Search results for: heterogeneous wireless networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3922

Search results for: heterogeneous wireless networks

1342 Developing Medium Term Maintenance Plan For Road Networks

Authors: Helen S. Ghali, Haidy S. Ghali, Salma Ibrahim, Ossama Hosny, Hatem S. Elbehairy

Abstract:

Infrastructure systems are essential assets in any community; accordingly, authorities aim to maximize its life span while minimizing the life cycle cost. This requires studying the asset conditions throughout its operation and forming a cost-efficient maintenance strategy plan. The objective of this study is to develop a highway management system that provides medium-term maintenance plans with the minimum life cycle cost subject to budget constraints. The model is applied to data collected for the highway network in India with the aim to output a 5-year maintenance plan strategy from 2019 till 2023. The main element considered is the surface coarse, either rigid or flexible pavement. The model outputs a 5-year maintenance plan for each segment given the budget constraint while maximizing the new pavement condition rating and minimizing its life cycle cost.

Keywords: infrastructure, asset management, optimization, maintenance plan

Procedia PDF Downloads 218
1341 GAILoc: Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 75
1340 Modeling and Optimal Control of Acetylene Catalytic Hydrogenation Reactor in Olefin Plant by Artificial Neural Network

Authors: Faezeh Aghazadeh, Mohammad Javad Sharifi

Abstract:

The application of neural networks to model a full-scale industrial acetylene hydrogenation in olefin plant has been studied. The operating variables studied are the, input-temperature of the reactor, output-temperature of the reactor, hydrogen ratio of the reactor, [C₂H₂]input, and [C₂H₆]input. The studied operating variables were used as the input to the constructed neural network to predict the [C₂H₆]output at any time as the output or the target. The constructed neural network was found to be highly precise in predicting the quantity of [C₂H₆]output for the new input data, which are kept unaware of the trained neural network showing its applicability to determine the [C₂H₆]output for any operating conditions. The enhancement of [C₂H₆]output as compared with [C₂H₆]input was a consequence of low selective acetylene hydrogenation to ethylene.

Keywords: acetylene hydrogenation, Pd-Ag/Al₂O₃, artificial neural network, modeling, optimal design

Procedia PDF Downloads 276
1339 Intrusion Detection Using Dual Artificial Techniques

Authors: Rana I. Abdulghani, Amera I. Melhum

Abstract:

With the abnormal growth of the usage of computers over networks and under the consideration or agreement of most of the computer security experts who said that the goal of building a secure system is never achieved effectively, all these points led to the design of the intrusion detection systems(IDS). This research adopts a comparison between two techniques for network intrusion detection, The first one used the (Particles Swarm Optimization) that fall within the field (Swarm Intelligence). In this Act, the algorithm Enhanced for the purpose of obtaining the minimum error rate by amending the cluster centers when better fitness function is found through the training stages. Results show that this modification gives more efficient exploration of the original algorithm. The second algorithm used a (Back propagation NN) algorithm. Finally a comparison between the results of two methods used were based on (NSL_KDD) data sets for the construction and evaluation of intrusion detection systems. This research is only interested in clustering the two categories (Normal and Abnormal) for the given connection records. Practices experiments result in intrude detection rate (99.183818%) for EPSO and intrude detection rate (69.446416%) for BP neural network.

Keywords: IDS, SI, BP, NSL_KDD, PSO

Procedia PDF Downloads 382
1338 Traffic Light Detection Using Image Segmentation

Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra

Abstract:

Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).

Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks

Procedia PDF Downloads 173
1337 University Students’ Perception on Public Transit in Dhaka City

Authors: Mosabbir Pasha, Ijaj Mahmud Chowdhury, M. A. Afrahim Bhuiyann

Abstract:

With the increasing population and intensive land use, huge traffic demand is generating worldwide both in developing and developed countries. As a developing country, Bangladesh is also facing the same problem in recent years by producing huge numbers of daily trips. As a matter of fact, extensive traffic demand is increasing day by day. Also, transport system in Dhaka is heterogeneous, reflecting the heterogeneity in the socio-economic and land use patterns. As a matter of fact, trips produced here are for different purposes such as work, business, educational etc. Due to the significant concentration of educational institutions a large share of the trips are generated by educational purpose. And one of the major percentages of educational trips is produced by university going students and most of them are travelled by car, bus, train, taxi, rickshaw etc. The aim of the study was to find out the university students’ perception on public transit ridership. A survey was conducted among 330 students from eight different universities. It was found out that 26% of the trips produced by university going students are travelled by public bus service and only 5% are by train. Percentage of car share is 16% and 12% of the trips are travelled by private taxi. From the study, it has been found that more than 42 percent student’s family resides outside of Dhaka, eventually they prefer bus instead of other options. Again those who chose to walk most of the time, of them, over 40 percent students’ family reside outside of Dhaka and of them over 85 percent students have a tendency to live in a mess. They generally choose a neighboring location to their respective university so that they can reach their destination by walk. On the other hand, those who travel by car 80 percent of their family reside inside Dhaka. The study also revealed that the most important reason that restricts students not to use public transit is poor service. Negative attitudes such as discomfort, uneasiness in using public transit also reduces the usage of public transit. The poor waiting area is another major cause of not using public transit. Insufficient security also plays a significant role in not using public transit. On the contrary, the fare is not a problem for students those who use public transit as a mode of transportation. Students also think stations are not far away from their home or institution and they do not need to wait long for the buses or trains. It was also found accessibility to public transit is moderate.

Keywords: traffic demand, fare, poor service, public transit ridership

Procedia PDF Downloads 268
1336 Deep Learning Based Text to Image Synthesis for Accurate Facial Composites in Criminal Investigations

Authors: Zhao Gao, Eran Edirisinghe

Abstract:

The production of an accurate sketch of a suspect based on a verbal description obtained from a witness is an essential task for most criminal investigations. The criminal investigation system employs specifically trained professional artists to manually draw a facial image of the suspect according to the descriptions of an eyewitness for subsequent identification. Within the advancement of Deep Learning, Recurrent Neural Networks (RNN) have shown great promise in Natural Language Processing (NLP) tasks. Additionally, Generative Adversarial Networks (GAN) have also proven to be very effective in image generation. In this study, a trained GAN conditioned on textual features such as keywords automatically encoded from a verbal description of a human face using an RNN is used to generate photo-realistic facial images for criminal investigations. The intention of the proposed system is to map corresponding features into text generated from verbal descriptions. With this, it becomes possible to generate many reasonably accurate alternatives to which the witness can use to hopefully identify a suspect from. This reduces subjectivity in decision making both by the eyewitness and the artist while giving an opportunity for the witness to evaluate and reconsider decisions. Furthermore, the proposed approach benefits law enforcement agencies by reducing the time taken to physically draw each potential sketch, thus increasing response times and mitigating potentially malicious human intervention. With publically available 'CelebFaces Attributes Dataset' (CelebA) and additionally providing verbal description as training data, the proposed architecture is able to effectively produce facial structures from given text. Word Embeddings are learnt by applying the RNN architecture in order to perform semantic parsing, the output of which is fed into the GAN for synthesizing photo-realistic images. Rather than the grid search method, a metaheuristic search based on genetic algorithms is applied to evolve the network with the intent of achieving optimal hyperparameters in a fraction the time of a typical brute force approach. With the exception of the ‘CelebA’ training database, further novel test cases are supplied to the network for evaluation. Witness reports detailing criminals from Interpol or other law enforcement agencies are sampled on the network. Using the descriptions provided, samples are generated and compared with the ground truth images of a criminal in order to calculate the similarities. Two factors are used for performance evaluation: The Structural Similarity Index (SSIM) and the Peak Signal-to-Noise Ratio (PSNR). A high percentile output from this performance matrix should attribute to demonstrating the accuracy, in hope of proving that the proposed approach can be an effective tool for law enforcement agencies. The proposed approach to criminal facial image generation has potential to increase the ratio of criminal cases that can be ultimately resolved using eyewitness information gathering.

Keywords: RNN, GAN, NLP, facial composition, criminal investigation

Procedia PDF Downloads 161
1335 Key Performance Indicators and the Model for Achieving Digital Inclusion for Smart Cities

Authors: Khalid Obaed Mahmod, Mesut Cevik

Abstract:

The term smart city has appeared recently and was accompanied by many definitions and concepts, but as a simplified and clear definition, it can be said that the smart city is a geographical location that has gained efficiency and flexibility in providing public services to citizens through its use of technological and communication technologies, and this is what distinguishes it from other cities. Smart cities connect the various components of the city through the main and sub-networks in addition to a set of applications and thus be able to collect data that is the basis for providing technological solutions to manage resources and provide services. The basis of the work of the smart city is the use of artificial intelligence and the technology of the Internet of Things. The work presents the concept of smart cities, the pillars, standards, and evaluation indicators on which smart cities depend, and the reasons that prompted the world to move towards its establishment. It also provides a simplified hypothetical way to measure the ideal smart city model by defining some indicators and key pillars, simulating them with logic circuits, and testing them to determine if the city can be considered an ideal smart city or not.

Keywords: factors, indicators, logic gates, pillars, smart city

Procedia PDF Downloads 150
1334 Global Legislation on Contagious Illnesses

Authors: Hamid Vahidkia

Abstract:

The International Health Regulations (IHR), the sole worldwide regulations for managing infectious diseases, have remained largely unchanged since their initial release in 1951. The WHO is currently involved in updating the IHR. This article evaluates WHO's updated IHR draft and suggests enhancements to enhance global health, such as a strong focus on the organization's fundamental public health goals, activities, and crucial services; wide-reaching coverage for various health risks; establishing global monitoring through official and unofficial data networks; setting benchmarks for national public health systems, evaluating results, and ensuring accountability from countries; safeguarding human rights by implementing evidence-based guidelines and just processes; and promoting good governance by embracing fairness, impartiality, and openness. The World Health Organization needs to guarantee that countries follow health regulations and provide ample economic and technical support to less privileged nations. A crucial concern for the global community is how independent nations can collaborate to ensure that global health benefits all individuals, regardless of their economic status.

Keywords: IHR, law, health, international, WHO

Procedia PDF Downloads 8
1333 Implementation in Python of a Method to Transform One-Dimensional Signals in Graphs

Authors: Luis Andrey Fajardo Fajardo

Abstract:

We are immersed in complex systems. The human brain, the galaxies, the snowflakes are examples of complex systems. An area of interest in Complex systems is the chaos theory. This revolutionary field of science presents different ways of study than determinism and reductionism. Here is where in junction with the Nonlinear DSP, chaos theory offer valuable techniques that establish a link between time series and complex theory in terms of complex networks, so that, the study of signals can be explored from the graph theory. Recently, some people had purposed a method to transform time series in graphs, but no one had developed a suitable implementation in Python with signals extracted from Chaotic Systems or Complex systems. That’s why the implementation in Python of an existing method to transform one dimensional chaotic signals from time domain to graph domain and some measures that may reveal information not extracted in the time domain is proposed.

Keywords: Python, complex systems, graph theory, dynamical systems

Procedia PDF Downloads 509
1332 Mexico's Steam Connections Across the Pacific (1867-1910)

Authors: Ruth Mandujano Lopez

Abstract:

During the second half of the 19th century, in the transition from sail to steam navigation, the transpacific space underwent major transformation. This paper examines the role that the steamship companies between Mexico, the rest of North America and Asia played in that process. Based on primary sources found in Mexico, California, London and Hong Kong, it argues that these companies actively participated in the redefining of the Pacific space as they opened new routes, transported thousands of people and had an impact on regional geopolitics. In order to prove this, the text will present the cases of a handful of companies that emerged between 1867 and 1910 and of some of their passengers. By looking at the way the Mexican ports incorporated to the transpacific steam maritime network, this work contributes to have a better understanding of the role that Latin American ports have played in the formation of a global order. From a theoretical point of view, it proposes the conceptualization of space in the form of transnational networks as a point of departure to conceive a history that is truly global.

Keywords: mexico, steamships, transpacific, maritime companies

Procedia PDF Downloads 48
1331 Effect of Water Addition on Catalytic Activity for CO2 Purification from Oxyfuel Combustion

Authors: Joudia Akil, Stephane Siffert, Laurence Pirault-Roy, Renaud Cousin, Christophe Poupin

Abstract:

Oxyfuel combustion is a promising method that enables to obtain a CO2 rich stream, with water vapor ( ̴10%), unburned components such as CO and NO, which must be cleaned before the use of CO2. Our objective is then the final treatment of CO and NO by catalysis. Three-way catalysts are well-developed material for simultaneous conversion of NO, CO and hydrocarbons. Pt and/or Rh ensure a quasi-complete removal of NOx, CO and HC and there is also a growing interest in partly replacing Pt with less-expensive Pd. The use of alumina and ceria as support ensures, respectively, the stabilization of such species in active state and discharging or storing oxygen to control the oxidation of CO and HC and the reduction of NOx. In this work, we will compare different metals (Pd, Rh and Pt) supported on Al2O3 and CeO2, for CO2 purification from oxyfuel combustion. The catalyst must reduce NO by CO in an oxidizing environment, in the presence of CO2 rich stream and resistant to water. In this study, Al2O3 and CeO2 were used as support materials of the catalysts. 1wt% M/Support where M = Pd, Rh or Pt catalysts were obtained by wet impregnation on supports with a precursor of palladium [Pd(acac)2], rhodium [Rh(NO3)3] and platinum [Pt(NO2)2(NO3)2]. Materials were characterized by BET surface area, H2 chemisorption, and TEM. Catalytic activity was evaluated in CO2 purification which is carried out in a fixed-bed flow reactor containing 150 mg of catalyst at atmospheric pressure. The flow of the reactant gases is composed of: 20% CO2, 10% O2, 0.5% CO, 0.02% NO and 8.2% H2O (He as eluent gas) with a total flow of 200 mL.min−1, with same GHSV (2.24x104 h-1). The catalytic performances of the samples were investigated with and without water. It shows that the total oxidation of CO occurred over the different materials. This study evidenced an important effect of the nature of the metals, supports and the presence or absence of H2O during the reduction of NO by CO in oxyfuel combustions conditions. Rh based catalysts show that the addition of water has a very positive influence especially on the Rh catalyst on CeO2. Pt based catalysts keep a good activity despite the addition of water on the both supports studied. For the NO reduction, addition of water act as a poison with Pd catalysts. The interesting results of Rh based catalysts with water can be explained by a production of hydrogen through the water gas shift reaction. The produced hydrogen acts as a more effective reductant than CO for NO removal. Furthermore, in TWCs, Rh is the main component responsible for NOx reduction due to its especially high activity for NO dissociation. Moreover, cerium oxide is a promotor for WGSR.

Keywords: carbon dioxide, environmental chemistry, heterogeneous catalysis

Procedia PDF Downloads 182
1330 Effect of Plant Growth Promoting Rhizobacteria on the Germination and Early Growth of Onion (Allium cepa)

Authors: Dragana R. Stamenov, Simonida S. Djuric, Timea Hajnal Jafari

Abstract:

Plant growth promoting rhizobacteria (PGPR) are a heterogeneous group of bacteria that can be found in the rhizosphere, at root surfaces and in association with roots, enhancing the growth of the plant either directly and/or indirectly. Increased crop productivity associated with the presence of PGPR has been observed in a broad range of plant species, such as raspberry, chickpeas, legumes, cucumber, eggplant, pea, pepper, radish, tobacco, tomato, lettuce, carrot, corn, cotton, millet, bean, cocoa, etc. However, until now there has not been much research about influences of the PGPR on the growth and yield of onion. Onion (Allium cepa L.), of the Liliaceae family, is a species of great economic importance, widely cultivated all over the world. The aim of this research was to examine the influence of plant growth promoting bacteria Pseudomonas sp. Dragana, Pseudomonas sp. Kiš, Bacillus subtillis and Azotobacter sp. on the seed germination and early growth of onion (Allium cepa). PGPR Azotobacter sp., Bacillus subtilis, Pseudomonas sp. Dragana, Pseudomonas sp. Kiš, from the collection of the Faculty of Agriculture, Novi Sad, Serbia, were used as inoculants. The number of cells in 1 ml of the inoculum was 10⁸ CFU/ml. The control variant was not inoculated. The effect of PGPR on seed germination and hypocotyls length of Allium cepa was evaluated in controlled conditions, on filter paper in the dark at 22°C, while effect on the plant length and mass in semicontrol conditions, in 10 l volume vegetative pots. Seed treated with fungicide and untreated seed were used. After seven days the percentage of germination was determined. After seven and fourteen days hypocotil length was measured. Fourteen days after germination, length and mass of plants were measured. Application of Pseudomonas sp. Dragana and Kiš and Bacillus subtillis had a negative effect on onion seed germination, while the use of Azotobacter sp. gave positive results. On average, application of all investigated inoculants had a positive effect on the measured parameters of plant growth. Azotobacter sp. had the greatest effect on the hypocotyls length, length and mass of the plant. In average, better results were achieved with untreated seeds in compare with treated. Results of this study have shown that PGPR can be used in the production of onion.

Keywords: germination, length, mass, microorganisms, onion

Procedia PDF Downloads 237
1329 Transport Related Air Pollution Modeling Using Artificial Neural Network

Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar

Abstract:

Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).

Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling

Procedia PDF Downloads 524
1328 Efficient Rehearsal Free Zero Forgetting Continual Learning Using Adaptive Weight Modulation

Authors: Yonatan Sverdlov, Shimon Ullman

Abstract:

Artificial neural networks encounter a notable challenge known as continual learning, which involves acquiring knowledge of multiple tasks over an extended period. This challenge arises due to the tendency of previously learned weights to be adjusted to suit the objectives of new tasks, resulting in a phenomenon called catastrophic forgetting. Most approaches to this problem seek a balance between maximizing performance on the new tasks and minimizing the forgetting of previous tasks. In contrast, our approach attempts to maximize the performance of the new task, while ensuring zero forgetting. This is accomplished through the introduction of task-specific modulation parameters for each task, and only these parameters are learned for the new task, after a set of initial tasks have been learned. Through comprehensive experimental evaluations, our model demonstrates superior performance in acquiring and retaining novel tasks that pose difficulties for other multi-task models. This emphasizes the efficacy of our approach in preventing catastrophic forgetting while accommodating the acquisition of new tasks.

Keywords: continual learning, life-long learning, neural analogies, adaptive modulation

Procedia PDF Downloads 70
1327 Catalyst Assisted Microwave Plasma for NOx Formation

Authors: Babak Sadeghi, Rony Snyders, Marie-Paule.Delplancke-Ogletree

Abstract:

Nitrogen fixation (NF) is one of the crucial industrial processes. Many attempts have been made in order to artificially fix nitrogen, and among them, the Haber-Bosch’s (H-B) process is widely used. However, it presents two major drawbacks: huge fossil feedstock consumption and noticeable greenhouse gases emission. It is, therefore, necessary to develop alternatives. Plasma technology, as an inherent “green” technology, is considered to have a great potential for reducing the environmental impacts and improving the energy efficiency of the NF process. In this work, we have studied the catalyst assisted microwave plasma for NF application. Heterogeneous catalysts of MoO₃, with various loads 0, 5, 10, 20, and 30 wt%, supported on γ-alumina were prepared by conventional wet impregnation. Crystallinity, surface area, pore size, and microstructure were obtained by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption isotherm, Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM). The XRD patterns of calcined alumina confirm the γ- phase. Characteristic picks of MoO₃ could not be observed for low loads (< 20 wt%), likely indicating a high dispersion of metal oxide over the support. The specific surface area along with pores size are decreasing with increasing calcination temperature and MoO₃ loading. The MoO₃ loading does not modify the microstructure. TEM and SEM results for loading inferior to 20 wt% are coherent with a monolayer of MoO₃ on the support as proposed elsewhere. For loading of 20 wt% and more, TEM and Electron diffraction (ED) show nanocrystalline ₃-D MoO₃ particles. The catalytic performances of these catalysts were investigated in the post-discharge of a microwave plasma for NOx formation from N₂/O₂ mixtures. The plasma is sustained by a surface wave launched in a quartz tube via a surfaguide supplied by a 2.45 GHz microwave generator in pulse mode. In-situ identification and quantification of the products were carried out by Fourier-transform infrared spectroscopy (FTIR) in the post-discharge region. FTIR analysis of the exhausted gas reveal NO and NO₂ bands in presence of catalyst while only NO band were assigned without catalyst. On the other hand, in presence of catalyst, a 10% increase of NOₓ formation and of 20% increase in energy efficiency are observed.

Keywords: γ-Al2O₃-MoO₃, µ-waveplasma, N2 fixation, Plasma-catalysis, Plasma diagnostic

Procedia PDF Downloads 176
1326 Realizing Teleportation Using Black-White Hole Capsule Constructed by Space-Time Microstrip Circuit Control

Authors: Mapatsakon Sarapat, Mongkol Ketwongsa, Somchat Sonasang, Preecha Yupapin

Abstract:

The designed and performed preliminary tests on a space-time control circuit using a two-level system circuit with a 4-5 cm diameter microstrip for realistic teleportation have been demonstrated. It begins by calculating the parameters that allow a circuit that uses the alternative current (AC) at a specified frequency as the input signal. A method that causes electrons to move along the circuit perimeter starting at the speed of light, which found satisfaction based on the wave-particle duality. It is able to establish the supersonic speed (faster than light) for the electron cloud in the middle of the circuit, creating a timeline and propulsive force as well. The timeline is formed by the stretching and shrinking time cancellation in the relativistic regime, in which the absolute time has vanished. In fact, both black holes and white holes are created from time signals at the beginning, where the speed of electrons travels close to the speed of light. They entangle together like a capsule until they reach the point where they collapse and cancel each other out, which is controlled by the frequency of the circuit. Therefore, we can apply this method to large-scale circuits such as potassium, from which the same method can be applied to form the system to teleport living things. In fact, the black hole is a hibernation system environment that allows living things to live and travel to the destination of teleportation, which can be controlled from position and time relative to the speed of light. When the capsule reaches its destination, it increases the frequency of the black holes and white holes canceling each other out to a balanced environment. Therefore, life can safely teleport to the destination. Therefore, there must be the same system at the origin and destination, which could be a network. Moreover, it can also be applied to space travel as well. The design system will be tested on a small system using a microstrip circuit system that we can create in the laboratory on a limited budget that can be used in both wired and wireless systems.

Keywords: quantum teleportation, black-white hole, time, timeline, relativistic electronics

Procedia PDF Downloads 75
1325 Analyzing the Connection between Productive Structure and Communicable Diseases: An Econometric Panel Study

Authors: Julio Silva, Lia Hasenclever, Gilson G. Silva Jr.

Abstract:

The aim of this paper is to check possible convergence in health measures (aged-standard rate of morbidity and mortality) for communicable diseases between developed and developing countries, conditional to productive structures features. Understanding the interrelations between health patterns and economic development is particularly important in the context of low- and middle-income countries, where economic development comes along with deep social inequality. Developing countries with less diversified productive structures (measured through complexity index) but high heterogeneous inter-sectorial labor productivity (using as a proxy inter-sectorial coefficient of variation of labor productivity) has on average low health levels in communicable diseases compared to developed countries with high diversified productive structures and low labor market heterogeneity. Structural heterogeneity and productive diversification may have influence on health levels even considering per capita income. We set up a panel data for 139 countries from 1995 to 2015, joining several data about the countries, as economic development, health, and health system coverage, environmental and socioeconomic aspects. This information was obtained from World Bank, International Labour Organization, Atlas of Economic Complexity, United Nation (Development Report) and Institute for Health Metrics and Evaluation Database. Econometric panel models evidence shows that the level of communicable diseases has a positive relationship with structural heterogeneity, even considering other factors as per capita income. On the other hand, the recent process of convergence in terms of communicable diseases have been motivated for other reasons not directly related to productive structure, as health system coverage and environmental aspects. These evidences suggest a joint dynamics between the unequal distribution of communicable diseases and countries' productive structure aspects. These set of evidence are quite important to public policy as meet the health aims in Millennium Development Goals. It also highlights the importance of the process of structural change as fundamental to shift the levels of health in terms of communicable diseases and can contribute to the debate between the relation of economic development and health patterns changes.

Keywords: economic development, inequality, population health, structural change

Procedia PDF Downloads 144
1324 Locus of Control and Sense of Happiness: A Mediating Role of Self-Esteem

Authors: Ivanna Shubina

Abstract:

Background/Objectives and Goals: Recent interest in positive psychology is reflected in a plenty of studies conducted on its basic constructs (e.g. self-esteem and happiness) in interrelation with personality features, social rules, business and technology development. The purpose of this study is to investigate the mediating role of self-esteem, exploring the relationships between self-esteem and happiness, self-esteem and locus of control (LOC). It hypothesizes that self-esteem may be interpreted as a predictor of happiness and mediator in the locus of control establishment. A plenty of various empirical studies results have been analyzed in order to collect data for this theoretical study, and some of the analysed results can be considered as arguable or incoherent. However, the majority of results indicate a strong relationship between three considered concepts: self-esteem, happiness, the locus of control. Methods: In particular, this study addresses the following broad research questions: i) Is self-esteem just an index of global happiness? ii) May happiness be possible or realizable without a healthy self-confidence and self-acceptance? iii) To what extent does self-esteem influence on the level of happiness? iv) Is high self-esteem a sufficient condition for happiness? v) Is self-esteem is a strong predictor of internal locus of control maintenance? vi) Is high self-esteem related to internal LOC, while low self-esteem to external LOC? In order to find the answers for listed questions, 60 reliable sources have been analyzed, results of what are discussed more detailed below. Expected Results/Conclusion/Contribution:It is recognized that the relationship between self-esteem, happiness, locus of control is complex: internal LOC is contributing to happiness, but it is not directly related to it; self-esteem is a powerful and important psychological factor in mental health and well-being; the feelings of being worthy and empowered are associated with significant achievements and high self-esteem; strong and appropriate self-esteem (when the discrepancy between “ideal” and “real” self is balanced) is correlated with more internal LOC (when the individual tends to believe that personal achievements depend on possessed features, vigor, and persistence). Despite the special attention paid to happiness, the locus of control and self-esteem, independently, theoretical and empirical equivocations within each literature foreclose many obvious predictions about the nature of their empirical distinction. In terms of theoretical framework, no model has achieved consensus as an ultimate theoretical background for any of the mentioned constructs. To be able to clarify the relationship between self-esteem, happiness, and locus of control more interdisciplinary studies have to take place in order to get data on heterogeneous samples, provided from various countries, cultures, and social groups.

Keywords: happiness, locus of control, self-esteem, mediation

Procedia PDF Downloads 245
1323 Erosion Influencing Factors Analysis: Case of Isser Watershed (North-West Algeria)

Authors: Chahrazed Salhi, Ayoub Zeroual, Yasmina Hamitouche

Abstract:

Soil water erosion poses a significant threat to the watersheds in Algeria today. The degradation of storage capacity in large dams over the past two decades, primarily due to erosion, necessitates a comprehensive understanding of the factors that contribute to soil erosion. The Isser watershed, located in the Northwestern region of Algeria, faces additional challenges such as recurrent droughts and the presence of delicate marl and clay outcrops, which amplify its susceptibility to water erosion. This study aims to employ advanced techniques such as Geographic Information Systems (GIS) and Remote Sensing (RS), in conjunction with the Canonical Correlation Analysis (CCA) method and Soil Water Assessment Tool (SWAT) model, to predict specific erosion patterns and analyze the key factors influencing erosion in the Isser basin. To accomplish this, an array of data sources including rainfall, climatic, hydrometric, land use, soil, digital elevation, and satellite data were utilized. The application of the SWAT model to the Isser basin yielded an average annual soil loss of approximately 16 t/ha/year. Particularly high erosion rates, exceeding 12 T/ha/year, were observed in the central and southern parts of the basin, encompassing 41% of the total basin area. Through Canonical Correlation Analysis, it was determined that vegetation cover and topography exerted the most substantial influence on erosion. Consequently, the study identified significant and spatially heterogeneous erosion throughout the study area. The impact of land topography on soil loss was found to be directly proportional, while vegetation cover exhibited an inverse proportional relationship. Modeling specific erosion for the Ladrat dam sub-basin estimated a rate of around 39 T/ha/year, thus accounting for the recorded capacity loss of 17.80% compared to the bathymetric survey conducted in 2019. The findings of this research provide valuable decision-support tools for soil conservation managers, empowering them to make informed decisions regarding soil conservation measures.

Keywords: Isser watershed, RS, CCA, SWAT, vegetation cover, topography

Procedia PDF Downloads 71
1322 Reference Model for the Implementation of an E-Commerce Solution in Peruvian SMEs in the Retail Sector

Authors: Julio Kauss, Miguel Cadillo, David Mauricio

Abstract:

E-commerce is a business model that allows companies to optimize the processes of buying, selling, transferring goods and exchanging services through computer networks or the Internet. In Peru, the electronic commerce is used infrequently. This situation is due, in part to the fact that there is no model that allows companies to implement an e-commerce solution, which means that most SMEs do not have adequate knowledge to adapt to electronic commerce. In this work, a reference model is proposed for the implementation of an e-commerce solution in Peruvian SMEs in the retail sector. It consists of five phases: Business Analysis, Business Modeling, Implementation, Post Implementation and Results. The present model was validated in a SME of the Peruvian retail sector through the implementation of an electronic commerce platform, through which the company increased its sales through the delivery channel by 10% in the first month of deployment. This result showed that the model is easy to implement, is economical and agile. In addition, it allowed the company to increase its business offer, adapt to e-commerce and improve customer loyalty.

Keywords: e-commerce, retail, SMEs, reference model

Procedia PDF Downloads 320
1321 Multi-Classification Deep Learning Model for Diagnosing Different Chest Diseases

Authors: Bandhan Dey, Muhsina Bintoon Yiasha, Gulam Sulaman Choudhury

Abstract:

Chest disease is one of the most problematic ailments in our regular life. There are many known chest diseases out there. Diagnosing them correctly plays a vital role in the process of treatment. There are many methods available explicitly developed for different chest diseases. But the most common approach for diagnosing these diseases is through X-ray. In this paper, we proposed a multi-classification deep learning model for diagnosing COVID-19, lung cancer, pneumonia, tuberculosis, and atelectasis from chest X-rays. In the present work, we used the transfer learning method for better accuracy and fast training phase. The performance of three architectures is considered: InceptionV3, VGG-16, and VGG-19. We evaluated these deep learning architectures using public digital chest x-ray datasets with six classes (i.e., COVID-19, lung cancer, pneumonia, tuberculosis, atelectasis, and normal). The experiments are conducted on six-classification, and we found that VGG16 outperforms other proposed models with an accuracy of 95%.

Keywords: deep learning, image classification, X-ray images, Tensorflow, Keras, chest diseases, convolutional neural networks, multi-classification

Procedia PDF Downloads 92
1320 Performance Analysis of Microelectromechanical Systems-Based Piezoelectric Energy Harvester

Authors: Sanket S. Jugade, Swapneel U. Naphade, Satyabodh M. Kulkarni

Abstract:

Microscale energy harvesters can be used to convert ambient mechanical vibrations to electrical energy. Such devices have great applications in low powered electronics in remote environments like powering wireless sensor nodes of Internet of Things, lightings on highways or in ships, etc. In this paper, a Microelectromechanical systems (MEMS) based energy harvester has been modeled using Analytical and Finite Element Method (FEM). The device consists of a microcantilever with a proof mass attached to its free end and a Polyvinylidene Fluoride (PVDF) piezoelectric thin film deposited on the surface of microcantilever in a unimorph or bimorph configuration. For the analytical method, the energy harvester was modeled as an equivalent electrical system in SIMULINK. The Finite element model was developed and analyzed using the commercial package COMSOL Multiphysics. The modal analysis was performed first to find the fundamental natural frequency and its variation with geometrical parameters of the system. Then the harmonic analysis was performed to find the input mechanical power, output electrical voltage, and power for a range of excitation frequencies and base acceleration values. The variation of output power with load resistance, PVDF film thickness, and damping values was also found out. The results from FEM were then validated with that of the analytical model. Finally, the performance of the device was optimized with respect to various electro-mechanical parameters. For a unimorph configuration consisting of single crystal silicon microcantilever of dimensions 8mm×2mm×80µm and proof mass of 9.32 mg with optimal values of the thickness of PVDF film and load resistance as 225 µm and 20 MΩ respectively, the maximum electrical power generated for base excitation of 0.2g at 630 Hz is 0.9 µW.

Keywords: bimorph, energy harvester, FEM, harmonic analysis, MEMS, PVDF, unimorph

Procedia PDF Downloads 190
1319 The Role of Artificial Intelligence in Concrete Constructions

Authors: Ardalan Tofighi Soleimandarabi

Abstract:

Artificial intelligence has revolutionized the concrete construction industry and improved processes by increasing efficiency, accuracy, and sustainability. This article examines the applications of artificial intelligence in predicting the compressive strength of concrete, optimizing mixing plans, and improving structural health monitoring systems. Artificial intelligence-based models, such as artificial neural networks (ANN) and combined machine learning techniques, have shown better performance than traditional methods in predicting concrete properties. In addition, artificial intelligence systems have made it possible to improve quality control and real-time monitoring of structures, which helps in preventive maintenance and increases the life of infrastructure. Also, the use of artificial intelligence plays an effective role in sustainable construction by optimizing material consumption and reducing waste. Although the implementation of artificial intelligence is associated with challenges such as high initial costs and the need for specialized training, it will create a smarter, more sustainable, and more affordable future for concrete structures.

Keywords: artificial intelligence, concrete construction, compressive strength prediction, structural health monitoring, stability

Procedia PDF Downloads 15
1318 Preparation on Sentimental Analysis on Social Media Comments with Bidirectional Long Short-Term Memory Gated Recurrent Unit and Model Glove in Portuguese

Authors: Leonardo Alfredo Mendoza, Cristian Munoz, Marco Aurelio Pacheco, Manoela Kohler, Evelyn Batista, Rodrigo Moura

Abstract:

Natural Language Processing (NLP) techniques are increasingly more powerful to be able to interpret the feelings and reactions of a person to a product or service. Sentiment analysis has become a fundamental tool for this interpretation but has few applications in languages other than English. This paper presents a classification of sentiment analysis in Portuguese with a base of comments from social networks in Portuguese. A word embedding's representation was used with a 50-Dimension GloVe pre-trained model, generated through a corpus completely in Portuguese. To generate this classification, the bidirectional long short-term memory and bidirectional Gated Recurrent Unit (GRU) models are used, reaching results of 99.1%.

Keywords: natural processing language, sentiment analysis, bidirectional long short-term memory, BI-LSTM, gated recurrent unit, GRU

Procedia PDF Downloads 159
1317 Video-On-Demand QoE Evaluation across Different Age-Groups and Its Significance for Network Capacity

Authors: Mujtaba Roshan, John A. Schormans

Abstract:

Quality of Experience (QoE) drives churn in the broadband networks industry, and good QoE plays a large part in the retention of customers. QoE is known to be affected by the Quality of Service (QoS) factors packet loss probability (PLP), delay and delay jitter caused by the network. Earlier results have shown that the relationship between these QoS factors and QoE is non-linear, and may vary from application to application. We use the network emulator Netem as the basis for experimentation, and evaluate how QoE varies as we change the emulated QoS metrics. Focusing on Video-on-Demand, we discovered that the reported QoE may differ widely for users of different age groups, and that the most demanding age group (the youngest) can require an order of magnitude lower PLP to achieve the same QoE than is required by the most widely studied age group of users. We then used a bottleneck TCP model to evaluate the capacity cost of achieving an order of magnitude decrease in PLP, and found it be (almost always) a 3-fold increase in link capacity that was required.

Keywords: network capacity, packet loss probability, quality of experience, quality of service

Procedia PDF Downloads 273
1316 UWB Open Spectrum Access for a Smart Software Radio

Authors: Hemalatha Rallapalli, K. Lal Kishore

Abstract:

In comparison to systems that are typically designed to provide capabilities over a narrow frequency range through hardware elements, the next generation cognitive radios are intended to implement a broader range of capabilities through efficient spectrum exploitation. This offers the user the promise of greater flexibility, seamless roaming possible on different networks, countries, frequencies, etc. It requires true paradigm shift i.e., liberalization over a wide band of spectrum as well as a growth path to more and greater capability. This work contributes towards the design and implementation of an open spectrum access (OSA) feature to unlicensed users thus offering a frequency agile radio platform that is capable of performing spectrum sensing over a wideband. Thus, an ultra-wideband (UWB) radio, which has the intelligence of spectrum sensing only, unlike the cognitive radio with complete intelligence, is named as a Smart Software Radio (SSR). The spectrum sensing mechanism is implemented based on energy detection. Simulation results show the accuracy and validity of this method.

Keywords: cognitive radio, energy detection, software radio, spectrum sensing

Procedia PDF Downloads 428
1315 Intrusion Detection System Based on Peer to Peer

Authors: Alireza Pour Ebrahimi, Vahid Abasi

Abstract:

Recently by the extension of internet usage, Research on the intrusion detection system takes a significant importance. Many of improvement systems prevent internal and external network attacks by providing security through firewalls and antivirus. In recently years, intrusion detection systems gradually turn from host-based systems and depend on O.S to the distributed systems which are running on multiple O.S. In this work, by considering the diversity of computer networks whit respect to structure, architecture, resource, services, users and also security goals requirement a fully distributed collaborative intrusion detection system based on peer to peer architecture is suggested. in this platform each partner device (matched device) considered as a peer-to-peer network. All transmitted information to network are visible only for device that use security scanning of a source. Experimental results show that the distributed architecture is significantly upgradeable in respect to centralized approach.

Keywords: network, intrusion detection system, peer to peer, internal and external network

Procedia PDF Downloads 547
1314 Managing Construction and Demolition Wastes - A Case Study of Multi Triagem, Lda

Authors: Cláudia Moço, Maria Santos, Carlos Arsénio, Débora Mendes, Miguel Oliveira. José Paulo Da Silva

Abstract:

Construction industry generates large amounts of waste all over the world. About 450 million tons of construction and demolition wastes (C&DW) are produced annually in the European Union. C&DW are highly heterogeneous materials in size and composition, which imposes strong difficulties on their management. Directive n.º 2008/98/CE, of the European Parliament and of the Council of 6 November establishes that 70 % of the C&DW have to be recycled by 2020. To evaluate possible applications of these materials, a detailed physical, chemical and environmental characterization is necessary. Multi Triagem, Lda. is a company located in Algarve (Portugal) and was supported by the European Regional Development Fund (grant QREN 30307 Multivalor) to quantify and characterize the received C&DW, in order to evaluate their possible applications. This evaluation, performed in collaboration with the University of Algarve, involves a physical, chemical and environmental detailed characterization of the received C&DW. In this work we report on the amounts, trial procedures and properties of the C&DW received over a period of fifteen month. In this period the company received C&DW coming from 393 different origins. The total amount was 32.458 tons, mostly mixtures containing concrete, masonry/mortar and soil/rock. Most of C&DW came from demodulation constructions and diggings. The organic/inert component, namely metal, glass, wood and plastics, were screened first and account for about 3 % of the received materials. The remaining materials were screened and grouped according to their origin and contents, the latter evaluated by visual inspection. Twenty five samples were prepared and submitted to a detailed physical, chemical and environmental analysis. The C&DW aggregates show lower quality properties than natural aggregates for concrete preparation and unbound layers of road pavements. However, chemical analyzes indicated that most samples are environmentally safe. A continuous monitoring of the presence of heavy metals and organic compounds is needed in order to perform a proper screening of the C&DW. C&DW aggregates provide a good alternative to natural aggregates.

Keywords: construction and demolition wastes, waste classification, waste composition, waste screening

Procedia PDF Downloads 350
1313 Informal Economy: Case Study of Street Vendors in Bangkok

Authors: Kangrij Roeksiripat

Abstract:

Street vending is one of the informal economy activities which considered significance to Thai people in the economic and the day-to-day social life. It had been believed that the street vendor is a group of the poor and uneducated people. With the increasing numbers of the street vendor occupying space on public sidewalks especially in central business districts, it becomes unclear whether street vending continues as a solution to unemployment for access labors. This research attempts to study and analyze types of street vendors in Bangkok under the informal economy framework. The debate on the heterogeneous informal economy has categorized into four schools; the dualism, the structuralism, the legalism and the voluntarism. The examination also embodies with market concept with Porter’s Five Forces of Competitive Position Model analysis and the interviews with the street vendors in three case study areas: Inner zone (Pathumwan district - the sidewalk on the opposite side of Siam Paragon mall), Middle zone (Ramkhamhaeng district - the sidewalk on the opposite side of Ramkhamhaeng University) and Outer zone (Minburi district- the sidewalk of Sriburanukit Road). The result indicates that most of street vendors in Siam square are voluntarily choose to make a living in vending on a sidewalk and tend to take it as a long-term occupation even though they can be in formal wage employment. Moreover, average income and positive attitude towards self-employed are the important factors that drive them to operate street vending businesses. Meanwhile, street vending is often a family enterprise in Ramkhamhaeng area and most vendors do not wish to transform their businesses into the formal sectors. Whereas the survey conducted in Sriburankit Road reveals that almost all of street vendors migrated from other provinces and were previously paid as the unskilled workers in formal sectors. They moved to informal trades because of the uncertainty of employment in the mainstream sectors and the inconsistent income with knowledge support of friends and relatives from the same hometown. In particular, the result reveals a common pattern that street vending is the very first occupation of some group of vendors and they will continue to engage in this activity. Thus, it is important for the government to design optimal policy which not only integrating informal workers into the formal economy but also monitoring the enforcement of regulations on the modern informal economy.

Keywords: informal economy, sidewalks, street vendors, occupation

Procedia PDF Downloads 285