Search results for: enzyme inhibition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1781

Search results for: enzyme inhibition

1541 An Electrochemical Enzymatic Biosensor Based on Multi-Walled Carbon Nanotubes and Poly (3,4 Ethylenedioxythiophene) Nanocomposites for Organophosphate Detection

Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar

Abstract:

The most controversial issue in crop production is the use of Organophosphate insecticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. OPs detection is of crucial importance for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). Substrate kinetics has been performed and studied for the determination of Michaelis Menten constant. The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared biosensor is observed to be 30 days and seven times, respectively. The application of the developed biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed biosensor made them reliable, sensitive and a low cost process.

Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, biosensor, oxime (2-PAM)

Procedia PDF Downloads 442
1540 Cellulolytic and Xylanolytic Enzymes from Mycelial Fungi

Authors: T. Sadunishvili, L. Kutateladze, T. Urushadze, R. Khvedelidze, N. Zakariashvili, M. Jobava, G. Kvesitadze

Abstract:

Multiple repeated soil-climatic zones in Georgia determines the diversity of microorganisms. Hundreds of microscopic fungi of different genera have been isolated from different ecological niches, including some extreme environments. Biosynthetic ability of microscopic fungi has been studied. Trichoderma ressei, representative of the Ascomycetes secrete cellulolytic and xylanolytic enzymes that act in synergy to hydrolyze polysaccharide polymers to glucose, xylose and arabinose, which can be fermented to biofuels. The other mesophilic strains producing cellulases are Allesheria terrestris, Chaetomium thermophile, Fusarium oxysporium, Piptoporus betulinus, Penicillium echinulatum, P. purpurogenum, Aspergillus niger, A. wentii, A. versicolor, A. fumigatus etc. In the majority of the cases the cellulases produced by strains of genus Aspergillus usually have high β-glucosidase activity and average endoglucanases levels (with some exceptions), whereas strains representing Trichoderma have high endo enzyme and low β-glucosidase, and hence has limited efficiency in cellulose hydrolysis. Six producers of stable cellulases and xylanases from mesophilic and thermophilic fungi have been selected. By optimization of submerged cultivation conditions, high activities of cellulases and xylanases were obtained. For enzymes purification, their sedimentation by organic solvents such as ethyl alcohol, acetone, isopropanol and by ammonium sulphate in different ratios have been carried out. Best results were obtained with precipitation by ethyl alcohol (1:3.5) and ammonium sulphate. The yields of enzyme according to cellulase activities were 80-85% in both cases. Cellulase activity of enzyme preparation obtained from the strain Trichoderma viride X 33 is 126 U/g, from the strain Penicillium canescence D 85–185U/g and from the strain Sporotrichum pulverulentum T 5-0 110 U/g. Cellulase activity of enzyme preparation obtained from the strain Aspergillus sp. Av10 is 120 U/g, xylanase activity of enzyme preparation obtained from the strain Aspergillus niger A 7-5–1155U/g and from the strain Aspergillus niger Aj 38-1250 U/g. Optimum pH and temperature of operation and thermostability, of the enzyme preparations, were established. The efficiency of hydrolyses of different agricultural residues by the microscopic fungi cellulases has been studied. The glucose yield from the residues as a result of enzymatic hydrolysis is highly determined by the ratio of enzyme to substrate, pH, temperature, and duration of the process. Hydrolysis efficiency was significantly increased as a result of different pretreatment of the residues by different methods. Acknowledgement: The Study was supported by the ISTC project G-2117, funded by Korea.

Keywords: cellulase, xylanase, microscopic fungi, enzymatic hydrolysis

Procedia PDF Downloads 387
1539 Design, Molecular Modeling, Synthesize, and Biological Evaluation of Some Dual Inhibitors of Soluble Epoxide Hydrolase (sEH) and Cyclooxygenase 2 (COX-2)

Authors: Elham Rezaee, Sayyed Abbas Tabatabai

Abstract:

Dual inhibition of COX-2 and sEH enzymes represents one of the distinct pharmaceutical approaches for the treatment of inflammation, pain, cancers, and other diseases. The discovery of these inhibitors for treatment is a great deal of attention because of some advantages such as increased efficacy, a promising safety profile, ease of formulation, and better target engagement. In this research, based on the structure-activity relationship of COX-2 and sEH inhibitors, some amide derivatives with oxadiazole and dihydropyrimidinone rings against sEH and COX-2 enzymes were developed. The designed compounds showed high affinity to the active site of both enzymes in docking studies and were synthesized in good yield and characterized by IR, Mass, 1HNMR, and 13CNMR. All of the novel compounds exhibited considerable in-vitro sEH and COX-2 inhibitory activities in comparison with 12-(3-Adamantan-1-yl-ureido)- dodecanoic acid and celecoxib (a potent urea-based sEH inhibitor and selective nonsteroidal anti-inflammatory drug, respectively). Ethyl 6-methyl-4-(4-(4-(methylsulfonyl)benzamido)phenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate was found to be the most selective COX-2 inhibitor (COX-2/COX-1 ratio: 683) with IC50 value of 2.1 nM targeting sEH enzyme.

Keywords: COX-2, dual inhibitors, sEH, synthesis

Procedia PDF Downloads 40
1538 Inhibition of 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase from Mycobacterium Tuberculosis Using High Throughput Virtual Screening and Molecular Dynamics Studies

Authors: Christy Rosaline, Rathankar Roa, Waheeta Hopper

Abstract:

Persistence of tuberculosis, emergence of multidrug-resistance and extensively drug-resistant forms of the disease, has increased the interest in developing new antitubercular drugs. Developing inhibitors for 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis (MtbDAH7Ps), an enzyme involved in shikimate pathway, gives a selective target for antitubercular agents. MtbDAH7Ps was screened against ZINC database, and shortlisted compounds were subjected to induce fit docking. Prime/Molecular Mechanics Generalized Born Surface Area calculation was used to validate the binding energy of ligand-protein complex. Molecular Dynamics analysis for of the lead compounds–MtbDAH7Ps complexes showed that the backbone of MtbDAH7Ps in their complexes were stable. These results suggest that the shortlisted lead compounds ZINC04097114, ZINC15163225, ZINC16857013, ZINC06275603, and ZINC05331260 could be developed into novel drug leads to inhibit DAH7Ps in Mycobacterium tuberculosis.

Keywords: MtbDAH7Ps, Mycobacterium tuberculosis, HTVS, molecular dynamics

Procedia PDF Downloads 174
1537 COX-2 Inhibitor NS398 Counteracts Chemoresistance to Temozolomide in T98G Glioblastoma Cell Line

Authors: Francesca Lombardi, Francesca Rosaria Augello, Benedetta Cinque, Maria Grazia Cifone, Paola Palumbo

Abstract:

Glioblastoma multiforme (GBM) is a high-grade primary brain tumor refractory to current forms of treatment. The survival benefits of patients with GBM remain unsatisfactory due to the intrinsic or acquired resistance to temozolomide (TMZ), an alkylating agent, used as the first-line chemotherapeutic drug to treat GBM patients. Its cytotoxic effect is visualized by the induction of O6-methylguanine (O6MeG) within DNA. Cyclooxygenase-2 (COX-2), an inflammation-associated enzyme, has been implicated in tumorigenesis and progression of GBM, its inhibition shows anticancer activities. In the present study, it was verified if the combination of a COX-2 selective inhibitor, NS398, with TMZ could counteract the TMZ resistance. In particular, the effect of NS398 mixed with TMZ was investigated in the GBM TMZ-resistant cell line, T98G. Cells were pretreated with NS398 (100µM, 24 hours) and then exposed to TMZ alone (200µM), NS398 alone, or both for 72 hours, after which cell growth rate and cycle phases, as well as apoptosis level, were evaluated. Coadministration of NS398 and TMZ caused a significant decrease in cell growth and a progressive increase of dead cells detected by trypan blue staining. Moreover, a significant level of apoptotic cell percentage and alteration of cell cycle phases were observed in T98G treated with TMZ-NS398 combination when compared to untreated cells or TMZ-treated cells. TMZ-resistant tumors, as GBM, express elevated levels of DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT). The mixture drastically reduced MGMT expression in the TMZ-resistant cell line T98G, known to express high levels of MGMT basically. Moreover, while TMZ alone did not influence the COX-2 protein expression, the combination successfully reduced it. In conclusion, these results demonstrated that NS398 enhanced the efficacy of TMZ through cell number reduction, apoptosis induction, and decreased MGMT levels, suggesting the ability of drug combination to reduce the chemoresistance. This drug combination deserves attention and could be considered as a promising therapeutic strategy for GBM patients.

Keywords: COX-2, COX-2 inhibitor, glioblastoma, NS398, T98G, temozolomide

Procedia PDF Downloads 144
1536 Application of Acinetobacter sp. KKU44 for Cellulase Production from Agricultural Waste

Authors: Surasak Siripornadulsil, Nutt Poomai, Wilailak Siripornadulsil

Abstract:

Due to a high ethanol demand, the approach for effective ethanol production is important and has been developed rapidly worldwide. Several agricultural wastes are highly abundant in celluloses and the effective cellulose enzymes do exist widely among microorganisms. Accordingly, the cellulose degradation using microbial cellulose to produce a low-cost substrate for ethanol production has attracted more attention. In this study, the cellulose producing bacterial strain has been isolated from rich straw and identified by 16S rDNA sequence analysis as Acinetobacter sp. KKU44. This strain is able to grow and exhibit the cellulose activity. The optimal temperature for its growth and cellulose production is 37 °C. The optimal temperature of bacterial cellulose activity is 60 °C. The cellulose enzyme from Acinetobacter sp. KKU44 is heat-tolerant enzyme. The bacterial culture of 36 h. showed highest cellulose activity at 120 U/mL when grown in LB medium containing 2% (w/v). The capability of Acinetobacter sp. KKU44 to grow in cellulosic agricultural wastes as a sole carbon source and exhibiting the high cellulose activity at high temperature suggested that this strain could be potentially developed further as a cellulose degrading strain for a production of low-cost substrate used in ethanol production.

Keywords: cellulose enzyme, bagasse, rice straw, rice husk, acinetobacter sp. KKU44

Procedia PDF Downloads 308
1535 Study of Inhibition of the End Effect Based on AR Model Predict of Combined Data Extension and Window Function

Authors: Pan Hongxia, Wang Zhenhua

Abstract:

In this paper, the EMD decomposition in the process of endpoint effect adopted data based on AR model to predict the continuation and window function method of combining the two effective inhibition. Proven by simulation of the simulation signal obtained the ideal effect, then, apply this method to the gearbox test data is also achieved good effect in the process, for the analysis of the subsequent data processing to improve the calculation accuracy. In the end, under various working conditions for the gearbox fault diagnosis laid a good foundation.

Keywords: gearbox, fault diagnosis, ar model, end effect

Procedia PDF Downloads 362
1534 Exogenous Ascorbic Acid Increases Resistance to Salt of Carthamus tinctorius

Authors: Banu Aytül Ekmekçi

Abstract:

Salinity stress has negative effects on agricultural yield throughout the world, affecting production whether it is for subsistence or economic gain. This study investigates the inductive role of vitamin C and its application mode in mitigating the detrimental effects of irrigation with diluted (10, 20 and 30 %) NaCl + water on carthamus tinctorius plants. The results show that 10% of salt water exhibited insignificant changes, while the higher levels impaired growth by reducing seed germination, dry weights of shoot and root, water status and chlorophyll contents. However, irrigation with salt water enhanced carotenoids and antioxidant enzyme activities. The detrimental effects of salt water were ameliorated by application of 100 ppm ascorbic acid (vitamin C). The inductive role of vitamin was associated with the improvement of seed germination, growth, plant water status, carotenoids, endogenous ascorbic acid and antioxidant enzyme activities. Moreover, vitamin C alone or in combination with 30% NaCl water increased the intensity of protein bands as well as synthesized additional new proteins with molecular weights of 205, 87, 84, 65 and 45 kDa. This could increase tolerance mechanisms of treated plants towards water salinity.

Keywords: salinity, stress, vitamin c, antioxidant, NaCl, enzyme

Procedia PDF Downloads 510
1533 A High-Throughput Enzyme Screening Method Using Broadband Coherent Anti-stokes Raman Spectroscopy

Authors: Ruolan Zhang, Ryo Imai, Naoko Senda, Tomoyuki Sakai

Abstract:

Enzymes have attracted increasing attentions in industrial manufacturing for their applicability in catalyzing complex chemical reactions under mild conditions. Directed evolution has become a powerful approach to optimize enzymes and exploit their full potentials under the circumstance of insufficient structure-function knowledge. With the incorporation of cell-free synthetic biotechnology, rapid enzyme synthesis can be realized because no cloning procedure such as transfection is needed. Its open environment also enables direct enzyme measurement. These properties of cell-free biotechnology lead to excellent throughput of enzymes generation. However, the capabilities of current screening methods have limitations. Fluorescence-based assay needs applicable fluorescent label, and the reliability of acquired enzymatic activity is influenced by fluorescent label’s binding affinity and photostability. To acquire the natural activity of an enzyme, another method is to combine pre-screening step and high-performance liquid chromatography (HPLC) measurement. But its throughput is limited by necessary time investment. Hundreds of variants are selected from libraries, and their enzymatic activities are then identified one by one by HPLC. The turn-around-time is 30 minutes for one sample by HPLC, which limits the acquirable enzyme improvement within reasonable time. To achieve the real high-throughput enzyme screening, i.e., obtain reliable enzyme improvement within reasonable time, a widely applicable high-throughput measurement of enzymatic reactions is highly demanded. Here, a high-throughput screening method using broadband coherent anti-Stokes Raman spectroscopy (CARS) was proposed. CARS is one of coherent Raman spectroscopy, which can identify label-free chemical components specifically from their inherent molecular vibration. These characteristic vibrational signals are generated from different vibrational modes of chemical bonds. With the broadband CARS, chemicals in one sample can be identified from their signals in one broadband CARS spectrum. Moreover, it can magnify the signal levels to several orders of magnitude greater than spontaneous Raman systems, and therefore has the potential to evaluate chemical's concentration rapidly. As a demonstration of screening with CARS, alcohol dehydrogenase, which converts ethanol and nicotinamide adenine dinucleotide oxidized form (NAD+) to acetaldehyde and nicotinamide adenine dinucleotide reduced form (NADH), was used. The signal of NADH at 1660 cm⁻¹, which is generated from nicotinamide in NADH, was utilized to measure the concentration of it. The evaluation time for CARS signal of NADH was determined to be as short as 0.33 seconds while having a system sensitivity of 2.5 mM. The time course of alcohol dehydrogenase reaction was successfully measured from increasing signal intensity of NADH. This measurement result of CARS was consistent with the result of a conventional method, UV-Vis. CARS is expected to have application in high-throughput enzyme screening and realize more reliable enzyme improvement within reasonable time.

Keywords: Coherent Anti-Stokes Raman Spectroscopy, CARS, directed evolution, enzyme screening, Raman spectroscopy

Procedia PDF Downloads 134
1532 Formulation and Evaluation of Antioxidant Cream Containing Nepalese Medicinal Plants

Authors: Ajaya Acharya, Prem Narayan Paudel, Rajendra Gyawali

Abstract:

Due to strong tyrosinase inhibition and antioxidant effects, green tea and Licorice are valuable in cosmetics for the skin. However, data on the addition of essential oils to green tea and Licorice in cream formulation to examine antioxidant activities are limited. The purpose of this study was to develop and assess a phytocosmetic cream’s antioxidant and tyrosinase inhibitory characteristics using crude aqueous extracts of green tea, Licorice, and loaded with essential oils. To load the best concentration on cream formulations, plant aqueous extracts were designed, evaluated, and correlated in terms of total phenolic content (TPC), total flavonoids content (TFC), and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity. Moreover, o. tenuiflorum and o. basilicum essential oils were extracted and added to a cream formulation. The spreadability profile, water washability, centrifugation test, and organoleptic characteristics of formulated oil in water cream were all satisfactory. The cream exhibited a non-Newtonian rheological profile and pH range of 6.353 ± 0.065 to 6.467±0.050 over successive 0, 1, 2, and 3 months at normal room temperature. The 50% inhibition concentrations shown by herbal cream were 13.764 ± 0.153 µg/ml, 301.445 ± 1.709 µg/ml and 8.082 ± 0.055 respectively for 2, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, ferric (Fe³⁺) reducing antioxidant power (FRAP) and 2, 2’-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity, and that of standard ascorbic acid were 6.716 ± 0.077 µg/ml, 171.604 ± 1.551µg/ml and 5.645±0.034µg/ml which showed formulated cream had strong antioxidant characteristics. The formulated herbal cream with a 50% tyrosinase inhibition concentration of 22.254 ± 0.369µg/ml compared to standard Kojic acid 12.535 ± 0.098µg/ml demonstrated a satisfactory tyrosinase inhibition profile for skin whitening property. Herbal cream was reportedly stable in physical and chemical parameters for successive 0, 1, 2, and 3 months at both real and accelerated time study zones, according to obtained stability study results.

Keywords: crude extracts, antioxidant, tyrosinase inhibition, green tea polyphenols

Procedia PDF Downloads 6
1531 In vitro Control of Mycosphaerella arachidis Deighton the Early Leaf Spot Disease Pathogen of Groundnut by the Extracts from Six Medicinal Plants

Authors: Matthew Omoniyi Adebola, Jude E Amadi

Abstract:

Ground nut (Arachis hypogaea) is one of the most popular commercial crops in Nigeria. Its suc-cessful production has been drastically affected by early leaf spot disease caused by Mycosphae-rella arachidis Deighton. In vitro control of the pathogen by six medicinal plants (Entada afri-cana, Vitex doniana, Lawsonia inermis, Azadirachta indica, Acalypha hispida and Nuaclea lati-folia) was assessed in this study. The extracts of the plants were prepared using cold and hot wa-ter and alcohol. The pathogen was isolated from ground nut infected with early leaf spot disease. The results revealed a great significant difference (P<0.05) in yield of extracts between cold water, hot water, and alcohol extracts. A significant difference (P<0.05) was observed in percentage concentrations of the various phytochemical constituents present in the extracts. Flavonoids per-centage concentration was the highest (0.68 - 1.95%) followed by saponnin(0.09-1.53%) in N. latifolia extracts. Steroiods had the least percentage concentrations (0.00- 0.09%)followed by terpenoids(0.02–0.71%) and proanthocyannin (0.05 – 0.86%). N. latifolia extracts produced the highest percentage concentrations (0.07–1.95%) of all the phytochemicals followed by A. indi-ca(0.05–1.64%)and least concentrations were obtained in A. hispidia(0.09 – 0.87%)and V. do-niana (0.00–0.88%). The extracts inhibited spore germination and growth of M. arachidis. The inhibition by alcohol extracts was high and significantly different (P>0.05) from cold and hot water extracts. Alcohol extract of L. inermis gave 100% spore germination inhibition followed by N. latifolia and A.indica with 97.75% and 85.60% inhibition respectively. Therefore, field trials of these six medicinal plants on the control of early leaf spot disease of ground nut are rec-ommended.

Keywords: groundnut, phytochemicals, medicinal plants, extracts, inhibition

Procedia PDF Downloads 291
1530 Effects of Bacterial Inoculants and Enzymes Inoculation on the Fermentation and Aerobic Stability of Potato Hash Silage

Authors: B. D. Nkosi, T. F. Mutavhatsindi, J. J. Baloyi, R. Meeske, T. M. Langa, I. M. M. Malebana, M. D. Motiang

Abstract:

Potato hash (PH), a by-product from food production industry, contains 188.4 g dry matter (DM)/kg and 3.4 g water soluble carbohydrate (WSC)/kg DM, and was mixed with wheat bran (70:30 as is basis) to provide 352 g DM/kg and 315 g WSC/kg DM. The materials were ensiled with or without silage additives in 1.5L anaerobic jars (3 jars/treatment) that were kept at 25-280 C for 3 months. Four types of silages were produced which were: control (no additive, denoted as T1), celluclast enzyme (denoted as T2), emsilage bacterial inoculant (denoted as T3) and silosolve bacterial inoculant (denoted as T4). Three jars per treatment were opened after 3 months of ensiling for the determination of nutritive values, fermentation characteristics and aerobic stability. Aerobic stability was done by exposing silage samples to air for 5 days. The addition of enzyme (T2) was reduced (P<0.05) silage pH, fiber fractions (NDF and ADF) while increasing (P < 0.05) residual WSC and lactic acid (LA) production, compared to other treatments. Silage produced had pH of < 4.0, indications of well-preserved silage. Bacterial inoculation (T3 and T4) improved (P < 0.05) aerobic stability of the silage, as indicated by increased number of hours and lower CO2 production, compared to other treatments. However, the aerobic stability of silage was worsen (P < 0.05) with the addition of an enzyme (T2). Further work to elucidate these effects on nutrient digestion and growth performance on ruminants fed the silage is needed.

Keywords: by-products, digestibility, feeds, inoculation, ruminants, silage

Procedia PDF Downloads 433
1529 Electrochemical and Theoretical Quantum Approaches on the Inhibition of C1018 Carbon Steel Corrosion in Acidic Medium Containing Chloride Using Newly Synthesized Phenolic Schiff Bases Compounds

Authors: Hany M. Abd El-Lateef

Abstract:

Two novel Schiff bases, 5-bromo-2-[(E)-(pyridin-3-ylimino) methyl] phenol (HBSAP) and 5-bromo-2-[(E)-(quinolin-8-ylimino) methyl] phenol (HBSAQ) have been synthesized. They have been characterized by elemental analysis and spectroscopic techniques (UV–Vis, IR and NMR). Moreover, the molecular structure of HBSAP and HBSAQ compounds are determined by single crystal X-ray diffraction technique. The inhibition activity of HBSAP and HBSAQ for carbon steel in 3.5 %NaCl+0.1 M HCl for both short and long immersion time, at different temperatures (20-50 ºC), was investigated using electrochemistry and surface characterization. The potentiodynamic polarization shows that the inhibitors molecule is more adsorbed on the cathodic sites. Its efficiency increases with increasing inhibitor concentrations (92.8 % at the optimal concentration of 10-3 M for HBSAQ). Adsorption of the inhibitors on the carbon steel surface was found to obey Langmuir’s adsorption isotherm with physical/chemical nature of the adsorption, as it is shown also by scanning electron microscopy. Further, the electronic structural calculations using quantum chemical methods were found to be in a good agreement with the results of the experimental studies.

Keywords: carbon steel, Schiff bases, corrosion inhibition, SEM, electrochemical techniques

Procedia PDF Downloads 384
1528 Point-Mutation in a Rationally Engineered Esterase Inverts its Enantioselectivity

Authors: Yasser Gaber, Mohamed Ismail, Serena Bisagni, Mohamad Takwa, Rajni Hatti-Kaul

Abstract:

Enzymes are safe and selective catalysts. They skillfully catalyze chemical reactions; however, the native form is not usually suitable for industrial applications. Enzymes are therefore engineered by several techniques to meet the required catalytic task. Clopidogrel is recorded among the five best selling pharmaceutical in 2010 under the brand name Plavix. The commonly used route for production of the drug on an industrial scale is the synthesis of the racemic mixture followed by diastereomeric resolution to obtain the pure S isomer. The process consumes a lot of solvents and chemicals. We have evaluated a biocatalytic cleaner approach for asymmetric hydrolysis of racemic clopidogrel. Initial screening of a selected number of hydrolases showed only one enzyme EST to exhibit activity and selectivity towards the desired stereoisomer. As the crude EST is a mixture of several isoenzymes, a homology model of EST-1 was used in molecular dynamic simulations to study the interaction of the enzyme with R and S isomers of clopidogrel. Analysis of the geometric hindrances of the tetrahedral intermediates revealed a potential site for mutagenesis in order to improve the activity and the selectivity. Single point mutation showed dramatic increase in activity and inversion of the enantioselectivity (400 fold change in E value).

Keywords: biocatalysis, biotechnology, enzyme, protein engineering, molecular modeling

Procedia PDF Downloads 440
1527 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Cross-Linked Redox Enzyme/Nanomaterials

Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff

Abstract:

In this work, we have described a new 3-dimensional (3D) network of cross-linked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.

Keywords: redox enzyme, nanomaterials, biosensors, electrical communication

Procedia PDF Downloads 452
1526 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Crosslinked Redox Enzyme/Carbon Nanotube on a Thiol-Modified Au Surface

Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff

Abstract:

In this work, we have described a new 3-dimensional (3D) network of crosslinked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.

Keywords: biosensor, nanomaterials, redox enzyme, thiol-modified Au surface

Procedia PDF Downloads 325
1525 Selective Effect of Occipital Alpha Transcranial Alternating Current Stimulation in Perception and Working Memory

Authors: Andreina Giustiniani, Massimiliano Oliveri

Abstract:

Rhythmic activity in different frequencies could subserve distinct functional roles during visual perception and visual mental imagery. In particular, alpha band activity is thought to play a role in active inhibition of both task-irrelevant regions and processing of non-relevant information. In the present blind placebo-controlled study we applied alpha transcranial alternating current stimulation (tACS) in the occipital cortex both during a basic visual perception and a visual working memory task. To understand if the role of alpha is more related to a general inhibition of distractors or to an inhibition of task-irrelevant regions, we added a non visual distraction to both the tasks.Sixteen adult volunteers performed both a simple perception and a working memory task during 10 Hz tACS. The electrodes were placed over the left and right occipital cortex, the current intensity was 1 mA peak-to-baseline. Sham stimulation was chosen as control condition and in order to elicit the skin sensation similar to the real stimulation, electrical stimulation was applied for short periods (30 s) at the beginning of the session and then turned off. The tasks were split in two sets, in one set distracters were included and in the other set, there were no distracters. Motor interference was added by changing the answer key after subjects completed the first set of trials.The results show that alpha tACS improves working memory only when no motor distracters are added, suggesting a role of alpha tACS in inhibiting non-relevant regions rather than in a general inhibition of distractors. Additionally, we found that alpha tACS does not affect accuracy and hit rates during the visual perception task. These results suggest that alpha activity in the occipital cortex plays a different role in perception and working memory and it could optimize performance in tasks in which attention is internally directed, as in this working memory paradigm, but only when there is not motor distraction. Moreover, alpha tACS improves working memory performance by means of inhibition of task-irrelevant regions while it does not affect perception.

Keywords: alpha activity, interference, perception, working memory

Procedia PDF Downloads 248
1524 Multi-Walled Carbon Nanotubes Doped Poly (3,4 Ethylenedioxythiophene) Composites Based Electrochemical Nano-Biosensor for Organophosphate Detection

Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar

Abstract:

One of the most publicized and controversial issue in crop production is the use of agrichemicals- also known as pesticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. Therefore, detection of OPs is very necessary for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared PEDOT-MWCNT/FTO and AChE/PEDOT-MWCNT/FTO nano-biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Electrochemical studies were done using Cyclic Voltammetry (CV) or Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS). Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared nano-biosensor is observed to be 30 days and seven times, respectively. The application of the developed nano-biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed nano-biosensor made them reliable, sensitive and a low cost process.

Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, nano-biosensor, oxime (2-PAM)

Procedia PDF Downloads 428
1523 Inhibition of Glutamate Carboxypeptidase Activity Protects Retinal Ganglionic Cell Death Induced by Ischemia-Reperfusion by Reducing the Astroglial Activation in Rat

Authors: Dugeree Otgongerel, Kyong Jin Cho, Yu-Han Kim, Sangmee Ahn Jo

Abstract:

Excessive activation of glutamate receptor is thought to be involved in retinal ganglion cell (RGC) death after ischemia- reperfusion damage. Glutamate carboxypeptidase II (GCPII) is an enzyme responsible for the synthesis of glutamate. Several studies showed that inhibition of GCPII prevents or reduces cellular damage in brain diseases. Thus, in this study, we examined the expression of GCPII in rat retina and the role of GCPII in acute high IOP ischemia-reperfusion damage of eye by using a GCPII inhibitor, 2-(phosphonomethyl) pentanedioic acid (2-PMPA). Animal model of ischemia-reperfusion was induced by raising the intraocular pressure for 60 min and followed by reperfusion for 3 days. Rats were randomly divided into four groups: either intra-vitreous injection of 2-PMPA (11 or 110 ng per eye) or PBS after ischemia-reperfusion, 2-PMPA treatment without ischemia-reperfusion and sham-operated normal control. GCPII immunoreactivity in normal rat retina was detected weakly in retinal nerve fiber layer (RNFL) and retinal ganglionic cell layer (RGL) and also inner plexiform layer (IPL) and outer plexiform layer (OPL) strongly where are co-stained with an anti-GFAP antibody, suggesting that GCPII is expressed mostly in Muller and astrocytes. Immunostaining with anti-BRN antibody showed that ischemia- reperfusion caused RGC death (31.5 %) and decreased retinal thickness in all layers of damaged retina, but the treatment of 2-PMPA twice at 0 and 48 hour after reperfusion blocked these retinal damages. GCPII level in RNFL layer was enhanced after ischemia-reperfusion but was blocked by PMPA treatment. This result was confirmed by western blot analysis showing that the level of GCPII protein after ischemia- reperfusion increased by 2.2- fold compared to control, but this increase was blocked almost completely by 110 ng PMPA treatment. Interestingly, GFAP immunoreactivity in the retina after ischemia- reperfusion followed by treatment with PMPA showed similar pattern to GCPII, increase after ischemia-reperfusion but reduction to the normal level by PMPA treatment. Our data demonstrate that increase of GCPII protein level after ischemia-reperfusion injury is likely to cause glial activation and/or retinal cell death which are mediated by glutamate, and GCPII inhibitors may be useful in treatment of retinal disorders in which glutamate excitotoxicity is pathogenic.

Keywords: glutamate carboxypepptidase II, glutamate excitotoxicity, ischemia-reperfusion, retinal ganglion cell

Procedia PDF Downloads 337
1522 Angiotensin Converting Enzyme Gene Polymorphism Studies: A Case-Control Study

Authors: Salina Y. Saddick

Abstract:

Mild gestational hyperglycemia (MGH) is a very common complication of pregnancy that is characterized by intolerance to glucose. The association of angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism to MGH has been previously reported. In this study, we evaluated the association between ACE polymorphism and the risk of MGH in a Saudi population. We conducted a case-control study in a population of 100 MGH patients and 100 control subjects. ACE gene polymorphism was analyzed by the novel approach of tetraprimer amplification refractory mutation system (ARMS)-polymerase chain reaction (PCR). The frequency of ACE polymorphism was not associated with either alleles or genotypes in MGH patients. Glucose concentration was found to be significantly associated with the MGH group. Our study suggests that ACE genotypes were not associated with ACE polymorphism in a Saudi population.

Keywords: MGH, ACE, insertion polymorphism, deletion polymorphism

Procedia PDF Downloads 312
1521 Antioxidant Activity of the Methanolic Extract and Antimicrobial Activity of the Essential Oil of Rosmarinus officinalis L. Grown in Algeria

Authors: Nassim Belkacem, Amina Azzam, Dalila Haouchine, Kahina Bennacer, Samira Soufit

Abstract:

Objective: To evaluate the antioxidant activity of the methanolic extract along with the antimicrobial activity of the essential oil of the aerial parts of Rosmarinus officinalis L. collected in the region of Bejaia (northern center of Algeria). Materials and methods: The polyphenols and flavonoids contents of the methanolic extract were measured. The antioxidant activity was evaluated using two methods: the ABTS method and DPPH assay. The antimicrobial activity was studied by the agar diffusion method against five bacterial strains (Three Gram positive strains and two Gram negative strains) and one fungus. Results: The total polyphenol and flavonoid content was about 43.8 mg gallic acid equivalent per gram (GA Eq/g) and 7.04 mg quercetin equivalent per gram (Q Eq/g), respectively. In the ABTS assay, the rosemary extract has shown an inhibition of 98.02% at the concentration of 500ug/ml with a half maximal inhibitory concentration value (IC50) of 194.92ug/ml. The results of DPPH assay have shown that the rosemary extract has an inhibition of 94.67 % with an IC50 value of 17.87ug/ml, which is lower than that of Butylhydroxyanisol (BHA) about 6.03ug/ml and ascorbic acid about 1.24μg/ml. The yield in essential oil of rosemary obtained by hydrodistillation was 1.42%. Based on the determination of the diameter of inhibition, different antimicrobial activity of the essential oil was revealed against the six tested microbes. Escherichia coli from the University Hospital (UH), Streptococcus aureus (UH) and Pseudomonas aeruginosa ATCC have a minimum inhibitory concentration value (MIC) of 62.5µl/ml. However, Bacillus sp (UH) and Staphylococcus aureus ATCC have an MIC value of 125μl/ml. The inhibition zone against Candida sp was about 24 mm. The aromatograms showed that the essential oil of rosemary exercises an antifungal activity more important than the antibacterial one.

Keywords: Rosmarinus officinalis L., maceration, essential oil, antioxidant, antimicrobial activity

Procedia PDF Downloads 512
1520 Caffeic Acid in Cosmetic Formulations: An Innovative Assessment

Authors: Caroline M. Spagnol, Vera L. B. Isaac, Marcos A. Corrêa, Hérida R. N. Salgado

Abstract:

Phenolic compounds are abundant in the Brazilian plant kingdom and they are part of a large and complex group of organic substances. Cinnamic acids are part of this group of organic compounds, and caffeic acid (CA) is one of its representatives. Antioxidants are compounds which act as free radical scavengers and, in other cases, such as metal chelators, both in the initiation stage and the propagation of oxidative process. The tyrosinase, polyphenol oxidase, is an enzyme that acts at various stages of melanin biosynthesis within the melanocytes and is considered a key molecule in this process. Some phenolic compounds exhibit inhibitory effects on melanogenesis by inhibiting the tyrosinase enzymatic activity and therefore has been the subject of studies. However, few studies have reported the effectiveness of these products and their safety. Objectives: To assess the inhibitory activity of tyrosinase, the antioxidant activity of CA and its cytotoxic potential. The method to evaluate the inhibitory activity of tyrosinase aims to assess the reduction transformation of L-dopa into dopaquinone reactions catalyzed by the enzyme. For evaluating the antioxidant activity was used the analytical methodology of DPPH radical inhibition. The cytotoxicity evaluation was carried out using the MTT method (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide), a colorimetric assay which determines the amount of insoluble violet crystals formed by the reduction of MTT in the mitochondria of living cells. Based on the results obtained during the study, CA has low activity as a depigmenting agent. However, it is a more potent antioxidant than ascorbic acid (AA), since a lower amount of CA is sufficient to inhibit 50% of DPPH radical. The results are promising since CA concentration that promoted 50% toxicity in HepG2 cells (IC50=781.8 μg/mL) is approximately 330 to 400 times greater than the concentration required to inhibit 50% of DPPH (IC50 DPPH= 2.39 μg/mL) and ABTS (IC50 ABTS= 1.96 μg/mL) radicals scavenging activity, respectively. The maximum concentration of caffeic acid tested (1140 mg /mL) did not reach 50% of cell death in HaCat cells. Thus, it was concluded that the caffeic acid does not cause toxicity in HepG2 and HaCat cells in the concentrations required to promote antioxidant activity in vitro, and it can be applied in topical products.

Keywords: caffeic acid, antioxidant, cytotoxicity, cosmetic

Procedia PDF Downloads 370
1519 Statistical Design of Central Point for Evaluate the Combination of PH and Cinnamon Essential Oil on the Antioxidant Activity Using the ABTS Technique

Authors: H. Minor-Pérez, A. M. Mota-Silva, S. Ortiz-Barrios

Abstract:

Substances of vegetable origin with antioxidant capacity have a high potential for application on the conservation of some foods, can prevent or reduce for example oxidation of lipids. However a food is a complex system whose wide variety of components wich can reduce or eliminate this antioxidant capacity. The antioxidant activity can be determined with the ABTS technique. The radical ABTS+ is generated from the acid 2, 2´ - Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). This radical is a composite color bluish-green, stable and with a spectrum of absorption into the UV-visible. The addition of antioxidants causes discoloration, value that can be reported as a percentage of inhibition of the cation radical ABTS+. The objective of this study was evaluated the effect of the combination of the pH and the essential oil of cinnamon (EOC) on inhibition of the radical ABTS+, using statistical design of central point (Design Expert) to obtain mathematical models that describe this phenomenon. Were evaluated 17 treatments with combinations of pH 5, 6 and 7 (citrate-phosphate buffer) and the concentration of essential oil of cinnamon (C): 0 µg/mL, 100 µg/mL and 200 µg/mL. The samples were analyzed using the ABTS technique. The reagent was dissolved in methanol 80% to standardized the absorbance to 0.7 +/- 0.1 at 754 nm. Then samples were mixed with reagent standardized ABTS and after 1 min and 7 min absorbance was read for each treatment at 754 nm. Was used a curve pattern with vitamin C and reported the values as inhibition (%) of radical ABTS+. The statistical analysis shows the experimental results were adjusted to a quadratic model, to the times of 1 min and 7 min. This model describes the influence of the factors investigated independently: pH and cinnamon essential oil (µg/mL) and the effect of the interaction between pH*C, as well as the square of the pH2 and C2. The model obtained was Y = 10.33684 - 3.98118*pH + 1.17031*C + 0.62745*pH2 - 3.26675*10-3*C2 - 0.013112*pH*C, where Y is the response variable. The coefficient of determination was 0.9949 for 1 min. The equation was obtained at 7 min and = - 10.89710 + 1.52341*pH + 1.32892*C + 0.47953*pH2 - 3.56605*10- *C2 - 0.034687*pH*C. The coefficient of determination was 0.9970. This means that only 1% of the total variation is not explained by the developed models. At 100 µg/mL of EOC was obtained an inhibition percentage of 80%, 84% and 97% for the pH values of 5,6 and 7 respectively, while a value of 200 µg/mL the inhibition (%) was very similar for the treatments. In these values of pH was obtained an inhibition close 97%. In conclusion the pH does not have a significant effect on the antioxidant capacity, while the concentration of EOC was decisive for the antioxidant capacity. The authors acknowledge the funding provided by the CONACYT for the project 131998.

Keywords: antioxidant activity, ABTS technique, essential oil of cinnamon, mathematical models

Procedia PDF Downloads 398
1518 Molecular Docking and Synthesis of Nitrogen-Containing Bisphosphonates

Authors: S. Ghalem, M. Mesmoudi, I. Daoudand, H. Allali

Abstract:

The nitrogen-containing bisphosphonates (N-BPs) are well established as the treatments of choice for disorders of excessive bone resorption, myeloma and bone metastases, and osteoporosis. They inhibit farnesyl pyrophosphate synthase (FFPS), a key enzyme in the mevalonate pathway, resulting in inhibition of the prenylation of small GTP-binding proteins in osteoclasts and disruption of their cytoskeleton, adhesion/spreading, and invasion of cancer cells. A very few examples for synthesis of α-amino bisphosphonates based on several amino acids are known from the literature. In the present work, esters of aminoacid react with ketophsophonate (or their analog acid or acyl) to afford the desired products, α-iminophosphonates. The reaction of imine with dimethyl phosphate in the presence of catalytic amount of I2 give ester of α-aminobisphosphonate as sole product in good yield. Finally, we used computational docking methods to predict how several α-aminobisphosphonates bind to FPPS and how R and X influence. Pamidronate, β-aminobisphosphonate already marketed, was used as reference. These results are of interest since they represent a new and simple way to sythesize α-aminobisphosphonates with a free COOH group increased by R2 functionalisable and opening up the possibility of using the molecular docking to facilitate the design of other, novel FFPS inhibitors.

Keywords: drug research, cancer, α-amino bisphosphonates, molecular docking

Procedia PDF Downloads 265
1517 Enzyme Treatment of Sorghum Dough: Modifications of Rheological Properties and Product Characteristics

Authors: G. K. Sruthi, Sila Bhattacharya

Abstract:

Sorghum is an important food crop in the dry tropical areas of the world, and possesses significant levels of phytochemicals and dietary fiber to offer health benefits. However, the absence of gluten is a limitation for converting the sorghum dough into sheeted/flattened/rolled products. Chapathi/roti (flat unleavened bread prepared conventionally from whole wheat flour dough) was attempted from sorghum as wheat gluten causes allergic reactions leading to celiac disease. Dynamic oscillatory rheology of sorghum flour dough (control sample) and enzyme treated sorghum doughs were studied and linked to the attributes of the finished ready-to-eat product. Enzymes like amylase, xylanase, and a mix of amylase and xylanase treated dough affected drastically the rheological behaviour causing a lowering of dough consistency. In the case of amylase treated dough, marked decrease of the storage modulus (G') values from 85513 Pa to 23041 Pa and loss modulus (G") values from 8304 Pa to 7370 Pa was noticed while the phase angle (δ) increased from 5.6 to 10.1o for treated doughs. There was a 2 and 3 fold increase in the total sugar content after α-amylase and xylanase treatment, respectively, with simultaneous changes in the structure of the dough and finished product. Scanning electron microscopy exhibited enhanced extent of changes in starch granules. Amylase and mixed enzyme treatment produced a sticky dough which was difficult to roll/flatten. The dough handling properties were improved by the use of xylanase and quality attributes of the chapath/roti. It is concluded that enzyme treatment can offer improved rheological status of gluten free doughs and products.

Keywords: sorghum dough, amylase, xylanase, dynamic oscillatory rheology, sensory assessment

Procedia PDF Downloads 391
1516 Intracellular Sphingosine-1-Phosphate Receptor 3 Contributes to Lung Tumor Cell Proliferation

Authors: Michela Terlizzi, Chiara Colarusso, Aldo Pinto, Rosalinda Sorrentino

Abstract:

Sphingosine-1-phosphate (S1P) is a membrane-derived bioactive phospholipid exerting a multitude of effects on respiratory cell physiology and pathology through five S1P receptors (S1PR1-5). Higher levels of S1P have been registered in a broad range of respiratory diseases, including inflammatory disorders and cancer, although its exact role is still elusive. Based on our previous study in which we found that S1P/S1PR3 is involved in an inflammatory pattern via the activation of Toll-like Receptor 9 (TLR9), highly expressed on lung cancer cells, the main goal of the current study was to better understand the involvement of S1P/S1PR3 pathway/signaling during lung carcinogenesis, taking advantage of a mouse model of first-hand smoke exposure and of carcinogen-induced lung cancer. We used human samples of Non-Small Cell Lung Cancer (NSCLC), a mouse model of first-hand smoking, and of Benzo(a)pyrene (BaP)-induced tumor-bearing mice and A549 lung adenocarcinoma cells. We found that the intranuclear, but not the membrane, localization of S1PR3 was associated to the proliferation of lung adenocarcinoma cells, the mechanism that was correlated to human and mouse samples of smoke-exposure and carcinogen-induced lung cancer, which were characterized by higher utilization of S1P. Indeed, the inhibition of the membrane S1PR3 did not alter tumor cell proliferation after TLR9 activation. Instead, according to the nuclear localization of sphingosine kinase (SPHK) II, the enzyme responsible for the catalysis of the S1P last step synthesis, the inhibition of the kinase completely blocked the endogenous S1P-induced tumor cell proliferation. These results prove that the endogenous TLR9-induced S1P can on one side favor pro-inflammatory mechanisms in the tumor microenvironment via the activation of cell surface receptors, but on the other tumor progression via the nuclear S1PR3/SPHK II axis, highlighting a novel molecular mechanism that identifies S1P as one of the crucial mediators for lung carcinogenesis-associated inflammatory processes and that could provide differential therapeutic approaches especially in non-responsive lung cancer patients.

Keywords: sphingosine-1-phosphate (S1P), S1P Receptor 3 (S1PR3), smoking-mice, lung inflammation, lung cancer

Procedia PDF Downloads 196
1515 Isolation and Characterization of Anti-melanoma (Skin Cancer) Compounds from Corchorus olitorius .L

Authors: Peramachi Sathiyamoorthy, Jacop Gopas, Avi Golan Goldhirsh

Abstract:

Corchorus olitorius is a leafy vegetable and an industrial crop. The herb has antioxidant, anti inflammatory, and anti-cancer properties. To assay the pharmaceutical properties, aqueous extracts of leaves and seeds from C. olitorius were tested against drug resistant melanoma cell line. The test showed LC50 of the extract was 0.08µg/ml. Aqueous seed extract exhibited higher melanoma inhibiting activity than leaf extract. Dialysis of seed extract showed that the active compound is less than 12 KDa. The compound with <3 KDa MW separated by microconcentration of seed extract showed 70.5 % inhibition of melanoma cell growth. Among the two fractions obtained by Gel filtration with G10 column, the first fraction at 1:2000 dilutions exhibited 100% inhibition of melanoma growth. The compound with Rf value 0.86 (MA4) isolated by TLC separation showed about 98% cytotoxicity against melanoma at 1: 1000 dilutions. Furthermore, HPLC separation of MA4 compound with Superdex 75 column resulted in 4 compounds. Out of 4, one compound showed melanoma inhibition. The active compound is identified by reagent methods as Strophanthidin. Further toxicological and clinical studies will lead to the development of a potential drug to treat drug resistant melanoma.

Keywords: corchorus olitorius, melanoma, drug development, strophanthidin

Procedia PDF Downloads 127
1514 Phytochemical Analysis and in vitro Biological Activities of an Ethyl Acetate Extract from the Peel of Punica granatum L. var. Dente di Cavallo

Authors: Silvia Di Giacomo, Marcello Locatelli, Simone Carradori, Francesco Cacciagrano, Chiara Toniolo, Gabriela Mazzanti, Luisa Mannina, Stefania Cesa, Antonella Di Sotto

Abstract:

Hyperglycemia represents the main pathogenic factor in the development of diabetes complications and has been found associated with mitochondrial dysfunction and oxidative stress, which in turn increase cell dysfunction. Therefore, counteract oxidative species appears to be a suitable strategy for preventing the hyperglycemia-induce cell damage and support the pharmacotherapy of diabetes and metabolic diseases. Antidiabetic potential of many food sources has been linked to the presence of polyphenolic metabolites, particularly flavonoids such as quercetin and its glycosylated form rutin. In line with this evidence, in the present study, we assayed the potential anti-hyperglycemic activity of an ethyl acetate extract from the peel of Punica granatum L. var. Dente di Cavallo (PGE), a fruit well known to traditional medicine for the beneficial properties of its edible juice. The effect of the extract on the glucidic metabolism has been evaluated by assessing its ability to inhibit α-amylase and α-glucosidase, two digestive enzymes responsible for the hydrolysis of dietary carbohydrates: their inhibition can delay the carbohydrate digestion and reduce glucose absorption, thus representing an important strategy for the management of hyperglycemia. Also, the PGE ability to block the release of advanced glycated end-products (AGEs), whose accumulation is known to be responsible for diabetic vascular complications, was studied. The iron-reducing and chelating activities, which are the primary mechanisms by which AGE inhibitors stop their metal-catalyzed formation, were evaluated as possible antioxidant mechanisms. At last, the phenolic content of PGE was characterized by chromatographic and spectrophotometric methods. Our results displayed the ability of PGE to inhibit α-amylase enzyme with a similar potency to the positive control: the IC₅₀ values were 52.2 (CL 27.7 - 101.2) µg/ml and 35.6 (CL 22.8 - 55.5) µg/ml for acarbose and PGE, respectively. PGE also inhibited the α-glucosidase enzyme with about a 25 higher potency than the positive controls of acarbose and quercetin. Furthermore, the extract exhibited ferrous and ferric ion chelating ability, with a maximum effect of 82.1% and 80.6% at a concentration of 250 µg/ml respectively, and reducing properties, reaching the maximum effect of 80.5% at a concentration of 10 µg/ml. At last, PGE was found able to inhibit the AGE production (maximum inhibition of 82.2% at the concentration of 1000 µg/ml), although with lower potency with respect to the positive control rutin. The phytochemical analysis of PGE displayed the presence of high levels of total polyphenols, tannins, and flavonoids, among which ellagic acid, gallic acid and catechin were identified. Altogether these data highlight the ability of PGE to control the carbohydrate metabolism at different levels, both by inhibiting the metabolic enzymes and by affecting the AGE formation likely by chelating mechanisms. It is also noteworthy that peel from pomegranate, although being a waste of juice production, can be reviewed as a nutraceutical source. In conclusion, present results suggest the possible role of PGE as a remedy for preventing hyperglycemia complications and encourage further in vivo studies.

Keywords: anti-hyperglycemic activity, antioxidant properties, nutraceuticals, polyphenols, pomegranate

Procedia PDF Downloads 175
1513 Ethanol Precipitation and Characterization of L-Asparaginase from Aspergillus oryzae

Authors: L. L. Tundisi, A. Pessoa Jr., E. B. Tambourgi, E. Silveira, P. G. Mazzola

Abstract:

L-asparaginase (L-ASNase) is the gold standard treatment for acute lymphoblastic leukemia that mainly affects pediatric patients; treatment increases survival from 20% to 90%. The characterization of other L-Asparaginases, apart from the most used from Escherichia coli and Erwinia chrysanthemi, has been reported, but the choice of the most appropriate is still under debate. This choice should be based on its pharmacokinetics, immune hypersensitivity, doses, prices, pharmacodynamics. The main factors influencing the antileukemic activity of ASNase are enzymatic activity, Km, glutaminase activity, clearance of the enzyme and development of resistance. However, most of the commercialized enzyme present an intrinsic glutaminase activity, which is responsible for some side effects. In this study, glutaminase free asparaginase produced from Aspergillus oryzae was precipitated in different percentages of ethanol (0–80%), until optimum ethanol concentration of 60% (w/w) was found. Following, precipitation of crude L-ASNase was performed in a single step, using 60% (w/w) ethanol, under constant agitation and temperature. It presented activity of 135.45 U/mg and after gel filtration chromatography with Sephadex G-the enzymatic activity was 322.02 U/mg. The apparent molecular mass of the purified L-ASNase fraction was estimated by 10% SDS-PAGE. Proteins were stained with Coomassie Brilliant Blue R-250. The molar mass range was from 10 kDa to 250 kDa. L-ASNase from Aspergillus oryzae was characterized aiming possible therapeutic use. Four different buffers (phosphate-citrate buffer pH 2.6 to 5.8; phosphate buffer pH 5.8 to 7.4; Tris - HCl pH 7.4 to 9.0; and carbonate buffer pH 9.8 to 10.6) were used to measure the optimum pH for L-ASNase activity. The optimum temperature for enzyme activity was measured at optimal pH conditions (Tris-HCl and phosphate buffer, pH 7.4) at different temperatures ranging from 5 to 55°C. All activities were calculated by quantifying the free ammonia, using the Nessler reagent. The kinetic parameters calculation, e.g. Michaelis-Menten constant (Km), maximum velocity (Vmax) and Hills coefficient (n), were performed by incubating the enzyme in different concentrations of the substrate at optimum conditions of pH and fitted on Hill’s equation. This glutaminase free asparaginase showed a low Km (3.39 mM and 3.81 mM) and enzymatic activity of 135.45 U/mg after precipitation with ethanol. After gel filtration chromatography it rose to 322.02 U/mg. Optimum activity was found between pH 5.8 - 9.0, best activity results with phosphate buffer pH 7.4 and Tris-HCl pH 7.4 and showed activity from 5°C to 55°C. These results indicate that L-ASNase from A. oryzae has the potential for human use.

Keywords: biopharmaceuticals, bioprocessing, bioproducts, biotechnology, enzyme activity, ethanol precipitation

Procedia PDF Downloads 285
1512 Pectin Degrading Enzyme: Entrapment of Pectinase Using Different Synthetic and Non-Synthetic Polymers for Continuous Degradation of Pectin Polymer

Authors: Haneef Ur Rehman, Afsheen Aman, Abdul Hameed Baloch, Shah Ali Ul Qader

Abstract:

Pectinase is a heterogeneous group of enzymes that catalyze the hydrolysis of pectin substances and widely has been used in food and textile industries. In current study, pectinase from B. licheniformis KIBGE-IB21 was immobilized within different polymers (calcium alginate beads, polyacrylamide gel and agar-agar matrix) to enhance its catalytic properties. Polyacrylamide gel was found to be most promising one and gave maximum (89%) immobilization yield. While less immobilization yield was observed in case of calcium alginate beads that only retained 46 % activity. The reaction time for maximum pectinolytic activity was increased from 5.0 to 10 minutes after immobilization. The temperature of pectinase for maximum enzyme activity was increased from 45 °C to 50 °C and 55 °C when it was immobilized within agar-agar and calcium alginate beads, respectively. The optimum pH of pectinase didn’t alter when it was immobilized within polyacrylamide gel and calcium alginate beads, but in case of agar-agar it was changed from pH 10 to pH 9.0. Thermal stability of pectinase was improved after immobilization and immobilized pectinase showed higher toleration against different temperatures as compared to free enzyme. It can be concluded that the entrapment is a simple, single step and promising procedure to immobilized pectinase within different synthetic and non-synthetic polymers and enhanced its catalytic properties.

Keywords: pectinase, characterization immobilization, polyacrylamide, agar-agar, calcium alginate beads

Procedia PDF Downloads 601