Search results for: protein stability prediction
5054 Earthquake Identification to Predict Tsunami in Andalas Island, Indonesia Using Back Propagation Method and Fuzzy TOPSIS Decision Seconder
Authors: Muhamad Aris Burhanudin, Angga Firmansyas, Bagus Jaya Santosa
Abstract:
Earthquakes are natural hazard that can trigger the most dangerous hazard, tsunami. 26 December 2004, a giant earthquake occurred in north-west Andalas Island. It made giant tsunami which crushed Sumatra, Bangladesh, India, Sri Lanka, Malaysia and Singapore. More than twenty thousand people dead. The occurrence of earthquake and tsunami can not be avoided. But this hazard can be mitigated by earthquake forecasting. Early preparation is the key factor to reduce its damages and consequences. We aim to investigate quantitatively on pattern of earthquake. Then, we can know the trend. We study about earthquake which has happened in Andalas island, Indonesia one last decade. Andalas is island which has high seismicity, more than a thousand event occur in a year. It is because Andalas island is in tectonic subduction zone of Hindia sea plate and Eurasia plate. A tsunami forecasting is needed to mitigation action. Thus, a Tsunami Forecasting Method is presented in this work. Neutral Network has used widely in many research to estimate earthquake and it is convinced that by using Backpropagation Method, earthquake can be predicted. At first, ANN is trained to predict Tsunami 26 December 2004 by using earthquake data before it. Then after we get trained ANN, we apply to predict the next earthquake. Not all earthquake will trigger Tsunami, there are some characteristics of earthquake that can cause Tsunami. Wrong decision can cause other problem in the society. Then, we need a method to reduce possibility of wrong decision. Fuzzy TOPSIS is a statistical method that is widely used to be decision seconder referring to given parameters. Fuzzy TOPSIS method can make the best decision whether it cause Tsunami or not. This work combines earthquake prediction using neural network method and using Fuzzy TOPSIS to determine the decision that the earthquake triggers Tsunami wave or not. Neural Network model is capable to capture non-linear relationship and Fuzzy TOPSIS is capable to determine the best decision better than other statistical method in tsunami prediction.Keywords: earthquake, fuzzy TOPSIS, neural network, tsunami
Procedia PDF Downloads 4955053 The Importance of Functioning and Disability Status Follow-Up in People with Multiple Sclerosis
Authors: Sanela Slavkovic, Congor Nad, Spela Golubovic
Abstract:
Background: The diagnosis of multiple sclerosis (MS) is a major life challenge and has repercussions on all aspects of the daily functioning of those attained by it – personal activities, social participation, and quality of life. Regular follow-up of only the neurological status is not informative enough so that it could provide data on the sort of support and rehabilitation that is required. Objective: The aim of this study was to establish the current level of functioning of persons attained by MS and the factors that influence it. Methods: The study was conducted in Serbia, on a sample of 108 persons with relapse-remitting form of MS, aged 20 to 53 (mean 39.86 years; SD 8.20 years). All participants were fully ambulatory. Methods applied in the study include Expanded Disability Status Scale-EDSS and World Health Organization Disability Assessment Schedule, WHODAS 2.0 (36-item version, self-administered). Results: Participants were found to experience the most problems in the domains of Participation, Mobility, Life activities and Cognition. The least difficulties were found in the domain of Self-care. Symptom duration was the only control variable with a significant partial contribution to the prediction of the WHODAS scale score (β=0.30, p < 0.05). The total EDSS score correlated with the total WHODAS 2.0 score (r=0.34, p=0.00). Statistically significant differences in the domain of EDSS 0-5.5 were found within categories (0-1.5; 2-3.5; 4-5.5). The more pronounced a participant’s EDSS score was, although not indicative of large changes in the neurological status, the more apparent the changes in the functional domain, i.e. in all areas covered by WHODAS 2.0. Pyramidal (β=0.34, p < 0.05) and Bowel and bladder (β=0.24, p < 0.05) functional systems were found to have a significant partial contribution to the prediction of the WHODAS score. Conclusion: Measuring functioning and disability is important in the follow-up of persons suffering from MS in order to plan rehabilitation and define areas in which additional support is needed.Keywords: disability, functionality, multiple sclerosis, rehabilitation
Procedia PDF Downloads 1225052 Nutrigenetic and Bioinformatic Analysis of Rice Bran Bioactives for the Treatment of Lifestyle Related Disease Diabetes and Hypertension
Authors: Md. Alauddin, Md. Ruhul Amin, Md. Omar Faruque, Muhammad Ali Siddiquee, Zakir Hossain Howlader, Mohammad Asaduzzaman
Abstract:
Diabetes and hypertension are the major lifestyle related diseases. The α-amylase and angiotensin converting enzymes (ACE) are the key enzymes that regulate diabetes and hypertension. The aim was to develop a drug for the treatment of diabetes and hypertension. The Rice Bran (RB) sample (Oryza sativa; BRRI-Dhan-84) was collected from the Bangladesh Rice Research Institute (BRRI), and rice bran proteins were isolated and hydrolyzed by hydrolyzing enzyme alcalase and trypsin. In vivo experiment suggested that rice bran bioactives has an effect on regulating the expression of several key gluconeogenesis and lipogenesis-regulating genes, such as glucose-6-phosphatase, phosphoenolpyruvate carboxykinase, and fatty acid synthase. The above genes have a connection of regulating the glucose level, lipids profile as well as act as an anti-inflammatory agent. A molecular docking, bioinformatics and in vitro experiments were performed. We found rice bran protein hydrolysates significantly (<0.05) influence the peptide concentration in the case of trypsin, alcalase, and (trypsin + alcalase) digestion. The in vitro analysis found that protein hydrolysate significantly (<0.05) reduced diabetic and hypertension as well as oxidative stress. A molecular docking study showed that the YY and IP peptide have a significantly strong binding affinity to the active site of the ACE enzyme and α-amylase with -7.8Kcal/mol and -6.2Kcal/mol, respectively. The Molecular dynamics (MD) simulation and Swiss ADME data analysis showed that less toxicity risk, good physicochemical properties, pharmacokinetics, and drug-likeness with drug scores 0.45 and 0.55 of YY and IP peptides, respectively. Thus, rice bran bioactive could be a good candidate for the treatment of diabetes and hypertension.Keywords: anti-hypertensive and anti-hyperglycemic, anti-oxidative, bioinformatics, in vitro study, rice bran proteins and peptides
Procedia PDF Downloads 615051 Modulation of Fish Allergenicity towards the Production of a Low Allergen Farmed Fish
Authors: Denise Schrama, Claudia Raposo, Pedro Rodrigues
Abstract:
Background: Food allergies are conducted by a hypersensitive response of the immune system. These allergies are a global concern for the public health. Consumption of fish is increasing worldwide as it is a healthy meat with high nutritional value. Unfortunately, fish can cause adverse immune-mediate reactions, affecting part of the population with higher incidence in children. β-parvalbumin, a small, highly conserved stable, calcium or magnesium binding muscle protein is the main fish allergen. In fish-allergic patients, cross-reactivity between different fish species exist due to recognition of highly identical protein regions. Enolases, aldolases, or fish gelatin are other identified fish allergens in some fish species. With no available cure for fish allergies, clinical management is only based on an avoidance diet aiming at the total exclusion of offending food. Methods: Mediterranean fish (S. aurata and D. labrax) were fed specifically designed diets, enriched in components that target the expression or inactivation of parvalbumin (creatine and EDTA, respectively). After 90 days fish were sampled and biological tissues were excised. Proteomics was used to access fish allergens characterization and expression in muscle while IgE assays to confirm the lower allergenic potential are conducted in patients with history of fish allergies. Fish welfare and quality of flesh were established with biochemical, texture and sensorial analysis. Results: Fish welfare shows no major impact between diets. In case of creatine supplementation in D. labrax proteomic analysis show a slight decrease in parvalbumin expression. No accumulation of this compound was found in muscle. For EDTA supplementation in S. aurata IgE assay show a slight decrease in allergenicity when using sera of fish allergic patients. Conclusion: Supplementation with these two compounds seems to change slightly the allergenicity of the two mean Mediterranean species.Keywords: fish allergies, fish nutrition, proteomics, aquaculture
Procedia PDF Downloads 1565050 ICAM1 Expression is Enhanced by TNFa through Histone Methylation in Human Brain Microvessel Cells
Authors: Ji-Young Choi, Jungjin Kim, Sang-Sun Yun, Sangmee Ahn Jo
Abstract:
Intracellular adhesion molecule1 (ICAM1) is a mediator of inflammation and involved in adhesion and transmigration of leukocytes to endothelial cells, resulting in enhancement of brain inflammation. We hypothesized that increase of ICAM1 expression in endothelial cells is an early step in the pathogenesis of brain diseases such as Alzheimer’s disease. Here, we report that ICAM1 expression is regulated by pro-inflammatory cytokine TNFa in human microvascular endothelial cell (HBMVEC). TNFa significantly increased ICAM1 mRNA and protein levels at the concentrations showing no cell toxicity. This increase was also shown in micro vessels of mouse brain 24 hours after treatment with TNFa (8 mg/kg, i.v). We then investigated the epigenetic mechanism involved in the induction of ICAM1 expression. Chromatin immunoprecipitation assay revealed that TNFa reduced methylation of histone3K9 (H3K9-2me) and histone3K27 (H3K27-3me), well-known modification as gene suppression, with in the ICAM1 promoter region. However, acetylation of H3K9 and H3K14, well-known modification as gene activation, was not changed by TNFa. Treatment of BIX01294, a specific inhibitor of histone methyltransferase G9a responsible for H3K9-2me, dramatically increased in ICAM1 mRNA and protein levels and overexpression of G9a gene suppressed TNFa-induced ICAM1 expression. In contrast, GSK126, an inhibitor of histone methyltransferase EZH2 responsible for H3K27-3me and valproic acid, an inhibitor of histone deacetylase (HDAC) did not affect ICAM1 expression. These results suggested that histone3 methylation is involved in ICAM1 repression. Moreover, TNFa or BIX01294-induced ICAM induction resulted in both enhancements in adhesion and transmigration of leukocyte on endothelial cell. This study demonstrates that TNFa upregulates ICAM1 expression through H3K9-2me and H3K27-3me within the ICAM1 promoter region, in which G9a is likely to play a pivotal role in ICAM1 transcription. Our study provides a novel mechanism for ICAM1 transcription regulation in HBMVEC.Keywords: ICAM1, TNFa, HBMVEC, H3K9-2me
Procedia PDF Downloads 3295049 Comparative Study on the Thickening/Viscosity of Ogbono Seed Powder from Irvingia gabonenesis and Irvingia wombolu Species
Authors: Orlando Ketebu
Abstract:
Ogbono seed is the seed obtained from African bush mango (Irvingia gabonenesis) and bitter bush mango (Irvingia wombolu). Irvingia gabonenesis is known for its sweet edible pulp while Irvingia wombolu has a bitter pulp. Their seed powder is used in cooking soup known as ogbono soup in Nigeria and in West Africa. The powder thickens when cooked and researches have shown that it has medicinal uses such as lowering cholesterol; aiding weight loss and helps in improving diabetes control. The nutritional composition of the seeds indicated that Irvingia gabonenesis contains 8.60% protein, 13.8% carbohydrate, 2.0% moisture, 1.5% crude fiber, 16.4% ash, and Irvingia wombolu contains 7.38% protein, 25.75% carbohydrate, 11.7% moisture, 0.84% crude fiber, 2.50% ash. Solvent extraction of these seeds has shown that the seed of the two species are oil seeds with approximately 70 % and 52 % for Irvingia gabonenesis and Irvingia wombolu respectively. One major setback using ogbono seed powder in cooking soup is identifying the specie of ogbono seed powder that thickens most within the same cooking condition and how temperature affects the thickness of ogbono seed powder which determines its viscosity and in turn affects the quality of the soup and its nutrients. This research work monitored how the viscosity of ogbono species after being sun dried for one week changes with temperature. The result showed that heating 20 grams of powdered Irvingia gabonenesis and Irvingia wombolu at 30 OC, 45 OC, 55 OC, 65 OC, 75 OC, 85 OC and 95OC respectively in 200 ml beaker mixed with 100 ml of water, the viscosity of both species decreases with increase temperature with Irvingia wombolu having higher average viscosity in Pascal seconds (Pa.s) of 1.059, 1.042, 0.961, 0.778, 0.684, 0.675, and 0.495 at 30 OC, 45 OC, 55 OC, 65 OC, 75 OC, 85 OC and 95 OC respectively compared to Irvingia gabonenesis with result 0.982, 0.920, 0.720, 0.646, 0.597 and 0.446 at 30 OC, 45 OC, 55 OC, 65 OC, 75 OC, 85 OC and 95 OC respectively. Also from the experiment carried out it was found out that the viscosity of both species decreases with ageing of the seeds and the quantity of ogbono seed powder used and amount of water added also affected the viscosity of both species. In conclusion, it was observed that under the same cooking conditions (temperature range, quantity of water added, time and quantity of ogbono seed powder used), Irvingia wombolu had higher viscosity which is a measure of its thickness and quality of nutrients compared to Irvingia gabonenesis and the viscosity of both species decreases with increasing temperature.Keywords: ogbono seed powder, temperature, viscosity , soup
Procedia PDF Downloads 1895048 Previously Undescribed Cardiac Abnormalities in Two Unrelated Autistic Males with Causative Variants in CHD8
Authors: Mariia A. Parfenenko, Ilya S. Dantsev, Sergei V. Bochenkov, Natalia V. Vinogradova, Olga S. Groznova, Victoria Yu. Voinova
Abstract:
Introduction: Autism is the most common neurodevelopmental disorder. Autism is characterized by difficulties in social interaction and adherence to stereotypic behavioral patterns and frequently co-occurs with epilepsy, intellectual disabilities, connective tissue disorders, and other conditions. CHD8 codes for chromodomain-helicase-DNA-binding protein 8 - a chromatin remodeler that regulates cellular proliferation and neurodevelopment in embryogenesis. CHD8 is one of the genes most frequently involved in autism. Patients and methods: 2 unrelated male patients, P3 and P12, aged 3 and 12 years old, underwent whole genome sequencing, which determined that they both had different likely pathogenic variants, both previously undescribed in literature. Sanger sequencing later determined that P12 inherited the variant from his affected mother. Results: P3 and P12 presented with autism, a developmental delay, ataxia, sleep disorders, overgrowth, and macrocephaly, as well as other clinical features typically present in patients with causative variants in CHD8. The mother of P12 also has autistic traits, as well as ataxia, hypotonia, sleep disorders, and other symptoms. However, P3 and P12 also have different cardiac abnormalities. P3 had signs of a repolarization disorder: a flattened T wave in the III and aVF derivations and a negative T wave in the V1-V2 derivations. He also had structural valve anomalies with associated regurgitation, local contractility impairment of the left ventricular, and diastolic dysfunction of the right ventricle. Meanwhile, P12 had Wolff-Parkinson-White syndrome and underwent radiofrequency ablation at the age of 2 years. At the time of observation, P12 had mild sinus arrhythmia and an incomplete right bundle branch block, as well as arterial hypertension. Discussion: Cardiac abnormalities were not previously reported in patients with causative variants in CHD8. The underlying mechanism for the formation of those abnormalities is currently unknown. However, the two hypotheses are either a disordered interaction with CHD7 – another chromodomain remodeler known to be directly involved in the cardiophenotype of CHARGE syndrome – a rare condition characterized by coloboma, heart defects and growth abnormalities, or the disrupted functioning of CHD8 as an A-Kinase Anchoring Protein, which are known to modulate cardiac function. Conclusion: We observed 2 unrelated autistic males with likely pathogenic variants in CHD8 that presented with typical symptoms of CHD8-related neurodevelopmental disorder, as well as cardiac abnormalities. Cardiac abnormalities have, until now, been considered uncharacteristic for patients with causative variants in CHD8. Further accumulation of data, including experimental evidence of the involvement of CHD8 in heart formation, will elucidate the mechanism underlying the cardiophenotype of those patients. Acknowledgements: Molecular genetic testing of the patients was made possible by the Charity Fund for medical and social genetic aid projects «Life Genome.»Keywords: autism spectrum disorders, chromodomain-helicase-DNA-binding protein 8, neurodevelopmental disorder, cardio phenotype
Procedia PDF Downloads 865047 Impact of Stress and Protein Malnutrition on the Potential Role of Epigallocatechin-3-Gallate in Providing Protection from Nephrotoxicity and Hepatotoxicity Induced by Aluminum in Rats
Authors: Azza A. Ali, Mona G. Khalil, Hemat A. Elariny, Shereen S. El Shaer
Abstract:
Background: Aluminium (Al) is very abundant metal in the earth’s crust. It is a constituent of cooking utensils, medicines, cosmetics, some foods and food additives. Salts of Al are widely used in the treatment of drinking water for purification purposes. Excessive and prolonged exposure to Al causes oxidative stress and impairment of many physiological functions. Its accumulation in liver and kidney causes hepatotoxicity and nephrotoxicity. Social isolation (SI) or Protein malnutrition (PM) also increases oxidative stress and may enhance the toxicity of Al as well as the degeneration in liver and kidney. Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea and has strong antioxidant as well as anti-inflammatory activities and can protect against oxidative stress-induced degenerations. Objective: To study the influence of stress or PM on Al-induced nephrotoxicity and hepatotoxicity in rats, as well as on the potential role of EGCG in providing protection. Methods: Rats received daily AlCl3 (70 mg/kg, IP) for three weeks (Al-toxicity groups) except one normal control group received saline. Al-toxicity groups were divided into four treated and four untreated groups; treated rats received EGCG (10 mg/kg, IP) together with AlCl3. One group of both treated and untreated rats served as control for each of them, and the others were subjected to either stress (mild using isolation or high using electric shock) or to PM (10% casein diet). Specimens of liver and kidney were used for assessment of levels of inflammatory mediators as TNF-α, IL6β, nuclear factor kappa B (NF-κB), oxidative stress (MDA, SOD, TAC, NO), Caspase-3 and for DNA fragmentation as well as for histopathological examinations. Biochemical changes were also measured in the serum as total lipids, cholesterol, triglycerides, glucose, proteins, bilirubin, creatinine and urea as well as the level of Alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate deshydrogenase (LDH). Results: Nephrotoxicity and hepatotoxicity induced by Al were enhanced in rats exposed to stress and to PM. The influence of stress was more pronounced than PM. Al-toxicity was indicated by the increase in liver and kidney MDA, NO, TNF-α, IL-6β, NF-κB, caspase-3, DNA fragmentation and in ALT, AST, ALP, LDH and total lipids, cholesterol, triglycerides, glucose, proteins, bilirubin, creatinine and urea levels, together with the decrease in total proteins, SOD, TAC. EGCG provided protection against hazards of Al as indicated by the decrease in MDA, NO, TNF-α, IL-6β, NF-κB, caspase-3 and DNA fragmentation as well as in levels of ALT, AST, ALP, LDH and total lipids, cholesterol, triglycerides, glucose, proteins, bilirubin, creatinine and urea in liver and kidney, together with the increase in total proteins, SOD, TAC and confirmed by histopathological examinations. It provided more pronounced protection in high stressful conditions than in mild one than in PM. Conclusion: Stress have a bad impact on Al-induced nephrotoxicity and hepatotoxicity more than PM. Thus it can clarify and maximize the role of EGCG in providing protection. Consequently, administration of EGCG is advised with excessive Al-exposure to avoid nephrotoxicity and hepatotoxicity especially in populations more subjected to stress or PM.Keywords: aluminum, stress, protein malnutrition, nephrotoxicity, hepatotoxicity, epigallocatechin-3-gallate, rats
Procedia PDF Downloads 3075046 In vitro Evaluation of Immunogenic Properties of Oral Application of Rabies Virus Surface Glycoprotein Antigen Conjugated to Beta-Glucan Nanoparticles in a Mouse Model
Authors: Narges Bahmanyar, Masoud Ghorbani
Abstract:
Rabies is caused by several species of the genus Lyssavirus in the Rhabdoviridae family. The disease is deadly encephalitis transmitted from warm-blooded animals to humans, and domestic and wild carnivores play the most crucial role in its transmission. The prevalence of rabies in poor areas of developing salinities is constantly posed as a global threat to public health. According to the World Health Organization, approximately 60,000 people die yearly from rabies. Of these, 60% of deaths are related to the Middle East. Although rabies encephalitis is incurable to date, awareness of the disease and the use of vaccines is the best way to combat the disease. Although effective vaccines are available, there is a high cost involved in vaccine production and management to combat rabies. Increasing the prevalence and discovery of new strains of rabies virus requires the need for safe, effective, and as inexpensive vaccines as possible. One of the approaches considered to achieve the quality and quantity expressed through the manufacture of recombinant types of rabies vaccine. Currently, livestock rabies vaccines are used only in inactivated or live attenuated vaccines, the process of inactivation of which pays attention to considerations. The rabies virus contains a negatively polarized single-stranded RNA genome that encodes the five major structural genes (N, P, M, G, L) from '3 to '5 . Rabies virus glycoprotein G, the major antigen, can produce the virus-neutralizing antibody. N-antigen is another candidate for developing recombinant vaccines. However, because it is within the RNP complex of the virus, the possibility of genetic diversity based on different geographical locations is very high. Glycoprotein G is structurally and antigenically more protected than other genes. Protection at the level of its nucleotide sequence is about 90% and at the amino acid level is 96%. Recombinant vaccines, consisting of a pathogenic subunit, contain fragments of the protein or polysaccharide of the pathogen that have been carefully studied to determine which of these molecules elicits a stronger and more effective immune response. These vaccines minimize the risk of side effects by limiting the immune system's access to the pathogen. Such vaccines are relatively inexpensive, easy to produce, and more stable than vaccines containing viruses or whole bacteria. The problem with these vaccines is that the pathogenic subunits may elicit a weak immune response in the body or may be destroyed before they reach the immune cells, which requires nanoparticles to overcome. Suitable for use as an adjuvant. Among these, biodegradable nanoparticles with functional levels are good candidates as adjuvants for the vaccine. In this study, we intend to use beta-glucan nanoparticles as adjuvants. The surface glycoprotein of the rabies virus (G) is responsible for identifying and binding the virus to the target cell. This glycoprotein is the major protein in the structure of the virus and induces an antibody response in the host. In this study, we intend to use rabies virus surface glycoprotein conjugated with beta-glucan nanoparticles to produce vaccines.Keywords: rabies, vaccines, beta glucan, nanoprticles, adjuvant, recombinant protein
Procedia PDF Downloads 175045 An Alternative Semi-Defined Larval Diet for Rearing of Sand Fly Species Phlebotomus argentipes in Laboratory
Authors: Faizan Hassan, Seema Kumari, V. P. Singh, Pradeep Das, Diwakar Singh Dinesh
Abstract:
Phlebotomus argentipes is an established vector for Visceral Leishmaniasis in Indian subcontinent. Laboratory colonization of Sand flies is imperative in research on vectors, which requires a proper diet for their larvae and adult growth that ultimately affects their survival and fecundity. In most of the laboratories, adult Sand flies are reared on rabbit blood feeding/artificial blood feeding and their larvae on fine grinded rabbit faeces as a sole source of food. Rabbit faeces are unhygienic, difficult to handle, high mites infestation as well as owing to bad odour which creates menacing to human users ranging from respiratory problems to eye infection and most importantly it does not full fill all the nutrients required for proper growth and development. It is generally observed that the adult emergence is very low in comparison to egg hatched, which may be due to insufficient food nutrients provided to growing larvae. To check the role of food nutrients on larvae survival and adult emergence, a high protein rich artificial diet for sand fly larvae were used in this study. The composition of artificial diet to be tested includes fine grinded (9 gm each) Rice, Pea nuts & Soyabean balls. These three food ingredients are rich source of all essential amino acids along with carbohydrate and minerals which is essential for proper metabolism and growth. In this study artificial food was found significantly more effective for larval development and adult emergence than rabbit faeces alone (P value >0.05). The weight of individual larvae was also found higher in test pots than the control. This study suggest that protein plays an important role in insect larvae development and adding carbohydrate will also enhances the fecundity of insects larvae.Keywords: artificial food, nutrients, Phlebotomus argentipes, sand fly
Procedia PDF Downloads 3055044 Europium Chelates as a Platform for Biosensing
Authors: Eiman A. Al-Enezi, Gin Jose, Sikha Saha, Paul Millner
Abstract:
Rare earth nanotechnology has gained a considerable amount of interest in the field of biosensing due to the unique luminescence properties of lanthanides. Chelating rare earth ions plays a significant role in biological labelling applications including medical diagnostics, due to their different excitation and emission wavelengths, variety of their spectral properties, sharp emission peaks and long fluorescence lifetimes. We aimed to develop a platform for biosensors based on Europium (Eu³⁺) chelates against biomarkers of cardiac injury (heart-type fatty acid binding protein; H-FABP3) and stroke (glial fibrillary acidic protein; GFAP). Additional novelty in this project is the use of synthetic binding proteins (Affimers), which could offer an excellent alternative targeting strategy to the existing antibodies. Anti-GFAP and anti-HFABP3 Affimer binders were modified to increase the number of carboxy functionalities. Europium nitrate then incubated with the modified Affimer. The luminescence characteristics of the Eu³⁺ complex with modified Affimers and antibodies against anti-GFAP and anti-HFABP3 were measured against different concentrations of the respective analytes on excitation wavelength of 395nm. Bovine serum albumin (BSA) was used as a control against the IgG/Affimer Eu³⁺ complexes. The emission spectrum of Eu³⁺ complex resulted in 5 emission peaks ranging between 550-750 nm with the highest intensity peaks were at 592 and 698 nm. The fluorescence intensity of Eu³⁺ chelates with the modified Affimer or antibodies increased significantly by 4-7 folder compared to the emission spectrum of Eu³⁺ complex. The fluorescence intensity of the Affimer complex was quenched proportionally with increased analyte concentration, but this did not occur with antibody complex. In contrast, the fluorescence intensity for Eu³⁺ complex increased slightly against increased concentration of BSA. These data demonstrate that modified Affimers Eu³⁺ complexes can function as nanobiosensors with potential diagnostic and analytical applications.Keywords: lanthanides, europium, chelates, biosensors
Procedia PDF Downloads 5255043 Snails and Fish as Pollution Biomarkers in Lake Manzala and Laboratory C: Laboratory Exposed Snails to Chemical Mixtures
Authors: Hanaa M. M. El-Khayat, Hoda Abdel-Hamid, Kadria M. A. Mahmoud, Hanan S. Gaber, Hoda, M. A. Abu Taleb, Hassan E. Flefel
Abstract:
Snails are considered as suitable diagnostic organisms for heavy metal–contaminated sites. Biomphalaria alexandrina snails are used in this work as pollution bioindicators after exposure to chemical mixtures consisted of heavy metals (HM); zinc (Zn), copper (Cu) and lead (Pb); and persistent organic pollutants; Decabromodiphenyl ether 98% (D) and Aroclor 1254 (A). The impacts of these tested chemicals, individual and mixtures, on liver and kidney functions, antioxidant enzymes, complete blood picture, and tissue histology were studied. Results showed that Cu was proved to be the highly toxic against snails than Zn and Pb where LC50 values were 1.362, 213.198 and 277.396 ppm, respectively. Also, B. alexandrina snails exposed to the mixture of HM (¼ LC5 Cu, Pb and Zn) showed the highest bioaccumulation of Cu and Zn in their whole tissue, the most significant increase in AST, ALT & ALP activities and the highest significant levels of total protein, albumin and globulin. Results showed significant alterations in CAT activity in snail tissue extracts while snail samples exposed to most experimental tests showed significant increase in GST activity. Snail samples that exposed to HM mixtures showed a significant decrease in total hemocytes count while snail samples that exposed to mixtures containing A & D showed a significant increase in total hemocytes and Hyalinocytes. Histopathological alterations in snail samples exposed to individual HM and their mixtures for 4 weeks showed degeneration, edema, hyper trophy and vaculation in head-foot muscle, degeneration and necrotic changes in the digestive gland and accumulation in most tested organs. Also, the hermaphrodite gland showed mature ova with irregular shape and reduction in sperm number. In conclusion, the resulted damage and alterations in B. alexandrina studied parameters can be used as bioindicators to the presence of pollutants in its habitats.Keywords: Biomphalaria, Zn, Cu, Pb, AST, ALT, ALP, total protein albumin, globulin, CAT, histopathology
Procedia PDF Downloads 3535042 Improvement of Environment and Climate Change Canada’s Gem-Hydro Streamflow Forecasting System
Authors: Etienne Gaborit, Dorothy Durnford, Daniel Deacu, Marco Carrera, Nathalie Gauthier, Camille Garnaud, Vincent Fortin
Abstract:
A new experimental streamflow forecasting system was recently implemented at the Environment and Climate Change Canada’s (ECCC) Canadian Centre for Meteorological and Environmental Prediction (CCMEP). It relies on CaLDAS (Canadian Land Data Assimilation System) for the assimilation of surface variables, and on a surface prediction system that feeds a routing component. The surface energy and water budgets are simulated with the SVS (Soil, Vegetation, and Snow) Land-Surface Scheme (LSS) at 2.5-km grid spacing over Canada. The routing component is based on the Watroute routing scheme at 1-km grid spacing for the Great Lakes and Nelson River watersheds. The system is run in two distinct phases: an analysis part and a forecast part. During the analysis part, CaLDAS outputs are used to force the routing system, which performs streamflow assimilation. In forecast mode, the surface component is forced with the Canadian GEM atmospheric forecasts and is initialized with a CaLDAS analysis. Streamflow performances of this new system are presented over 2019. Performances are compared to the current ECCC’s operational streamflow forecasting system, which is different from the new experimental system in many aspects. These new streamflow forecasts are also compared to persistence. Overall, the new streamflow forecasting system presents promising results, highlighting the need for an elaborated assimilation phase before performing the forecasts. However, the system is still experimental and is continuously being improved. Some major recent improvements are presented here and include, for example, the assimilation of snow cover data from remote sensing, a backward propagation of assimilated flow observations, a new numerical scheme for the routing component, and a new reservoir model.Keywords: assimilation system, distributed physical model, offline hydro-meteorological chain, short-term streamflow forecasts
Procedia PDF Downloads 1305041 The Impact of COVID-19 on Antibiotic Prescribing in Primary Care in England: Evaluation and Risk Prediction of the Appropriateness of Type and Repeat Prescribing
Authors: Xiaomin Zhong, Alexander Pate, Ya-Ting Yang, Ali Fahmi, Darren M. Ashcroft, Ben Goldacre, Brian Mackenna, Amir Mehrkar, Sebastian C. J. Bacon, Jon Massey, Louis Fisher, Peter Inglesby, Kieran Hand, Tjeerd van Staa, Victoria Palin
Abstract:
Background: This study aimed to predict risks of potentially inappropriate antibiotic type and repeat prescribing and assess changes during COVID-19. Methods: With the approval of NHS England, we used the OpenSAFELY platform to access the TPP SystmOne electronic health record (EHR) system and selected patients prescribed antibiotics from 2019 to 2021. Multinomial logistic regression models predicted the patient’s probability of receiving an inappropriate antibiotic type or repeating the antibiotic course for each common infection. Findings: The population included 9.1 million patients with 29.2 million antibiotic prescriptions. 29.1% of prescriptions were identified as repeat prescribing. Those with same-day incident infection coded in the EHR had considerably lower rates of repeat prescribing (18.0%), and 8.6% had a potentially inappropriate type. No major changes in the rates of repeat antibiotic prescribing during COVID-19 were found. In the ten risk prediction models, good levels of calibration and moderate levels of discrimination were found. Important predictors included age, prior antibiotic prescribing, and region. Patients varied in their predicted risks. For sore throat, the range from 2.5 to 97.5th percentile was 2.7 to 23.5% (inappropriate type) and 6.0 to 27.2% (repeat prescription). For otitis externa, these numbers were 25.9 to 63.9% and 8.5 to 37.1%, respectively. Interpretation: Our study found no evidence of changes in the level of inappropriate or repeat antibiotic prescribing after the start of COVID-19. Repeat antibiotic prescribing was frequent and varied according to regional and patient characteristics. There is a need for treatment guidelines to be developed around antibiotic failure and clinicians provided with individualised patient information.Keywords: antibiotics, infection, COVID-19 pandemic, antibiotic stewardship, primary care
Procedia PDF Downloads 1205040 Interpretable Deep Learning Models for Medical Condition Identification
Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji
Abstract:
Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.Keywords: deep learning, interpretability, attention, big data, medical conditions
Procedia PDF Downloads 915039 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities
Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun
Abstract:
As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning
Procedia PDF Downloads 565038 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death
Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar
Abstract:
In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.Keywords: early stage prediction, heart rate variability, linear and non-linear analysis, sudden cardiac death
Procedia PDF Downloads 3425037 High Catalytic Activity and Stability of Ginger Peroxidase Immobilized on Amino Functionalized Silica Coated Titanium Dioxide Nanocomposite: A Promising Tool for Bioremediation
Authors: Misha Ali, Qayyum Husain, Nida Alam, Masood Ahmad
Abstract:
Improving the activity and stability of the enzyme is an important aspect in bioremediation processes. Immobilization of enzyme is an efficient approach to amend the properties of biocatalyst required during wastewater treatment. The present study was done to immobilize partially purified ginger peroxidase on amino functionalized silica coated titanium dioxide nanocomposite. Interestingly there was an enhancement in enzyme activity after immobilization on nanosupport which was evident from effectiveness factor (η) value of 1.76. Immobilized enzyme was characterized by transmission electron microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. Immobilized peroxidase exhibited higher activity in a broad range of pH and temperature as compared to free enzyme. Also, the thermostability of peroxidase was strikingly improved upon immobilization. After six repeated uses, the immobilized peroxidase retained around 62% of its dye decolorization activity. There was a 4 fold increase in Vmax of immobilized peroxidase as compared to free enzyme. Circular dichroism spectroscopy demonstrated conformational changes in the secondary structure of enzyme, a possible reason for the enhanced enzyme activity after immobilization. Immobilized peroxidase was highly efficient in the removal of acid yellow 42 dye in a stirred batch process. Our study shows that this bio-remediating system has remarkable potential for treatment of aromatic pollutants present in wastewater.Keywords: acid yellow 42, decolorization, ginger peroxidase, immobilization
Procedia PDF Downloads 2495036 The Effect of Extensive Mosquito Migration on Dengue Control as Revealed by Phylogeny of Dengue Vector Aedes aegypti
Authors: M. D. Nirmani, K. L. N. Perera, G. H. Galhena
Abstract:
Dengue has become one of the most important arbo-viral disease in all tropical and subtropical regions of the world. Aedes aegypti, is the principal vector of the virus, vary in both epidemiological and behavioral characteristics, which could be finely measured through DNA sequence comparison at their population level. Such knowledge in the population differences can assist in implementation of effective vector control strategies allowing to make estimates of the gene flow and adaptive genomic changes, which are important predictors of the spread of Wolbachia infection or insecticide resistance. As such, this study was undertaken to investigate the phylogenetic relationships of Ae. aegypti from Galle and Colombo, Sri Lanka, based on the ribosomal protein region which spans between two exons, in order to understand the geographical distribution of genetically distinct mosquito clades and its impact on mosquito control measures. A 320bp DNA region spanning from 681-930 bp, corresponding to the ribosomal protein, was sequenced in 62 Ae. aegypti larvae collected from Galle (N=30) and Colombo (N=32), Sri Lanka. The sequences were aligned using ClustalW and the haplotypes were determined with DnaSP 5.10. Phylogenetic relationships among haplotypes were constructed using the maximum likelihood method under Tamura 3 parameter model in MEGA 7.0.14 including three previously reported sequences of Australian (N=2) and Brazilian (N=1) Ae. aegypti. The bootstrap support was calculated using 1000 replicates and the tree was rooted using Aedes notoscriptus (GenBank accession No. KJ194101). Among all sequences, nineteen different haplotypes were found among which five haplotypes were shared between 80% of mosquitoes in the two populations. Seven haplotypes were unique to each of the population. Phylogenetic tree revealed two basal clades and a single derived clade. All observed haplotypes of the two Ae. aegypti populations were distributed in all the three clades, indicating a lack of genetic differentiation between populations. The Brazilian Ae. aegypti haplotype and one of the Australian haplotypes were grouped together with the Sri Lankan basal haplotype in the same basal clade, whereas the other Australian haplotype was found in the derived clade. Phylogram showed that Galle and Colombo Ae. aegypti populations are highly related to each other despite the large geographic distance (129 Km) indicating a substantial genetic similarity between them. This may have probably arisen from passive migration assisted by human travelling and trade through both land and water as the two areas are bordered by the sea. In addition, studied Sri Lankan mosquito populations were closely related to Australian and Brazilian samples. Probably this might have caused by shipping industry between the three countries as all of them are fully or partially enclosed by sea. For example, illegal fishing boats migrating to Australia by sea is perhaps a good mean of transportation of all life stages of mosquitoes from Sri Lanka. These findings indicate that extensive mosquito migrations occur between populations not only within the country, but also among other countries in the world which might be a main barrier to the successful vector control measures.Keywords: Aedes aegypti, dengue control, extensive mosquito migration, haplotypes, phylogeny, ribosomal protein
Procedia PDF Downloads 1905035 Bayesian Estimation of Hierarchical Models for Genotypic Differentiation of Arabidopsis thaliana
Authors: Gautier Viaud, Paul-Henry Cournède
Abstract:
Plant growth models have been used extensively for the prediction of the phenotypic performance of plants. However, they remain most often calibrated for a given genotype and therefore do not take into account genotype by environment interactions. One way of achieving such an objective is to consider Bayesian hierarchical models. Three levels can be identified in such models: The first level describes how a given growth model describes the phenotype of the plant as a function of individual parameters, the second level describes how these individual parameters are distributed within a plant population, the third level corresponds to the attribution of priors on population parameters. Thanks to the Bayesian framework, choosing appropriate priors for the population parameters permits to derive analytical expressions for the full conditional distributions of these population parameters. As plant growth models are of a nonlinear nature, individual parameters cannot be sampled explicitly, and a Metropolis step must be performed. This allows for the use of a hybrid Gibbs--Metropolis sampler. A generic approach was devised for the implementation of both general state space models and estimation algorithms within a programming platform. It was designed using the Julia language, which combines an elegant syntax, metaprogramming capabilities and exhibits high efficiency. Results were obtained for Arabidopsis thaliana on both simulated and real data. An organ-scale Greenlab model for the latter is thus presented, where the surface areas of each individual leaf can be simulated. It is assumed that the error made on the measurement of leaf areas is proportional to the leaf area itself; multiplicative normal noises for the observations are therefore used. Real data were obtained via image analysis of zenithal images of Arabidopsis thaliana over a period of 21 days using a two-step segmentation and tracking algorithm which notably takes advantage of the Arabidopsis thaliana phyllotaxy. Since the model formulation is rather flexible, there is no need that the data for a single individual be available at all times, nor that the times at which data is available be the same for all the different individuals. This allows to discard data from image analysis when it is not considered reliable enough, thereby providing low-biased data in large quantity for leaf areas. The proposed model precisely reproduces the dynamics of Arabidopsis thaliana’s growth while accounting for the variability between genotypes. In addition to the estimation of the population parameters, the level of variability is an interesting indicator of the genotypic stability of model parameters. A promising perspective is to test whether some of the latter should be considered as fixed effects.Keywords: bayesian, genotypic differentiation, hierarchical models, plant growth models
Procedia PDF Downloads 3035034 Evaluation of the Spatial Regulation of Hydrogen Sulphide Producing Enzymes in the Placenta during Labour
Authors: F. Saleh, F. Lyall, A. Abdulsid, L. Marks
Abstract:
Background: Labour in human is a complex biological process that involves interactions of neurological, hormonal and inflammatory pathways, with the placenta being a key regulator of these pathways. It is known that uterine contractions and labour pain cause physiological changes in gene expression in maternal and fetal blood, and in placenta during labour. Oxidative and inflammatory stress pathways are implicated in labour and they may cause alteration of placental gene expression. Additionally, in placental tissues, labour increases the expression of genes involved in placental oxidative stress, inflammatory cytokines, angiogenic regulators and apoptosis. Recently, Hydrogen Sulphide (H2S) has been considered as an endogenous gaseous mediator which promotes vasodilation and exhibits cytoprotective anti-inflammatory properties. The endogenous H2S is synthesised predominantly by two enzymes: cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). As the H2S pathway has anti-oxidative and anti-inflammatory characteristics thus, we hypothesised that the expression of CBS and CSE in placental tissues would alter during labour. Methods: CBS and CSE expressions were examined in placentas using western blotting and RT-PCR in inner, middle and outer placental zones in placentas obtained from healthy non labouring women who delivered by caesarian section. These were compared with the equivalent zone of placentas obtained from women who had uncomplicated labour and delivered vaginally. Results: No differences in CBS and CSE mRNA or protein levels were found between the different sites within placentas in either the labour or non-labour group. There were no significant differences in either CBS or CSE expression between the two groups at the inner site and middle site. However, at the outer site there was a highly significant decrease in CBS protein expression in the labour group when compared to the non-labour group (p = 0.002). Conclusion: To the best of author’s knowledge, this is the first report to suggest that, CBS is expressed in a spatial manner within the human placenta. Further work is needed to clarify the precise function and mechanism of this spatial regulation although it is likely that inflammatory pathways regulation is a complex process in which this plays a role.Keywords: anti-inflammatory, hydrogen sulphide, labour, oxidative stress
Procedia PDF Downloads 2425033 Characterization of Dota-Girentuximab Conjugates for Radioimmunotherapy
Authors: Tais Basaco, Stefanie Pektor, Josue A. Moreno, Matthias Miederer, Andreas Türler
Abstract:
Radiopharmaceuticals based in monoclonal anti-body (mAb) via chemical linkers have become a potential tool in nuclear medicine because of their specificity and the large variability and availability of therapeutic radiometals. It is important to identify the conjugation sites and number of attached chelator to mAb to obtain radioimmunoconjugates with required immunoreactivity and radiostability. Girentuximab antibody (G250) is a potential candidate for radioimmunotherapy of clear cell carcinomas (RCCs) because it is reactive with CAIX antigen, a transmembrane glycoprotein overexpressed on the cell surface of most ( > 90%) (RCCs). G250 was conjugated with the bifunctional chelating agent DOTA (1,4,7,10-Tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid) via a benzyl-thiocyano group as a linker (p-SCN-Bn-DOTA). DOTA-G250 conjugates were analyzed by size exclusion chromatography (SE-HPLC) and by electrophoresis (SDS-PAGE). The potential site-specific conjugation was identified by liquid chromatography–mass spectrometry (LC/MS-MS) and the number of linkers per molecule of mAb was calculated using the molecular weight (MW) measured by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The average number obtained in the conjugates in non-reduced conditions was between 8-10 molecules of DOTA per molecule of mAb. The average number obtained in the conjugates in reduced conditions was between 1-2 and 3-4 molecules of DOTA per molecule of mAb in the light chain (LC) and heavy chain (HC) respectively. Potential DOTA modification sites of the chelator were identified in lysine residues. The biological activity of the conjugates was evaluated by flow cytometry (FACS) using CAIX negative (SKRC-18) and CAIX positive (SKRC-52). The DOTA-G250 conjugates were labelled with 177Lu with a radiochemical yield > 95% reaching specific activities of 12 MBq/µg. The stability in vitro of different types of radioconstructs was analyzed in human serum albumin (HSA). The radiostability of 177Lu-DOTA-G250 at high specific activity was increased by addition of sodium ascorbate after the labelling. The immunoreactivity was evaluated in vitro and in vivo. Binding to CAIX positive cells (SK-RC-52) at different specific activities was higher for conjugates with less DOTA content. Protein dose was optimized in mice with subcutaneously growing SK-RC-52 tumors using different amounts of 177Lu- DOTA-G250.Keywords: mass spectrometry, monoclonal antibody, radiopharmaceuticals, radioimmunotheray, renal cancer
Procedia PDF Downloads 3075032 The Microstructural and Mechanical Characterization of Organo-Clay-Modified Bitumen, Calcareous Aggregate, and Organo-Clay Blends
Authors: A. Gürses, T. B. Barın, Ç. Doğar
Abstract:
Bitumen has been widely used as the binder of aggregate in road pavement due to its good viscoelastic properties, as a viscous organic mixture with various chemical compositions. Bitumen is a liquid at high temperature and it becomes brittle at low temperatures, and this temperature-sensitivity can cause the rutting and cracking of the pavement and limit its application. Therefore, the properties of existing asphalt materials need to be enhanced. The pavement with polymer modified bitumen exhibits greater resistance to rutting and thermal cracking, decreased fatigue damage, as well as stripping and temperature susceptibility; however, they are expensive and their applications have disadvantages. Bituminous mixtures are composed of very irregular aggregates bound together with hydrocarbon-based asphalt, with a low volume fraction of voids dispersed within the matrix. Montmorillonite (MMT) is a layered silicate with low cost and abundance, which consists of layers of tetrahedral silicate and octahedral hydroxide sheets. Recently, the layered silicates have been widely used for the modification of polymers, as well as in many different fields. However, there are not too much studies related with the preparation of the modified asphalt with MMT, currently. In this study, organo-clay-modified bitumen, and calcareous aggregate and organo-clay blends were prepared by hot blending method with OMMT, which has been synthesized using a cationic surfactant (Cetyltrymethylammonium bromide, CTAB) and long chain hydrocarbon, and MMT. When the exchangeable cations in the interlayer region of pristine MMT were exchanged with hydrocarbon attached surfactant ions, the MMT becomes organophilic and more compatible with bitumen. The effects of the super hydrophobic OMMT onto the micro structural and mechanic properties (Marshall Stability and volumetric parameters) of the prepared blends were investigated. Stability and volumetric parameters of the blends prepared were measured using Marshall Test. Also, in order to investigate the morphological and micro structural properties of the organo-clay-modified bitumen and calcareous aggregate and organo-clay blends, their SEM and HRTEM images were taken. It was observed that the stability and volumetric parameters of the prepared mixtures improved significantly compared to the conventional hot mixes and even the stone matrix mixture. A micro structural analysis based on SEM images indicates that the organo-clay platelets dispersed in the bitumen have a dominant role in the increase of effectiveness of bitumen - aggregate interactions.Keywords: hot mix asphalt, stone matrix asphalt, organo clay, Marshall test, calcareous aggregate, modified bitumen
Procedia PDF Downloads 2385031 Implementation of Deep Neural Networks for Pavement Condition Index Prediction
Authors: M. Sirhan, S. Bekhor, A. Sidess
Abstract:
In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction
Procedia PDF Downloads 1375030 DSC2 Promotes the Proliferation, Metastasis and Drug Resistance of Lung Cancer by Activating the PI3K/AKT Pathway
Authors: Qi LI, Xu Lin, Nengming Lin
Abstract:
Objective: The aim of this study was to investigate the role of desmocollin 2 (DSC2) protein in the proliferation, migration and drug resistance of lung cancer cells. Method: CCK-8 assays and colony formation assays were used to evaluate the effect of dsc2 regulation on cancer cell viability and colony formation. Transwell assays and wound healing assays were also performed. Cell flow double staining was used to detect the apoptosis rate of cells with DSC2, which was added cisplatin. Western blot assay was used to detect cell cycle, PI3k/Akt and apoptosis-related proteins. Results: Our data showed that dsc2 is upregulated in clinical lung cancer tissues compared with pericarcinomatous tissues, and it is differentially expressed in lung cancer cell lines. The down-regulation of dsc2 in A549 and H358 lung cancer cells significantly suppressed the cell proliferation, metastasis, and motility. In contrast, the opposite effects were observed in overexpression of dsc2 both in H23 and PC9 cell lines. In addition to lung adenocarcinoma cell lines, we also examined its expression in lung squamous cell lines, such as H226. Western blotting showed that dsc2 could reduce the level of phosphorylated Akt (Ser 473) and p-mTOR. Thus, it is speculated that dsc2 up-regulation promotes proliferation and invasiveness through activation of the PI3K/AKT pathway. Also, knockdown of dsc2 in A549 and H226 could significantly decreased in the levels of cyclinB and wee1 protein. Additionally, flow cytometry showed that dsc2 knockdown combined with cisplatin could significantly enhance cell apoptosis rate. Conclusion: These data suggest that dsc2 promotes the proliferation and migration of lung cancer cells in vitro. Also, the results suggested that dsc2 could affect the cell cycle and apoptosis of lung cells. Furthermore, knockdown of dsc2 could sensitize cisplatin in both lung adenocarcinoma and lung squamous cell lines. Thus we suggested that dsc2 can be used as a therapeutic target for lung cancer.Keywords: desmocollin 2, cisplatin, lung cancer, PI3K/AKT, lung squamous cell
Procedia PDF Downloads 765029 Enzymatic Determination of Limonene in Red Clover Genotypes
Authors: Andrés Quiroz, Emilio Hormazabal, Ana Mutis, Fernando Ortega, Manuel Chacón-Fuentes, Leonardo Parra
Abstract:
Red clover (Trifolium pratense L.) is an important forage species in temperate regions of the world. The main limitation of this species worldwide is a lack of persistence related to the high mortality of plants due to a complex of biotic and abiotic factors, determining a life span of two or three seasons. Because of the importance of red clover in Chile, a red clover breeding program was started at INIA Carillanca Research Center in 1989, with the main objective of improving the survival of plants, forage yield, and persistence. The main selection criteria for selecting new varieties have been based on agronomical parameters and biotic factors. The main biotic factor associated with red clover mortality in Chile is Hylastinus obscurus (Coleoptera: Curculionidae). Both larval and adults feed on the roots, causing weakening and subsequent death of clover plants. Pesticides have not been successful for controlling infestations of this root borer. Therefore, alternative strategies for controlling this pest are a high priority for red clover producers. Currently, the role of semiochemical in the interaction between H. obscurus and red clover plants has been widely studied for our group. Specifically, from the red clover foliage has been identified limonene is eliciting repellency from the root borer. Limonene is generated in the plant from two independent biosynthetic pathways, the mevalonic acid, and deoxyxylulose pathway. Mevalonate pathway enzymes are localized in the cytosol, whereas the deoxyxylulose phosphate pathway enzymes are found in plastids. In summary, limonene can be determinated by enzymatic bioassay using GPP as substrate and by limonene synthase expression. Therefore, the main objective of this work was to study genetic variation of limonene in material provided by INIA´s Red Clover breeding program. Protein extraction was carried out homogenizing 250 mg of leave tissue and suspended in 6 mL of extraction buffer (PEG 1500, PVP-30, 20 mM MgCl2 and antioxidants) and stirred on ice for 20 min. After centrifugation, aliquots of 2.5 mL were desalted on PD-10 columns, resulting in a final volume of 3.5 mL. Protein determination was performed according to Bradford with BSA as a standard. Monoterpene synthase assays were performed with 50 µL of protein extracts transferred into gas-tight 2 mL crimp seal vials after addition of 4 µL MgCl₂ and 41 µL assay buffer. The assay was started by adding 5 µL of a GPP solution. The mixture was incubated for 30 min at 40 °C. Biosynthesized limonene was quantified in a GC equipped with a chiral column and using synthetic R and S-limonene standards. The enzymatic the production of R and S-limonene from different Superqueli-Carillanca genotypes is shown in this work. Preliminary results showed significant differences in limonene content among the genotypes analyzed. These results constitute an important base for selecting genotypes with a high content of this repellent monoterpene towards H. obscurus.Keywords: head space, limonene enzymatic determination, red clover, Hylastinus obscurus
Procedia PDF Downloads 2665028 Methylglyoxal Induced Glycoxidation of Human Low Density Lipoprotein: A Biophysical Perspective and Its Role in Diabetes and Periodontitis
Authors: Minhal Abidi, Moinuddin
Abstract:
Diabetes mellitus (DM) induced metabolic abnormalities causes oxidative stress which leads to the pathogenesis of complications associated with diabetes like retinopathy, nephropathy periodontitis etc. Combination of glycation and oxidation 'glycoxidation' occurs when oxidative reactions affect the early state of glycation products. Low density lipoprotein (LDL) is prone to glycoxidative attack by sugars and methylglyoxal (MGO) being a strong glycating agent may have severe impact on its structure and consequent role in diabetes. Pro-inflammatory cytokines like IL1β and TNFα produced by the action of gram negative bacteria in periodontits (PD) can in turn lead to insulin resistance. This work discusses modifications to LDL as a result of glycoxidation. The changes in the protein molecule have been characterized by various physicochemical techniques and the immunogenicity of the modified molecules was also evaluated as they presented neo-epitopes. Binding of antibodies present in diabetes patients to the native and glycated LDL has been evaluated. Role of modified epitopes in the generation of antibodies in diabetes and periodontitis has been discussed. The structural perturbations induced in LDL were analyzed by UV–Vis, fluorescence, circular dichroism and FTIR spectroscopy, molecular docking studies, thermal denaturation studies, Thioflavin T assay, isothermal titration calorimetry, comet assay. MALDI-TOF, ketoamine moieties, carbonyl content and HMF content were also quantitated in native and glycated LDL. IL1β and TNFα levels were also measured in the type 2 DM and PD patients. We report increased carbonyl content, ketoamine moieties and HMF content in glycated LDL as compared to native analogue. The results substantiate that in hyperglycemic state MGO modification of LDL causes structural perturbations making the protein antigenic which could obstruct normal physiological functions and might contribute in the development of secondary complications in diabetic patients like periodontitis.Keywords: advanced glycation end products, diabetes mellitus, glycation, glycoxidation, low density lipoprotein, periodontitis
Procedia PDF Downloads 1915027 Validation of Nutritional Assessment Scores in Prediction of Mortality and Duration of Admission in Elderly, Hospitalized Patients: A Cross-Sectional Study
Authors: Christos Lampropoulos, Maria Konsta, Vicky Dradaki, Irini Dri, Konstantina Panouria, Tamta Sirbilatze, Ifigenia Apostolou, Vaggelis Lambas, Christina Kordali, Georgios Mavras
Abstract:
Objectives: Malnutrition in hospitalized patients is related to increased morbidity and mortality. The purpose of our study was to compare various nutritional scores in order to detect the most suitable one for assessing the nutritional status of elderly, hospitalized patients and correlate them with mortality and extension of admission duration, due to patients’ critical condition. Methods: Sample population included 150 patients (78 men, 72 women, mean age 80±8.2). Nutritional status was assessed by Mini Nutritional Assessment (MNA full, short-form), Malnutrition Universal Screening Tool (MUST) and short Nutritional Appetite Questionnaire (sNAQ). Sensitivity, specificity, positive and negative predictive values and ROC curves were assessed after adjustment for the cause of current admission, a known prognostic factor according to previously applied multivariate models. Primary endpoints were mortality (from admission until 6 months afterwards) and duration of hospitalization, compared to national guidelines for closed consolidated medical expenses. Results: Concerning mortality, MNA (short-form and full) and SNAQ had similar, low sensitivity (25.8%, 25.8% and 35.5% respectively) while MUST had higher sensitivity (48.4%). In contrast, all the questionnaires had high specificity (94%-97.5%). Short-form MNA and sNAQ had the best positive predictive value (72.7% and 78.6% respectively) whereas all the questionnaires had similar negative predictive value (83.2%-87.5%). MUST had the highest ROC curve (0.83) in contrast to the rest questionnaires (0.73-0.77). With regard to extension of admission duration, all four scores had relatively low sensitivity (48.7%-56.7%), specificity (68.4%-77.6%), positive predictive value (63.1%-69.6%), negative predictive value (61%-63%) and ROC curve (0.67-0.69). Conclusion: MUST questionnaire is more advantageous in predicting mortality due to its higher sensitivity and ROC curve. None of the nutritional scores is suitable for prediction of extended hospitalization.Keywords: duration of admission, malnutrition, nutritional assessment scores, prognostic factors for mortality
Procedia PDF Downloads 3465026 CO2 Capture in Porous Silica Assisted by Lithium
Authors: Lucero Gonzalez, Salvador Alfaro
Abstract:
Carbon dioxide (CO2) and methane (CH4) are considered as the compounds with higher abundance among the greenhouse gases (CO2, NOx, SOx, CxHx, etc.), due to its higher concentration, this two gases have a greater impact in the environment pollution and provokes global warming. So, recovery, disposal and subsequent reuse, are of great interest, especially from the ecological and health perspective. By one hand, porous inorganic materials are good candidates to capture gases, because these type of materials are higher stability from the point view of thermal, chemical and mechanical under adsorption gas processes. By another hand, during the design and the synthetic preparation of the porous materials is possible add other intrinsic properties (physicochemical and structural) by adding chemical compounds as dopants or using structured directed agents or surfactants to improve the porous structure, the above features allow to have alternative materials for separation, capture and storage of greenhouse gases. In this work, ordered mesoporous materials base silica were prepared using Surfynol as surfactant. The surfactant micelles are commonly used as self-assembly templates for the development of new structure porous silica’s, adding a variety of textures and structures. By another hand, the Surfynol is a commercial surfactant, is non-ionic, for that is necessary determine its critical micelles concentration (cmc) by the pyrene I1/I3 ratio method, before to prepare silica particles. One time known the CMC, a precursor gel was prepared via sol-gel process at room temperature using TEOS as silica precursor, NH4OH as catalyst, Surfynol as template and H2O as solvent. Then, the gel precursor was treatment hydrothermally in a Teflon-lined stainless steel autoclave with a volume of 100 mL and kept at 100 ºC for 24 h under static conditions in a convection oven. After that, the porous silica particles obtained were impregnated with lithium to improve the CO2 adsorption capacity. Then the silica particles were characterized physicochemical, morphology and structurally, by XRD, FTIR, BET and SEM techniques. The thermal stability and the CO2 adsorption capacity was evaluated by thermogravimetric analysis (TGA). According the results, we found that the Surfynol is a good candidate to prepare silica particles with an ordered structure. Also the TGA analysis shown that the particles has a good thermal stability in the range of 250 °C and 800 °C. The best materials had, the capacity to adsorbing 70 and 90 mg per gram of silica particles and its CO2 adsorption capacity depends on the way to thermal pretreatment of the porous silica before of the adsorption experiments and of the concentration of surfactant used during the synthesis of silica particles. Acknowledgments: This work was supported by SIP-IPN through project SIP-20161862.Keywords: CO2 adsorption, lithium as dopant, porous silica, surfynol as surfactant, thermogravimetric analysis
Procedia PDF Downloads 2685025 Coronin 1C and miR-128A as Potential Diagnostic Biomarkers for Glioblastoma Multiform
Authors: Denis Mustafov, Emmanouil Karteris, Maria Braoudaki
Abstract:
Glioblastoma multiform (GBM) is a heterogenous primary brain tumour that kills most affected patients. To the authors best knowledge, despite all research efforts there is no early diagnostic biomarker for GBM. MicroRNAs (miRNAs) are short non-coding RNA molecules which are deregulated in many cancers. The aim of this research was to determine miRNAs with a diagnostic impact and to potentially identify promising therapeutic targets for glioblastoma multiform. In silico analysis was performed to identify deregulated miRNAs with diagnostic relevance for glioblastoma. The expression profiles of the chosen miRNAs were then validated in vitro in the human glioblastoma cell lines A172 and U-87MG. Briefly, RNA extraction was carried out using the Trizol method, whilst miRNA extraction was performed using the mirVANA miRNA isolation kit. Quantitative Real-Time Polymerase Chain Reaction was performed to verify their expression. The presence of five target proteins within the A172 cell line was evaluated by Western blotting. The expression of the CORO1C protein within 32 GBM cases was examined via immunohistochemistry. The miRNAs identified in silico included miR-21-5p, miR-34a and miR-128a. These miRNAs were shown to target deregulated GBM genes, such as CDK6, E2F3, BMI1, JAG1, and CORO1C. miR-34a and miR-128a showed low expression profiles in comparison to a control miR-RNU-44 in both GBM cell lines suggesting tumour suppressor properties. Opposing, miR-21-5p demonstrated greater expression indicating that it could potentially function as an oncomiR. Western blotting revealed expression of all five proteins within the A172 cell line. In silico analysis also suggested that CORO1C is a target of miR-128a and miR-34a. Immunohistochemistry demonstrated that 75% of the GBM cases showed moderate to high expression of CORO1C protein. Greater understanding of the deregulated expression of miR-128a and the upregulation of CORO1C in GBM could potentially lead to the identification of a promising diagnostic biomarker signature for glioblastomas.Keywords: non-coding RNAs, gene expression, brain tumours, immunohistochemistry
Procedia PDF Downloads 89