase, as confirmed by X-ray diffraction analysis. Results demonstrate a reduction in hardness by 30 Vickers, and the elimination of microstructural unevenness enables successful thickness reduction by up to 50% through rolling without encountering cracking.

Keywords: Cu-Ge-Ni alloy, homogenization. solution treatment, rollability

Procedia PDF Downloads 51
19119 The Effect of Porous Alkali Activated Material Composition on Buffer Capacity in Bioreactors

Authors: Girts Bumanis, Diana Bajare

Abstract:

With demand for primary energy continuously growing, search for renewable and efficient energy sources has been high on agenda of our society. One of the most promising energy sources is biogas technology. Residues coming from dairy industry and milk processing could be used in biogas production; however, low efficiency and high cost impede wide application of such technology. One of the main problems is management and conversion of organic residues through the anaerobic digestion process which is characterized by acidic environment due to the low whey pH (<6) whereas additional pH control system is required. Low buffering capacity of whey is responsible for the rapid acidification in biological treatments; therefore alkali activated material is a promising solution of this problem. Alkali activated material is formed using SiO2 and Al2O3 rich materials under highly alkaline solution. After material structure forming process is completed, free alkalis remain in the structure of materials which are available for leaching and could provide buffer capacity potential. In this research porous alkali activated material was investigated. Highly porous material structure ensures gradual leaching of alkalis during time which is important in biogas digestion process. Research of mixture composition and SiO2/Na2O and SiO2/Al2O ratio was studied to test the buffer capacity potential of alkali activated material. This research has proved that by changing molar ratio of components it is possible to obtain a material with different buffer capacity, and this novel material was seen to have considerable potential for using it in processes where buffer capacity and pH control is vitally important.

Keywords: alkaline material, buffer capacity, biogas production, bioreactors

Procedia PDF Downloads 241
19118 Removal of Oxytetracycline Using Sonophotocatalysis: Parametric Study

Authors: Bouafia-Chergui Souâd, Chabani Malika, Bensmaili Aicha

Abstract:

Water treatment and especially, medicament pollutants are nowadays important problems. Degradation of oxytetracycline was carried out using combined process of low-frequency ultrasound (US), ultraviolet irradiation and a catalyst. The effectiveness of the coupled processes has been evaluated by studying the effects of various operating parameters including initial OTC concentration, solution pH and catalyst mass. For the photolysis process, the monochromatic ultraviolet light wavelength utilized was 365 nm. The sonolysis experiments were performed with ultrasound at a frequency of 40 kHz. The heterogeneous photocatalysis was studied in the presence of TiO2. The processes were employed individually, and simultaneously to examine the details of the processes and to investigate the contribution of each process. Low UV intensity (12W), low pH and high mass of TiO2 conditions enhanced the sono-photocatalytic degradation of OTC. The results showed that the individual contribution sonochemical and photochemical reactions are very low, however, their coupling increases the degradation rate of 8 times compared to photolysis and 2 times compared to sonolysis. There is a synergistic effect between the two modes of radiation, UV and U.S. leading to 82.04% degradation yield. An application of these combined processes on the treatment of a real pharmaceutical wastewater was examined.

Keywords: sonolysis, photocatalysis, combined process, antibiotic

Procedia PDF Downloads 284
19117 From De Soto’s Solution to Urban Disaster: The Effects of Land Titling Policies on the Development of Cities of the Global South in the Case of Lima Peru

Authors: Jitka Molnarova

Abstract:

Based on De Soto’s idea that a formal land title can provide a secure home and access to credit to poor urban families, a large number of developing countries accepted the formalization of informal settlements as the ultimate solution for their housing crises and struggles with poverty. After two decades of implementation, very little is known about the effects this policy has on the quality of the neighborhoods it produces and on the development of cities in general. Using the capital of Peru -where the solution originated- as a case study, this paper illustrates the negative outcomes this policy has on urban development arguing that land titling encourages 1) expansion of the city often to areas of high physical risk, 2) production of precarious housing on unserviced land, and 3) practices of illegal land trafficking. The evidence is based on interviews with community leaders and officials working at the Cooperation for Formalization of Informal Property (COFOPRI), comparison of satellite images documenting the expansion of Lima in the past twenty years, and a technical evaluation of dozens of houses that have been or are in the process of being granted a land title.

Keywords: COFOPRI, De Soto, housing policies, land titling, land trafficking, Lima, Peru, precarious housing, urban expansion

Procedia PDF Downloads 185
19116 Adsoption Tests of Two Industrial Dyes by Hydroxyds of Metals

Authors: R. Berrached, H. Ait Mahamed, A. Iddou

Abstract:

Water pollution is nowadays a serious problem, due to the increasing scarcity of water and thus to the impact induced by such pollution on the human health. Various techniques are made use of to deal with water pollution. Among the most used ones, some can be enumerated: the bacterian bed, the activated sludge, lagoons as biological processes and coagulation-flocculation as a physic-chemical process. These processes are very expensive and a decreasing in efficiency treatment with the increase of the initial pollutants concentration. This is the reason why research has been reoriented towards the use of adsorption process as an alternative solution instead of the other traditional processes. In our study, we have tempted to explore the characteristics of hydroxides of Al and Fe to purify contaminated water by two industrial dyes SBL blue and SRL-150 orange. Results have shown the efficiency of the two materials on the blue SBL dye.

Keywords: metallic hydroxydes, dyes, purification, adsorption

Procedia PDF Downloads 335
19115 Performance of an Anaerobic Osmotic Membrane Bioreactor Hybrid System for Wastewater Treatment and Phosphorus Recovery

Authors: Ming-Yeh Lu, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu

Abstract:

The submerged anaerobic osmotic membrane bioreactor (AnOMBR) integrated with periodic microfiltration (MF) extraction for simultaneous phosphorus and clean water recovery from wastewater was evaluated. A laboratory-scale AnOMBR used cellulose triacetate (CTA) membranes with effective membrane area of 130 cm² was fully submerged into a 5 L bioreactor at 30-35 ℃. Active layer was orientated to feed stream for minimizing membrane fouling and scaling. Additionally, a peristaltic pump was used to circulate magnesium sulphate (MgSO₄) solution applied as draw solution (DS). Microfiltration membrane periodically extracted about 1 L solution when the TDS reaches to 5 g/L to recover phosphorus and simultaneously control the salt accumulation in the bioreactor. During experiment progress, the average water flux was around 1.6 LMH. The AnOMBR process showed greater than 95% removal of soluble chemical oxygen demand (sCOD), nearly 100% of total phosphorous whereas only partial of ammonia was removed. On the other hand, the average methane production of 0.22 L/g sCOD was obtained. Subsequently, the overall performance demonstrates that a novel submerged AnOMBR system is potential for simultaneous wastewater treatment and resource recovery from wastewater. Therefore, the new concept of this system can be used to replace for the conventional AnMBR in the future.

Keywords: anaerobic treatment, forward osmosis, phosphorus recovery, membrane bioreactor

Procedia PDF Downloads 233
19114 Application of Enzyme-Mediated Calcite Precipitation for Surface Control of Gold Mining Tailing Waste

Authors: Yogi Priyo Pradana, Heriansyah Putra, Regina Aprilia Zulfikar, Maulana Rafiq Ramadhan, Devyan Meisnnehr, Zalfa Maulida Insani

Abstract:

This paper studied the effects and mechanisms of fine-grained tailing by Enzyme-Mediated Calcite Precipitation (EMCP). Grouting solution used consists of reagents (CaCl₂ and (CO(NH₂)₂) and urease enzymes which react to produce CaCO₃. In sample preparation, the test tube is used to investigate the precipitation rate of calcite. The grouting solution added is 75 mL for one mold sample. The solution was poured into a mold sample up to as high as 5 mm from the top surface of the tailing to ensure the entire surface is submerged. The sample is left open in a cylinder for up to 3 days for curing. The direct mixing method is conducted so that the cementation process occurs by evenly distributed. The relationship between the results of the UCS test and the calcite precipitation rate likely indicates that the amount of calcite deposited in treated tailing could control the strength of the tailing. The sample results are analyzed using atomic absorption spectroscopy (AAS) to evaluate metal and metalloid content. Calcium carbonate deposited in the tailing is expected to strengthen the bond between tailing granules, which are easily slipped on the banks of the tailing dam. The EMCP method is expected to strengthen tailing in erosion-control surfaces.

Keywords: tailing, EMCP, UCS, AAS

Procedia PDF Downloads 137
19113 Elite Rain: A Solution to the Problem of Destructive Processes in Iran and Other Countries

Authors: Khaled Ali Soltan

Abstract:

Iran can be considered a triangle that is affected by 3 forces: the government, the elite, and the people. Over the last 100 years, these three forces have been at odds with each other. This lack of coordination and sometimes antagonism among these three forces has led to lawlessness in Iran (both the government and the people have entered the cycle of lawlessness) and the spread of destructive processes in the country and the destruction of resources, both natural and human resources. The direct and negative impact of this issue on people's lives as well as the environment highlights the importance of this article. This article descriptively deals with the issue and suggests solutions and examines possible problems and obstacles. There seems to be a way to establish a connection’ closeness and coordination among these three forces and put them on the path of development. ELITE RAIN is a scientific-popular process that can create coordination and cooperation between these forces, prevent destructive processes in the country and put it on the path of sustainable development and a better life. This solution is a more advanced model of brainstorming technique introduced by Alex Osborn in 1953. Given that people have tried different types of protests to improve the status quo, such as the change of government in 1979 which led to the establishment of the theocracy, participating in elections that resulted in more frustration and corruption due to the lack of real parties, and sporadic street protests that resulted in nothing more than repression, it seems that this solution can be successful.

Keywords: corruption, destruction of resources, elite rain, Iran, legal complaints, sustainable development, the elite

Procedia PDF Downloads 71
19112 Corrosion Inhibition of Brass in Phosphoric Acid Solution by 2-(5-Methyl-2-Nitro-1H-Imidazol-1-Yl) Ethyl Benzoate

Authors: R. Khrifou, M. Galai, R. Touir, M. Ebn Touhami, Y. Ramli

Abstract:

A 2-(5-methyl-2-Nitro-1H-imidazol-1-yl)ethyl benzoate (IMDZ-B) was synthesized and characterized using elemental analyses, NMR, and Fourier transform infrared (FTIR) techniques. Its effect on brass corrosion in 1.0 M H₃PO₄ solution was investigated by using electrochemical measurements coupled with X-ray diffraction analysis (XRD), Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX). The polarization measurements showed that the IMDZ-B acts as a mixed-type inhibitor. Indeed, it is found that the IMDZ-B compound is a very good inhibitor, and its inhibition efficiency increases with concentration to reach a maximum of 99.5 % at 10-³ M. In addition, the obtained electrochemical parameters from impedance indicated that the IMDZ-B molecules act by adsorption on metallic surfaces. This adsorption was found to obey Langmuir’s adsorption isotherm. However, the temperature effect on the performance of IMDZ-B was also studied. It is found that the IMDZ-B takes its performance at high temperatures. In addition, the obtained kinetic and thermodynamic parameters showed that the IMDZ-B molecules act via two adsorption modes, physisorption and chemisorptions, and its process is endothermic and spontaneous. Finally, the XRD and SEM/EDX analyses confirmed the electrochemical obtained results.

Keywords: low concentration, anti-corrosion brass, IMDZ-B product, phosphoric acid solution, electrochemical, SEM\EDAX analysis

Procedia PDF Downloads 63
19111 Virtual Reality Learning Environment in Embryology Education

Authors: Salsabeel F. M. Alfalah, Jannat F. Falah, Nadia Muhaidat, Amjad Hudaib, Diana Koshebye, Sawsan AlHourani

Abstract:

Educational technology is changing the way how students engage and interact with learning materials. This improved the learning process amongst various subjects. Virtual Reality (VR) applications are considered one of the evolving methods that have contributed to enhancing medical education. This paper utilizes VR to provide a solution to improve the delivery of the subject of Embryology to medical students, and facilitate the teaching process by providing a useful aid to lecturers, whilst proving the effectiveness of this new technology in this particular area. After evaluating the current teaching methods and identifying students ‘needs, a VR system was designed that demonstrates in an interactive fashion the development of the human embryo from fertilization to week ten of intrauterine development. This system aims to overcome some of the problems faced by the students’ in the current educational methods, and to increase the efficacy of the learning process.

Keywords: virtual reality, student assessment, medical education, 3D, embryology

Procedia PDF Downloads 189
19110 Methods for Business Process Simulation Based on Petri Nets

Authors: K. Shoylekova, K. Grigorova

Abstract:

The Petri nets are the first standard for business process modeling. Most probably, it is one of the core reasons why all new standards created afterwards have to be so reformed as to reach the stage of mapping the new standard onto Petri nets. The paper presents a Business process repository based on a universal database. The repository provides the possibility the data about a given process to be stored in three different ways. Business process repository is developed with regard to the reformation of a given model to a Petri net in order to be easily simulated two different techniques for business process simulation based on Petri nets - Yasper and Woflan are discussed. Their advantages and drawbacks are outlined. The way of simulating business process models, stored in the Business process repository is shown.

Keywords: business process repository, petri nets, simulation, Woflan, Yasper

Procedia PDF Downloads 367
19109 Removal of Phenol from Aqueous Solution Using Watermelon (Citrullus C. lanatus) Rind

Authors: Fidelis Chigondo

Abstract:

This study focuses on investigating the effectiveness of watermelon rind in phenol removal from aqueous solution. The effects of various parameters (pH, initial phenol concentration, biosorbent dosage and contact time) on phenol adsorption were investigated. The pH of 2, initial phenol concentration of 40 ppm, the biosorbent dosage of 0.6 g and contact time of 6 h also deduced to be the optimum conditions for the adsorption process. The maximum phenol removal under optimized conditions was 85%. The sorption data fitted to the Freundlich isotherm with a regression coefficient of 0.9824. The kinetics was best described by the intraparticle diffusion model and Elovich Equation with regression coefficients of 1 and 0.8461 respectively showing that the reaction is chemisorption on a heterogeneous surface and the intraparticle diffusion rate only is the rate determining step. The study revealed that watermelon rind has a potential of removing phenol from industrial wastewaters.

Keywords: biosorption, phenol, biosorbent, watermelon rind

Procedia PDF Downloads 245
19108 Process Capability Analysis by Using Statistical Process Control of Rice Polished Cylinder Turning Practice

Authors: S. Bangphan, P. Bangphan, T.Boonkang

Abstract:

Quality control helps industries in improvements of its product quality and productivity. Statistical Process Control (SPC) is one of the tools to control the quality of products that turning practice in bringing a department of industrial engineering process under control. In this research, the process control of a turning manufactured at workshops machines. The varying measurements have been recorded for a number of samples of a rice polished cylinder obtained from a number of trials with the turning practice. SPC technique has been adopted by the process is finally brought under control and process capability is improved.

Keywords: rice polished cylinder, statistical process control, control charts, process capability

Procedia PDF Downloads 486
19107 Mathematical Modeling of the AMCs Cross-Contamination Removal in the FOUPs: Finite Element Formulation and Application in FOUP’s Decontamination

Authors: N. Santatriniaina, J. Deseure, T. Q. Nguyen, H. Fontaine, C. Beitia, L. Rakotomanana

Abstract:

Nowadays, with the increasing of the wafer's size and the decreasing of critical size of integrated circuit manufacturing in modern high-tech, microelectronics industry needs a maximum attention to challenge the contamination control. The move to 300 mm is accompanied by the use of Front Opening Unified Pods for wafer and his storage. In these pods an airborne cross contamination may occur between wafers and the pods. A predictive approach using modeling and computational methods is very powerful method to understand and qualify the AMCs cross contamination processes. This work investigates the required numerical tools which are employed in order to study the AMCs cross-contamination transfer phenomena between wafers and FOUPs. Numerical optimization and finite element formulation in transient analysis were established. Analytical solution of one dimensional problem was developed and the calibration process of physical constants was performed. The least square distance between the model (analytical 1D solution) and the experimental data are minimized. The behavior of the AMCs intransient analysis was determined. The model framework preserves the classical forms of the diffusion and convection-diffusion equations and yields to consistent form of the Fick's law. The adsorption process and the surface roughness effect were also traduced as a boundary condition using the switch condition Dirichlet to Neumann and the interface condition. The methodology is applied, first using the optimization methods with analytical solution to define physical constants, and second using finite element method including adsorption kinetic and the switch of Dirichlet to Neumann condition.

Keywords: AMCs, FOUP, cross-contamination, adsorption, diffusion, numerical analysis, wafers, Dirichlet to Neumann, finite elements methods, Fick’s law, optimization

Procedia PDF Downloads 504
19106 A Memetic Algorithm for an Energy-Costs-Aware Flexible Job-Shop Scheduling Problem

Authors: Christian Böning, Henrik Prinzhorn, Eric C. Hund, Malte Stonis

Abstract:

In this article, the flexible job-shop scheduling problem is extended by consideration of energy costs which arise owing to the power peak, and further decision variables such as work in process and throughput time are incorporated into the objective function. This enables a production plan to be simultaneously optimized in respect of the real arising energy and logistics costs. The energy-costs-aware flexible job-shop scheduling problem (EFJSP) which arises is described mathematically, and a memetic algorithm (MA) is presented as a solution. In the MA, the evolutionary process is supplemented with a local search. Furthermore, repair procedures are used in order to rectify any infeasible solutions that have arisen in the evolutionary process. The potential for lowering the real arising costs of a production plan through consideration of energy consumption levels is highlighted.

Keywords: energy costs, flexible job-shop scheduling, memetic algorithm, power peak

Procedia PDF Downloads 343
19105 Fabrication and Characterization of Gelatin Nanofibers Dissolved in Concentrated Acetic Acid

Authors: Kooshina Koosha, Sima Habibi, Azam Talebian

Abstract:

Electrospinning is a simple, versatile and widely accepted technique to produce ultra-fine fibers ranging from nanometer to micron. Recently there has been great interest in developing this technique to produce nanofibers with novel properties and functionalities. The electrospinning field is extremely broad, and consequently there have been many useful reviews discussing various aspects from detailed fiber formation mechanism to the formation of nanofibers and to discussion on a wide range of applications. On the other hand, the focus of this study is quite narrow, highlighting electrospinning parameters. This work will briefly cover the solution and processing parameters (for instance; concentration, solvent type, voltage, flow rate, distance between the collector and the tip of the needle) impacting the morphological characteristics of nanofibers, such as diameter. In this paper, a comprehensive work would be presented on the research of producing nanofibers from natural polymer entitled Gelatin.

Keywords: electrospinning, solution parameters, process parameters, natural fiber

Procedia PDF Downloads 272
19104 Characterization of Iron Doped Titanium Dioxide Nanoparticles and Its Photocatalytic Degradation Ability for Congo Red Dye

Authors: Vishakha Parihar

Abstract:

This study reports the preparation of iron metal-doped nanoparticles of Titanium dioxide by the sol-gel process and the photocatalytic degradation of dye. Nano-particles were characterized by SEM, EDX, and UV-Vis spectroscopy. The detailed study confirmed that nanoparticles have grown in high density and have good optical properties. The photocatalytic batch experiment was performed in an aqueous solution where congo red dye was used as a dye pollutant under the irradiation of ultraviolet rays created by using a mercury lamp source. Total degradation efficiency achieved was approximately 85% to 93% in the duration of 100-120 minutes of irradiation under an ultraviolet light source. The decolorization ability of this process was measured by absorbance at a maximum wavelength of 498nm. The results indicated that the iron-doped Titanium dioxide nanoparticles showed an excellent photocatalytic response to the degradation of dye under the ultraviolet light source within a very short period of time.

Keywords: titanium dioxide, nano-particles iron dope, photocatalytic degradation, Congo red dye, sol-gel process

Procedia PDF Downloads 181
19103 Na Promoted Ni/γ-Al2O3 Catalysts Prepared by Solution Combustion Method for Syngas Methanation

Authors: Yan Zeng, Hongfang Ma, Haitao Zhang, Weiyong Ying

Abstract:

Ni-based catalysts with different amounts of Na as promoter from 2 to 6 wt % were prepared by solution combustion method. The catalytic activity was investigated in syngas methanation reaction. Carbon oxides conversion and methane selectivity are greatly influenced by sodium loading. Adding 2 wt% Na remarkably improves catalytic activity and long-term stability, attributed to its smaller mean NiO particle size, better distribution, and milder metal-support interaction. However, excess addition of Na results in deactivation distinctly due to the blockage of active sites.

Keywords: nickel catalysts, syngas methanation, sodium, solution combustion method

Procedia PDF Downloads 406
19102 Robust Batch Process Scheduling in Pharmaceutical Industries: A Case Study

Authors: Tommaso Adamo, Gianpaolo Ghiani, Antonio Domenico Grieco, Emanuela Guerriero

Abstract:

Batch production plants provide a wide range of scheduling problems. In pharmaceutical industries a batch process is usually described by a recipe, consisting of an ordering of tasks to produce the desired product. In this research work we focused on pharmaceutical production processes requiring the culture of a microorganism population (i.e. bacteria, yeasts or antibiotics). Several sources of uncertainty may influence the yield of the culture processes, including (i) low performance and quality of the cultured microorganism population or (ii) microbial contamination. For these reasons, robustness is a valuable property for the considered application context. In particular, a robust schedule will not collapse immediately when a cell of microorganisms has to be thrown away due to a microbial contamination. Indeed, a robust schedule should change locally in small proportions and the overall performance measure (i.e. makespan, lateness) should change a little if at all. In this research work we formulated a constraint programming optimization (COP) model for the robust planning of antibiotics production. We developed a discrete-time model with a multi-criteria objective, ordering the different criteria and performing a lexicographic optimization. A feasible solution of the proposed COP model is a schedule of a given set of tasks onto available resources. The schedule has to satisfy tasks precedence constraints, resource capacity constraints and time constraints. In particular time constraints model tasks duedates and resource availability time windows constraints. To improve the schedule robustness, we modeled the concept of (a, b) super-solutions, where (a, b) are input parameters of the COP model. An (a, b) super-solution is one in which if a variables (i.e. the completion times of a culture tasks) lose their values (i.e. cultures are contaminated), the solution can be repaired by assigning these variables values with a new values (i.e. the completion times of a backup culture tasks) and at most b other variables (i.e. delaying the completion of at most b other tasks). The efficiency and applicability of the proposed model is demonstrated by solving instances taken from Sanofi Aventis, a French pharmaceutical company. Computational results showed that the determined super-solutions are near-optimal.

Keywords: constraint programming, super-solutions, robust scheduling, batch process, pharmaceutical industries

Procedia PDF Downloads 617
19101 A Study of Non Linear Partial Differential Equation with Random Initial Condition

Authors: Ayaz Ahmad

Abstract:

In this work, we present the effect of noise on the solution of a partial differential equation (PDE) in three different setting. We shall first consider random initial condition for two nonlinear dispersive PDE the non linear Schrodinger equation and the Kortteweg –de vries equation and analyse their effect on some special solution , the soliton solutions.The second case considered a linear partial differential equation , the wave equation with random initial conditions allow to substantially decrease the computational and data storage costs of an algorithm to solve the inverse problem based on the boundary measurements of the solution of this equation. Finally, the third example considered is that of the linear transport equation with a singular drift term, when we shall show that the addition of a multiplicative noise term forbids the blow up of solutions under a very weak hypothesis for which we have finite time blow up of a solution in the deterministic case. Here we consider the problem of wave propagation, which is modelled by a nonlinear dispersive equation with noisy initial condition .As observed noise can also be introduced directly in the equations.

Keywords: drift term, finite time blow up, inverse problem, soliton solution

Procedia PDF Downloads 213
19100 Performance Evaluation of Using Genetic Programming Based Surrogate Models for Approximating Simulation Complex Geochemical Transport Processes

Authors: Hamed K. Esfahani, Bithin Datta

Abstract:

Transport of reactive chemical contaminant species in groundwater aquifers is a complex and highly non-linear physical and geochemical process especially for real life scenarios. Simulating this transport process involves solving complex nonlinear equations and generally requires huge computational time for a given aquifer study area. Development of optimal remediation strategies in aquifers may require repeated solution of such complex numerical simulation models. To overcome this computational limitation and improve the computational feasibility of large number of repeated simulations, Genetic Programming based trained surrogate models are developed to approximately simulate such complex transport processes. Transport process of acid mine drainage, a hazardous pollutant is first simulated using a numerical simulated model: HYDROGEOCHEM 5.0 for a contaminated aquifer in a historic mine site. Simulation model solution results for an illustrative contaminated aquifer site is then approximated by training and testing a Genetic Programming (GP) based surrogate model. Performance evaluation of the ensemble GP models as surrogate models for the reactive species transport in groundwater demonstrates the feasibility of its use and the associated computational advantages. The results show the efficiency and feasibility of using ensemble GP surrogate models as approximate simulators of complex hydrogeologic and geochemical processes in a contaminated groundwater aquifer incorporating uncertainties in historic mine site.

Keywords: geochemical transport simulation, acid mine drainage, surrogate models, ensemble genetic programming, contaminated aquifers, mine sites

Procedia PDF Downloads 274
19099 Information Communication Technology Based Road Traffic Accidents’ Identification, and Related Smart Solution Utilizing Big Data

Authors: Ghulam Haider Haidaree, Nsenda Lukumwena

Abstract:

Today the world of research enjoys abundant data, available in virtually any field, technology, science, and business, politics, etc. This is commonly referred to as big data. This offers a great deal of precision and accuracy, supportive of an in-depth look at any decision-making process. When and if well used, Big Data affords its users with the opportunity to produce substantially well supported and good results. This paper leans extensively on big data to investigate possible smart solutions to urban mobility and related issues, namely road traffic accidents, its casualties, and fatalities based on multiple factors, including age, gender, location occurrences of accidents, etc. Multiple technologies were used in combination to produce an Information Communication Technology (ICT) based solution with embedded technology. Those technologies include principally Geographic Information System (GIS), Orange Data Mining Software, Bayesian Statistics, to name a few. The study uses the Leeds accident 2016 to illustrate the thinking process and extracts thereof a model that can be tested, evaluated, and replicated. The authors optimistically believe that the proposed model will significantly and smartly help to flatten the curve of road traffic accidents in the fast-growing population densities, which increases considerably motor-based mobility.

Keywords: accident factors, geographic information system, information communication technology, mobility

Procedia PDF Downloads 207
19098 Clathrate Hydrate Measurements and Thermodynamic Modelling for Refrigerants with Electrolytes Solution in the Presence of Cyclopentane

Authors: Peterson Thokozani Ngema, Paramespri Naidoo, Amir H. Mohammadi, Deresh Ramjugernath

Abstract:

Phase equilibrium data (dissociation data) for clathrate hydrate (gas hydrate) were undertaken for systems involving fluorinated refrigerants with a single and mixed electrolytes (NaCl, CaCl₂, MgCl₂, and Na₂SO₄) aqueous solution at various salt concentrations in the absence and presence of cyclopentane (CP). The ternary systems for (R410a or R507) with the water system in the presence of CP were performed in the temperature and pressures ranges of (279.8 to 294.4) K and (0.158 to 1.385) MPa, respectively. Measurements for R410a with single electrolyte {NaCl or CaCl₂} solution in the presence of CP were undertaken at salt concentrations of (0.10, 0.15 and 0.20) mass fractions in the temperature and pressure ranges of (278.4 to 293.7) K and (0.214 to1.179) MPa, respectively. The temperature and pressure conditions for R410a with Na₂SO₄ aqueous solution system were investigated at a salt concentration of 0.10 mass fraction in the range of (283.3 to 291.6) K and (0.483 to 1.373) MPa respectively. Measurements for {R410a or R507} with mixed electrolytes {NaCl, CaCl₂, MgCl₂} aqueous solution was undertaken at various salt concentrations of (0.002 to 0.15) mass fractions in the temperature and pressure ranges of (274.5 to 292.9) K and (0.149 to1.119) MPa in the absence and presence of CP, in which there is no published data related to mixed salt and a promoter. The phase equilibrium measurements were performed using a non-visual isochoric equilibrium cell that co-operates the pressure-search technique. This study is focused on obtaining equilibrium data that can be utilized to design and optimize industrial wastewater, desalination process and the development of Hydrate Electrolyte–Cubic Plus Association (HE–CPA) Equation of State. The results show an impressive improvement in the presence of promoter (CP) on hydrate formation because it increases the dissociation temperatures near ambient conditions. The results obtained were modeled using a developed HE–CPA equation of state. The model results strongly agree with the measured hydrate dissociation data.

Keywords: association, desalination, electrolytes, promoter

Procedia PDF Downloads 243
19097 The Hydrotrope-Mediated, Low-Temperature, Aqueous Dissolution of Maize Starch

Authors: Jeroen Vinkx, Jan A. Delcour, Bart Goderis

Abstract:

Complete aqueous dissolution of starch is notoriously difficult. A high-temperature autoclaving process is necessary, followed by cooling the solution below its boiling point. The cooled solution is inherently unstable over time. Gelation and retrogradation processes, along with aggregation-induced by undissolved starch remnants, result in starch precipitation. We recently observed the spontaneous gelatinization of native maize starch (MS) in aqueous sodium salicylate (NaSal) solutions at room temperature. A hydrotropic mode of solubilization is hypothesized. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) of starch dispersions in NaSal solution were used to demonstrate the room temperature gelatinization of MS at different concentrations of MS and NaSal. The DSC gelatinization peak shifts to lower temperatures, and the gelatinization enthalpy decreases with increasing NaSal concentration. POM images confirm the same trend through the disappearance of the ‘Maltese cross’ interference pattern of starch granules. The minimal NaSal concentration to induce complete room temperature dissolution of MS was found to be around 15-20 wt%. The MS content of the dispersion has little influence on the amount of NaSal needed to dissolve it. The effect of the NaSal solution on the MS molecular weight was checked with HPSEC. It is speculated that, because of its amphiphilic character, NaSal enhances the solubility of MS in water by association with the more hydrophobic MS moieties, much like urea, which has also been used to enhance starch dissolution in alkaline aqueous media. As such small molecules do not tend to form micelles in water, they are called hydrotropes rather than surfactants. A minimal hydrotrope concentration (MHC) is necessary for the hydrotropes to structure themselves in water, resulting in a higher solubility of MS. This is the case for the system MS/NaSal/H₂O. Further investigations into the putative hydrotropic dissolution mechanism are necessary.

Keywords: hydrotrope, dissolution, maize starch, sodium salicylate, gelatinization

Procedia PDF Downloads 185