Search results for: delay tolerant networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3747

Search results for: delay tolerant networks

1107 Importance of Location Selection of an Energy Storage System in a Smart Grid

Authors: Vanaja Rao

Abstract:

In the recent times, the need for the integration of Renewable Energy Sources (RES) in a Smart Grid is on the rise. As a result of this, associated energy storage systems are known to play important roles in sustaining the efficient operation of such RES like wind power and solar power. This paper investigates the importance of location selection of Energy Storage Systems (ESSs) in a Smart Grid. Three scenarios of ESS location is studied and analyzed in a Smart Grid, which are – 1. Near the generation/source, 2. In the middle of the Grid and, 3. Near the demand/consumption. This is explained with the aim of assisting any Distribution Network Operator (DNO) in deploying the ESSs in a power network, which will significantly help reduce the costs and time of planning and avoid any damages incurred as a result of installing them at an incorrect location of a Smart Grid. To do this, the outlined scenarios mentioned above are modelled and analyzed with the National Grid’s datasets of energy generation and consumption in the UK power network. As a result, the outcome of this analysis aims to provide a better overview for the location selection of the ESSs in a Smart Grid. This ensures power system stability and security along with the optimum usage of the ESSs.

Keywords: distribution networks, energy storage system, energy security, location planning, power stability, smart grid

Procedia PDF Downloads 300
1106 Artificial Intelligence Methods for Returns Expectations in Financial Markets

Authors: Yosra Mefteh Rekik, Younes Boujelbene

Abstract:

We introduce in this paper a new conceptual model representing the stock market dynamics. This model is essentially based on cognitive behavior of the intelligence investors. In order to validate our model, we build an artificial stock market simulation based on agent-oriented methodologies. The proposed simulator is composed of market supervisor agent essentially responsible for executing transactions via an order book and various kinds of investor agents depending to their profile. The purpose of this simulation is to understand the influence of psychological character of an investor and its neighborhood on its decision-making and their impact on the market in terms of price fluctuations. Therefore, the difficulty of the prediction is due to several features: the complexity, the non-linearity and the dynamism of the financial market system, as well as the investor psychology. The Artificial Neural Networks learning mechanism take on the role of traders, who from their futures return expectations and place orders based on their expectations. The results of intensive analysis indicate that the existence of agents having heterogeneous beliefs and preferences has provided a better understanding of price dynamics in the financial market.

Keywords: artificial intelligence methods, artificial stock market, behavioral modeling, multi-agent based simulation

Procedia PDF Downloads 446
1105 Characterization of WNK2 Role on Glioma Cells Vesicular Traffic

Authors: Viviane A. O. Silva, Angela M. Costa, Glaucia N. M. Hajj, Ana Preto, Aline Tansini, Martin Roffé, Peter Jordan, Rui M. Reis

Abstract:

Autophagy is a recycling and degradative system suggested to be a major cell death pathway in cancer cells. Autophagy pathway is interconnected with the endocytosis pathways sharing the same ultimate lysosomal destination. Lysosomes are crucial regulators of cell homeostasis, responsible to downregulate receptor signalling and turnover. It seems highly likely that derailed endocytosis can make major contributions to several hallmarks of cancer. WNK2, a member of the WNK (with-no-lysine [K]) subfamily of protein kinases, had been found downregulated by its promoter hypermethylation, and has been proposed to act as a specific tumour-suppressor gene in brain tumors. Although some contradictory studies indicated WNK2 as an autophagy modulator, its role in cancer cell death is largely unknown. There is also growing evidence for additional roles of WNK kinases in vesicular traffic. Aim: To evaluate the role of WNK2 in autophagy and endocytosis on glioma context. Methods: Wild-type (wt) A172 cells (WNK2 promoter-methylated), and A172 transfected either with an empty vector (Ev) or with a WNK2 expression vector, were used to assess the cellular basal capacities to promote autophagy, through western blot and flow-cytometry analysis. Additionally, we evaluated the effect of WNK2 on general endocytosis trafficking routes by immunofluorescence. Results: The re-expression of ectopic WNK2 did not interfere with autophagy-related protein light chain 3 (LC3-II) expression levels as well as did not promote mTOR signaling pathway alteration when compared with Ev or wt A172 cells. However, the restoration of WNK2 resulted in a marked increase (8 to 92,4%) of Acidic Vesicular Organelles formation (AVOs). Moreover, our results also suggest that WNK2 cells promotes delay in uptake and internalization rate of cholera toxin B and transferrin ligands. Conclusions: The restoration of WNK2 interferes in vesicular traffic during endocytosis pathway and increase AVOs formation. This results also suggest the role of WNK2 in growth factor receptor turnover related to cell growth and homeostasis and associates one more time, WNK2 silencing contribution in genesis of gliomas.

Keywords: autophagy, endocytosis, glioma, WNK2

Procedia PDF Downloads 370
1104 Water Dumpflood into Multiple Low-Pressure Gas Reservoirs

Authors: S. Lertsakulpasuk, S. Athichanagorn

Abstract:

As depletion-drive gas reservoirs are abandoned when there is insufficient production rate due to pressure depletion, waterflooding has been proposed to increase the reservoir pressure in order to prolong gas production. Due to high cost, water injection may not be economically feasible. Water dumpflood into gas reservoirs is a new promising approach to increase gas recovery by maintaining reservoir pressure with much cheaper costs than conventional waterflooding. Thus, a simulation study of water dumpflood into multiple nearly abandoned or already abandoned thin-bedded gas reservoirs commonly found in the Gulf of Thailand was conducted to demonstrate the advantage of the proposed method and to determine the most suitable operational parameters for reservoirs having different system parameters. A reservoir simulation model consisting of several thin-layered depletion-drive gas reservoirs and an overlying aquifer was constructed in order to investigate the performance of the proposed method. Two producers were initially used to produce gas from the reservoirs. One of them was later converted to a dumpflood well after gas production rate started to decline due to continuous reduction in reservoir pressure. The dumpflood well was used to flow water from the aquifer to increase pressure of the gas reservoir in order to drive gas towards producer. Two main operational parameters which are wellhead pressure of producer and the time to start water dumpflood were investigated to optimize gas recovery for various systems having different gas reservoir dip angles, well spacings, aquifer sizes, and aquifer depths. This simulation study found that water dumpflood can increase gas recovery up to 12% of OGIP depending on operational conditions and system parameters. For the systems having a large aquifer and large distance between wells, it is best to start water dumpflood when the gas rate is still high since the long distance between the gas producer and dumpflood well helps delay water breakthrough at producer. As long as there is no early water breakthrough, the earlier the energy is supplied to the gas reservoirs, the better the gas recovery. On the other hand, for the systems having a small or moderate aquifer size and short distance between the two wells, performing water dumpflood when the rate is close to the economic rate is better because water is more likely to cause an early breakthrough when the distance is short. Water dumpflood into multiple nearly-depleted or depleted gas reservoirs is a novel study. The idea of using water dumpflood to increase gas recovery has been mentioned in the literature but has never been investigated. This detailed study will help a practicing engineer to understand the benefits of such method and can implement it with minimum cost and risk.

Keywords: dumpflood, increase gas recovery, low-pressure gas reservoir, multiple gas reservoirs

Procedia PDF Downloads 445
1103 New Advanced Medical Software Technology Challenges and Evolution of the Regulatory Framework in Expert Software, Artificial Intelligence, and Machine Learning

Authors: Umamaheswari Shanmugam, Silvia Ronchi, Radu Vornicu

Abstract:

Software, artificial intelligence, and machine learning can improve healthcare through innovative and advanced technologies that are able to use the large amount and variety of data generated during healthcare services every day. As we read the news, over 500 machine learning or other artificial intelligence medical devices have now received FDA clearance or approval, the first ones even preceding the year 2000. One of the big advantages of these new technologies is the ability to get experience and knowledge from real-world use and to continuously improve their performance. Healthcare systems and institutions can have a great benefit because the use of advanced technologies improves the same time efficiency and efficacy of healthcare. Software-defined as a medical device, is stand-alone software that is intended to be used for patients for one or more of these specific medical intended uses: - diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, any other health conditions, replacing or modifying any part of a physiological or pathological process–manage the received information from in vitro specimens derived from the human samples (body) and without principal main action of its principal intended use by pharmacological, immunological or metabolic definition. Software qualified as medical devices must comply with the general safety and performance requirements applicable to medical devices. These requirements are necessary to ensure high performance and quality and also to protect patients’ safety. The evolution and the continuous improvement of software used in healthcare must take into consideration the increase in regulatory requirements, which are becoming more complex in each market. The gap between these advanced technologies and the new regulations is the biggest challenge for medical device manufacturers. Regulatory requirements can be considered a market barrier, as they can delay or obstacle the device approval, but they are necessary to ensure performance, quality, and safety, and at the same time, they can be a business opportunity if the manufacturer is able to define in advance the appropriate regulatory strategy. The abstract will provide an overview of the current regulatory framework, the evolution of the international requirements, and the standards applicable to medical device software in the potential market all over the world.

Keywords: artificial intelligence, machine learning, SaMD, regulatory, clinical evaluation, classification, international requirements, MDR, 510k, PMA, IMDRF, cyber security, health care systems.

Procedia PDF Downloads 92
1102 An Event Relationship Extraction Method Incorporating Deep Feedback Recurrent Neural Network and Bidirectional Long Short-Term Memory

Authors: Yin Yuanling

Abstract:

A Deep Feedback Recurrent Neural Network (DFRNN) and Bidirectional Long Short-Term Memory (BiLSTM) are designed to address the problem of low accuracy of traditional relationship extraction models. This method combines a deep feedback-based recurrent neural network (DFRNN) with a bi-directional long short-term memory (BiLSTM) approach. The method combines DFRNN, which extracts local features of text based on deep feedback recurrent mechanism, BiLSTM, which better extracts global features of text, and Self-Attention, which extracts semantic information. Experiments show that the method achieves an F1 value of 76.69% on the CEC dataset, which is 0.0652 better than the BiLSTM+Self-ATT model, thus optimizing the performance of the deep learning method in the event relationship extraction task.

Keywords: event relations, deep learning, DFRNN models, bi-directional long and short-term memory networks

Procedia PDF Downloads 146
1101 Addressing the Issue of Out-of-School Children in Nigeria: Challenges and Policy Recommendations

Authors: Nasir Haruna Soba

Abstract:

In addition to sustaining poverty and inequality, the issue of out-of-school children impedes efforts to accomplish the sustainable development goals (SDGs), especially Goal 4, which is to guarantee inclusive, egalitarian, and high-quality education for everyone. However, a number of social, cultural, and infrastructure barriers mean that millions of children in Nigeria are denied this privilege. This paper presents the findings of a case study conducted in Nigeria. The findings of this study revealed that out of school children in Nigeria are the most common causes of poverty; inadequate school facilities, long distances to schools, and poor road networks make it difficult for children, especially in rural areas, to access education. Social Disparities: Social inequality is sustained by differences in education, especially when it comes to financing, governance, and coordination amongst stakeholders. These differences are especially pronounced along gender and socioeconomic lines. The study recommended that policymakers and stakeholders should consider addressing the root causes, enhancing existing interventions, and implementing targeted policy measures. Nigeria can make significant strides towards ensuring inclusive and quality education for all children, thereby fostering sustainable development and reducing poverty.

Keywords: poverty, inequality, funding, education, development

Procedia PDF Downloads 33
1100 Adaptive Envelope Protection Control for the below and above Rated Regions of Wind Turbines

Authors: Mustafa Sahin, İlkay Yavrucuk

Abstract:

This paper presents a wind turbine envelope protection control algorithm that protects Variable Speed Variable Pitch (VSVP) wind turbines from damage during operation throughout their below and above rated regions, i.e. from cut-in to cut-out wind speed. The proposed approach uses a neural network that can adapt to turbines and their operating points. An algorithm monitors instantaneous wind and turbine states, predicts a wind speed that would push the turbine to a pre-defined envelope limit and, when necessary, realizes an avoidance action. Simulations are realized using the MS Bladed Wind Turbine Simulation Model for the NREL 5 MW wind turbine equipped with baseline controllers. In all simulations, through the proposed algorithm, it is observed that the turbine operates safely within the allowable limit throughout the below and above rated regions. Two example cases, adaptations to turbine operating points for the below and above rated regions and protections are investigated in simulations to show the capability of the proposed envelope protection system (EPS) algorithm, which reduces excessive wind turbine loads and expectedly increases the turbine service life.

Keywords: adaptive envelope protection control, limit detection and avoidance, neural networks, ultimate load reduction, wind turbine power control

Procedia PDF Downloads 137
1099 Evaluation of Social Media Customer Engagement: A Content Analysis of Automobile Brand Pages

Authors: Adithya Jaikumar, Sudarsan Jayasingh

Abstract:

The dramatic technology led changes that continue to take place at the market place has led to the emergence and implication of online brand pages on social media networks. The Facebook brand page has become extremely popular among different brands. The primary aim of this study was to identify the impact of post formats and content type on customer engagement in Facebook brand pages. Methodology used for this study was to analyze and categorize 9037 content messages posted by 20 automobile brands in India during April 2014 to March 2015 and the customer activity it generated in return. The data was obtained from Fanpage karma- an online tool used for social media analytics. The statistical technique used to analyze the count data was negative binomial regression. The study indicates that there is a statistically significant relationship between the type of post and the customer engagement. The study shows that photos are the most posted format and highest engagement is found to be related to videos. The finding also reveals that social events and entertainment related content increases engagement with the message.

Keywords: content analysis, customer engagement, digital engagement, facebook brand pages, social media

Procedia PDF Downloads 323
1098 Detecting Manipulated Media Using Deep Capsule Network

Authors: Joseph Uzuazomaro Oju

Abstract:

The ease at which manipulated media can be created, and the increasing difficulty in identifying fake media makes it a great threat. Most of the applications used for the creation of these high-quality fake videos and images are built with deep learning. Hence, the use of deep learning in creating a detection mechanism cannot be overemphasized. Any successful fake media that is being detected before it reached the populace will save people from the self-doubt of either a content is genuine or fake and will ensure the credibility of videos and images. The methodology introduced in this paper approaches the manipulated media detection challenge using a combo of VGG-19 and a deep capsule network. In the case of videos, they are converted into frames, which, in turn, are resized and cropped to the face region. These preprocessed images/videos are fed to the VGG-19 network to extract the latent features. The extracted latent features are inputted into a deep capsule network enhanced with a 3D -convolution dynamic routing agreement. The 3D –convolution dynamic routing agreement algorithm helps to reduce the linkages between capsules networks. Thereby limiting the poor learning shortcoming of multiple capsule network layers. The resultant output from the deep capsule network will indicate a media to be either genuine or fake.

Keywords: deep capsule network, dynamic routing, fake media detection, manipulated media

Procedia PDF Downloads 135
1097 Comparative Spatial Analysis of a Re-Arranged Hospital Building

Authors: Burak Köken, Hatice D. Arslan, Bilgehan Y. Çakmak

Abstract:

Analyzing the relation networks between the hospital buildings which have complex structure and distinctive spatial relationships is quite difficult. The hospital buildings which require specialty in spatial relationship solutions during design and self-innovation through the developing technology should survive and keep giving service even after the disasters such as earthquakes. In this study, a hospital building where the load-bearing system was strengthened because of the insufficient earthquake performance and the construction of an additional building was required to meet the increasing need for space was discussed and a comparative spatial evaluation of the hospital building was made with regard to its status before the change and after the change. For this reason, spatial organizations of the building before change and after the change were analyzed by means of Space Syntax method and the effects of the change on space organization parameters were searched by applying an analytical procedure. Using Depthmap UCL software, connectivity, visual mean depth, beta and visual integration analyses were conducted. Based on the data obtained after the analyses, it was seen that the relationships between spaces of the building increased after the change and the building has become more explicit and understandable for the occupants. Furthermore, it was determined according to findings of the analysis that the increase in depth causes difficulty in perceiving the spaces and the changes considering this problem generally ease spatial use.

Keywords: architecture, hospital building, space syntax, strengthening

Procedia PDF Downloads 522
1096 The Relations between Spatial Structure and Land Price

Authors: Jung-Hun Cho, Tae-Heon Moon, Jin-Hak Lee

Abstract:

Land price contains the comprehensive characteristics of urban space, representing the social and economic features of the city. Accordingly, land price can be utilized as an indicator, which can identify the changes of spatial structure and socioeconomic variations caused by urban development. This study attempted to explore the changes in land price by a new road construction. Methodologically, it adopted Space Syntax, which can interpret urban spatial structure comprehensively, to identify the relationship between the forms of road networks and land price. The result of the regression analysis showed the ‘integration index’ of Space Syntax is statistically significant and has a strong correlation with land price. If the integration value is high, land price increases proportionally. Subsequently, using regression equation, it tried to predict the land price changes of each of the lots surrounding the roads that are newly opened. The research methods or study results have the advantage of predicting the changes in land price in an easy way. In addition, it will contribute to planners and project managers to establish relevant polices and smoothing urban regeneration projects through enhancing residents’ understanding by providing possible results and advantages in their land price before the execution of urban regeneration and development projects.

Keywords: space syntax, urban regeneration, spatial structure, official land price

Procedia PDF Downloads 331
1095 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers

Authors: Nishank Raisinghani

Abstract:

Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.

Keywords: drug discovery, transformers, graph neural networks, multiomics

Procedia PDF Downloads 156
1094 Propagation of the Effects of Certain Types of Military Psychological Operations in a Networked Population

Authors: Colette Faucher

Abstract:

In modern asymmetric conflicts, the Armed Forces generally have to intervene in countries where the internal peace is in danger. They must make the local population an ally in order to be able to deploy the necessary military actions with its support. For this purpose, psychological operations (PSYOPs) are used to shape people’s behaviors and emotions by the modification of their attitudes in acting on their perceptions. PSYOPs aim at elaborating and spreading a message that must be read, listened to and/or looked at, then understood by the info-targets in order to get from them the desired behavior. A message can generate in the info-targets, reasoned thoughts, spontaneous emotions or reflex behaviors, this effect partly depending on the means of conveyance used to spread this message. In this paper, we focus on psychological operations that generate emotions. We present a method based on the Intergroup Emotion Theory, that determines, from the characteristics of the conveyed message and of the people from the population directly reached by the means of conveyance (direct info-targets), the emotion likely to be triggered in them and we simulate the propagation of the effects of such a message on indirect info-targets that are connected to them through the social networks that structure the population.

Keywords: military psychological operations, social identity, social network, emotion propagation

Procedia PDF Downloads 410
1093 Identity of Indian Migrants and Muslim Refugee Women in Sydney, Australia

Authors: Sheikh, R. Author, Bhardwaj S. Author, Jr.

Abstract:

The emphasis of this paper is to investigate the identity shifts experienced within the Indian community and among Muslim refugee women in Sydney. Using Goffman’s paradigm of everyday interactions, attention is paid to how migrants navigate and perform their multiple identities in their daily life. By focusing on narratives of the migrant- migration is understood as processual instead of a one time decision of re-location. The paper aims to highlight how individuals choose and re-adapt their cultural and social practices within the context of Australia. Migrant narratives are rooted in specific socio-cultural settings of one’s own community as well as the nature of migration to a specific country. Differences and similarities will be observed within the Indian community, and among Muslim refugee women in terms of how identity is negotiated, social networks are re-established in Australia. Some attention will also be paid to difficulties that are being faced by migrants-especially in terms of Muslim identity for Refugee women, particularly in terms of assimilation, building on Ghassan Hage’s use of appraisal theory and how a diversity of language and religion is accommodated within the Indian community. By using two diverse groups, it would be able to identify and contrast migrant experiences.

Keywords: identity, migrant, refugee, women, assimilation, narratives

Procedia PDF Downloads 196
1092 Experiences and Challenges of Community Participation in Urban Renewal Projects: A Case Study of Bhendi Bazzar, Mumbai, India

Authors: Madhura Yadav

Abstract:

Urban redevelopment planning initiatives in developing countries have been largely criticised due to top-down planning approach and lack of involvement of the targeted beneficiaries which have led to a challenging situation which is contrary to the perceived needs of beneficiaries. Urban renewal projects improve the lives of people and meaningful participation of community plays a pivotal role. Public perceptions on satisfaction and participation have been given less priority in the investigation, which hinders effective planning and implementation of urban renewal projects. Moreover, challenges of community participation in urban renewal projects are less documented, particularly in relation to public participation and satisfaction. There is a need for new paradigm shift focusing on community participatory approach in urban renewal projects. The over 125-year-old Bhendi Bazar in Mumbai, India is the country’s first ever cluster redevelopment project, popularly known as Bhendi Bazaar redevelopment and it will be one of the largest projects for urban rejuvenation of one of Mumbai’s oldest and dying inner city areas. The project is led by the community trust, inputs were taken from various stakeholders, including residents, commercial tenants and expert consultants to shape the master plan and design of the project. The project started in 2016 but there is a significant delay in implementing the project. The study aimed at studying and assessing public perceptions on satisfaction and the relationship between community participation and community satisfaction in Bhendi Bazaar of Mumbai, India. Furthermore, the study will outline the challenges and problems of community participation in urban renewal projects and it suggests recommendations for the future. The qualitative and quantitative methods such as reconnaissance survey, key informant interviews, focus group discussions, walking interviews, a narrative inquiry is used for analysis of data. Preliminary findings revealed that all tenants are satisfied for the redevelopment of an area but the willingness of residential tenants to move in transit accommodation has made the projects successful and reductant of some residential and commercial tenants, regulatory provisions rising to face challenges in implementation. Experiences from the case study can help to understand dynamics behind public participation and government. At the same time, they serve as an inspiration and learning opportunity for future projects to ensure that they are sustainable not only from an economic standpoint but also, a social perspective.

Keywords: urban renewal, Bhendi Bazaar, community participation, satisfaction, social perspective

Procedia PDF Downloads 179
1091 The Polarization on Twitter and COVID-19 Vaccination in Brazil

Authors: Giselda Cristina Ferreira, Carlos Alberto Kamienski, Ana Lígia Scott

Abstract:

The COVID-19 pandemic has enhanced the anti-vaccination movement in Brazil, supported by unscientific theories and false news and the possibility of wide communication through social networks such as Twitter, Facebook, and YouTube. The World Health Organization (WHO) classified the large volume of information on the subject against COVID-19 as an Infodemic. In this paper, we present a protocol to identify polarizing users (called polarizers) and study the profiles of Brazilian polarizers on Twitter (renamed to X some weeks ago). We analyzed polarizing interactions on Twitter (in Portuguese) to identify the main polarizers and how the conflicts they caused influenced the COVID-19 vaccination rate throughout the pandemic. This protocol uses data from this social network, graph theory, Java, and R-studio scripts to model and analyze the data. The information about the vaccination rate was obtained in a public database for the government called OpenDataSus. The results present the profiles of Twitter’s Polarizer (political position, gender, professional activity, immunization opinions). We observed that social and political events influenced the participation of these different profiles in conflicts and the vaccination rate.

Keywords: Twitter, polarization, vaccine, Brazil

Procedia PDF Downloads 77
1090 Effects of Concomitant Use of Metformin and Powdered Moringa Oleifera Leaves on Glucose Tolerance in Sprague-Dawley Rats

Authors: Emielex M. Aguilar, Kristen Angela G. Cruz, Czarina Joie L. Rivera, Francis Dave C. Tan, Gavino Ivan N. Tanodra, Dianne Katrina G. Usana, Mary Grace T. Valentin, Nico Albert S. Vasquez, Edwin Monico C. Wee

Abstract:

The risk of diabetes mellitus is increasing in the Philippines, with Metformin and Insulin as drugs commonly used for its management. The use of herbal medicines has grown increasingly, especially among the elderly population. Moringa oleifera or malunggay is one of the most common plants in the country, and several studies have shown the plant to exhibit a hypoglycemic property with its flavonoid content. This study aims to investigate the possible effects of concomitant use of Metformin and powdered M. oleifera leaves (PMOL) on blood glucose levels. Twenty male Sprague-Dawley rats were equally distributed into four groups. Fasting blood glucose levels of the rats were measured prior to experimentation. The following treatments were administered to the four groups, respectively: glucose only 2 g/kg; glucose 2 g/kg + Metformin 100 mg/kg; glucose 2 g/kg + PMOL 200 mg/kg; and glucose 2 g/kg + PMOL 200 mg/kg and Metformin 100 mg/kg. Blood glucose levels were determined on the 1st, 2nd, 3rd, and 4th hour post-treatment and compared between groups. Statistical analysis showed that the type of intervention did not show significance in the reduction of blood glucose levels when compared with the other groups (p=0.378), while the effect of time exhibited significance (p=0.000). The interaction between the type of intervention and time of blood glucose measurement was shown to be significant (p=0.024). Within each group, the control and PMOL-treated groups showed significant reduction in blood glucose levels over time with p-values of 0.000 and 0.000, respectively, while the Metformin-treated and the combination groups had p-values of 0.062 and 0.093, respectively, which are not significant. The descriptive data also showed that the mean total reduction of blood glucose levels of the Metformin and PMOL combination treatment group was lower than the PMOL-treated group alone, while the mean total reduction of blood glucose levels of the combination group was higher than the Metformin-treated group alone. Based on the results obtained, the combination of Metformin and PMOL did not significantly lower the blood glucose levels of the rats as compared to the other groups. However, the concomitant use of Metformin and PMOL may affect each other’s blood glucose lowering activity. Additionally, prolonged time of exposure and delay in the first blood glucose measurement after treatment could exhibit a significant effect in the blood glucose levels. Further studies are recommended regarding the effects of the concomitant use of the two agents on blood glucose levels.

Keywords: blood glucose levels, concomitant use, metformin, Moringa oleifera

Procedia PDF Downloads 415
1089 Gas Aggregation and Nanobubbles Stability on Substrates Influenced by Surface Wettability: A Molecular Dynamics Study

Authors: Tsu-Hsu Yen

Abstract:

The interfacial gas adsorption presents a frequent challenge and opportunity for micro-/nano-fluidic operation. In this study, we investigate the wettability, gas accumulation, and nanobubble formation on various homogeneous surface conditions by using MD simulation, including a series of 3D and quasi-2D argon-water-solid systems simulation. To precisely determine the wettability on various substrates, several indicators were calculated. Among these wettability indicators, the water PMF (potential of mean force) has the most correlation tendency with interfacial water molecular orientation than depletion layer width and droplet contact angle. The results reveal that the aggregation of argon molecules on substrates not only depending on the level of hydrophobicity but also determined by the competition between gas-solid and water-solid interaction as well as water molecular structure near the surface. In addition, the surface nanobubble is always observed coexisted with the gas enrichment layer. The water structure adjacent to water-gas and water-solid interfaces also plays an important factor in gas out-flux and gas aggregation, respectively. The quasi-2D simulation shows that only a slight difference in the curved argon-water interface from the plane interface which suggests no noticeable obstructing effect on gas outflux from the gas-water interfacial water networks.

Keywords: gas aggregation, interfacial nanobubble, molecular dynamics simulation, wettability

Procedia PDF Downloads 117
1088 Time Organization for Decongesting Urban Mobility: New Methodology Identifying People's Behavior

Authors: Yassamina Berkane, Leila Kloul, Yoann Demoli

Abstract:

Quality of life, environmental impact, congestion of mobility means, and infrastructures remain significant challenges for urban mobility. Solutions like car sharing, spatial redesign, eCommerce, and autonomous vehicles will likely increase the unit veh-km and the density of cars in urban traffic, thus reducing congestion. However, the impact of such solutions is not clear for researchers. Congestion arises from growing populations that must travel greater distances to arrive at similar locations (e.g., workplaces, schools) during the same time frame (e.g., rush hours). This paper first reviews the research and application cases of urban congestion methods through recent years. Rethinking the question of time, it then investigates people’s willingness and flexibility to adapt their arrival and departure times from workplaces. We use neural networks and methods of supervised learning to apply a new methodology for predicting peoples' intentions from their responses in a questionnaire. We created and distributed a questionnaire to more than 50 companies in the Paris suburb. Obtained results illustrate that our methodology can predict peoples' intentions to reschedule their activities (work, study, commerce, etc.).

Keywords: urban mobility, decongestion, machine learning, neural network

Procedia PDF Downloads 195
1087 Ophthalmic Hashing Based Supervision of Glaucoma and Corneal Disorders Imposed on Deep Graphical Model

Authors: P. S. Jagadeesh Kumar, Yang Yung, Mingmin Pan, Xianpei Li, Wenli Hu

Abstract:

Glaucoma is impelled by optic nerve mutilation habitually represented as cupping and visual field injury frequently with an arcuate pattern of mid-peripheral loss, subordinate to retinal ganglion cell damage and death. Glaucoma is the second foremost cause of blindness and the chief cause of permanent blindness worldwide. Consequently, all-embracing study into the analysis and empathy of glaucoma is happening to escort deep learning based neural network intrusions to deliberate this substantial optic neuropathy. This paper advances an ophthalmic hashing based supervision of glaucoma and corneal disorders preeminent on deep graphical model. Ophthalmic hashing is a newly proposed method extending the efficacy of visual hash-coding to predict glaucoma corneal disorder matching, which is the faster than the existing methods. Deep graphical model is proficient of learning interior explications of corneal disorders in satisfactory time to solve hard combinatoric incongruities using deep Boltzmann machines.

Keywords: corneal disorders, deep Boltzmann machines, deep graphical model, glaucoma, neural networks, ophthalmic hashing

Procedia PDF Downloads 253
1086 An Accurate Brain Tumor Segmentation for High Graded Glioma Using Deep Learning

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

Gliomas are most challenging and aggressive type of tumors which appear in different sizes, locations, and scattered boundaries. CNN is most efficient deep learning approach with outstanding capability of solving image analysis problems. A fully automatic deep learning based 2D-CNN model for brain tumor segmentation is presented in this paper. We used small convolution filters (3 x 3) to make architecture deeper. We increased convolutional layers for efficient learning of complex features from large dataset. We achieved better results by pushing convolutional layers up to 16 layers for HGG model. We achieved reliable and accurate results through fine-tuning among dataset and hyper-parameters. Pre-processing of this model includes generation of brain pipeline, intensity normalization, bias correction and data augmentation. We used the BRATS-2015, and Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.81 for complete, 0.79 for core, 0.80 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, HGG

Procedia PDF Downloads 258
1085 Ultra-Wideband (45-50 GHz) mm-Wave Substrate Integrated Waveguide Cavity Slots Antenna for Future Satellite Communications

Authors: Najib Al-Fadhali, Huda Majid

Abstract:

In this article, a substrate integrated waveguide cavity slot antenna was designed using a computer simulation technology software tool to address the specific design challenges for millimeter-wave communications posed by future satellite communications. Due to the symmetrical structure, a high-order mode is generated in SIW, which yields high gain and high efficiency with a compact feed structure. The antenna has dimensions of 20 mm x 20 mm x 1.34 mm. The proposed antenna bandwidth ranges from 45 GHz to 50 GHz, covering a Q-band application such as satellite communication. Antenna efficiency is above 80% over the operational frequency range. The gain of the antenna is above 9 dB with a peak value of 9.4 dB at 47.5 GHz. The proposed antenna is suitable for various millimeter-wave applications such as sensing, body imaging, indoor scenarios, new generations of wireless networks, and future satellite communications. The simulated results show that the SIW antenna resonates throughout the bands of 45 to 50 GHz, making this new antenna cover all applications within this range. The reflection coefficients are below 10 dB in most ranges from 45 to 50 GHz. The compactness, integrity, reliability, and performance at various operating frequencies make the proposed antenna a good candidate for future satellite communications.

Keywords: ultra-wideband, Q-band, SIW, mm-wave, satellite communications

Procedia PDF Downloads 86
1084 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network

Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar

Abstract:

Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.

Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network

Procedia PDF Downloads 518
1083 Blocking of Random Chat Apps at Home Routers for Juvenile Protection in South Korea

Authors: Min Jin Kwon, Seung Won Kim, Eui Yeon Kim, Haeyoung Lee

Abstract:

Numerous anonymous chat apps that help people to connect with random strangers have been released in South Korea. However, they become a serious problem for young people since young people often use them for channels of prostitution or sexual violence. Although ISPs in South Korea are responsible for making inappropriate content inaccessible on their networks, they do not block traffic of random chat apps since 1) the use of random chat apps is entirely legal. 2) it is reported that they use HTTP proxy blocking so that non-HTTP traffic cannot be blocked. In this paper, we propose a service model that can block random chat apps at home routers. A service provider manages a blacklist that contains blocked apps’ information. Home routers that subscribe the service filter the traffic of the apps out using deep packet inspection. We have implemented a prototype of the proposed model, including a centralized server providing the blacklist, a Raspberry Pi-based home router that can filter traffic of the apps out, and an Android app used by the router’s administrator to locally customize the blacklist.

Keywords: deep packet inspection, internet filtering, juvenile protection, technical blocking

Procedia PDF Downloads 350
1082 Comparing the Detection of Autism Spectrum Disorder within Males and Females Using Machine Learning Techniques

Authors: Joseph Wolff, Jeffrey Eilbott

Abstract:

Autism Spectrum Disorders (ASD) are a spectrum of social disorders characterized by deficits in social communication, verbal ability, and interaction that can vary in severity. In recent years, researchers have used magnetic resonance imaging (MRI) to help detect how neural patterns in individuals with ASD differ from those of neurotypical (NT) controls for classification purposes. This study analyzed the classification of ASD within males and females using functional MRI data. Functional connectivity (FC) correlations among brain regions were used as feature inputs for machine learning algorithms. Analysis was performed on 558 cases from the Autism Brain Imaging Data Exchange (ABIDE) I dataset. When trained specifically on females, the algorithm underperformed in classifying the ASD subset of our testing population. Although the subject size was relatively smaller in the female group, the manual matching of both male and female training groups helps explain the algorithm’s bias, indicating the altered sex abnormalities in functional brain networks compared to typically developing peers. These results highlight the importance of taking sex into account when considering how generalizations of findings on males with ASD apply to females.

Keywords: autism spectrum disorder, machine learning, neuroimaging, sex differences

Procedia PDF Downloads 211
1081 Neural Networks-based Acoustic Annoyance Model for Laptop Hard Disk Drive

Authors: Yichao Ma, Chengsiong Chin, Wailok Woo

Abstract:

Since the last decade, there has been a rapid growth in digital multimedia, such as high-resolution media files and three-dimentional movies. Hence, there is a need for large digital storage such as Hard Disk Drive (HDD). As such, users expect to have a quieter HDD in their laptop. In this paper, a jury test has been conducted on a group of 34 people where 17 of them are students who is the potential consumer, and the remaining are engineers who know the HDD. A total 13 HDD sound samples have been selected from over hundred HDD noise recordings. These samples are selected based on an agreed subjective feeling. The samples are played to the participants using head acoustic playback system which enabled them to experience as similar as possible the same environment as have been recorded. Analysis has been conducted and the obtained results have indicated different group has different perception over the noises. Two neural network-based acoustic annoyance models are established based on back propagation neural network. Four psychoacoustic metrics, loudness, sharpness, roughness and fluctuation strength, are used as the input of the model, and the subjective evaluation results are taken as the output. The developed models are reasonably accurate in simulating both training and test samples.

Keywords: hdd noise, jury test, neural network model, psychoacoustic annoyance

Procedia PDF Downloads 439
1080 Breast Cancer Incidence Estimation in Castilla-La Mancha (CLM) from Mortality and Survival Data

Authors: C. Romero, R. Ortega, P. Sánchez-Camacho, P. Aguilar, V. Segur, J. Ruiz, G. Gutiérrez

Abstract:

Introduction: Breast cancer is a leading cause of death in CLM. (2.8% of all deaths in women and 13,8% of deaths from tumors in womens). It is the most tumor incidence in CLM region with 26.1% from all tumours, except nonmelanoma skin (Cancer Incidence in Five Continents, Volume X, IARC). Cancer registries are a good information source to estimate cancer incidence, however the data are usually available with a lag which makes difficult their use for health managers. By contrast, mortality and survival statistics have less delay. In order to serve for resource planning and responding to this problem, a method is presented to estimate the incidence of mortality and survival data. Objectives: To estimate the incidence of breast cancer by age group in CLM in the period 1991-2013. Comparing the data obtained from the model with current incidence data. Sources: Annual number of women by single ages (National Statistics Institute). Annual number of deaths by all causes and breast cancer. (Mortality Registry CLM). The Breast cancer relative survival probability. (EUROCARE, Spanish registries data). Methods: A Weibull Parametric survival model from EUROCARE data is obtained. From the model of survival, the population and population data, Mortality and Incidence Analysis MODel (MIAMOD) regression model is obtained to estimate the incidence of cancer by age (1991-2013). Results: The resulting model is: Ix,t = Logit [const + age1*x + age2*x2 + coh1*(t – x) + coh2*(t-x)2] Where: Ix,t is the incidence at age x in the period (year) t; the value of the parameter estimates is: const (constant term in the model) = -7.03; age1 = 3.31; age2 = -1.10; coh1 = 0.61 and coh2 = -0.12. It is estimated that in 1991 were diagnosed in CLM 662 cases of breast cancer (81.51 per 100,000 women). An estimated 1,152 cases (112.41 per 100,000 women) were diagnosed in 2013, representing an increase of 40.7% in gross incidence rate (1.9% per year). The annual average increases in incidence by age were: 2.07% in women aged 25-44 years, 1.01% (45-54 years), 1.11% (55-64 years) and 1.24% (65-74 years). Cancer registries in Spain that send data to IARC declared 2003-2007 the average annual incidence rate of 98.6 cases per 100,000 women. Our model can obtain an incidence of 100.7 cases per 100,000 women. Conclusions: A sharp and steady increase in the incidence of breast cancer in the period 1991-2013 is observed. The increase was seen in all age groups considered, although it seems more pronounced in young women (25-44 years). With this method you can get a good estimation of the incidence.

Keywords: breast cancer, incidence, cancer registries, castilla-la mancha

Procedia PDF Downloads 311
1079 Wear Measuring and Wear Modelling Based On Archard, ASTM, and Neural Network Models

Authors: A. Shebani, C. Pislaru

Abstract:

Wear of materials is an everyday experience and has been observed and studied for long time. The prediction of wear is a fundamental problem in the industrial field, mainly correlated to the planning of maintenance interventions and economy. Pin-on-disc test is the most common test which is used to study the wear behaviour. In this paper, the pin-on-disc (AEROTECH UNIDEX 11) is used for the investigation of the effects of normal load and hardness of material on the wear under dry and sliding conditions. In the pin-on-disc rig, two specimens were used; one, a pin which is made of steel with a tip, is positioned perpendicular to the disc, where the disc is made of aluminium. The pin wear and disc wear were measured by using the following instruments: The Talysurf instrument, a digital microscope, and the alicona instrument; where the Talysurf profilometer was used to measure the pin/disc wear scar depth, and the alicona was used to measure the volume loss for pin and disc. After that, the Archard model, American Society for Testing and Materials model (ASTM), and neural network model were used for pin/disc wear modelling and the simulation results are implemented by using the Matlab program. This paper focuses on how the alicona can be considered as a powerful tool for wear measurements and how the neural network is an effective algorithm for wear estimation.

Keywords: wear modelling, Archard Model, ASTM Model, Neural Networks Model, Pin-on-disc Test, Talysurf, digital microscope, Alicona

Procedia PDF Downloads 461
1078 The Influence of Wasta on Employees and Organizations in Kuwait

Authors: Abrar Al-Enzi

Abstract:

This study investigates the role of the popular utilization of Wasta within Arab societies. Wasta, by definition, is a set of personal networks based on family or kinship ties in which power and influence are utilized to get things done. As Wasta evolved, it became intensely rooted in Arab cultures, which is considered as an intrinsic tool of the culture, a method of doing business transactions and as a family obligation. However, the consequences related to Wasta in business are substantial as it impacts organizational performance, employee’s perception of the organization and the atmosphere between employees. To date, there has been little in-depth organizational research on the impact of Wasta. Hence, the question that will be addressed is: Does Wasta influence human resource management, knowledge sharing and innovation in Kuwait, which in turn affects employees’ commitment within organizations? As a result, a mixed method sequential exploratory research design will be used to examine the mentioned subject, which consists of three phases: (1) Doing some initial exploratory interviews; (2) Developing a paper-based and online survey (Quantitative method) based on the findings; (3) Lastly, following up with semi-structured interviews (Qualitative method). The rationale behind this approach is that both qualitative and quantitative methods complement each other by providing a more complete picture of the subject matter.

Keywords: commitment, HRM practices, social capital, Wasta

Procedia PDF Downloads 263