Search results for: beta stabilized element
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3753

Search results for: beta stabilized element

1113 Interaction of Local, Flexural-Torsional, and Flexural Buckling in Cold-Formed Steel Lipped-Angle Compression Members

Authors: K. C. Kalam Aswathy, M. V. Anil Kumar

Abstract:

The possible failure modes of cold-formed steel (CFS) lipped angle (LA) compression members are yielding, local, flexural-torsional, or flexural buckling, and any possible interaction between these buckling modes. In general, the strength estimated by current design guidelines is conservative for these members when flexural-torsional buckling (FTB) is the first global buckling mode, as the post-buckling strength of this mode is not accounted for in the global buckling strength equations. The initial part of this paper reports the results of an experimental and numerical study of CFS-LA members undergoing independent FTB. The modifications are suggested to global buckling strength equations based on these results. Subsequently, the reduction in the ultimate strength from strength corresponding to independent buckling modes for LA members undergoing interaction between buckling modes such as local-flexural torsional, flexural-flexural torsional, local-flexural, and local-flexural torsional-flexural are studied systematically using finite element analysis results. A simple and more accurate interaction equation that accounts for the above interactions between buckling modes in CFS-LA compression members is proposed.

Keywords: buckling interactions, cold-formed steel, flexural-torsional buckling, lipped angle

Procedia PDF Downloads 80
1112 Development of 3D Neck Muscle to Analyze the Effect of Active Muscle Contraction in Whiplash Injury

Authors: Nisha Nandlal Sharma, Julaluk Carmai, Saiprasit Koetniyom, Bernd Markert

Abstract:

Whiplash Injuries are mostly experienced in car accidents. Symptoms of whiplash are commonly reported in studies, neck pain and headaches are two most common symptoms observed. The whiplash Injury mechanism is poorly understood. In present study, hybrid neck muscle model were developed with a combination of solid tetrahedral elements and 1D beam elements. Solid tetrahedral elements represents passive part of the muscle whereas, 1D beam elements represents active part. To simulate the active behavior of the muscle, Hill-type muscle model was applied to beam elements. To simulate non-linear passive properties of muscle, solid elements were modeled with rubber/foam material model. Some important muscles were then inserted into THUMS (Total Human Model for Safety) THUMS was given a boundary conditions similar to experimental tests. The model was exposed to 4g and 7g rear impacts as these load impacts are close to low speed impacts causing whiplash. The effect of muscle activation level on occupant kinematics during whiplash was analyzed.

Keywords: finite element model, muscle activation, THUMS, whiplash injury mechanism

Procedia PDF Downloads 331
1111 The Different Effects of Mindfulness-Based Relapse Prevention Group Therapy on QEEG Measures in Various Severity Substance Use Disorder Involuntary Clients

Authors: Yu-Chi Liao, Nai-Wen Guo, Chun‑Hung Lee, Yung-Chin Lu, Cheng-Hung Ko

Abstract:

Objective: The incidence of behavioral addictions, especially substance use disorders (SUDs), is gradually be taken seriously with various physical health problems. Mindfulness-based relapse prevention (MBRP) is a treatment option for promoting long-term health behavior change in recent years. MBRP is a structured protocol that integrates formal meditation practices with the cognitive-behavioral approach of relapse prevention treatment by teaching participants not to engage in reappraisal or savoring techniques. However, considering SUDs as a complex brain disease, questionnaires and symptom evaluation are not sufficient to evaluate the effect of MBRP. Neurophysiological biomarkers such as quantitative electroencephalogram (QEEG) may improve accurately represent the curative effects. This study attempted to find out the neurophysiological indicator of MBRP in various severity SUD involuntary clients. Participants and Methods: Thirteen participants (all males) completed 8-week mindfulness-based treatment provided by trained, licensed clinical psychologists. The behavioral data were from the Severity of Dependence Scale (SDS) and Negative Mood Regulation Scale (NMR) before and afterMBRP treatment. The QEEG data were simultaneously recorded with executive attention tasks, called comprehensive nonverbal attention test(CNAT). The two-way repeated-measures (treatment * severity) ANOVA and independent t-test were used for statistical analysis. Results: Thirteen participants regrouped into high substance dependence (HS) and low substance dependence (LS) by SDS cut-off. The HS group showed more SDS total score and lower gamma wave in the Go/No Go task of CNAT at pretest. Both groups showed the main effect that they had a lower frontal theta/beta ratio (TBR) during the simple reaction time task of CNAT. The main effect showed that the delay errors of CNAT were lower after MBRP. There was no other difference in CNAT between groups. However, after MBRP, compared to LS, the HS group have resonant progress in improving SDS and NMR scores. The neurophysiological index, the frontal TBR of the HS during the Go/No Go task of CNATdecreased than that of the LS group. Otherwise, the LS group’s gamma wave was a significant reduction on the Go/No Go task of CNAT. Conclusion: The QEEG data supports the MBRP can restore the prefrontal function of involuntary addicts and lower their errors in executive attention tasks. However, the improvement of MBRPfor the addict with high addiction severity is significantly more than that with low severity, including QEEG’s indicators and negative emotion regulation. Future directions include investigating the reasons for differences in efficacy among different severity of the addiction.

Keywords: mindfulness, involuntary clients, QEEG, emotion regulation

Procedia PDF Downloads 145
1110 Sensitivity Analysis of External-Rotor Permanent Magnet Assisted Synchronous Reluctance Motor

Authors: Hadi Aghazadeh, Seyed Ebrahim Afjei, Alireza Siadatan

Abstract:

In this paper, a proper approach is taken to assess a set of the most effective rotor design parameters for an external-rotor permanent magnet assisted synchronous reluctance motor (PMaSynRM) and therefore to tackle the design complexity of the rotor structure. There are different advantages for introducing permanent magnets into the rotor flux barriers, some of which are to saturate the rotor iron ribs, to increase the motor torque density and to improve the power factor. Moreover, the d-axis and q-axis inductances are of great importance to simultaneously achieve maximum developed torque and low torque ripple. Therefore, sensitivity analysis of the rotor geometry of an 8-pole external-rotor permanent magnet assisted synchronous reluctance motor is performed. Several magnetically accurate finite element analyses (FEA) are conducted to characterize the electromagnetic performance of the motor. The analyses validate torque and power factor equations for the proposed external-rotor motor. Based upon the obtained results and due to an additional term, permanent magnet torque, added to the reluctance torque, the electromagnetic torque of the PMaSynRM increases.

Keywords: permanent magnet assisted synchronous reluctance motor, flux barrier, flux carrier, electromagnetic torque, and power factor

Procedia PDF Downloads 327
1109 On the Paradigm Shift of the Overall Urban Design in China

Authors: Gaoyuan Wang, Tian Chen, Junnan Liu

Abstract:

Facing a period of major change that’s rarely seen in a century, China formulates the 14th Five-Year Plan and places emphasis on promoting high-quality development. In this context, the overall urban design has become a crucial and systematic tool for high-quality urban development. However, there are bottlenecks in the nature definition, content scope and transmission mechanisms of the current overall urban design in China. The paper interprets the emerging demands of the 14th Five-Year Plan on urban design in terms of new value-quality priority, new dynamic-space performance, new target-region coordination and new path-refined governance. Based on the new trend and appeal, the multi-dimensional thinking integrated with the major tasks of urban design are proposed accordingly, which is the biomass thinking in ecological, production and living element, the strategic thinking in spatial structure, the systematic thinking in the cityscape, the low-carbon thinking in urban form, the governance thinking in public space, the user thinking in design implementation. The paper explores the possibility of transforming the value thinking and technical system of urban design in China and provides a breakthrough path for the urban planning and design industry to better respond to the propositions of the country’s 14th Five-Year Plan.

Keywords: China’s 14th five-year plan, overall urban design, urban design thinking, transformation of urban design

Procedia PDF Downloads 261
1108 Performance Comparisons between PID and Adaptive PID Controllers for Travel Angle Control of a Bench-Top Helicopter

Authors: H. Mansor, S. B. Mohd-Noor, T. S. Gunawan, S. Khan, N. I. Othman, N. Tazali, R. B. Islam

Abstract:

This paper provides a comparative study on the performances of standard PID and adaptive PID controllers tested on travel angle of a 3-Degree-of-Freedom (3-DOF) Quanser bench-top helicopter. Quanser, a well-known manufacturer of educational bench-top helicopter has developed Proportional Integration Derivative (PID) controller with Linear Quadratic Regulator (LQR) for all travel, pitch and yaw angle of the bench-top helicopter. The performance of the PID controller is relatively good; however its performance could also be improved if the controller is combined with adaptive element. The objective of this research is to design adaptive PID controller and then compare the performances of the adaptive PID with the standard PID. The controller design and test is focused on travel angle control only. Adaptive method used in this project is self-tuning controller, which controller’s parameters are updated online. Two adaptive algorithms those are pole-placement and deadbeat have been chosen as the method to achieve optimal controller’s parameters. Performance comparisons have shown that the adaptive (deadbeat) PID controller has produced more desirable performance compared to standard PID and adaptive (pole-placement). The adaptive (deadbeat) PID controller attained very fast settling time (5 seconds) and very small percentage of overshoot (5% to 7.5%) for 10° to 30° step change of travel angle.

Keywords: adaptive control, deadbeat, pole-placement, bench-top helicopter, self-tuning control

Procedia PDF Downloads 497
1107 Production of Functional Crackers Enriched with Olive (Olea europaea L.) Leaf Extract

Authors: Rosa Palmeri, Julieta I. Monteleone, Antonio C. Barbera, Carmelo Maucieri, Aldo Todaro, Virgilio Giannone, Giovanni Spagna

Abstract:

In recent years, considerable interest has been shown in the functional properties of foods, and a relevant role has been played by phenolic compounds, able to scavenge free radicals. A more sustainable agriculture has to emerge to guarantee food supply over the next years. Wheat, corn, and rice are the most common cereals cultivated, but also other cereal species, such as barley can be appreciated for their peculiarities. Barley (Hordeum vulgare L.) is a C3 winter cereal that shows high resistance at drought and salt stresses. There are growing interests in barley as ingredient for the production of functional foods due to its high content of phenolic compounds and Beta-glucans. In this respect, the possibility of separating specific functional fractions from food industry by-products looks very promising. Olive leaves represent a quantitatively significant by-product of olive grove farming, and are an interesting source of phenolic compounds. In particular, oleuropein, which provide important nutritional benefits, is the main phenolic compound in olive leaves and ranges from 17% to 23% depending upon the cultivar and growing season period. Together with oleuropein and its derivatives (e.g. dimethyloleuropein, oleuropein diglucoside), olive leaves further contain tyrosol, hydroxytyrosol, and a series of secondary metabolities structurally related to them: verbascoside, ligstroside, hydroxytyrosol glucoside, tyrosol glucoside, oleuroside, oleoside-11-methyl ester, and nuzhenide. Several flavonoids, flavonoid glycosides, and phenolic acids have also described in olive leaves. The aim of this work was the production of functional food with higher content of polyphenols and the evaluation of their shelf life. Organic durum wheat and barley grains contain higher levels of phenolic compounds were used for the production of crackers. Olive leaf extract (OLE) was obtained from cv. ‘Biancolilla’ by aqueous extraction method. Two baked goods trials were performed with both organic durum wheat and barley flours, adding olive leaf extract. Control crackers, made as comparison, were produced with the same formulation replacing OLE with water. Total phenolic compound, moisture content, activity water, and textural properties at different time of storage were determined to evaluate the shelf-life of the products. Our the preliminary results showed that the enriched crackers showed higher phenolic content and antioxidant activity than control. Alternative uses of olive leaf extracts for crackers production could represent a good candidate for the addition of functional ingredients because bakery items are daily consumed, and have long shelf-life.

Keywords: barley, functional foods, olive leaf, polyphenols, shelf life

Procedia PDF Downloads 299
1106 Photodetector Engineering with Plasmonic Properties

Authors: Hasan Furkan Kurt, Tugba Nur Atabey, Onat Cavit Dereli, Ahmad Salmanogli, H. Selcuk Gecim

Abstract:

In the article, the main goal is to study the effect of the plasmonic properties on the photocurrent generated by a photodetector. Fundamentally, a typical photodetector is designed and simulated using the finite element methods. To utilize the plasmonic effect, gold nanoparticles with different shape, size and morphology are buried into the intrinsic region. Plasmonic effect is arisen through the interaction of the incoming light with nanoparticles by which electrical properties of the photodetector are manipulated. In fact, using plasmonic nanoparticles not only increases the absorption bandwidth of the incoming light, but also generates a high intensity near-field close to the plasmonic nanoparticles. Those properties strongly affect the generated photocurrent. The simulation results show that using plasmonic nanoparticles significantly enhances the electrical properties of the photodetectors. More importantly, one can easily manipulate the plasmonic properties of the gold nanoparticles through engineering the nanoparticles' size, shape and morphology. Another important phenomenon is plasmon-plasmon interaction inside the photodetector. It is shown that plasmon-plasmon interaction improves the electron-hole generation rate by which the rate of the current generation is severely enhanced. This is the key factor that we want to focus on, to improve the photodetector electrical properties.

Keywords: plasmonic photodetector, plasmon-plasmon interaction, Gold nanoparticle, electrical properties

Procedia PDF Downloads 133
1105 Guadua Bamboo as Eco-Friendly Element in Interior Design and Architecture

Authors: Sarah Noaman

Abstract:

Utilizing renewable resources has become extensive solution for most problems in Egypt nowadays. It plays role in environmental issues such as energy crisis, lake of natural resources and climate change. This paper focuses on the importance of working with the key concepts of creating eco-friendly spaces in Egypt by using traditional perennial plants, such as Guadua bamboo as renewable resources in structures manufacture. Egypt is in critical need to search for alternative raw materials. Thus, this paper focuses on studying the usage of neglected yet affordable materials, such as Guadua bamboo in light weight structures and digital fabrication. Guadua bamboo has been cultivated throughout in tropical and subtropical areas. In Egypt, they exist in many rural areas where people try to control their growth by using pesticides as it serves no economic purpose. This paper aims to discuss the usage of Guadua bamboo either in its original state or after fabrication in the context of interior design and architecture. The results will show the applicability of using perennial plants as complementary materials in the manufacturing processes; also the conclusion will focus the lights on the importance of re-forming shallow water plants in interior design and architecture.

Keywords: digital fabrication, Guadua bamboo, zero-waste material, sustainable material, interior architecture

Procedia PDF Downloads 148
1104 Seismic Behavior of Suction Caisson Foundations

Authors: Mohsen Saleh Asheghabadi, Alireza Jafari Jebeli

Abstract:

Increasing population growth requires more sustainable development of energy. This non-contaminated energy has an inexhaustible energy source. One of the vital parameters in such structures is the choice of foundation type. Suction caissons are now used extensively worldwide for offshore wind turbine. Considering the presence of a number of offshore wind farms in earthquake areas, the study of the seismic behavior of suction caisson is necessary for better design. In this paper, the results obtained from three suction caisson models with different diameter (D) and skirt length (L) in saturated sand were compared with centrifuge test results. All models are analyzed using 3D finite element (FE) method taking account of elasto-plastic Mohr–Coulomb constitutive model for soil which is available in the ABAQUS library. The earthquake load applied to the base of models with a maximum acceleration of 0.65g. The results showed that numerical method is in relative good agreement with centrifuge results. The settlement and rotation of foundation decrease by increasing the skirt length and foundation diameter. The sand soil outside the caisson is prone to liquefaction due to its low confinement.

Keywords: liquefaction, suction caisson foundation, offshore wind turbine, numerical analysis, seismic behavior

Procedia PDF Downloads 117
1103 Wear and Mechanical Properties of Nodular Iron Modified with Copper

Authors: J. Ramos, V. Gil, A. F. Torres

Abstract:

The nodular iron is a material that has shown great advantages respect to other materials (steel and gray iron) in the production of machine elements. The engineering industry, especially automobile, are potential users of this material. As it is known, the alloying elements modify the properties of steels and castings. Copper has been investigated as a structural modifier of nodular iron, but studies of its mechanical and tribological implications still need to be addressed for industrial use. With the aim of improving the mechanical properties of nodular iron, alloying elements (Mn, Si, and Cu) are added in order to increase their pearlite (or ferrite) structure according to the percentage of the alloying element. In this research (using induction furnace process) nodular iron with three different percentages of copper (residual, 0,5% and 1,2%) was obtained. Chemical analysis was performed by optical emission spectrometry and microstructures were characterized by Optical Microscopy (ASTM E3) and Scanning Electron Microscopy (SEM). The study of mechanical behavior was carried out in a mechanical test machine (ASTM E8) and a Pin on disk tribometer (ASTM G99) was used to assess wear resistance. It is observed that copper increases the pearlite structure improving the wear behavior; tension behavior. This improvement is observed in higher proportion with 0,5% due to the fact that too much increase of pearlite leads to ductility loss.

Keywords: copper, mechanical properties, nodular iron, pearlite structure, wear

Procedia PDF Downloads 380
1102 A 4-Month Low-carb Nutrition Intervention Study Aimed to Demonstrate the Significance of Addressing Insulin Resistance in 2 Subjects with Type-2 Diabetes for Better Management

Authors: Shashikant Iyengar, Jasmeet Kaur, Anup Singh, Arun Kumar, Ira Sahay

Abstract:

Insulin resistance (IR) is a condition that occurs when cells in the body become less responsive to insulin, leading to higher levels of both insulin and glucose in the blood. This condition is linked to metabolic syndromes, including diabetes. It is crucial to address IR promptly after diagnosis to prevent long-term complications associated with high insulin and high blood glucose. This four-month case study highlights the importance of treating the underlying condition to manage diabetes effectively. Insulin is essential for regulating blood sugar levels by facilitating the uptake of glucose into cells for energy or storage. In IR individuals, cells are less efficient at taking up glucose from the blood resulting in elevated blood glucose levels. As a result of IR, beta cells produce more insulin to make up for the body's inability to use insulin effectively. This leads to high insulin levels, a condition known as hyperinsulinemia, which further impairs glucose metabolism and can contribute to various chronic diseases. In addition to regulating blood glucose, insulin has anti-catabolic effects, preventing the breakdown of molecules in the body, such as inhibiting glycogen breakdown in the liver, inhibiting gluconeogenesis, and inhibiting lipolysis. If a person is insulin-sensitive or metabolically healthy, an optimal level of insulin prevents fat cells from releasing fat and promotes the storage of glucose and fat in the body. Thus optimal insulin levels are crucial for maintaining energy balance and plays a key role in metabolic processes. During the four-month study, researchers looked at the impact of a low-carb dietary (LCD) intervention on two male individuals (A & B) who had Type-2 diabetes. Althoughvneither of these individuals were obese, they were both slightly overweight and had abdominal fat deposits. Before the trial began, important markers such as fasting blood glucose (FBG), triglycerides (TG), high-density lipoprotein (HDL) cholesterol, and Hba1c were measured. These markers are essential in defining metabolic health, their individual values and variability are integral in deciphering metabolic health. The ratio of TG to HDL is used as a surrogate marker for IR. This ratio has a high correlation with the prevalence of metabolic syndrome and with IR itself. It is a convenient measure because it can be calculated from a standard lipid profile and does not require more complex tests. In this four-month trial, an improvement in insulin sensitivity was observed through the ratio of TG/HDL, which, in turn, improves fasting blood glucose levels and HbA1c. For subject A, HbA1c dropped from 13 to 6.28, and for subject B, it dropped from 9.4 to 5.7. During the trial, neither of the subjects were taking any diabetic medications. The significant improvements in their health markers, such as better glucose control, along with an increase in energy levels, demonstrate that incorporating LCD interventions can effectively manage diabetes.

Keywords: metabolic disorder, insulin resistance, type-2 diabetes, low-carb nutrition

Procedia PDF Downloads 36
1101 Profiling of Bacterial Communities Present in Feces, Milk, and Blood of Lactating Cows Using 16S rRNA Metagenomic Sequencing

Authors: Khethiwe Mtshali, Zamantungwa T. H. Khumalo, Stanford Kwenda, Ismail Arshad, Oriel M. M. Thekisoe

Abstract:

Ecologically, the gut, mammary glands and bloodstream consist of distinct microbial communities of commensals, mutualists and pathogens, forming a complex ecosystem of niches. The by-products derived from these body sites i.e. faeces, milk and blood, respectively, have many uses in rural communities where they aid in the facilitation of day-to-day household activities and occasional rituals. Thus, although livestock rearing plays a vital role in the sustenance of the livelihoods of rural communities, it may serve as a potent reservoir of different pathogenic organisms that could have devastating health and economic implications. This study aimed to simultaneously explore the microbial profiles of corresponding faecal, milk and blood samples from lactating cows using 16S rRNA metagenomic sequencing. Bacterial communities were inferred through the Divisive Amplicon Denoising Algorithm 2 (DADA2) pipeline coupled with SILVA database v138. All downstream analyses were performed in R v3.6.1. Alpha-diversity metrics showed significant differences between faeces and blood, faeces and milk, but did not vary significantly between blood and milk (Kruskal-Wallis, P < 0.05). Beta-diversity metrics on Principal Coordinate Analysis (PCoA) and Non-Metric Dimensional Scaling (NMDS) clustered samples by type, suggesting that microbial communities of the studied niches are significantly different (PERMANOVA, P < 0.05). A number of taxa were significantly differentially abundant (DA) between groups based on the Wald test implemented in the DESeq2 package (Padj < 0.01). The majority of the DA taxa were significantly enriched in faeces than in milk and blood, except for the genus Anaplasma, which was significantly enriched in blood and was, in turn, the most abundant taxon overall. A total of 30 phyla, 74 classes, 156 orders, 243 families and 408 genera were obtained from the overall analysis. The most abundant phyla obtained between the three body sites were Firmicutes, Bacteroidota, and Proteobacteria. A total of 58 genus-level taxa were simultaneously detected between the sample groups, while bacterial signatures of at least 8 of these occurred concurrently in corresponding faeces, milk and blood samples from the same group of animals constituting a pool. The important taxa identified in this study could be categorized into four potentially pathogenic clusters: i) arthropod-borne; ii) food-borne and zoonotic; iii) mastitogenic and; iv) metritic and abortigenic. This study provides insight into the microbial composition of bovine faeces, milk, and blood and its extent of overlapping. It further highlights the potential risk of disease occurrence and transmission between the animals and the inhabitants of the sampled rural community, pertaining to their unsanitary practices associated with the use of cattle by-products.

Keywords: microbial profiling, 16S rRNA, NGS, feces, milk, blood, lactating cows, small-scale farmers

Procedia PDF Downloads 103
1100 A Study of Industry 4.0 and Digital Transformation

Authors: Ibrahim Bashir, Yahaya Y. Yusuf

Abstract:

The ongoing shift towards Industry 4.0 represents a critical growth factor in the industrial enterprise, where the digital transformation of industries is increasingly seen as a crucial element for competitiveness. This transformation holds substantial potential, yet its full benefits have yet to be realized due to the fragmented approach to introducing Industry 4.0 technologies. Therefore, this pilot study aims to explore the individual and collective impact of Industry 4.0 technologies and digital transformation on organizational performance. Data were collected through a questionnaire-based survey across 51 companies in the manufacturing industry in the United Kingdom. The correlations and multiple linear regression analyses were conducted to assess the relationship and impact between the variables in the study. The results show that Industry 4.0 and digital transformation positively influence organizational performance and that Industry 4.0 technologies positively influence digital transformation. The results of this pilot study indicate that the implementation of Industry 4.0 technology is vital for increasing organizational performance; however, their roles differ largely. The differences are manifest in how the types of Industry 4.0 technologies correlate with how organizations integrate digital technologies into their operations. Hence, there is a clear indication of a strong correlation between Industry 4.0 technology, digital transformation, and organizational performance. Consequently, our study presents numerous pertinent implications that propel the theory of I4.0, digital business transformation (DBT), and organizational performance forward, as well as guide managers in the manufacturing sector.

Keywords: industry 4.0 technologies, digital transformation, digital integration, organizational performance

Procedia PDF Downloads 131
1099 Phenomenological Ductile Fracture Criteria Applied to the Cutting Process

Authors: František Šebek, Petr Kubík, Jindřich Petruška, Jiří Hůlka

Abstract:

Present study is aimed on the cutting process of circular cross-section rods where the fracture is used to separate one rod into two pieces. Incorporating the phenomenological ductile fracture model into the explicit formulation of finite element method, the process can be analyzed without the necessity of realizing too many real experiments which could be expensive in case of repetitive testing in different conditions. In the present paper, the steel AISI 1045 was examined and the tensile tests of smooth and notched cylindrical bars were conducted together with biaxial testing of the notched tube specimens to calibrate material constants of selected phenomenological ductile fracture models. These were implemented into the Abaqus/Explicit through user subroutine VUMAT and used for cutting process simulation. As the calibration process is based on variables which cannot be obtained directly from experiments, numerical simulations of fracture tests are inevitable part of the calibration. Finally, experiments regarding the cutting process were carried out and predictive capability of selected fracture models is discussed. Concluding remarks then make the summary of gained experience both with the calibration and application of particular ductile fracture criteria.

Keywords: ductile fracture, phenomenological criteria, cutting process, explicit formulation, AISI 1045 steel

Procedia PDF Downloads 451
1098 Second Order Analysis of Frames Using Modified Newmark Method

Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi

Abstract:

The main purpose of this paper is to present the Modified Newmark Method as a method of non-linear frame analysis by considering the effect of the axial load (second order analysis). The discussion will be restricted to plane frameworks containing a constant cross-section for each element. In addition, it is assumed that the frames are prevented from out-of-plane deflection. This part of the investigation is performed to generalize the established method for the assemblage structures such as frameworks. As explained, the governing differential equations are non-linear and cannot be formulated easily due to unknown axial load of the struts in the frame. By the assumption of constant axial load, the governing equations are changed to linear ones in most methods. Since the modeling and the solutions of the non-linear form of the governing equations are cumbersome, the linear form of the equations would be used in the established method. However, according to the ability of the method to reconsider the minor omitted parameters in modeling during the solution procedure, the axial load in the elements at each stage of the iteration can be computed and applied in the next stage. Therefore, the ability of the method to present an accurate approach to the solutions of non-linear equations will be demonstrated again in this paper.

Keywords: nonlinear, stability, buckling, modified newmark method

Procedia PDF Downloads 420
1097 Dynamic Mode Decomposition and Wake Flow Modelling of a Wind Turbine

Authors: Nor Mazlin Zahari, Lian Gan, Xuerui Mao

Abstract:

The power production in wind farms and the mechanical loads on the turbines are strongly impacted by the wake of the wind turbine. Thus, there is a need for understanding and modelling the turbine wake dynamic in the wind farm and the layout optimization. Having a good wake model is important in predicting plant performance and understanding fatigue loads. In this paper, the Dynamic Mode Decomposition (DMD) was applied to the simulation data generated by a Direct Numerical Simulation (DNS) of flow around a turbine, perturbed by upstream inflow noise. This technique is useful in analyzing the wake flow, to predict its future states and to reflect flow dynamics associated with the coherent structures behind wind turbine wake flow. DMD was employed to describe the dynamic of the flow around turbine from the DNS data. Since the DNS data comes with the unstructured meshes and non-uniform grid, the interpolation of each occurring within each element in the data to obtain an evenly spaced mesh was performed before the DMD was applied. DMD analyses were able to tell us characteristics of the travelling waves behind the turbine, e.g. the dominant helical flow structures and the corresponding frequencies. As the result, the dominant frequency will be detected, and the associated spatial structure will be identified. The dynamic mode which represented the coherent structure will be presented.

Keywords: coherent structure, Direct Numerical Simulation (DNS), dominant frequency, Dynamic Mode Decomposition (DMD)

Procedia PDF Downloads 338
1096 Perception Towards Palliative Patients’ Healthcare Needs: A Survey of Patients and Carers

Authors: Che Zarrina Sa'ari, Sheriza Izwa Zainuddin, Hasimah Chik, Sharifah Basirah Syed Muhsin

Abstract:

Palliative care is holistic care for patients with serious illnesses and for the family as well by interdisciplinary specialties to optimize quality of life by preventing, treating, and comforting the suffering and struggling. Palliative care is not a curative treatment but a comprehensive care to ensure the well-being of patients. This study was to identify the perceptions of patients and carers on healthcare needs and any factors related to the needs of palliative patients. Validated questionnaires survey of 254 patients and carers were analysed using a Statistical Package for the Social Sciences (SPSS) version 22. The findings were processed with Cronbach Alpha analysis, frequency, and descriptive to compare the important of each element in healthcare. Open-ended responses were analysed using thematic framework approach. The findings proved that all the items in healthcare needs elements were important because the frequency shown higher values, which were physical needs (5.91), mental needs (6.10), spiritual needs (6.34), emotional needs (6.05), social needs (5.88) and logistics needs (5.05). The total score of Cronbach’s alpha (α) for this study is 0.958, which is suggesting very good internal consistency reliability for the elements for healthcare needs. Professionals and healthcare providers need to ensure healthcare planning is individualised by tailoring it to the values, priorities, and ethnic/cultural/religious context of each person.

Keywords: healthcare, need, holistic, palliative, multi speciality

Procedia PDF Downloads 81
1095 A Study on Shock Formation over a Transonic Aerofoil

Authors: M. Fowsia, Dominic Xavier Fernando, Vinojitha, Rahamath Juliyana

Abstract:

Aerofoil is a primary element to be designed during the initial phase of creating any new aircraft. It is the component that forms the cross-section of the wing. The wing is used to produce lift force that balances the weight which is acting downwards. The lift force is created due to pressure difference over the top and bottom surface which is caused due to velocity variation. At sub-sonic velocities, for a real fluid, we obtain a smooth flow of air over both the surfaces. In this era of high speed travel, commercial aircraft that can travel faster than speed of sound barrier is required. However transonic velocities cause the formation of shock waves which can cause flow separation over the top and bottom surfaces. In the transonic range, shock waves move across the top and bottom surfaces of the aerofoil, until both the shock waves merge into a single shock wave that is formed near the leading edge of theaerofoil. In this paper, a transonic aerofoil is designed and its aerodynamic properties at different velocities in the Transonic range (M = 0.8; 0.9; 1; 1.1; 1.2) are studied with the help of CFD. The Pressure and Velocity distributions over the top and bottom surfaces of aerofoil are studied and the variations of shock patterns, at different velocities, are analyzed. The analysis can be used to determine the effect of drag divergence on the lift created by the aerofoil.

Keywords: transonic aerofoil, cfd, drag divergence, shock formation, viscous flow

Procedia PDF Downloads 525
1094 Benefits of The ALIAmide Palmitoyl-Glucosamine Co-Micronized with Curcumin for Osteoarthritis Pain: A Preclinical Study

Authors: Enrico Gugliandolo, Salvatore Cuzzocrea, Rosalia Crupi

Abstract:

Osteoarthritis (OA) is one of the most common chronic pain conditions in dogs and cats. OA pain is currently viewed as a mixed phenomenon involving both inflammatory and neuropathic mechanisms at the peripheral (joint) and central (spinal and supraspinal) levels. Oxidative stress has been implicated in OA pain. Although nonsteroidal anti-inflammatory drugs are commonly prescribed for OA pain, they should be used with caution in pets because of adverse effects in the long term and controversial efficacy on neuropathic pain. An unmet need remains for safe and effective long-term treatments for OA pain. Palmitoyl-glucosamine (PGA) is an analogue of the ALIAamide palmitoylethanolamide, i.e., a body’s own endocannabinoid-like compound playing a sentinel role in nociception. PGA, especially in the micronized formulation, was shown safe and effective in OA pain. The aim of this study was to investigate the effect of a co-micronized formulation of PGA with the natural antioxidant curcumin (PGA-cur) on OA pain. Ten Sprague-Dawley male rats were used for each treatment group. The University of Messina Review Board for the care and use of animals authorized the study. On day 0, rats were anesthetized (5.0% isoflurane in 100% O2) and received intra-articular injection of MIA (3 mg in 25 μl saline) in the right knee joint, with the left being injected an equal volume of saline. Starting the third day after MIA injection, treatments were administered orally three times per week for 21 days, at the following doses: PGA 20 mg/kg, curcumin 10 mg/kg, PGA-cur (2:1 ratio) 30 mg/kg. On day 0 and 3, 7, 14 and 21 days post-injection, mechanical allodynia was measured using a dynamic plantar Von Frey hair aesthesiometer and expressed as paw withdrawal threshold (PWT) and latency (PWL). Motor functional recovery of the rear limb was evaluated on the same time points by walking track analysis using the sciatic functional index. On day 21 post-MIA injection, the concentration of the following inflammatory and nociceptive mediators was measured in serum using commercial ELISA kits: tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), nerve growth factor (NGF) and matrix metalloproteinase-1-3-9 (MMP-1, MMP-3, MMP-9). The results were analyzed by ANOVA followed by Bonferroni post-hoc test for multiple comparisons. Micronized PGA reduced neuropathic pain, as shown by the significant higher PWT and PWL values compared to vehicle group (p < 0.0001 for all the evaluated time points). The effect of PGA-cur was superior at all time points (p < 0.005). PGA-cur restored motor function already on day 14 (p < 0.005), while micronized PGA was effective a week later (D21). MIA-induced increase in the serum levels of all the investigated mediators was inhibited by PGA-cur (p < 0.01). PGA was also effective, except on IL-1 and MMP-3. Curcumin alone was inactive in all the experiments at any time point. The encouraging results suggest that PGA-cur may represent a valuable option in OA pain management and warrant further confirmation in well-powered clinical trials.

Keywords: ALIAmides, curcumin, osteoarthritis, palmitoyl-glucosamine

Procedia PDF Downloads 111
1093 Dynamic Analysis of Submerged Floating Tunnel Subjected to Hydrodynamic and Seismic Loadings

Authors: Naik Muhammad, Zahid Ullah, Dong-Ho Choi

Abstract:

Submerged floating tunnel (SFT) is a new solution for the transportation infrastructure through sea straits, fjords, and inland waters, and can be a good alternative to long span suspension bridges. SFT is a massive cylindrical structure that floats at a certain depth below the water surface and subjected to extreme environmental conditions. The identification of dominant structural response of SFT becomes more important due to intended environmental conditions for the design of SFT. The time domain dynamic problem of SFT moored by vertical and inclined mooring cables/anchors is formulated. The dynamic time history analysis of SFT subjected to hydrodynamic and seismic excitations is performed. The SFT is modeled by finite element 3D beam, and the mooring cables are modeled by truss elements. Based on the dynamic time history analysis the displacements and internal forces of SFT were calculated. The response of SFT is presented for hydrodynamic and seismic excitations. The transverse internal forces of SFT were the maximum compared to vertical direction, for both hydrodynamic and seismic cases; this indicates that the cable system provides very small stiffness in transverse direction as compared to vertical direction of SFT.

Keywords: submerged floating tunnel, hydrodynamic analysis, time history analysis, seismic response

Procedia PDF Downloads 324
1092 Integration of Load Introduction Elements into Fabrics

Authors: Jan Schwennen, Harlad Schmid, Juergen Fleischer

Abstract:

Lightweight design plays an important role in the automotive industry. Especially the combination of metal and CFRP shows great potential for future vehicle concepts. This requires joining technologies that are cost-efficient and appropriate for the materials involved. Previous investigations show that integrating load introduction elements during CFRP part manufacturing offers great advantages in mechanical performance. However, it is not yet clear how to integrate the elements in an automated process without harming the fiber structure. In this paper, a test rig is build up to investigate the effect of different parameters during insert integration experimentally. After a short description of the experimental equipment, preliminary tests are performed to determine a set of important process parameters. Based on that, the planning of design of experiments is given. The interpretation and evaluation of the test results show that with a minimization of the insert diameter and the peak angle less harm on the fiber structure can be achieved. Furthermore, a maximization of the die diameter above the insert shows a positive effect on the fiber structure. At the end of this paper, a theoretical description of alternative peak shaping is given and then the results get validated on the basis of an industrial reference part.

Keywords: CFRP, fabrics, insert, load introduction element, integration

Procedia PDF Downloads 236
1091 Simulation on Influence of Environmental Conditions on Part Distortion in Fused Deposition Modelling

Authors: Anto Antony Samy, Atefeh Golbang, Edward Archer, Alistair McIlhagger

Abstract:

Fused deposition modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using the 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics, which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results, it was observed that increasing the chamber temperature from 25°C to 75°C lead to a decrease of 1.5% residual stress, while decreasing bed temperature from 100°C to 60°C, resulted in a 33% increase in residual stress and a significant rise of 138% in warpage. The simulated warpage data is validated by comparing it with the measured warpage values of the samples using 3D scanning.

Keywords: finite element analysis, fused deposition modelling, residual stress, warpage

Procedia PDF Downloads 183
1090 Safety and Efficacy of RM-001, Autologous HBG1/2 Promoter-Modified CD34+Hematopoietic Stem and Progenitor Cells, in Transfusion-Dependent β-Thalassemia

Authors: Rongrong Liu, Li Wang, Hui Xu, Jianpei Fang, Sixi Liu, Xiaolin Yin, Junbin Liang, Gaohui Yan, Yaoyun Li, Yali Zhou, Xinyu Li, Yue Li, Lei Shi, Yongrong Lai, Junjiu Huang, Xinhua Zhang

Abstract:

Background: Beta-Thalassemia is caused by reduced (β+) or absent (β0) synthesis of the β-globin chains of hemoglobin. Transfusions and oral iron chelation therapy have improved the quality of life for patients with Transfusion-Dependent thalassemia (TDT). Recent advances in genome editing platforms of CRISPR-Cas9 have paved the way for induction of HbF by reactivating expression of γ-chain.Aims: We performed CRISPR-Cas9-mediated genome editing of hematopoietic stem cells to mutate HBG1/HBG2 promoter sequence, thereby representing a naturally occurring HPFH-liked mutation, producing RM-001. Here, we present an initial assessment of safety and efficacy of RM-001 in patients with TDT. Methods: Patients (6–35 y of age) with TDT receiving packed red blood cell (pRBC) transfusions of ≥100 mL/kg/y or ≥10 units/y in the previous 2 y were eligible. CD34+ cells were edited with CRISPR-Cas9 using a guide RNA specific for the binding site of BCL11A on the HBG1/2 promoter. Prior to RM-001 product infusion (day 0), patients received myeloablative conditioning with Busulfan from day-7 to day-4. Patients were monitored for AEs Hb expression.Results: Data cut as of 28 Feb 2024, 16 TDT patients have been treated with RM-001 and followed ≥3 months. 5 of these 16 patients had finished their 24 months follow up. Eleven patients have β0/β0 genotype and five patients have β0/β+ genotype. In addition to β-thalassemia, two patients had α- deletion with the genotype of --/αα. Efficacy:All patients received a single dose intravenous infusion of RM-001 cells. 5 of them had been followed 24 months or longer. All patients achieved transfusion-independent (TI, total Hb continued ≥ 9g/dL) (Figure1). Patients demonstrated sustained and clinically meaningful increases in HbF levels since 4 month post-RM-001 infusion (Figure.2). Total hemoglobin in all patients was stable at 10-12g/dL during the follow-up period. Safety:The adverse events observed after RM-001 infusion were consistent with those that are typical of Busulfan-based myeloablation. The allelic editing analysis at 6-month visit showed that the on-target allelic editing frequency in bone marrow cells was 73.44% (64.65% to 84.6%, n=13).Summary/Conclusion: This interim analysis, in which all the 19 patients age from 7.9 to 25yo met the success criteria for the trial with respect to transfusion independence, showed that autologous HBG1/2 promoter-modified CD34+ HSPCs gene therapy resulted in an adequate amount of HbF as early as 2 months after infusion led to near-normal hemoglobin levels, remained transfusion-free through the reported period without product related SAE. After RM-001 infusion, high levels of HbF proportion and on-target editing in bone marrow cells were maintained. Submitted on behalf of the RM-001 Investigators.

Keywords: thalassemian, genetherapy, CRISPR/Cas9, HbF

Procedia PDF Downloads 10
1089 Degree of Bending in Axially Loaded Tubular KT-Joints of Offshore Structures: Parametric Study and Formulation

Authors: Hamid Ahmadi, Shadi Asoodeh

Abstract:

The fatigue life of tubular joints commonly found in offshore industry is not only dependent on the value of hot-spot stress (HSS), but is also significantly influenced by the through-the-thickness stress distribution characterized by the degree of bending (DoB). The determination of DoB values in a tubular joint is essential for improving the accuracy of fatigue life estimation using the stress-life (S–N) method and particularly for predicting the fatigue crack growth based on the fracture mechanics (FM) approach. In the present paper, data extracted from finite element (FE) analyses of tubular KT-joints, verified against experimental data and parametric equations, was used to investigate the effects of geometrical parameters on DoB values at the crown 0˚, saddle, and crown 180˚ positions along the weld toe of central brace in tubular KT-joints subjected to axial loading. Parametric study was followed by a set of nonlinear regression analyses to derive DoB parametric formulas for the fatigue analysis of KT-joints under axial loads. The tubular KT-joint is a quite common joint type found in steel offshore structures. However, despite the crucial role of the DoB in evaluating the fatigue performance of tubular joints, this paper is the first attempt to study and formulate the DoB values in KT-joints.

Keywords: tubular KT-joint, fatigue, degree of bending (DoB), axial loading, parametric formula

Procedia PDF Downloads 355
1088 Scheduling of Cross-Docking Center: An Auction-Based Algorithm

Authors: Eldho Paul, Brijesh Paul

Abstract:

This work proposes an auction mechanism based solution methodology for the optimum scheduling of trucks in a cross-docking centre. The cross-docking centre is an important element of lean supply chain. It reduces the amount of storage and transportation costs in the distribution system compared to an ordinary warehouse. Better scheduling of trucks in a cross-docking center is the best way to reduce storage and transportation costs. Auction mechanism is commonly used for allocation of limited resources in different real-life applications. Here, we try to schedule inbound trucks by integrating auction mechanism with the functioning of a cross-docking centre. A mathematical model is developed for the optimal scheduling of inbound trucks based on the auction methodology. The determination of exact solution for problems involving large number of trucks was found to be computationally difficult, and hence a genetic algorithm based heuristic methodology is proposed in this work. A comparative study of exact and heuristic solutions is done using five classes of data sets. It is observed from the study that the auction-based mechanism is capable of providing good solutions to scheduling problem in cross-docking centres.

Keywords: auction mechanism, cross-docking centre, genetic algorithm, scheduling of trucks

Procedia PDF Downloads 409
1087 Cantilever Shoring Piles with Prestressing Strands: An Experimental Approach

Authors: Hani Mekdash, Lina Jaber, Yehia Temsah

Abstract:

Underground space is becoming a necessity nowadays, especially in highly congested urban areas. Retaining underground excavations using shoring systems is essential in order to protect adjoining structures from potential damage or collapse. Reinforced Concrete Piles (RCP) supported by multiple rows of tie-back anchors are commonly used type of shoring systems in deep excavations. However, executing anchors can sometimes be challenging because they might illegally trespass neighboring properties or get obstructed by infrastructure and other underground facilities. A technique is proposed in this paper, and it involves the addition of eccentric high-strength steel strands to the RCP section through ducts without providing the pile with lateral supports. The strands are then vertically stressed externally on the pile cap using a hydraulic jack, creating a compressive strengthening force in the concrete section. An experimental study about the behavior of the shoring wall by pre-stressed piles is presented during the execution of an open excavation in an urban area (Beirut city) followed by numerical analysis using finite element software. Based on the experimental results, this technique is proven to be cost-effective and provides flexible and sustainable construction of shoring works.

Keywords: deep excavation, prestressing, pre-stressed piles, shoring system

Procedia PDF Downloads 115
1086 Improvement of Soft Clay Using Floating Cement Dust-Lime Columns

Authors: Adel Belal, Sameh Aboelsoud, Mohy Elmashad, Mohammed Abdelmonem

Abstract:

The two main criteria that control the design and performance of footings are bearing capacity and settlement of soil. In soft soils, the construction of buildings, storage tanks, warehouse, etc. on weak soils usually involves excessive settlement problems. To solve bearing capacity or reduce settlement problems, soil improvement may be considered by using different techniques, including encased cement dust–lime columns. The proposed research studies the effect of adding floating encased cement dust and lime mix columns to soft clay on the clay-bearing capacity. Four experimental tests were carried out. Columns diameters of 3.0 cm, 4.0 cm, and 5.0 cm and columns length of 60% of the clay layer thickness were used. Numerical model was constructed and verified using commercial finite element package (PLAXIS 2D, V8.5). The verified model was used to study the effect of distributing columns around the footing at different distances. The study showed that the floating cement dust lime columns enhanced the clay-bearing capacity with 262%. The numerical model showed that the columns around the footing have a limit effect on the clay improvement.

Keywords: bearing capacity, cement dust – lime columns, ground improvement, soft clay

Procedia PDF Downloads 196
1085 Identification of Switched Reluctance Motor Parameters Using Exponential Swept-Sine Signal

Authors: Abdelmalek Ouannou, Adil Brouri, Laila Kadi, Tarik

Abstract:

Switched reluctance motor (SRM) has a major interest in a large domain as in electric vehicle driving because of its wide range of speed operation, high performances, low cost, and robustness to run under degraded conditions. The purpose of the paper is to develop a new analytical approach for modeling SRM parameters. Then, an identification scheme is proposed to obtain the SRM parameters. Since the SRM is featured by a highly nonlinear behavior, modeling these devices is difficult. Then, it is convenient to develop an accurate model describing the SRM. Furthermore, it is always operated in the magnetically saturated mode to maximize the energy transfer. Accordingly, it is shown that the SRM can be accurately described by a generalized polynomial Hammerstein model, i.e., the parallel connection of several Hammerstein models having polynomial nonlinearity. Presently an analytical identification method is developed using a chirp excitation signal. Afterward, the parameters of the obtained model have been determined using Finite Element Method analysis. Finally, in order to show the effectiveness of the proposed method, a comparison between the true and estimate models has been performed. The obtained results show that the output responses are very close.

Keywords: switched reluctance motor, swept-sine signal, generalized Hammerstein model, nonlinear system

Procedia PDF Downloads 232
1084 Experımental Study of Structural Insulated Panel under Lateral Load

Authors: H. Abbasi, K. Sennah

Abstract:

A Structural Insulated Panel (SIP) is a structural element contains of foam insulation core sandwiched between two oriented-strand boards (OSB), plywood boards, steel sheets or fibre cement boards. Superior insulation, exceptional strength and fast insulation are the specifications of a SIP-based structure. There are also many other benefits such as less total construction costs, speed of construction, less expensive HVAC equipment required, favourable energy-efficient mortgages comparing to wood-framed houses. This paper presents the experimental analysis on selected foam-timber SIPs to study their structural behaviour when used as walls in residential construction under lateral loading. The experimental program has also taken several stud panels in order to compare the performance of SIP with conventional wood-frame system. The results of lateral tests performed in this study established a database that can be used further to develop design tables of SIP wall subjected to lateral loading caused by wind or earthquake. A design table for walls subjected to lateral loading was developed. Experimental results proved that the tested SIPs are ‘as good as’ the conventional wood-frame system.

Keywords: structural insulated panel, experimental study, lateral load, design tables

Procedia PDF Downloads 313