Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5

Search results for: meta-modeling

5 A Reduced Ablation Model for Laser Cutting and Laser Drilling

Authors: Torsten Hermanns, Thoufik Al Khawli, Wolfgang Schulz

Abstract:

In laser cutting as well as in long pulsed laser drilling of metals, it can be demonstrated that the ablation shape (the shape of cut faces respectively the hole shape) that is formed approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from the ultrashort pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in laser cutting and long pulse drilling of metals is identified, its underlying mechanism numerically implemented, tested and clearly confirmed by comparison with experimental data. In detail, there now is a model that allows the simulation of the temporal (pulse-resolved) evolution of the hole shape in laser drilling as well as the final (asymptotic) shape of the cut faces in laser cutting. This simulation especially requires much less in the way of resources, such that it can even run on common desktop PCs or laptops. Individual parameters can be adjusted using sliders – the simulation result appears in an adjacent window and changes in real time. This is made possible by an application-specific reduction of the underlying ablation model. Because this reduction dramatically decreases the complexity of calculation, it produces a result much more quickly. This means that the simulation can be carried out directly at the laser machine. Time-intensive experiments can be reduced and set-up processes can be completed much faster. The high speed of simulation also opens up a range of entirely different options, such as metamodeling. Suitable for complex applications with many parameters, metamodeling involves generating high-dimensional data sets with the parameters and several evaluation criteria for process and product quality. These sets can then be used to create individual process maps that show the dependency of individual parameter pairs. This advanced simulation makes it possible to find global and local extreme values through mathematical manipulation. Such simultaneous optimization of multiple parameters is scarcely possible by experimental means. This means that new methods in manufacturing such as self-optimization can be executed much faster. However, the software’s potential does not stop there; time-intensive calculations exist in many areas of industry. In laser welding or laser additive manufacturing, for example, the simulation of thermal induced residual stresses still uses up considerable computing capacity or is even not possible. Transferring the principle of reduced models promises substantial savings there, too.

Keywords: asymptotic ablation shape, interactive process simulation, laser drilling, laser cutting, metamodeling, reduced modeling

Procedia PDF Downloads 114
4 Parameter Estimation via Metamodeling

Authors: Sergio Haram Sarmiento, Arcady Ponosov

Abstract:

Based on appropriate multivariate statistical methodology, we suggest a generic framework for efficient parameter estimation for ordinary differential equations and the corresponding nonlinear models. In this framework classical linear regression strategies is refined into a nonlinear regression by a locally linear modelling technique (known as metamodelling). The approach identifies those latent variables of the given model that accumulate most information about it among all approximations of the same dimension. The method is applied to several benchmark problems, in particular, to the so-called ”power-law systems”, being non-linear differential equations typically used in Biochemical System Theory.

Keywords: principal component analysis, generalized law of mass action, parameter estimation, metamodels

Procedia PDF Downloads 374
3 A Generic Metamodel for Dependability Analysis

Authors: Moomen Chaari, Wolfgang Ecker, Thomas Kruse, Bogdan-Andrei Tabacaru

Abstract:

In our daily life, we frequently interact with complex systems which facilitate our mobility, enhance our access to information, and sometimes help us recover from illnesses or diseases. The reliance on these systems is motivated by the established evaluation and assessment procedures which are performed during the different phases of the design and manufacturing flow. Such procedures are aimed to qualify the system’s delivered services with respect to their availability, reliability, safety, and other properties generally referred to as dependability attributes. In this paper, we propose a metamodel based generic characterization of dependability concepts and describe an automation methodology to customize this characterization to different standards and contexts. When integrated in concrete design and verification environments, the proposed methodology promotes the reuse of already available dependability assessment tools and reduces the costs and the efforts required to create consistent and efficient artefacts for fault injection or error simulation.

Keywords: dependability analysis, model-driven development, metamodeling, code generation

Procedia PDF Downloads 358
2 Probability-Based Damage Detection of Structures Using Kriging Surrogates and Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Surrogate model has received increasing attention for use in detecting damage of structures based on vibration modal parameters. However, uncertainties existing in the measured vibration data may lead to false or unreliable output result from such model. In this study, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The kriging technique allows one to genuinely quantify the surrogate error, therefore it is chosen as metamodeling technique. Enhanced version of ideal gas molecular movement (EIGMM) algorithm is used as main algorithm for model updating. The developed approach is applied to detect simulated damage in numerical models of 72-bar space truss and 120-bar dome truss. The simulation results show the proposed method can perform well in probability-based damage detection of structures with less computational effort compared to direct finite element model.

Keywords: probability-based damage detection (PBDD), Kriging, surrogate modeling, uncertainty quantification, artificial intelligence, enhanced ideal gas molecular movement (EIGMM)

Procedia PDF Downloads 123
1 Systems Engineering and Project Management Process Modeling in the Aeronautics Context: Case Study of SMEs

Authors: S. Lemoussu, J. C. Chaudemar, R. A. Vingerhoeds

Abstract:

The aeronautics sector is currently living an unprecedented growth largely due to innovative projects. In several cases, such innovative developments are being carried out by Small and Medium sized-Enterprises (SMEs). For instance, in Europe, a handful of SMEs are leading projects like airships, large civil drones, or flying cars. These SMEs have all limited resources, must make strategic decisions, take considerable financial risks and in the same time must take into account the constraints of safety, cost, time and performance as any commercial organization in this industry. Moreover, today, no international regulations fully exist for the development and certification of this kind of projects. The absence of such a precise and sufficiently detailed regulatory framework requires a very close contact with regulatory instances. But, SMEs do not always have sufficient resources and internal knowledge to handle this complexity and to discuss these issues. This poses additional challenges for those SMEs that have system integration responsibilities and that must provide all the necessary means of compliance to demonstrate their ability to design, produce, and operate airships with the expected level of safety and reliability. The final objective of our research is thus to provide a methodological framework supporting SMEs in their development taking into account recent innovation and institutional rules of the sector. We aim to provide a contribution to the problematic by developing a specific Model-Based Systems Engineering (MBSE) approach. Airspace regulation, aeronautics standards and international norms on systems engineering are taken on board to be formalized in a set of models. This paper presents the on-going research project combining Systems Engineering and Project Management process modeling and taking into account the metamodeling problematic.

Keywords: aeronautics, certification, process modeling, project management, SME, systems engineering

Procedia PDF Downloads 56