Search results for: haplotypes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25

Search results for: haplotypes

25 Genomic Prediction Reliability Using Haplotypes Defined by Different Methods

Authors: Sohyoung Won, Heebal Kim, Dajeong Lim

Abstract:

Genomic prediction is an effective way to measure the abilities of livestock for breeding based on genomic estimated breeding values, statistically predicted values from genotype data using best linear unbiased prediction (BLUP). Using haplotypes, clusters of linked single nucleotide polymorphisms (SNPs), as markers instead of individual SNPs can improve the reliability of genomic prediction since the probability of a quantitative trait loci to be in strong linkage disequilibrium (LD) with markers is higher. To efficiently use haplotypes in genomic prediction, finding optimal ways to define haplotypes is needed. In this study, 770K SNP chip data was collected from Hanwoo (Korean cattle) population consisted of 2506 cattle. Haplotypes were first defined in three different ways using 770K SNP chip data: haplotypes were defined based on 1) length of haplotypes (bp), 2) the number of SNPs, and 3) k-medoids clustering by LD. To compare the methods in parallel, haplotypes defined by all methods were set to have comparable sizes; in each method, haplotypes defined to have an average number of 5, 10, 20 or 50 SNPs were tested respectively. A modified GBLUP method using haplotype alleles as predictor variables was implemented for testing the prediction reliability of each haplotype set. Also, conventional genomic BLUP (GBLUP) method, which uses individual SNPs were tested to evaluate the performance of the haplotype sets on genomic prediction. Carcass weight was used as the phenotype for testing. As a result, using haplotypes defined by all three methods showed increased reliability compared to conventional GBLUP. There were not many differences in the reliability between different haplotype defining methods. The reliability of genomic prediction was highest when the average number of SNPs per haplotype was 20 in all three methods, implying that haplotypes including around 20 SNPs can be optimal to use as markers for genomic prediction. When the number of alleles generated by each haplotype defining methods was compared, clustering by LD generated the least number of alleles. Using haplotype alleles for genomic prediction showed better performance, suggesting improved accuracy in genomic selection. The number of predictor variables was decreased when the LD-based method was used while all three haplotype defining methods showed similar performances. This suggests that defining haplotypes based on LD can reduce computational costs and allows efficient prediction. Finding optimal ways to define haplotypes and using the haplotype alleles as markers can provide improved performance and efficiency in genomic prediction.

Keywords: best linear unbiased predictor, genomic prediction, haplotype, linkage disequilibrium

Procedia PDF Downloads 107
24 From Orthodox to Haploid Mitochondrial DNA Markers: Exploring the Datum Folder of population of Sindh in Pakistan

Authors: Shahzad Bhattiab, M. Aslamkhana, Sana Abbasbc, Marcella Attimonellid, Kumarasamy Thangaraje, Erica Martinha Silva de Souzaf, Uzay U. Sezen

Abstract:

The present study was designed to investigate three regions of mitochondrial DNA, HVI, HVII and HVIII, to hold a powwow genetic diversity and affiliations in 115 probands of 6 major ethnic groups, viz., Bijarani, Chandio, Ghallu, Khoso, Nasrani and Solangi, in the province of Sindh of Pakistan. For this purpose 88 haplotypes were scrutinized, defined by particular set of nucleotides (ignoring the C insertions around position 309 and 315). In spite of that 82% sequences were observed once, 12 % twice and 5.2 % thrice. The most common South Asian haplotypes were observed M (42%), N (6.9%) and R (6.9%) whereas west Eurasian haplotypes were J (1.7%), U (23.4%), H (9.5%), W (6.9%) and T (0.86%), in six ethnic groups. A random match probability between two unrelated individuals was found 0.06 %, while genetic diversity was ranged to be 0.991 to 0.999, and nucleotide diversity ranged from 0.0089 to 0.0142 for the whole control region of the population studied.

Keywords: mtDNA haplogroups, control region, Pakistan, Sindh, ethnicity

Procedia PDF Downloads 385
23 Haplotypes of the Human Leukocyte Antigen-G Different HIV-1 Groups from the Netherlands

Authors: A. Alyami, S. Christmas, K. Neeltje, G. Pollakis, B. Paxton, Z. Al-Bayati

Abstract:

The Human leukocyte antigen-G (HLA-G) molecule plays an important role in immunomodulation. To date, 16 untranslated regions (UTR) HLA-G haplotypes have been previously defined by sequenced SNPs in the coding region. From these, UTR-1, UTR-2, UTR-3, UTR-4, UTR-5, UTR-6 and UTR-7 are the most frequent 3’UTR haplotypes at the global level. UTR-1 is associated with higher levels of soluble HLA-G and HLA-G expression, whereas UTR-5 and UTR-7 are linked with low levels of soluble HLA-G and HLA-G expression. Human immunodeficiency virus type 1 (HIV-1) infection results in the progressive loss of immune function in infected individuals. The virus escape mechanism typically includes T lymphocytes and NK cell recognition and lyses by classical HLA-A and B down-regulation, which has been associated with non-classical HLA-G molecule up-regulation, respectively. We evaluated the haplotypes of the HLA-G 3′ untranslated region frequencies observed in three HIV-1 groups from the Netherlands and their susceptibility to develop infection. The three groups are made up of mainly men who have sex with men (MSM), injection drug users (IDU) and a high-risk-seronegative (HRSN) group. DNA samples were amplified with published primers prior sequencing. According to our results, the low expresser frequencies show higher in HRSN compared to other groups. This is indicating that 3’UTR polymorphisms may be identified as potential prognostic biomarkers to determine susceptibility to HIV.

Keywords: Human leukocyte antigen-G (HLA-G) , men who have sex with men (MSM), injection drug users (IDU), high-risk-seronegative (HRSN) group, high-untranslated region (UTR)

Procedia PDF Downloads 121
22 The Effect of Extensive Mosquito Migration on Dengue Control as Revealed by Phylogeny of Dengue Vector Aedes aegypti

Authors: M. D. Nirmani, K. L. N. Perera, G. H. Galhena

Abstract:

Dengue has become one of the most important arbo-viral disease in all tropical and subtropical regions of the world. Aedes aegypti, is the principal vector of the virus, vary in both epidemiological and behavioral characteristics, which could be finely measured through DNA sequence comparison at their population level. Such knowledge in the population differences can assist in implementation of effective vector control strategies allowing to make estimates of the gene flow and adaptive genomic changes, which are important predictors of the spread of Wolbachia infection or insecticide resistance. As such, this study was undertaken to investigate the phylogenetic relationships of Ae. aegypti from Galle and Colombo, Sri Lanka, based on the ribosomal protein region which spans between two exons, in order to understand the geographical distribution of genetically distinct mosquito clades and its impact on mosquito control measures. A 320bp DNA region spanning from 681-930 bp, corresponding to the ribosomal protein, was sequenced in 62 Ae. aegypti larvae collected from Galle (N=30) and Colombo (N=32), Sri Lanka. The sequences were aligned using ClustalW and the haplotypes were determined with DnaSP 5.10. Phylogenetic relationships among haplotypes were constructed using the maximum likelihood method under Tamura 3 parameter model in MEGA 7.0.14 including three previously reported sequences of Australian (N=2) and Brazilian (N=1) Ae. aegypti. The bootstrap support was calculated using 1000 replicates and the tree was rooted using Aedes notoscriptus (GenBank accession No. KJ194101). Among all sequences, nineteen different haplotypes were found among which five haplotypes were shared between 80% of mosquitoes in the two populations. Seven haplotypes were unique to each of the population. Phylogenetic tree revealed two basal clades and a single derived clade. All observed haplotypes of the two Ae. aegypti populations were distributed in all the three clades, indicating a lack of genetic differentiation between populations. The Brazilian Ae. aegypti haplotype and one of the Australian haplotypes were grouped together with the Sri Lankan basal haplotype in the same basal clade, whereas the other Australian haplotype was found in the derived clade. Phylogram showed that Galle and Colombo Ae. aegypti populations are highly related to each other despite the large geographic distance (129 Km) indicating a substantial genetic similarity between them. This may have probably arisen from passive migration assisted by human travelling and trade through both land and water as the two areas are bordered by the sea. In addition, studied Sri Lankan mosquito populations were closely related to Australian and Brazilian samples. Probably this might have caused by shipping industry between the three countries as all of them are fully or partially enclosed by sea. For example, illegal fishing boats migrating to Australia by sea is perhaps a good mean of transportation of all life stages of mosquitoes from Sri Lanka. These findings indicate that extensive mosquito migrations occur between populations not only within the country, but also among other countries in the world which might be a main barrier to the successful vector control measures.

Keywords: Aedes aegypti, dengue control, extensive mosquito migration, haplotypes, phylogeny, ribosomal protein

Procedia PDF Downloads 152
21 Association of Brain-Derived Neurotrophic Factor (BDNF) Gene with Obesity and Metabolic Traits in Malaysian Adults

Authors: Yamunah Devi Apalasamy, Sanjay Rampal, Tin Tin Su, Foong Ming Moy, Hazreen Abdul Majid, Awang Bulgiba, Zahurin Mohamed

Abstract:

Obesity is a growing global health issue. Obesity results from a combination of environmental and genetics factors. Brain-derived neurotrophic factor (BDNF), a gene encodes the BDNF protein and the BDNF gene have been linked to regulation of body weight and appetite. Genome-wide association studies have identified the BDNF variants to be related to obesity among Caucasians, East Asians, and Filipinos. However, the role of BDNF in other ethnic groups remains inconclusive. This case control study aims to investigate the associations of BDNF gene polymorphisms with obesity and metabolic parameters in Malaysian Malays. BDNF rs4074134, BDNF rs10501087 and BDNF rs6265 were genotyped using Sequenom MassARRAY. Anthropometric, body fat, fasting lipids and glucose levels were measured. A total of 663 subjects (194 obese and 469 non-obese) were included in this study. There were no significant associations association between BDNF SNPs and obesity. The allelic and genotype frequencies of the BDNF SNPs were similar in the obese and non-obese groups. After adjustment for age and sex, the BDNF variants were not associated with obesity, body fat, fasting lipids and glucose levels. Haplotypes at the BDNF gene region, were not significantly associated with obesity. The BDNF rs4074134 was in strong LD with BDNF rs10501087 (D'=0.98) and BDNF rs6265 (D'=0.87). The BDNF rs10501087 was also in strong LD with BDNF rs6265 (D'=0.91). Our findings suggest that the BDNF variants and the haplotypes of BDNF gene were not associated with obesity and metabolic traits in this study population. Further research is needed to explore other BDNF variants with a larger sample size with gene-environment interactions in multi ethnic Malaysian population.

Keywords: genomics of obesity, SNP, BMI, haplotypes

Procedia PDF Downloads 406
20 Genetic Diversity of Wild Population of Heterobranchus Spp. Based on Mitochondria DNA Cytochrome C Oxidase Subunit I Gene Analysis

Authors: M. Y. Abubakar, Ipinjolu J. K., Yuzine B. Esa, Magawata I., Hassan W. A., Turaki A. A.

Abstract:

Catfish (Heterobranchus spp.) is a major freshwater fish that are widely distributed in Nigeria waters and are gaining rapid aquaculture expansion. However, indiscriminate artificial crossbreeding of the species with others poses a threat to their biodiversity. There is a paucity of information about the genetic variability, hence this insight on the genetic variability is badly needed, not only for the species conservation but for aquaculture expansion. In this study, we tested the level of Genetic diversity, population differentiation and phylogenetic relationship analysis on 35 individuals of two populations of Heterobranchus bidorsalis and 29 individuals of three populations of Heterobranchus longifilis using the mitochondrial cytochrome c oxidase subunit I (mtDNA COI) gene sequence. Nucleotide sequences of 650 bp fragment of the COI gene of the two species were compared. In the whole 4 and 5 haplotypes were distinguished in the populations of H. bidorsalis & H. longifilis with accession numbers (MG334168 - MG334171 & MG334172 to MG334176) respectively. Haplotypes diversity indices revealed a range of 0.59 ± 0.08 to 0.57 ± 0.09 in H. bidorsalis and 0.000 to 0.001051 ± 0.000945 in H. longifilis population, respectively. Analysis of molecular variance (AMOVA) revealed no significant variation among H. bidorsalis population of the Niger & Benue Rivers, detected significant genetic variation was between the Rivers of Niger, Kaduna and Benue population of H. longifilis. Two main clades were recovered, showing a clear separation between H. bidorsalis and H. longifilis in the phylogenetic tree. The mtDNA COI genes studied revealed high gene flow between populations with no distinct genetic differentiation between the populations as measured by the fixation index (FST) statistic. However, a proportion of population-specific haplotypes was observed in the two species studied, suggesting a substantial degree of genetic distinctiveness for each of the population investigated. These findings present the description of the species character and accessions of the fish’s genetic resources, through gene sequence submitted in Genetic database. The data will help to protect their valuable wild resource and contribute to their recovery and selective breeding in Nigeria.

Keywords: AMOVA, genetic diversity, Heterobranchus spp., mtDNA COI, phylogenetic tree

Procedia PDF Downloads 110
19 Genetic Diversity of Exon-20 of the IIS6 of the Voltage Gated Sodium Channel Gene from Pyrethroid Resistant Anopheles Mosquitoes in Sudan Savannah Region of Jigawa State

Authors: Asma'u Mahe, Abdullahi A. Imam, Adamu J. Alhassan, Nasiru Abdullahi, Sadiya A. Bichi, Nura Lawal, Kamaluddeen Babagana

Abstract:

Malaria is a disease with global health significance. It is caused by parasites and transmitted by Anopheles mosquitoes. Increase in insecticide resistance threatens the disease vector control. The strength of selection pressure acting on a mosquito population in relation to insecticide resistance can be assess by determining the genetic diversity of a fragment spanning exon- 20 of IIS6 of the voltage gated sodium channel (VGSC). Larval samples reared to adulthood were identified and kdr (knock down resistance) profile was determined. The DNA sequences were used to assess the patterns of genetic differentiation by determining the levels of genetic variability between the Anopheles mosquitoes. Genetic differentiation of the Anopheles mosquitoes based on a portion of the voltage gated sodium channel gene was obtained. Polymorphisms were detected; sequence variation and analysis were presented as a phylogenetic tree. Phylogenetic tree of VGSC haplotypes was constructed for samples of the Anopheles mosquitoes using the maximum likelihood method in MEGA 6.0 software. DNA sequences were edited using BioEdit sequence editor. The edited sequences were aligned with reference sequence (Kisumu strain). Analyses were performed as contained in dnaSP 5.10. Results of genetic parameters of polymorphism and haplotype reconstruction were presented in count. Twenty sequences were used for the analysis. Regions selected were 1- 576, invariable (monomorphic) sites were 460 while variable (polymorphic) sites were 5 giving the number of total mutations observed in this study. Mutations obtained from the study were at codon 105: TTC- Phenylalanine replaces TCC- Serine, codon 513: TAG- Termination replaces TTG- Leucine, codon 153, 300 and 553 mutations were non-synonymous. From the constructed phylogenetic tree, some groups were shown to be closer with Exon20Gambiae Kisumu (Reference strain) having some genetic distance, while 5-Exon20Gambiae-F I13.ab1, 18-Exon20Gambiae-F C17.ab1, and 2-Exon20Gambiae-F C13.ab1 clustered together genetically differentiated away from others. Mutations observed in this study can be attributed to the high insecticide resistance profile recorded in the study areas. Haplotype networks of pattern of genetic variability and polymorphism for the fragment of the VGSC sequences of sampled Anopheles mosquitoes revealed low haplotypes for the present study. Haplotypes are set of closely linked DNA variation on X-chromosome. Haplotypes were scaled accordingly to reflect their respective frequencies. Low haplotype number, four VGSC-1014F haplotypes were observed in this study. A positive association was previously established between low haplotype number of VGSC diversity and pyrethroid resistance through kdr mechanism. Significant values at (P < 0.05) of Tajima D and Fu and Li D’ were observed for some of the results indicating possible signature of positive selection on the fragment of VGSC in the study. This is the first report of VGSC-1014F in the study site. Based on the results, the mutation was present in low frequencies. However, the roles played by the observed mutations need further investigation. Mutations, environmental factors among others can affect genetic diversity. The study area has recorded increase in insecticide resistance that can affect vector control in the area. This finding might affect the efforts made against malaria. Sequences were deposited in GenBank for Accession Number.

Keywords: anopheles mosquitoes, insecticide resistance, kdr, malaria, voltage gated sodium channel

Procedia PDF Downloads 17
18 The Impact of P108L Genetic Variant on Calcium Release and Malignant Hyperthermia Susceptibility

Authors: Mohammed Althobiti, Patrick Booms, Dorota Fiszer, Philip Hopkins

Abstract:

Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle. MH results from anaesthetics induced breakdown of calcium homeostasis. RYR1 and CACN1AS mutations represent the aetiology in ~70% of the MH population. Previous studies indicate that up to 25% of MH patients carry no variants in these genes. Therefore, the aim of this study is to investigate the relationships between MH susceptibility and genes encoding skeletal muscle Ca2+ channels as well as accessory proteins. The JSRP, encoding JP-45, was previously sequenced and novel genetic variants were identified. The variant p.P108L (c.323C > T) was identified in exon 4 and encodes a change from a proline at amino acid 108 to leucine residue. The variant P108L was detected in two patients out of 50 with 4% frequency in the sample population. The alignment of DNA sequences in different species indicates highly conserved proline sequences involved in the substitution of the P108L variant. In this study, the variant P108L co-segregates with the SNP p.V92A (c.275T > C) at the same exon, both variants being inherited in the same two patients only. This indicates that the two variants may represent a haplotype. Therefore, a set of single nucleotide polymorphisms and statistical analysis will be used to investigate the effects of haplotypes on MH susceptibility. Furthermore, investigating the effect of the P108L variant in combination with RYR1 mutations or other genetic variants in other genes as a combination of two or more genetic variants, haplotypes may then provide stronger genetic evidence indicating that JSRP1 is associated with MH susceptibility. In conclusion, these preliminary results lend a potential modifier role of the variant P108L in JSRP1 in MH susceptibility and further investigations are suggested to confirm these results.

Keywords: JSRP1, malignant hyperthermia, RyR1, skeletal muscle

Procedia PDF Downloads 300
17 Milk Protein Genetic Variation and Haplotype Structure in Sudanse Indigenous Dairy Zebu Cattle

Authors: Ammar Said Ahmed, M. Reissmann, R. Bortfeldt, G. A. Brockmann

Abstract:

Milk protein genetic variants are of interest for characterizing domesticated mammalian species and breeds, and for studying associations with economic traits. The aim of this work was to analyze milk protein genetic variation in the Sudanese native cattle breeds, which have been gradually declining in numbers over the last years due to the breed substitution, and indiscriminate crossbreeding. The genetic variation at three milk protein genes αS1-casein (CSN1S1), αS2-casein (CSN1S2) and ƙ-casein (CSN3) was investigated in 250 animals belonging to five Bos indicus cattle breeds of Sudan (Butana, Kenana, White-nile, Erashy and Elgash). Allele specific primers were designed for five SNPs determine the CSN1S1 variants B and C, the CSN1S2 variants A and B, the CSN3 variants A, B and H. Allele, haplotype frequencies and genetic distances (D) were calculated and the phylogenetic tree was constructed. All breeds were found to be polymorphic for the studied genes. The CSN1S1*C variant was found very frequently (>0.63) in all analyzed breeds with highest frequency (0.82) in White-nile cattle. The CSN1S2*A variant (0.77) and CSN3*A variant (0.79) had highest frequency in Kenana cattle. Eleven haplotypes in casein gene cluster were inferred. Six of all haplotypes occurred in all breeds with remarkably deferent frequencies. The estimated D ranged from 0.004 to 0.049. The most distant breeds were White-nile and Kenana (D 0.0479). The results presented contribute to the genetic knowledge of indigenous cattle and can be used for proper definition and classification of the Sudanese cattle breeds as well as breeding, utilization, and potential development of conservation strategies for local breeds.

Keywords: milk protein, genetic variation, casein haplotype, Bos indicus

Procedia PDF Downloads 401
16 Linkage Disequilibrium and Haplotype Blocks Study from Two High-Density Panels and a Combined Panel in Nelore Beef Cattle

Authors: Priscila A. Bernardes, Marcos E. Buzanskas, Luciana C. A. Regitano, Ricardo V. Ventura, Danisio P. Munari

Abstract:

Genotype imputation has been used to reduce genomic selections costs. In order to increase haplotype detection accuracy in methods that considers the linkage disequilibrium, another approach could be used, such as combined genotype data from different panels. Therefore, this study aimed to evaluate the linkage disequilibrium and haplotype blocks in two high-density panels before and after the imputation to a combined panel in Nelore beef cattle. A total of 814 animals were genotyped with the Illumina BovineHD BeadChip (IHD), wherein 93 animals (23 bulls and 70 progenies) were also genotyped with the Affymetrix Axion Genome-Wide BOS 1 Array Plate (AHD). After the quality control, 809 IHD animals (509,107 SNPs) and 93 AHD (427,875 SNPs) remained for analyses. The combined genotype panel (CP) was constructed by merging both panels after quality control, resulting in 880,336 SNPs. Imputation analysis was conducted using software FImpute v.2.2b. The reference (CP) and target (IHD) populations consisted of 23 bulls and 786 animals, respectively. The linkage disequilibrium and haplotype blocks studies were carried out for IHD, AHD, and imputed CP. Two linkage disequilibrium measures were considered; the correlation coefficient between alleles from two loci (r²) and the |D’|. Both measures were calculated using the software PLINK. The haplotypes' blocks were estimated using the software Haploview. The r² measurement presented different decay when compared to |D’|, wherein AHD and IHD had almost the same decay. For r², even with possible overestimation by the sample size for AHD (93 animals), the IHD presented higher values when compared to AHD for shorter distances, but with the increase of distance, both panels presented similar values. The r² measurement is influenced by the minor allele frequency of the pair of SNPs, which can cause the observed difference comparing the r² decay and |D’| decay. As a sum of the combinations between Illumina and Affymetrix panels, the CP presented a decay equivalent to a mean of these combinations. The estimated haplotype blocks detected for IHD, AHD, and CP were 84,529, 63,967, and 140,336, respectively. The IHD were composed by haplotype blocks with mean of 137.70 ± 219.05kb, the AHD with mean of 102.10kb ± 155.47, and the CP with mean of 107.10kb ± 169.14. The majority of the haplotype blocks of these three panels were composed by less than 10 SNPs, with only 3,882 (IHD), 193 (AHD) and 8,462 (CP) haplotype blocks composed by 10 SNPs or more. There was an increase in the number of chromosomes covered with long haplotypes when CP was used as well as an increase in haplotype coverage for short chromosomes (23-29), which can contribute for studies that explore haplotype blocks. In general, using CP could be an alternative to increase density and number of haplotype blocks, increasing the probability to obtain a marker close to a quantitative trait loci of interest.

Keywords: Bos taurus indicus, decay, genotype imputation, single nucleotide polymorphism

Procedia PDF Downloads 248
15 Association of Major Histocompatibility Complex with Cell Mediated Immunity

Authors: Atefeh Esmailnejad, Gholamreza Nikbakht Brujeni

Abstract:

Major histocompatibility complex (MHC) is one of the best characterized genetic regions associated with immune responses and controlling disease resistance in chicken. Association of the MHC with a wide range of immune responses makes it a valuable predictive factor for the disease pathogenesis and outcome. In this study, the association of MHC with cell-mediated immune responses was analyzed in commercial broiler chicken. The tandem repeat LEI0258 was applied to investigate the MHC polymorphism. Cell-mediated immune response was evaluated by peripheral blood lymphocyte proliferation assay using MTT method. Association study revealed a significant influence of MHC alleles on cellular immune responses in this population. Alleles 385 and 448 bp were associated with elevated cell-mediated immunity. Haplotypes associated with improved immune responses could be considered as candidate markers for disease resistance and applied to breeding strategies.

Keywords: MHC, cell-mediated immunity, broiler, chicken

Procedia PDF Downloads 115
14 Polymorphic Positions, Haplotypes, and Mutations Detected In The Mitochonderial DNA Coding Region By Sanger Sequence Technique

Authors: Imad H. Hameed, Mohammad A. Jebor, Ammera J. Omer

Abstract:

The aim of this research is to study the mitochonderial coding region by using the Sanger sequencing technique and establish the degree of variation characteristic of a fragment. FTA® Technology (FTA™ paper DNA extraction) utilized to extract DNA. Portion of coding region encompassing positions 11719 –12384 amplified in accordance with the Anderson reference sequence. PCR products purified by EZ-10 spin column then sequenced and Detected by using the ABI 3730xL DNA Analyzer. Five new polymorphic positions 11741, 11756, 11878, 11887 and 12133 are described may be suitable sources for identification purpose in future. The calculated value D= 0.95 and RMP=0.048 of the genetic diversity should be understood as high in the context of coding function of the analysed DNA fragment. The relatively high gene diversity and a relatively low random match probability were observed in Iraq population. The obtained data can be used to identify the variable nucleotide positions characterized by frequent occurrence which is most promising for various identifications.

Keywords: coding region, Iraq, mitochondrial DNA, polymorphic positions, sanger technique

Procedia PDF Downloads 399
13 Polymorphisms of Macrophage Migration Inhibitory Factor (MIF) and Susceptibility to Endometriosis

Authors: Z. Chekini, P. Afsharian, F. Ramezanali, A. A. Akhlaghi, R. Aflatoonian

Abstract:

Macrophage migration inhibitory factor (MIF) is a key pro-inflammatory cytokine that involves in pathophysiological events of endometriosis. We aimed to evaluate the association between mRNA expression levels and polymorphisms of MIF in endometriosis. Seventy endometriosis patients and 70 volunteer fertile women were recruited. RFLP was applied to determine -173G/C polymorphism. ORF polymorphisms and -794(CATT)5-8 were detected by sequencing. Q-PCR was used for expression study of 14 ectopic tissues of patients. Homozygote of CATT5 was observed only in controls. The CATT5/G haplotype related to controls (p=0.094, OR=0.61). Expression level of MIF with -794(CATT)6,7/-173GC was significantly more than the other haplotypes (p=0.00). We identified four SNPs including: +254rs2096525 (p=0.843), +626rs33958703 (p=0.029), +656rs2070766 (p=0.703) and +509rs182012324 (p=1.00). In conclusion, increased repeat of CATT and presence of C allele in promoter of MIF were significantly associated with mRNA level in patients. It seems that +509rs182012324 and +626rs33958703 SNPs were significantly correlated with susceptibility to endometriosis.

Keywords: endometriosis, haplotype, macrophage migration inhibitory factor, polymorphism

Procedia PDF Downloads 431
12 Analysis of Genetic Variations in Camel Breeds (Camelus dromedarius)

Authors: Yasser M. Saad, Amr A. El Hanafy, Saleh A. Alkarim, Hussein A. Almehdar, Elrashdy M. Redwan

Abstract:

Camels are substantial providers of transport, milk, sport, meat, shelter, security and capital in many countries, particularly in Saudi Arabia. Inter simple sequence repeat technique was used to detect the genetic variations among some camel breeds (Majaheim, Safra, Wadah, and Hamara). Actual number of alleles, effective number of alleles, gene diversity, Shannon’s information index and polymorphic bands were calculated for each evaluated camel breed. Neighbor-joining tree that re-constructed for evaluated these camel breeds showed that, Hamara breed is distantly related from the other evaluated camels. In addition, the polymorphic sites, haplotypes and nucleotide diversity were identified for some camelidae cox1 gene sequences (obtained from NCBI). The distance value between C. bactrianus and C. dromedarius (0.072) was relatively low. Analysis of genetic diversity is an important way for conserving Camelus dromedarius genetic resources.

Keywords: camel, genetics, ISSR, neighbor-joining

Procedia PDF Downloads 439
11 PMEL Marker Identification of Dark and Light Feather Colours in Local Canary

Authors: Mudawamah Mudawamah, Muhammad Z. Fadli, Gatot Ciptadi, Aulanni’am

Abstract:

Canary breeders have spread throughout Indonesian regions for the low-middle society and become an income source for them. The interesting phenomenon of the canary market is the feather colours become one of determining factor for the price. The advantages of this research were contributed to the molecular database as a base of selection and mating for the Indonesia canary breeder. The research method was experiment with the genome obtained from canary blood isolation. The genome did the PCR amplification with PMEL marker followed by sequencing. Canaries were used 24 heads of light and dark colour feathers. Research data analyses used BioEdit and Network 4.6.0.0 software. The results showed that all samples were amplification with PMEL gene with 500 bp fragment length. In base sequence of 40 was found Cytosine(C) in the light colour canaries, while the dark colour canaries was obtained Thymine (T) in same base sequence. Sequence results had 286-415 bp fragment and 10 haplotypes. The conclusions were the PMEL gene (gene of white pigment) was likely to be used PMEL gene to detect molecular genetic variation of dark and light colour feather.

Keywords: canary, haplotype, PMEL, sequence

Procedia PDF Downloads 203
10 Association of Major Histocompatibility Complex Alleles with Antibody Response to Newcastle Vaccine in Chicken

Authors: Atefeh Esmailnejad, Gholam Reza Nikbakht Brujeni

Abstract:

The major histocompatibility complex (MHC) is the best-characterized genetic region associated with susceptibility and/or resistance to a wide range of infectious diseases, autoimmune diseases and immune responses to vaccines. It has been demonstrated that there is an association between the MHC and resistance to Marek disease, Newcastle disease, Rous sarcoma tumor, Avian leucosis, Fowl cholera, Salmonellosis and Pasteurellosis in chicken. The present study evaluated the MHC polymorphism and its association with antibody response to Newcastle (ND) vaccine in Iranian native chickens. The MHC polymorphism was investigated using LEI0258 microsatellite locus by PCR-based fragment analysis. LEI0258 microsatellite marker is a genetic indicator for MHC, which is located on microchromosome 16 and strongly associated with serologically defined MHC haplotypes. Antibody titer against ND vaccine was measured by Haemaglutination Inhibition (HI) assay. Statistical analysis was performed using SPSS software (version 21). Total of 13 LEI0258 microsatellite alleles were identified in 72 samples which indicated a high genetic diversity in the population. The association study revealed a significant influence of MHC alleles on immune responses to Newcastle vaccine. 311 and 313 bp alleles were significantly associated with elevated immune responses to Newcastle vaccine (p<0.05). These results would be applicable in designing and improving the populations under selective breeding.

Keywords: chicken, LEI0258, MHC, Newcastle vaccine

Procedia PDF Downloads 400
9 Nucleotide Diversity and Bacterial Endosymbionts of the Black Cherry Aphid Myzus cerasi (Fabricus, 1775) (Hemiptera: Aphididae) from Turkey

Authors: Burcu Inal, Irfan Kandemir

Abstract:

Sequences of mitochondrial cytochrome oxidase I (COI) gene of twenty-five Turkish and one Greek Myzus cerasi (Fabricus) (Hemiptera: Aphididae) in populations were collected from Prunus avium and Prunus cerasus. The partial coding region of COI studied is 605 bp for all the populations, from which 565 nucleotides were conserved, 40 were variable, 37 were singleton, and 3 sites were parsimony-informative. Four haplotypes were identified based on nucleotide substitutions, and the mean of intraspecific divergence was calculated to be 0.3%. Phylogenetic trees were constructed using Maximum Likelihood, Minimum Evolution, Neighbor-joining, and Unweighed Pair Group Method of Arithmetic Averages (UPGMA) and Myzus persicae (Sulzer) and Myzus borealis Ossiannilson were included as outgroups. The population of M. cerasi from Isparta diverged from the rest of the groups and formed a clade (Haplotype B) with Myzus borealis. The rest of the haplotype diversity includes Haplotype A and Haplotype C with individuals characterized as Myzus cerasi pruniavium and Haplotype D with Myzus cerasi cerasi. M. cerasi diverge into two subspecies and it must be reevaluated whether this pest is monophagous or oligophagous in terms of plant type dependence. The obligated endosymbiont Buchnera aphidicola was also found during this research, but no facultative symbionts could be found. It is expected further studies will be required for a complete barcoding and diversity of bacterial endosymbionts present.

Keywords: bacterial endosymbionts, barcoding, black cherry aphid, nucleotide diversity

Procedia PDF Downloads 138
8 Genetic Diversity and Variation of Nigerian Pigeon (Columba livia domestica) Populations Based on the Mitochondrial Coi Gene

Authors: Foluke E. Sola-Ojo, Ibraheem A. Abubakar, Semiu F. Bello, Isiaka H. Fatima, Sule Bisola, Adesina M. Olusegun, Adeniyi C. Adeola

Abstract:

The domesticated pigeon, Columba livia domestica, has many valuable characteristics, including high nutritional value and fast growth rate. There is a lack of information on its genetic diversity in Nigeria; thus, the genetic variability in mitochondrial cytochrome oxidase subunit I (COI) sequences of 150 domestic pigeons from four different locations was examined. Three haplotypes (HT) were identified in Nigerian populations; the most common haplotype, HT1, was shared with wild and domestic pigeons from Europe, America, and Asia, while HT2 and HT3 were unique to Nigeria. The overall haplotype diversity was 0.052± 0.025, and nucleotide diversity was 0.026± 0.068 across the four investigated populations. The phylogenetic tree showed significant clustering and genetic relationship of Nigerian domestic pigeons with other global pigeons. The median-joining network showed a star-like pattern suggesting population expansion. AMOVA results indicated that genetic variations in Nigerian pigeons mainly occurred within populations (99.93%), while the Neutrality tests results suggested that the Nigerian domestic pigeons’ population experienced recent expansion. This study showed a low genetic diversity and population differentiation among Nigerian domestic pigeons consistent with a relatively conservative COI sequence with few polymorphic sites. Furthermore, the COI gene could serve as a candidate molecular marker to investigate the genetic diversity and origin of pigeon species. The current data is insufficient for further conclusions; therefore, more research evidence from multiple molecular markers is required.

Keywords: Nigeria pigeon, COI, genetic diversity, genetic variation, conservation

Procedia PDF Downloads 137
7 A Piebald Cladistic Portray of Mitochondrial DNA Control Region Haplogroups in Khyber Pakhtunkhwa, Pakistan

Authors: Shahzad Bhatti, M. Aslamkhan, Sana Abbas, Marcella Attimonelli, Hikmet Hakan Aydin, Erica Martinha Silva de Souza,

Abstract:

Despite being situated at the crossroad of Asia, Pakistan has gained crucial importance because of its pivotal role in subsequent migratory events. To highlight the genetic footprints and to contribute an enigmatic picture of the relative population expansion pattern among four major Pashtun tribes in Khyber Pakhtunkhwa viz., Bangash, Khattak, Mahsuds and Orakzai, the complete mitochondrial control region of 100 Pashtun were analyzed. All Pashtun tribes studied here revealed high genetic diversity; that was comparable to the other Central Asian, Southeast Asian and European populations. The configuration of genetic variation and heterogeneity further unveiled through Multidimensional Scaling, Principal Component Analysis, and phylogenetic analysis. The results revealed that the Pashtun is a composite mosaic of West Eurasian ancestry of numerous geographic origin. They received substantial gene flow during different invasions and have a high element of the Western provenance. The most common haplogroups reported in this study are: South Asian haplogroup M (28%) and R (8%); whereas, West Asians haplogroups are present, albeit in high frequencies (67%) and widespread over all; HV (15%), U (17%), H (9%), J (8%), K (8%), W (4%), N (3%) and T (3%). Herein we linked the unexplored genetic connection between Ashkenazi Jews and Pashtun. The presence of specific haplotypes J1b (4%) and K1a1b1a (5%) point to a genetic connection of Jewish conglomeration with Khattak tribe. This was a result of an ancient genetic influx in the early Neolithic period that led to the formation of a diverse genetic substratum in present day Pashtun.

Keywords: mtDNA haplogroups, control region, Pakistan, KPK, ethnicity

Procedia PDF Downloads 448
6 Assessment of Genetic Diversity and Population Structure of Goldstripe Sardinella, Sardinella gibbosa in the Transboundary Area of Kenya and Tanzania Using mtDNA and msDNA Markers

Authors: Sammy Kibor, Filip Huyghe, Marc Kochzius, James Kairo

Abstract:

Goldstripe Sardinella, Sardinella gibbosa, (Bleeker, 1849) is a commercially and ecologically important small pelagic fish common in the Western Indian Ocean region. The present study aimed to assess genetic diversity and population structure of the species in the Kenya-Tanzania transboundary area using mtDNA and msDNA markers. Some 630 bp sequence in the mitochondrial DNA (mtDNA) Cytochrome C Oxidase I (COI) and five polymorphic microsatellite DNA loci were analyzed. Fin clips of 309 individuals from eight locations within the transboundary area were collected between July and December 2018. The S. gibbosa individuals from the different locations were distinguishable from one another based on the mtDNA variation, as demonstrated with a neighbor-joining tree and minimum spanning network analysis. None of the identified 22 haplotypes were shared between Kenya and Tanzania. Gene diversity per locus was relatively high (0.271-0.751), highest Fis was 0.391. The structure analysis, discriminant analysis of Principal component (DAPC) and the pair-wise (FST = 0.136 P < 0.001) values after Bonferroni correction using five microsatellite loci provided clear inference on genetic differentiation and thus evidence of population structure of S. gibbosa along the Kenya-Tanzania coast. This study shows a high level of genetic diversity and the presence of population structure (Φst =0.078 P < 0.001) resulting to the existence of four populations giving a clear indication of minimum gene flow among the population. This information has application in the designing of marine protected areas, an important tool for marine conservation.

Keywords: marine connectivity, microsatellites, population genetics, transboundary

Procedia PDF Downloads 92
5 Genetic Assessment of The Managed Gharial Population In The Girwa River, India

Authors: Surya Prasad Sharma, Suyash Katdare, Syed Ainul Hussain

Abstract:

Human-induced factors contributed to the population decline of crocodylians in India which became evident by the mid-20th century when authorities forewarned the extinction risk for the crocodile and proposed regulation in the crocodile trade. The proposed action led to the enactment of national and international wildlife regulations to prohibit the trade-in of crocodile skins and parts. Subsequently, conservation translocation programs were initiated to restore the species in the wild through a 'head-start' approach. In India, the crocodile conservation program, which began in the early 1970s, has been one of India's longest-running conservation initiatives. The gharial (Gavialis gangeticus) population has benefitted, and the gharial number increased rapidly owing to these efforts. The immediate risk of extinction was averted as the gharial has recovered due to decades-long cumulative conservation efforts, the consideration of the genetic for monitoring the recovery of the recovered populations is still lacking. Hence, we assessed the genetic diversity of the Girwa gharial population in India using six polymorphic nuclear microsatellites loci and mitochondrial control region. The number of alleles per loci ranged between 2 to 5, and the allelic richness (Ar) was 2.67 ± 0.49, and the observed (Ho) and expected (He) heterozygosities were 0.42 ± 0.08 and 0.42 ± 0.09, respectively. The M-ratio yielded a value of (0.41 ± 0.16) lower than critical M, suggesting a genetic bottleneck in the Girwa population. We observed more mitochondrial control region haplotypes in the Girwa population than previously reported in the largest gharial population in the Chambal River. Overall, our study indicates that genetic diversity remains low despite the recovery in the Girwa population. Hence, we recommend a range-wide genetic assessment of gharial populations using high-throughput techniques to identify the source population and plan future translocation programs.

Keywords: conservation translocation, recovery, crocodile, bottleneck

Procedia PDF Downloads 85
4 Phylogenetic Studies of Six Egyptian Sheep Breeds Using Cytochrome B

Authors: Othman Elmahdy Othman, Agnés Germot, Daniel Petit, Muhammad Khodary, Abderrahman Maftah

Abstract:

Recently, the control (D-loop) and cytochrome b (Cyt b) regions of mtDNA have received more attention due to their role in the genetic diversity and phylogenetic studies in different livestock which give important knowledge towards the genetic resource conservation. Studies based on sequencing of sheep mitochondrial DNA showed that there are five maternal lineages in the world for domestic sheep breeds; A, B, C, D and E. By using cytochrome B sequencing, we aimed to clarify the genetic affinities and phylogeny of six Egyptian sheep breeds. Blood samples were collected from 111 animals belonging to six Egyptian sheep breeds; Barki, Rahmani, Ossimi, Saidi, Sohagi and Fallahi. The total DNA was extracted and the specific primers were used for conventional PCR amplification of the cytochrome B region of mtDNA. PCR amplified products were purified and sequenced. The alignment of sequences was done using BioEdit software and DnaSP 5.00 software was used to identify the sequence variation and polymorphic sites in the aligned sequences. The result showed that the presence of 39 polymorphic sites leading to the formation of 29 haplotypes. The haplotype diversity in six tested breeds ranged from 0.643 in Rahmani breed to 0.871 in Barki breed. The lowest genetic distance was observed between Rahmani and Saidi (D: 1.436 and Dxy: 0.00127) while the highest distance was observed between Ossimi and Sohagi (D: 6.050 and Dxy: 0.00534). Neighbour-joining (Phylogeny) tree was constructed using Mega 5.0 software. The sequences of 111 analyzed samples were aligned with references sequences of different haplogroups; A, B, C, D and E. The phylogeny result showed the presence of four haplogroups; HapA, HapB, HapC and HapE in the examined samples whereas the haplogroup D was not found. The result showed that 88 out of 111 tested animals cluster with haplogroup B (79.28%), whereas 12 tested animals cluster with haplogroup A (10.81%), 10 animals cluster with haplogroup C (9.01%) and one animal belongs to haplogroup E (0.90%).

Keywords: phylogeny, genetic biodiversity, MtDNA, cytochrome B, Egyptian sheep

Procedia PDF Downloads 314
3 Studies of Single Nucleotide Polymorphism of Proteosomal Gene Complex and Their Association with HBV Infection Risk in India

Authors: Jasbir Singh, Devender Kumar, Davender Redhu, Surender Kumar, Vandana Bhardwaj

Abstract:

Single Nucleotide polymorphism (SNP) of proteosomal gene complex is involved in the pathogenesis of hepatitis B Virus (HBV) infection. Some of such proteosomal gene complex are large multifunctional proteins (LMP) and antigen associated transporters that help in antigen presentation. Both are involved in intracellular processing and presentation of viral antigens in association with Major Histocompatability Complex (MHC) Class I molecules. A total of hundred each of hepatitis B virus infected and control samples from northern India were studied. Genomic DNA was extracted from all studied samples and PCR-RFLP method was used for genotyping at different positions of LMP genes. Genotypes at a given position were inferred from the pattern of bands and genotype frequencies and haplotype frequencies were also calculated. Homozygous SNP {A>C} was observed at codon 145 of LMP7 gene and having a protective role against HBV as there was statistically significant high distribution of this SNP among controls than cases. Heterozygous SNP {A>C} was observed at codon 145 of LMP7 gene and made individuals more susceptible to HBV infection as there was statistically significant high distribution of this SNP among cases than control. SNP {T>C} was observed at codon 60 of LMP2 gene but statistically significant differences were not observed among controls and cases. For codon 145 of LMP7 and codon 60 of LMP2 genes, four haplotypes were constructed. Haplotype I (LMP2 ‘C’ and LMP7 ‘A’) made individuals carrying it more susceptible to HBV infection as there was statistically significant high distribution of this haplotype among cases than control. Haplotype II (LMP2 ‘C’ and LMP7 ‘C’) made individuals carrying it more immune to HBV infection as there was statistically significant high distribution of this haplotype among control than cases. Thus it can be concluded that homozygous SNP {A>C} at codon 145 of LMP7 and Haplotype II (LMP2 ‘C’ and LMP7 ‘C’) has a protective role against HBV infection whereas heterozygous SNP {A>C} at codon 145 of LMP7 and Haplotype I (LMP2 ‘C’ and LMP7 ‘A’) made individuals more susceptible to HBV infection.

Keywords: Hepatitis B Virus, single nucleotide polymorphism, low molecular weight proteins, transporters associated with antigen presentation

Procedia PDF Downloads 280
2 Insulin Receptor Substrate-1 (IRS1) and Transcription Factor 7-Like 2 (TCF7L2) Gene Polymorphisms Associated with Type 2 Diabetes Mellitus in Eritreans

Authors: Mengistu G. Woldu, Hani Y. Zaki, Areeg Faggad, Badreldin E. Abdalla

Abstract:

Background: Type 2 diabetes mellitus (T2DM) is a complex, degenerative, and multi-factorial disease, which is culpable for huge mortality and morbidity worldwide. Even though relatively significant numbers of studies are conducted on the genetics domain of this disease in the developed world, there is huge information gap in the sub-Saharan Africa region in general and in Eritrea in particular. Objective: The principal aim of this study was to investigate the association of common variants of the Insulin Receptor Substrate 1 (IRS1) and Transcription Factor 7-Like 2 (TCF7L2) genes with T2DM in the Eritrean population. Method: In this cross-sectional case control study 200 T2DM patients and 112 non-diabetes subjects were participated and genotyping of the IRS1 (rs13431179, rs16822615, 16822644rs, rs1801123) and TCF7L2 (rs7092484) tag SNPs were carries out using PCR-RFLP method of analysis. Haplotype analyses were carried out using Plink version 1.07, and Haploview 4.2 software. Linkage disequilibrium (LD), and Hardy-Weinberg equilibrium (HWE) analyses were performed using the Plink software. All descriptive statistical data analyses were carried out using SPSS (Version-20) software. Throughout the analysis p-value ≤0.05 was considered statistically significant. Result: Significant association was found between rs13431179 SNP of the IRS1 gene and T2DM under the recessive model of inheritance (OR=9.00, 95%CI=1.17-69.07, p=0.035), and marginally significant association found in the genotypic model (OR=7.50, 95%CI=0.94-60.06, p=0.058). The rs7092484 SNP of the TCF7L2 gene also showed markedly significant association with T2DM in the recessive (OR=3.61, 95%CI=1.70-7.67, p=0.001); and allelic (OR=1.80, 95%CI=1.23-2.62, p=0.002) models. Moreover, eight haplotypes of the IRS1 gene found to have significant association withT2DM (p=0.013 to 0.049). Assessments made on the interactions of genotypes of the rs13431179 and rs7092484 SNPs with various parameters demonstrated that high density lipoprotein (HDL), low density lipoprotein (LDL), waist circumference (WC), and systolic blood pressure (SBP) are the best T2DM onset predicting models. Furthermore, genotypes of the rs7092484 SNP showed significant association with various atherogenic indexes (Atherogenic index of plasma, LDL/HDL, and CHLO/HDL); and Eritreans carrying the GG or GA genotypes were predicted to be more susceptible to cardiovascular diseases onset. Conclusions: Results of this study suggest that IRS1 (rs13431179) and TCF7L2 (rs7092484) gene polymorphisms are associated with increased risk of T2DM in Eritreans.

Keywords: IRS1, SNP, TCF7L2, type 2 diabetes

Procedia PDF Downloads 192
1 Cytochrome B Diversity and Phylogeny of Egyptian Sheep Breeds

Authors: Othman E. Othman, Agnés Germot, Daniel Petit, Abderrahman Maftah

Abstract:

Threats to the biodiversity are increasing due to the loss of genetic diversity within the species utilized in agriculture. Due to the progressive substitution of the less productive, locally adapted and native breeds by highly productive breeds, the number of threatened breeds is increased. In these conditions, it is more strategically important than ever to preserve as much the farm animal diversity as possible, to ensure a prompt and proper response to the needs of future generations. Mitochondrial (mtDNA) sequencing has been used to explain the origins of many modern domestic livestock species. Studies based on sequencing of sheep mitochondrial DNA showed that there are five maternal lineages in the world for domestic sheep breeds; A, B, C, D and E. Because of the eastern location of Egypt in the Mediterranean basin and the presence of fat-tailed sheep breeds- character quite common in Turkey and Syria- where genotypes that seem quite primitive, the phylogenetic studies of Egyptian sheep breeds become particularly attractive. We aimed in this work to clarify the genetic affinities, biodiversity and phylogeny of five Egyptian sheep breeds using cytochrome B sequencing. Blood samples were collected from 63 animals belonging to the five tested breeds; Barki, Rahmani, Ossimi, Saidi and Sohagi. The total DNA was extracted and the specific primer allowed the conventional PCR amplification of the cytochrome B region of mtDNA (approximately 1272 bp). PCR amplified products were purified and sequenced. The alignment of Sixty-three samples was done using BioEdit software. DnaSP 5.00 software was used to identify the sequence variation and polymorphic sites in the aligned sequences. The result showed that the presence of 34 polymorphic sites leading to the formation of 18 haplotypes. The haplotype diversity in five tested breeds ranged from 0.676 in Rahmani breed to 0.894 in Sohagi breed. The genetic distances (D) and the average number of pairwise differences (Dxy) between breeds were estimated. The lowest distance was observed between Rahmani and Saidi (D: 1.674 and Dxy: 0.00150) while the highest distance was observed between Ossimi and Sohagi (D: 5.233 and Dxy: 0.00475). Neighbour-joining (Phylogeny) tree was constructed using Mega 5.0 software. The sequences of the 63 analyzed samples were aligned with references sequences of different haplogroups. The phylogeny result showed the presence of three haplogroups (HapA, HapB and HapC) in the 63 examined samples. The other two haplogroups described in literature (HapD and HapE) were not found. The result showed that 50 out of 63 tested animals cluster with haplogroup B (79.37%) whereas 7 tested animals cluster with haplogroup A (11.11%) and 6 animals cluster with haplogroup C (9.52%). In conclusion, the phylogenetic reconstructions showed that the majority of Egyptian sheep breeds belonging to haplogroup B which is the dominant haplogroup in Eastern Mediterranean countries like Syria and Turkey. Some individuals are belonging to haplogroups A and C, suggesting that the crosses were done with other breeds for characteristic selection for growth and wool quality.

Keywords: cytochrome B, diversity, phylogheny, Egyptian sheep breeds

Procedia PDF Downloads 345