Search results for: carbon
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3098

Search results for: carbon

548 Thermodynamic Phase Equilibria and Formation Kinetics of Cyclopentane, Cyclopentanone and Cyclopentanol Hydrates in the Presence of Gaseous Guest Molecules including Methane and Carbon Dioxide

Authors: Sujin Hong, Seokyoon Moon, Heejoong Kim, Yunseok Lee, Youngjune Park

Abstract:

Gas hydrate is an inclusion compound in which a low-molecular-weight gas or organic molecule is trapped inside a three-dimensional lattice structure created by water-molecule via intermolecular hydrogen bonding. It is generally formed at low temperature and high pressure, and exists as crystal structures of cubic systems − structure I, structure II, and hexagonal system − structure H. Many efforts have been made to apply them to various energy and environmental fields such as gas transportation and storage, CO₂ capture and separation, and desalination of seawater. Particularly, studies on the behavior of gas hydrates by new organic materials for CO₂ storage and various applications are underway. In this study, thermodynamic and spectroscopic analyses of the gas hydrate system were performed focusing on cyclopentanol, an organic molecule that forms gas hydrate at relatively low pressure. The thermodynamic equilibria of CH₄ and CO₂ hydrate systems including cyclopentanol were measured and spectroscopic analyses of XRD and Raman were performed. The differences in thermodynamic systems and formation kinetics of CO₂ added cyclopentane, cyclopentanol and cyclopentanone hydrate systems were compared. From the thermodynamic point of view, cyclopentanol was found to be a hydrate promotor. Spectroscopic analyses showed that cyclopentanol formed a hydrate crystal structure of cubic structure II in the presence of CH₄ and CO₂. It was found that the differences in the functional groups among the organic guest molecules significantly affected the rate of hydrate formation and the total amounts of CO₂ stored in the hydrate systems. The total amount of CO₂ stored in the cyclopentanone hydrate was found to be twice that of the amount of CO₂ stored in the cyclopentane and the cyclopentanol hydrates. The findings are expected to open up new opportunity to develop the gas hydrate based wastewater desalination technology.

Keywords: gas hydrate, CO₂, separation, desalination, formation kinetics, thermodynamic equilibria

Procedia PDF Downloads 269
547 Development and Investigation of Efficient Substrate Feeding and Dissolved Oxygen Control Algorithms for Scale-Up of Recombinant E. coli Cultivation Process

Authors: Vytautas Galvanauskas, Rimvydas Simutis, Donatas Levisauskas, Vykantas Grincas, Renaldas Urniezius

Abstract:

The paper deals with model-based development and implementation of efficient control strategies for recombinant protein synthesis in fed-batch E.coli cultivation processes. Based on experimental data, a kinetic dynamic model for cultivation process was developed. This model was used to determine substrate feeding strategies during the cultivation. The proposed feeding strategy consists of two phases – biomass growth phase and recombinant protein production phase. In the first process phase, substrate-limited process is recommended when the specific growth rate of biomass is about 90-95% of its maximum value. This ensures reduction of glucose concentration in the medium, improves process repeatability, reduces the development of secondary metabolites and other unwanted by-products. The substrate limitation can be enhanced to satisfy restriction on maximum oxygen transfer rate in the bioreactor and to guarantee necessary dissolved carbon dioxide concentration in culture media. In the recombinant protein production phase, the level of substrate limitation and specific growth rate are selected within the range to enable optimal target protein synthesis rate. To account for complex process dynamics, to efficiently exploit the oxygen transfer capability of the bioreactor, and to maintain the required dissolved oxygen concentration, adaptive control algorithms for dissolved oxygen control have been proposed. The developed model-based control strategies are useful in scale-up of cultivation processes and accelerate implementation of innovative biotechnological processes for industrial applications.

Keywords: adaptive algorithms, model-based control, recombinant E. coli, scale-up of bioprocesses

Procedia PDF Downloads 257
546 Risks of Traditional Practices: Chemical and Health Assessment of Bakhour

Authors: Yehya Elsayed, Sarah Dalibalta, Fareedah Alqtaishat, Ioline Gomes, Nagelle Fernandes

Abstract:

Bakhour or Arabian incense is traditionally used to perfume houses, shops and clothing as part of cultural or religious practices in several Middle Eastern countries. Conventionally, Bakhour consists of a mixture of natural ingredients such as chips of agarwood (oud), musk and sandalwoods that are soaked in scented oil. Bakhour is usually burned by charcoal or by using gas or electric burners to produce the scented smoke. It is necessary to evaluate the impact of such practice on human health and environment especially that the burning of Bakhour is usually done on a regular basis and in closed areas without proper ventilation. Although significant amount of research has been reported in scientific literature on the chemical analysis of various types of incense smoke, unfortunately only very few of them focused specifically on the health impacts of Bakhour. Raw Bakhour samples, their smoke emissions and the ash residue were analyzed to assess the existence of toxic ingredients and their possible influence on health and the environment. Three brands of Bakhour samples were analyzed for the presence of harmful heavy metals and organic compounds. Thermal Desorption Gas Chromatography-Mass Spectrometry (TD-GC-MS) was used to identify organic compounds while Inductively Coupled Plasma (ICP) and Scanning Electron Microscope-Energy Dispersive X-Ray Spectrometer (SEM-EDS) were used to analyze the presence of toxic and heavy metals. Organic compounds from the smoke were collected on specific tenax and activated carbon adsorption tubes. More than 850 chemical compounds were identified. The presence of 19 carcinogens, 23 toxins and 173 irritants were confirmed. Additionally, heavy metals were detected in amounts similar to those present in cigarettes. However, it was noticed that many of the detected compounds in the smoke lacked clinical studies on their health effects which shows the need for further clinical studies to be devoted to this area of study.

Keywords: Bakhour, incense smoke, pollution, indoor environment, health risk, chemical analysis

Procedia PDF Downloads 428
545 Chemical and Health Assessment of Bakhour: Risks of Traditional Practices

Authors: Yehya Elsayed, Sarah Dalibalta, Fareedah Alqtaishat, Ioline Gomes, Nagelle Fernandes

Abstract:

Bakhour, or Arabian incense, is traditionally used to perfume houses, shops and clothing as part of cultural or religious practices in several Middle Eastern countries. Conventionally, Bakhour consists of a mixture of natural ingredients such as chips of agarwood (oud), musk and sandalwoods that are soaked in scented oil. Bakhour is usually burned by charcoal or by using gas or electric burners to produce the scented smoke. It is necessary to evaluate the impact of such practice on human health and environment especially that the burning of Bakhour is usually done on a regular basis and in closed areas without proper ventilation. Although significant amount of research has been reported in scientific literature on the chemical analysis of various types of incense smoke, unfortunately, only very few of them focused specifically on the health impacts of Bakhour. Raw Bakhour samples, their smoke emissions and the ash residue were analyzed to assess the existence of toxic ingredients and their possible influence on health and the environment. Three brands of Bakhour samples were analyzed for the presence of harmful heavy metals and organic compounds. Thermal Desorption Gas Chromatography-Mass Spectrometry (TD-GC-MS) was used to identify organic compounds while Inductively Coupled Plasma (ICP) and Scanning Electron Microscope-Energy Dispersive X-Ray Spectrometer (SEM-EDS) were used to analyze the presence of toxic and heavy metals.. Organic compounds from the smoke were collected on specific tenax and activated carbon adsorption tubes. More than 850 chemical compounds were identified. The presence of 19 carcinogens, 23 toxins, and 173 irritants were confirmed. Additionally, heavy metals were detected in amounts similar to those present in cigarettes. However, it was noticed that many of the detected compounds in the smoke lacked clinical studies on their health effects which shows the need for further clinical studies to be devoted to this area of study.

Keywords: bakhour, incense smoke, pollution, indoor environment, health risk, chemical analysis

Procedia PDF Downloads 293
544 Identification of Body Fluid at the Crime Scene by DNA Methylation Markers for Use in Forensic Science

Authors: Shirin jalili, Hadi Shirzad, Mahasti Modarresi, Samaneh Nabavi, Somayeh Khanjani

Abstract:

Identifying the source tissue of biological material found at crime scenes can be very informative in a number of cases. Despite their usefulness, current visual, catalytic, enzymatic, and immunologic tests for presumptive and confirmatory tissue identification are applicable only to a subset of samples, might suffer limitations such as low specificity, lack of sensitivity, and are substantially impacted by environmental insults. In addition their results are operator-dependent. Recently the possibility of discriminating body fluids using mRNA expression differences in tissues has been described but lack of long term stability of that Molecule and the need to normalize samples for each individual are limiting factors. The use of DNA should solve these issues because of its long term stability and specificity to each body fluid. Cells in the human body have a unique epigenome, which includes differences in DNA methylation in the promoter of genes. DNA methylation, which occurs at the 5′-position of the cytosine in CpG dinucleotides, has great potential for forensic identification of body fluids, because tissue-specific patterns of DNA methylation have been demonstrated, and DNA is less prone to degradation than proteins or RNA. Previous studies have reported several body fluid-specific DNA methylation markers.The presence or absence of a methyl group on the 5’ carbon of the cytosine pyridine ring in CpG dinucleotide regions called ‘CpG islands’ dictates whether the gene is expressed or silenced in the particular body fluid. Were described methylation patterns at tissue specific differentially methylated regions (tDMRs) to be stable and specific, making them excellent markers for tissue identification. The results demonstrate that methylation-based tissue identification is more than a proof-of-concept. The methodology holds promise as another viable forensic DNA analysis tool for characterization of biological materials.

Keywords: DNA methylation, forensic science, epigenome, tDMRs

Procedia PDF Downloads 429
543 Scenario Analysis to Assess the Competitiveness of Hydrogen in Securing the Italian Energy System

Authors: Gianvito Colucci, Valeria Di Cosmo, Matteo Nicoli, Orsola Maria Robasto, Laura Savoldi

Abstract:

The hydrogen value chain deployment is likely to be boosted in the near term by the energy security measures planned by European countries to face the recent energy crisis. In this context, some countries are recognized to have a crucial role in the geopolitics of hydrogen as importers, consumers and exporters. According to the European Hydrogen Backbone Initiative, Italy would be part of one of the 5 corridors that will shape the European hydrogen market. However, the set targets are very ambitious and require large investments to rapidly develop effective hydrogen policies: in this regard, scenario analysis is becoming increasingly important to support energy planning, and energy system optimization models appear to be suitable tools to quantitively carry on that kind of analysis. The work aims to assess the competitiveness of hydrogen in contributing to the Italian energy security in the coming years, under different price and import conditions, using the energy system model TEMOA-Italy. A wide spectrum of hydrogen technologies is included in the analysis, covering the production, storage, delivery, and end-uses stages. National production from fossil fuels with and without CCS, as well as electrolysis and import of low-carbon hydrogen from North Africa, are the supply solutions that would compete with other ones, such as natural gas, biomethane and electricity value chains, to satisfy sectoral energy needs (transport, industry, buildings, agriculture). Scenario analysis is then used to study the competition under different price and import conditions. The use of TEMOA-Italy allows the work to catch the interaction between the economy and technological detail, which is much needed in the energy policies assessment, while the transparency of the analysis and of the results is ensured by the full accessibility of the TEMOA open-source modeling framework.

Keywords: energy security, energy system optimization models, hydrogen, natural gas, open-source modeling, scenario analysis, TEMOA

Procedia PDF Downloads 116
542 Quantification of Global Cerebrovascular Reactivity in the Principal Feeding Arteries of the Human Brain

Authors: Ravinder Kaur

Abstract:

Introduction Global cerebrovascular reactivity (CVR) mapping is a promising clinical assessment for stress-testing the brain using physiological challenges, such as CO₂, to elicit changes in perfusion. It enables real-time assessment of cerebrovascular integrity and health. Conventional imaging approaches solely use steady-state parameters, like cerebral blood flow (CBF), to evaluate the integrity of the resting parenchyma and can erroneously show a healthy brain at rest, despite the underlying pathogenesis in the presence of cerebrovascular disease. Conversely, coupling CO₂ inhalation with phase-contrast MRI neuroimaging interrogates the capacity of the vasculature to respond to changes under stress. It shows promise in providing prognostic value as a novel health marker to measure neurovascular function in disease and to detect early brain vasculature dysfunction. Objective This exploratory study was established to:(a) quantify the CBF response to CO₂ in hypocapnia and hypercapnia,(b) evaluate disparities in CVR between internal carotid (ICA) and vertebral artery (VA), and (c) assess sex-specific variation in CVR. Methodology Phase-contrast MRI was employed to measure the cerebrovascular reactivity to CO₂ (±10 mmHg). The respiratory interventions were presented using the prospectively end-tidal targeting RespirActTM Gen3 system. Post-processing and statistical analysis were conducted. Results In 9 young, healthy subjects, the CBF increased from hypocapnia to hypercapnia in all vessels (4.21±0.76 to 7.20±1.83 mL/sec in ICA, 1.36±0.55 to 2.33±1.31 mL/sec in VA, p < 0.05). The CVR was quantitatively higher in ICA than VA (slope of linear regression: 0.23 vs. 0.07 mL/sec/mmHg, p < 0.05). No statistically significant effect was observed in CVR between male and female (0.25 vs 0.20 mL/sec/mmHg in ICA, 0.09 vs 0.11 mL/sec/mmHg in VA, p > 0.05). Conclusions The principal finding in this investigation validated the modulation of CBF by CO₂. Moreover, it has indicated that regional heterogeneity in hemodynamic response exists in the brain. This study provides scope to standardize the quantification of CVR prior to its clinical translation.

Keywords: cerebrovascular disease, neuroimaging, phase contrast MRI, cerebrovascular reactivity, carbon dioxide

Procedia PDF Downloads 149
541 Thermosonic Devulcanization of Waste Ground Rubber Tires by Quaternary Ammonium-Based Ternary Deep Eutectic Solvents and the Effect of α-Hydrogen

Authors: Ricky Saputra, Rashmi Walvekar, Mohammad Khalid

Abstract:

Landfills, water contamination, and toxic gas emission are a few impacts faced by the environment due to the increasing number of αof waste rubber tires (WRT). In spite of such concerning issue, only minimal efforts are taken to reclaim or recycle these wastes as their products are generally not-profitable for companies. Unlike the typical reclamation process, devulcanization is a method to selectively cleave sulfidic bonds within vulcanizates to avoid polymeric scissions that compromise elastomer’s mechanical and tensile properties. The process also produces devulcanizates that are re-processable similar to virgin rubber. Often, a devulcanizing agent is needed. In the current study, novel and sustainable ammonium chloride-based ternary deep eutectic solvents (TDES), with a different number of α-hydrogens, were utilised to devulcanize ground rubber tire (GRT) as an effort to implement green chemistry to tackle such issue. 40-mesh GRT were soaked for 1 day with different TDESs and sonicated at 37-80 kHz for 60-120 mins and heated at 100-140oC for 30-90 mins. Devulcanizates were then filtered, dried, and evaluated based on the percentage of by means of Flory-Rehner calculation and swelling index. The result shows that an increasing number of α-Hs increases the degree of devulcanization, and the value achieved was around eighty-percent, thirty percent higher than the typical industrial-autoclave method. Resulting bondages of devulcanizates were also analysed by Fourier transform infrared spectrometer (FTIR), Horikx fitting, and thermogravimetric analyser (TGA). The earlier two confirms only sulfidic scissions were experienced by GRT through the treatment, while the latter proves the absence or negligibility of carbon-chains scission.

Keywords: ammonium, sustainable, deep eutectic solvent, α-hydrogen, waste rubber tire

Procedia PDF Downloads 127
540 Development of Cobalt Doped Alumina Hybrids for Adsorption of Textile Effluents

Authors: Uzaira Rafique, Kousar Parveen

Abstract:

The discharge volume and composition of Textile effluents gains scientific concern due to its hazards and biotoxcity of azo dyes. Azo dyes are non-biodegradable due to its complex molecular structure and recalcitrant nature. Serious attempts have been made to synthesize and develop new materials to combat the environmental problems. The present study is designed for removal of a range of azo dyes (Methyl orange, Congo red and Basic fuchsine) from synthetic aqueous solutions and real textile effluents. For this purpose, Metal (cobalt) doped alumina hybrids are synthesized and applied as adsorbents in the batch experiment. Two different aluminium precursor (aluminium nitrate and spent aluminium foil) and glucose are mixed following sol gel method to get hybrids. The synthesized materials are characterized for surface and bulk properties using FTIR, SEM-EDX and XRD techniques. The characterization of materials under FTIR revealed that –OH (3487-3504 cm-1), C-H (2935-2985 cm-1), Al-O (~ 800 cm-1), Al-O-C (~1380 cm-1), Al-O-Al (659-669 cm-1) groups participates in the binding of dyes onto the surface of hybrids. Amorphous shaped particles and elemental composition of carbon (23%-44%), aluminium (29%-395%), and oxygen (11%-20%) is demonstrated in SEM-EDX micrograph. Time-dependent batch-experiments under identical experimental parameters showed 74% congo red, 68% methyl orange and 85% maximum removal of basic fuchsine onto the surface of cobalt doped alumina hybrids probably through the ion-exchange mechanism. The experimental data when treated with adsorption models is found to have good agreement with pseudo second order kinetic and freundlich isotherm for adsorption process. The present study concludes the successful synthesis of novel and efficient cobalt doped alumina hybrids providing environmental friendly and economical alternative to the commercial adsorbents for the treatment of industrial effluents.

Keywords: alumina hybrid, adsorption, dopant, isotherm, kinetic

Procedia PDF Downloads 193
539 Improved Benzene Selctivity for Methane Dehydroaromatization via Modifying the Zeolitic Pores by Dual Templating Approach

Authors: Deepti Mishra, K. K Pant, Xiu Song Zhao, Muxina Konarova

Abstract:

Catalytic transformation of simplest hydrocarbon methane into benzene and valuable chemicals over Mo/HZSM-5 has a great economic potential, however, it suffers serious hurdles due to the blockage in the micropores because of extensive coking at high temperature during methane dehydroaromatization (MDA). Under such conditions, it necessitates the design of micro/mesoporous ZSM-5, which has the advantages viz. uniform dispersibility of MoOx species, consequently the formation of active Mo sites in the micro/mesoporous channel and lower carbon deposition because of improved mass transfer rate within the hierarchical pores. In this study, we report a unique strategy to control the porous structures of ZSM-5 through a dual templating approach, utilizing C6 and C12 -surfactants as porogen. DFT studies were carried out to correlate the ZSM-5 framework development using the C6 and C12 surfactants with structure directing agent. The structural and morphological parameters of the synthesized ZSM-5 were explored in detail to determine the crystallinity, porosity, Si/Al ratio, particle shape, size, and acidic strength, which were further correlated with the physicochemical and catalytic properties of Mo modified HZSM-5 catalysts. After Mo incorporation, all the catalysts were tested for MDA reaction. From the activity test, it was observed that C6 surfactant-modified hierarchically porous Mo/HZSM-5(H) showed the highest benzene formation rate (1.5 μmol/gcat. s) and longer catalytic stability up to 270 min of reaction as compared to the conventional microporous Mo/HZSM-5(C). In contrary, C12 surfactant modified Mo/HZSM-5(D) is inferior towards MDA reaction (benzene formation rate: 0.5 μmol/gcat. s). We ascribed that the difference in MDA activity could be due to the hierarchically interconnected meso/microporous feature of Mo/HZSM-5(H) that precludes secondary reaction of coking from benzene and hence contributing substantial stability towards MDA reaction.

Keywords: hierarchical pores, Mo/HZSM-5, methane dehydroaromatization, coke deposition

Procedia PDF Downloads 82
538 Computational Modeling of Load Limits of Carbon Fibre Composite Laminates Subjected to Low-Velocity Impact Utilizing Convolution-Based Fast Fourier Data Filtering Algorithms

Authors: Farhat Imtiaz, Umar Farooq

Abstract:

In this work, we developed a computational model to predict ply level failure in impacted composite laminates. Data obtained from physical testing from flat and round nose impacts of 8-, 16-, 24-ply laminates were considered. Routine inspections of the tested laminates were carried out to approximate ply by ply inflicted damage incurred. Plots consisting of load–time, load–deflection, and energy–time history were drawn to approximate the inflicted damages. Impact test generated unwanted data logged due to restrictions on testing and logging systems were also filtered. Conventional filters (built-in, statistical, and numerical) reliably predicted load thresholds for relatively thin laminates such as eight and sixteen ply panels. However, for relatively thick laminates such as twenty-four ply laminates impacted by flat nose impact generated clipped data which can just be de-noised using oscillatory algorithms. The literature search reveals that modern oscillatory data filtering and extrapolation algorithms have scarcely been utilized. This investigation reports applications of filtering and extrapolation of the clipped data utilising fast Fourier Convolution algorithm to predict load thresholds. Some of the results were related to the impact-induced damage areas identified with Ultrasonic C-scans and found to be in acceptable agreement. Based on consistent findings, utilizing of modern data filtering and extrapolation algorithms to data logged by the existing machines has efficiently enhanced data interpretations without resorting to extra resources. The algorithms could be useful for impact-induced damage approximations of similar cases.

Keywords: fibre reinforced laminates, fast Fourier algorithms, mechanical testing, data filtering and extrapolation

Procedia PDF Downloads 135
537 Comparison of Fuel Properties from Species of Microalgae and Selected Second-Generation Oil Feedstocks

Authors: Andrew C. Eloka Eboka, Freddie L. Inambao

Abstract:

Comparative investigation and assessment of microalgal technology as a biodiesel production option was studied alongside other second generation feedstocks. This was carried out by comparing the fuel properties of species of Chlorella vulgaris, Duneliella spp, Synechococus spp and Senedesmus spp with the feedstock of Jatropha (ex-basirika variety), Hura crepitans, rubber and Natal mahogany seed oils. The micro-algae were cultivated in an open pond using a photobioreactor (New Brunsink set-up model BF-115 Bioflo/CelliGen made in the US) with operating parameters: 14L capacity, working volume of 7.5L media, including 10% inoculum, at optical density of 3.144 @540nm and light intensity of 200 lux, for 23 and 16 days respectively. Various produced/accumulated biomasses were harvested by draining, flocculation, centrifugation, drying and then subjected to lipid extraction processes. The oils extracted from the algae and feedstocks were characterised and used to produce biodiesel fuels, by the transesterification method, using modified optimization protocol. Fuel properties of the final biodiesel products were evaluated for chemo-physical and fuel properties. Results revealed Chlorella vulgaris as the best strain for biomass cultivation, having the highest lipid productivity (5.2mgL-1h-1), the highest rate of CO2 absorption (17.85mgL-1min-1) and the average carbon sequestration in the form of CO2 was 76.6%. The highest biomass productivity was 35.1mgL-1h-1 (Chlorella), while Senedesmus had the least output (3.75mgL-1h-1, 11.73mgL-1min-1). All species had good pH value adaptation, ranging from 6.5 to 8.5. The fuel properties of the micro-algal biodiesel in comparison with Jatropha, rubber, Hura and Natal mahogany were within ASTM specification and AGO used as the control. Fuel cultivation from microalgae is feasible and will revolutionise the biodiesel industry.

Keywords: biodiesel, fuel properties, microalgae, second generation, seed oils, feedstock, photo-bioreactor, open pond

Procedia PDF Downloads 363
536 Exploring Forest Biomass Changes in Romania in the Last Three Decades

Authors: Remus Pravalie, Georgeta Bandoc

Abstract:

Forests are crucial for humanity and biodiversity, through the various ecosystem services and functions they provide all over the world. Forest ecosystems are vital in Romania as well, through their various benefits, known as provisioning (food, wood, or fresh water), regulating (water purification, soil protection, carbon sequestration or control of climate change, floods, and other hazards), cultural (aesthetic, spiritual, inspirational, recreational or educational benefits) and supporting (primary production, nutrient cycling, and soil formation processes, with direct or indirect importance for human well-being) ecosystem services. These ecological benefits are of great importance in Romania, especially given the fact that forests cover extensive areas countrywide, i.e. ~6.5 million ha or ~27.5% of the national territory. However, the diversity and functionality of these ecosystem services fundamentally depend on certain key attributes of forests, such as biomass, which has so far not been studied nationally in terms of potential changes due to climate change and other driving forces. This study investigates, for the first time, changes in forest biomass in Romania in recent decades, based on a high volume of satellite data (Landsat images at high spatial resolutions), downloaded from the Google Earth Engine platform and processed (using specialized software and methods) across Romanian forestland boundaries from 1987 to 2018. A complex climate database was also investigated across Romanian forests over the same 32-year period, in order to detect potential similarities and statistical relationships between the dynamics of biomass and climate data. The results obtained indicated considerable changes in forest biomass in Romania in recent decades, largely triggered by the climate change that affected the country after 1987. Findings on the complex pattern of recent forest changes in Romania, which will be presented in detail in this study, can be useful to national policymakers in the fields of forestry, climate, and sustainable development.

Keywords: forests, biomass, climate change, trends, romania

Procedia PDF Downloads 153
535 Transmission Line Protection Challenges under High Penetration of Renewable Energy Sources and Proposed Solutions: A Review

Authors: Melake Kuflom

Abstract:

European power networks involve the use of multiple overhead transmission lines to construct a highly duplicated system that delivers reliable and stable electrical energy to the distribution level. The transmission line protection applied in the existing GB transmission network are normally independent unit differential and time stepped distance protection schemes, referred to as main-1 & main-2 respectively, with overcurrent protection as a backup. The increasing penetration of renewable energy sources, commonly referred as “weak sources,” into the power network resulted in the decline of fault level. Traditionally, the fault level of the GB transmission network has been strong; hence the fault current contribution is more than sufficient to ensure the correct operation of the protection schemes. However, numerous conventional coal and nuclear generators have been or about to shut down due to the societal requirement for CO2 emission reduction, and this has resulted in a reduction in the fault level on some transmission lines, and therefore an adaptive transmission line protection is required. Generally, greater utilization of renewable energy sources generated from wind or direct solar energy results in a reduction of CO2 carbon emission and can increase the system security and reliability but reduces the fault level, which has an adverse effect on protection. Consequently, the effectiveness of conventional protection schemes under low fault levels needs to be reviewed, particularly for future GB transmission network operating scenarios. The proposed paper will evaluate the transmission line challenges under high penetration of renewable energy sources andprovides alternative viable protection solutions based on the problem observed. The paper will consider the assessment ofrenewable energy sources (RES) based on a fully rated converter technology. The DIgSILENT Power Factory software tool will be used to model the network.

Keywords: fault level, protection schemes, relay settings, relay coordination, renewable energy sources

Procedia PDF Downloads 206
534 Production and Application of Organic Waste Compost for Urban Agriculture in Emerging Cities

Authors: Alemayehu Agizew Woldeamanuel, Mekonnen Maschal Tarekegn, Raj Mohan Balakrishina

Abstract:

Composting is one of the conventional techniques adopted for organic waste management, but the practice is very limited in emerging cities despite the most of the waste generated is organic. This paper aims to examine the viability of composting for organic waste management in the emerging city of Addis Ababa, Ethiopia, by addressing the composting practice, quality of compost, and application of compost in urban agriculture. The study collects data using compost laboratory testing and urban farm households’ survey and uses descriptive analysis on the state of compost production and application, physicochemical analysis of the compost samples, and regression analysis on the urban farmer’s willingness to pay for compost. The findings of the study indicated that there is composting practice at a small scale, most of the producers use unsorted feedstock materials, aerobic composting is dominantly used, and the maturation period ranged from four to ten weeks. The carbon content of the compost ranges from 30.8 to 277.1 due to the type of feedstock applied, and this surpasses the ideal proportions for C:N ratio. The total nitrogen, pH, organic matter, and moisture content are relatively optimal. The levels of heavy metals measured for Mn, Cu, Pb, Cd and Cr⁶⁺ in the compost samples are also insignificant. In the urban agriculture sector, chemical fertilizer is the dominant type of soil input in crop productions but vegetable producers use a combination of both fertilizer and other organic inputs, including compost. The willingness to pay for compost depends on income, household size, gender, type of soil inputs, monitoring soil fertility, the main product of the farm, farming method and farm ownership. Finally, this study recommends the need for collaboration among stakeholders’ along the value chain of waste, awareness creation on the benefits of composting and addressing challenges faced by both compost producers and users.

Keywords: composting, emerging city, organic waste management, urban agriculture

Procedia PDF Downloads 308
533 Supply, Trade-offs, and Synergies Estimation for Regulating Ecosystem Services of a Local Forest

Authors: Jang-Hwan Jo

Abstract:

The supply management of ecosystem services of local forests is an essential issue as it is linked to the ecological welfare of local residents. This study aims to estimate the supply, trade-offs, and synergies of local forest regulating ecosystem services using a land cover classification map (LCCM) and a forest types map (FTM). Rigorous literature reviews and Expert Delphi analysis were conducted using the detailed variables of 1:5,000 LCCM and FTM. Land-use scoring method and Getis-Ord Gi* Analysis were utilized on detailed variables to propose a method for estimating supply, trade-offs, and synergies of the local forest regulating ecosystem services. The analysis revealed that the rank order (1st to 5th) of supply of regulating ecosystem services was Erosion prevention, Air quality regulation, Heat island mitigation, Water quality regulation, and Carbon storage. When analyzing the correlation between defined services of the entire city, almost all services showed a synergistic effect. However, when analyzing locally, trade-off effects (Heat island mitigation – Air quality regulation, Water quality regulation – Air quality regulation) appeared in the eastern and northwestern forest areas. This suggests the need to consider not only the synergy and trade-offs of the entire forest between specific ecosystem services but also the synergy and trade-offs of local areas in managing the regulating ecosystem services of local forests. The study result can provide primary data for the stakeholders to determine the initial conditions of the planning stage when discussing the establishment of policies related to the adjustment of the supply of regulating ecosystem services of the forests with limited access. Moreover, the study result can also help refine the estimation of the supply of the regulating ecosystem services with the availability of other forms of data.

Keywords: ecosystem service, getis ord gi* analysis, land use scoring method, regional forest, regulating service, synergies, trade-offs

Procedia PDF Downloads 90
532 Biodegradation of 2,4-Dichlorophenol by Pseudomonas chlororaphis Strain Isolated from Activated Sludge Sample from a Wastewater Treatment Plant in Durban, South Africa

Authors: Boitumelo Setlhare, Mduduzi P. Mokoena, Ademola O. Olaniran

Abstract:

Agricultural and industrial activities have led to increasing production of xenobiotics such as 2,4-dichlorophenol (2,4-DCP), a derivative of 2,4-dichlorophenoxyacetic acid (2,4-D), which is a widely used herbicide. Bioremediation offers an efficient, cost-effective and environmentally friendly method for degradation of the compound through the activities of the various microbial enzymes involved in the catabolic pathway. The aim of this study was to isolate and characterize bacterial isolate indigenous to contaminated sites in Durban, South Africa for 2,4-DCP degradation. One bacterium capable of utilizing 2,4-DCP as sole carbon source was isolated using culture enrichment technique and identified as Pseudomonas chlororaphis strain UFB2 via PCR amplification and analysis of 16S rRNA gene sequence. This isolate was able to degrade up to 75.11% of 2,4-DCP in batch cultures within 10 days, with the degradation rate constant of 0.14 mg/l/d. Phylogenetic analysis revealed the relatedness of this bacterial isolate to other Pseudomonas sp. previously characterized for chlorophenol degradation. PCR amplification of the catabolic genes involved in 2,4-DCP degradation revealed the presence of the correct amplicons for phenol hydroxylase (600 bp), catechol 1,2-dioxygenase (214 bp), muconate isomerase (851 bp), cis-dienelactone hydrolase (577 bp), and trans-dienelactone hydrolase (491 bp) genes. Enzyme assays revealed activity as high as 21840 mU/mg, 15630 mU/mg, 2340 mU/mg and 1490 mU/mg obtained for phenol hydroxylase, catechol 1,2-dioxygenase, cis-dienelactone hydroxylase and trans-dienelactone hydroxylase, respectively. The absence of catechol 2,3-dioxygenase gene and the corresponding enzyme in this isolate suggests that the organism followed ortho-pathway for 2,4-DCP degradation. Furthermore, the absence of malaycetate reductase genes showed that the bacterium may not be able to completely mineralize 2,4-DCP. Further studies are required to optimize 2,4-DCP degradation by this isolate as well as to elucidate the mechanism of 2,4-DCP degradation.

Keywords: biodegradation, catechol 1, 2-dioxygenase, 2, 4-dichlorophenol, phenol hydroxylase, Pseudomonas chlororaphis

Procedia PDF Downloads 250
531 Anaerobic Fermentation Process for Production of Biohydrogen from Pretreated Fruit Wastes

Authors: A. K. R. Gobinath, He Jianzhong, Kun-Lin Yang

Abstract:

Fruit waste was used as a feedstock to produce biohydrogen in this study. Fruit waste used in this study was collected from several fruit juice stalls in Singapore. Based on our observation, the fruit waste contained 35-40% orange, 10-20% watermelon, 10-15% apple, 10-15% pineapple, 1-5% mango. They were mixed with water (1:1 ratio based on wet biomass) and blended to attain homogenous mixtures. Later, fruit waste was subjected to one of the following pretreatments: autoclave (121 °C for 20min), microwave (20min) or both. After pretreatment, the total sugar concentration in the hydrolysate was high (>12g/l) when both autoclave and microwave were applied. In contrast, samples without pretreatment measured only less than 2g/l of sugar. While using these hydrolysates as carbon sources, Clostridium strain BOH3 produces 2526-3126 ml/l of hydrogen after 72h of anaerobic fermentation. The hydrogen yield was 295-300 ml/g of sugar which is close to the hydrogen yields from glucose (338 ml/gm) and xylose (330 ml/gm). Our HPLC analysis showed that fruit waste hydrolysate contained oligosugars (25-27%), sucrose (18-23%), fructose (25-30%), glucose (10-15%) and mannose (2-5%). Additionally, pretreatment led to the release of free amino acids (160-512 mg/l), calcium (7.8-12.9 ppm), magnesium (4.32-6.55 ppm), potassium (5.4-65.1 ppm) and sodium (0.4-0.5 ppm) into the hydrolysate. These nutrients were able to support strain-BOH3 to grow and produce high level of hydrogen. Notably, unlike other pretreatment methods (with strong acids and bases), these pretreatment techniques did not generate any inhibitors (e.g. furfural and phenolic acids) to suppress the hydrogen production. Interestingly, strain BOH3 can also ferment pretreated fruit waste slurry and produce hydrogen with a high yield (156-343 ml/gm fruit waste). While fermenting pretreated fruit waste slurry, strain-BOH3 excreted several saccharolytic enzymes majorly xylanase (1.84U/ml), amylase (1.10U/ml), pectinase (0.36U/ml) and cellulase (0.43U/ml). Due to expressions of these enzymes, strain BOH3 was able to directly utilize pretreated fruit waste hydrolysate and produces high-level of hydrogen.

Keywords: autoclave pretreatment, biohydrogen production, clostridial fermentation, fruit waste, and microwave pretreatment

Procedia PDF Downloads 535
530 Analysis of Cycling Accessibility on Chengdu Tianfu Greenway Based on Improved Two-Step Floating Catchment Area Method: A Case Study of Jincheng Greenway

Authors: Qin Zhu

Abstract:

Under the background of accelerating the construction of Beautiful and Livable Park City in Chengdu, the Tianfu greenway system, as an important support system for the construction of parks in the whole region, its accessibility is one of the key indicators to measure the effectiveness of the greenway construction. In recent years, cycling has become an important transportation mode for residents to go to the greenways because of its low-carbon, healthy and convenient characteristics, and the study of greenway accessibility under cycling mode can provide reference suggestions for the optimization and improvement of greenways. Taking Jincheng Greenway in Chengdu City as an example, the Baidu Map Application Programming Interface (API) and questionnaire survey was used to improve the two-step floating catchment area (2SFCA) method from the three dimensions of search threshold, supply side and demand side, to calculate the cycling accessibility of the greenway and to explore the spatial matching relationship with the population density, the number of entrances and the comprehensive attractiveness. The results show that: 1) the distribution of greenway accessibility in Jincheng shows a pattern of "high in the south and low in the north, high in the west and low in the east", 2) the spatial match between greenway accessibility and population density of the residential area is imbalanced, and there is a significant positive correlation between accessibility and the number of selectable greenway access points in residential areas, as well as the overall attractiveness of greenways, with a high degree of match. On this basis, it is proposed to give priority to the mismatch area to alleviate the contradiction between supply and demand, optimize the greenway access points to improve the traffic connection, enhance the comprehensive quality of the greenway and strengthen the service capacity, to further improve the cycling accessibility of the Jincheng Greenway and improve the spatial allocation of greenway resources.

Keywords: accessibility, Baidu maps API, cycling, greenway, 2SFCA

Procedia PDF Downloads 86
529 Assessment of Bioaerosol and Microbial Volatile Organic Compounds in Different Sections of Library

Authors: Himanshu Lal, Bipasha Ghosh, Arun Srivastava

Abstract:

A pilot study of indoor air quality in terms of bioaerosol (fungus and bacteria) and few selective microbial volatile organic compounds (MVOCs) was carried out in different indoor sections of a library for two seasons, namely monsoon and post monsoon. Bioaerosol sampling was carried out using Anderson six stage viable sampler at a flow rate of 28.3 L/min while MVOCs were collected on activated charcoal tubes ORBOTM 90 Carboxen 564.Collected MVOCs were desorbed using carbon disulphide (CS2) and analysed by GC-FID. Microscopic identification for fungus was only carried out. Surface dust was collected by sterilised buds and cultured to identify fungal contaminants. Unlike bacterial size distribution, fungal bioaerosol concentration was found to be highest in the fourth stage in different sections of the library. In post monsoon season both fungal bioaerosol (710 to 3292cfu/m3) and bacterial bioaerosol (298 to 1475cfu/m3) were fund at much greater concentration than in monsoon. In monsoon season unlike post monsoon, I/O ratio for both the bioaerosol fractions was more than one. Rain washout could be the reason of lower outdoor concentration in monsoon season. On the contrary most of the MVOCs namely 1-hexene, 1-pentanol and 1-octen-3-ol were found in the monsoon season instead of post monsoon season with the highest being 1-hexene with 7.09µg/m3 concentration. Among the six identified fungal bioaerosol Aspergillus, Cladosporium and Penicillium were found in maximum concentration while Aspergillus niger, Curvuleria lunata, Cladosporium cladosporioides and Penicillium sp., was indentified in surface dust samples. According to regression analysis apart from environmental factors other factors also played an important role. Thus apart from outdoor infiltration and human sources, accumulated surface dust mostly on organic materials like books, wooden furniture and racks can be attributed to being one of the major sources of both fungal bioaerosols as well as MVOCs found in the library.

Keywords: bacteria, Fungi, indoor air, MVOCs

Procedia PDF Downloads 318
528 Research of the Load Bearing Capacity of Inserts Embedded in CFRP under Different Loading Conditions

Authors: F. Pottmeyer, M. Weispfenning, K. A. Weidenmann

Abstract:

Continuous carbon fiber reinforced plastics (CFRP) exhibit a high application potential for lightweight structures due to their outstanding specific mechanical properties. Embedded metal elements, so-called inserts, can be used to join structural CFRP parts. Drilling of the components to be joined can be avoided using inserts. In consequence, no bearing stress is anticipated. This is a distinctive benefit of embedded inserts, since continuous CFRP have low shear and bearing strength. This paper aims at the investigation of the load bearing capacity after preinduced damages from impact tests and thermal-cycling. In addition, characterization of mechanical properties during dynamic high speed pull-out testing under different loading velocities was conducted. It has been shown that the load bearing capacity increases up to 100% for very high velocities (15 m/s) in comparison with quasi-static loading conditions (1.5 mm/min). Residual strength measurements identified the influence of thermal loading and preinduced mechanical damage. For both, the residual strength was evaluated afterwards by quasi-static pull-out tests. Taking into account the DIN EN 6038 a high decrease of force occurs at impact energy of 16 J with significant damage of the laminate. Lower impact energies of 6 J, 9 J, and 12 J do not decrease the measured residual strength, although the laminate is visibly damaged - distinguished by cracks on the rear side. To evaluate the influence of thermal loading, the specimens were placed in a climate chamber and were exposed to various numbers of temperature cycles. One cycle took 1.5 hours from -40 °C to +80 °C. It could be shown that already 10 temperature cycles decrease the load bearing capacity up to 20%. Further reduction of the residual strength with increasing number of thermal cycles was not observed. Thus, it implies that the maximum damage of the composite is already induced after 10 temperature cycles.

Keywords: composite, joining, inserts, dynamic loading, thermal loading, residual strength, impact

Procedia PDF Downloads 279
527 Synthesis and Characterization of Iron and Aluminum-Containing AFm Phases

Authors: Aurore Lechevallier, Mohend Chaouche, Jerome Soudier, Guillaume Renaudin

Abstract:

The cement industry accounts for 8% of the global CO₂ emissions, and approximately 60% of these emissions are associated with the Portland cement clinker production from the decarbonization of limestone (CaCO3). Their impact on the greenhouse effect results in growing social awareness. Therefore, CO2 footprint becomes a product selection choice, and substituting Portland cement with a lower CO2-footprint alternative binder is sought. In this context, new hydraulic binders have been studied as a potential Ordinary Portland Cement substitute. Many of them are composed of iron oxides and aluminum oxides, present in the Ca₄Al₂-xFe₂+ₓO₁₀-like phase and forming Ca-LDH (i.e. AFM) as a hydration product. It has become essential to study the possible existence of Fe/Al AFM solid solutions to characterize the hydration process properly. Ca₂Al₂-xFex(OH)₆.X.nH₂O layered AFM samples intercalated with either nitrate or chloride X anions were synthesized based on the co-precipitation method under a nitrogen atmosphere to avoid the carbonation effect.AFM samples intercalated with carbonate anions were synthesized based on the anionic exchange process, using AFM-NO₃ as the source material. These three AFM samples were synthesized with varying Fe/Al molar ratios. The experimental conditions were optimized to make possible the formation of Al-AFM and Fe-AFM using the same parameters (namely pH value and salt concentration). Rietveld refinements were performed to demonstrate the existence of a solid solution between the two trivalent metallic end members. Spectroscopic analyses were used to confirm the intercalation of the targeted anion; secondary electron images were taken to analyze the AFM samples’ morphology, and energy dispersive X-ray spectroscopy (EDX) was carried out to determine the elemental composition of the AFM samples. Results of this study make it possible to quantify the Al/Fe ratio of the AFM phases precipitated in our hydraulic binder, thanks to the determined Vegard's law characteristic to the corresponding solid solutions

Keywords: AFm phase, iron-rich binder, low-carbon cement, solid solution

Procedia PDF Downloads 138
526 Development of PPy-M Composites Materials for Sensor Application

Authors: Yatimah Alias, Tilagam Marimuthu, M. R. Mahmoudian, Sharifah Mohamad

Abstract:

The rapid growth of science and technology in energy and environmental fields has enlightened the substantial importance of the conducting polymer and metal composite materials engineered at nano-scale. In this study, polypyrrole-cobalt composites (PPy-Co Cs) and polypyrrole-nickel oxide composites (PPy-NiO Cs) were prepared by a simple and facile chemical polymerization method with an aqueous solution of pyrrole monomer in the presence of metal salt. These composites then fabricated into non-enzymatic hydrogen peroxide (H2O2) and glucose sensor. The morphology and composition of the composites are characterized by the Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrum and X-ray Powder Diffraction. The obtained results were compared with the pure PPy and metal oxide particles. The structural and morphology properties of synthesized composites are different from those of pure PPy and metal oxide particles, which were attributed to the strong interaction between the PPy and the metal particles. Besides, a favorable micro-environment for the electrochemical oxidation of H2O2 and glucose was achieved on the modified glassy carbon electrode (GCE) coated with PPy-Co Cs and PPy-NiO Cs respectively, resulting in an enhanced amperometric response. Both PPy-Co/GCE and PPy-NiO/GCE give high response towards target analyte at optimum condition of 500 μl pyrrole monomer content. Furthermore, the presence of pyrrole monomer greatly increases the sensitivity of the respective modified electrode. The PPy-Co/GCE could detect H2O2 in a linear range of 20 μM to 80 mM with two linear segments (low and high concentration of H2O2) and the detection limit for both ranges is 2.05 μM and 19.64 μM, respectively. Besides, PPy-NiO/GCE exhibited good electrocatalytic behavior towards glucose oxidation in alkaline medium and could detect glucose in linear ranges of 0.01 mM to 0.50 mM and 1 mM to 20 mM with detection limit of 0.33 and 5.77 μM, respectively. The ease of modifying and the long-term stability of this sensor have made it superior to enzymatic sensors, which must kept in a critical environment.

Keywords: metal oxide, composite, non-enzymatic sensor, polypyrrole

Procedia PDF Downloads 266
525 A Comparative Analysis of the Performances of Four Different In-Ground Lagoons Anaerobic Digesters in the Treatment of Palm Oil Mill Effluent (POME)

Authors: Mohd Amran, Chan Yi Jing, Chong Chien Hwa

Abstract:

Production of biogas from POME requires anaerobic digestion (AD), thus, anaerobic digester performance in biogas plants is crucial. As POME from different sources have varying characteristics due to different process flows in mills, there is no ideal treatment parameters for POME. Hence, different treatment plants alter different parameters in anaerobic digestion to achieve desired biogas production levels and to meet POME waste discharge limits. The objective of this study is to evaluate the performance of mesophilic anaerobic digestion in four different biogas plants in Malaysia. Aspects of POME pre-treatment efficiency, analysis of treated POME and AD’s bottom sludge characteristics, including several parameters like chemical oxygen demand (COD), biological oxygen demand (BOD), total solid (TS) removal in the effluent, pH and temperature changes, total biogas produced, the composition of biogas including methane (CH₄), carbon dioxide (CO₂), hydrogen sulfide (H₂S) and oxygen (O₂) were investigated. The effect of organic loading rate (OLR) and hydraulic retention time (HRT) on anaerobic digester performance is also evaluated. In pre-treatment, it is observed that BGP B has the lowest average outlet temperature of 40.41°C. All BGP shows a high-temperature fluctuation (36 to 49 0C) and good pH readings (minimum 6.7), leaving the pre-treatment facility before entering the AD.COD removal of POME is considered good, with an average of 78% and maximum removal of 85%. BGP C has the lowest average COD and TS content in treated POME, 13,313 mg/L, and 12,048 mg/L, respectively. However, it is observed that the treated POME leaving all ADs, still contains high-quality organic substances (COD between 12,000 to 19,000 mg/L) that might be able to digest further to produce more biogas. The biogas produced in all four BGPs varies due to different COD loads. BGP B has the highest amount of biogas produced, 378,874.7 Nm³/month, while BGP D has the lowest biogas production of 272,378.5 Nm³/month. Furthermore, the composition of biogas produced in all plants is well within literature values (CH4 between 55 to 65% and CO₂ between 32 to 36%).

Keywords: palm oil mill effluent, in-ground lagoon anaerobic digester, anaerobic digestion, biogas

Procedia PDF Downloads 102
524 Processing and Economic Analysis of Rain Tree (Samanea saman) Pods for Village Level Hydrous Bioethanol Production

Authors: Dharell B. Siano, Wendy C. Mateo, Victorino T. Taylan, Francisco D. Cuaresma

Abstract:

Biofuel is one of the renewable energy sources adapted by the Philippine government in order to lessen the dependency on foreign fuel and to reduce carbon dioxide emissions. Rain tree pods were seen to be a promising source of bioethanol since it contains significant amount of fermentable sugars. The study was conducted to establish the complete procedure in processing rain tree pods for village level hydrous bioethanol production. Production processes were done for village level hydrous bioethanol production from collection, drying, storage, shredding, dilution, extraction, fermentation, and distillation. The feedstock was sundried, and moisture content was determined at a range of 20% to 26% prior to storage. Dilution ratio was 1:1.25 (1 kg of pods = 1.25 L of water) and after extraction process yielded a sugar concentration of 22 0Bx to 24 0Bx. The dilution period was three hours. After three hours of diluting the samples, the juice was extracted using extractor with a capacity of 64.10 L/hour. 150 L of rain tree pods juice was extracted and subjected to fermentation process using a village level anaerobic bioreactor. Fermentation with yeast (Saccharomyces cerevisiae) can fasten up the process, thus producing more ethanol at a shorter period of time; however, without yeast fermentation, it also produces ethanol at lower volume with slower fermentation process. Distillation of 150 L of fermented broth was done for six hours at 85 °C to 95 °C temperature (feedstock) and 74 °C to 95 °C temperature of the column head (vapor state of ethanol). The highest volume of ethanol recovered was established at with yeast fermentation at five-day duration with a value of 14.89 L and lowest actual ethanol content was found at without yeast fermentation at three-day duration having a value of 11.63 L. In general, the results suggested that rain tree pods had a very good potential as feedstock for bioethanol production. Fermentation of rain tree pods juice can be done with yeast and without yeast.

Keywords: fermentation, hydrous bioethanol, fermentation, rain tree pods, village level

Procedia PDF Downloads 295
523 Tribological Aspects of Advanced Roll Material in Cold Rolling of Stainless Steel

Authors: Mohammed Tahir, Jonas Lagergren

Abstract:

Vancron 40, a nitrided powder metallurgical tool Steel, is used in cold work applications where the predominant failure mechanisms are adhesive wear or galling. Typical applications of Vancron 40 are among others fine blanking, cold extrusion, deep drawing and cold work rolls for cluster mills. Vancron 40 positive results for cold work rolls for cluster mills and as a tool for some severe metal forming process makes it competitive compared to other type of work rolls that require higher precision, among others in cold rolling of thin stainless steel, which required high surface finish quality. In this project, three roll materials for cold rolling of stainless steel strip was examined, Vancron 40, Narva 12B (a high-carbon, high-chromium tool steel alloyed with tungsten) and Supra 3 (a Chromium-molybdenum tungsten-vanadium alloyed high speed steel). The purpose of this project was to study the depth profiles of the ironed stainless steel strips, emergence of galling and to study the lubrication performance used by steel industries. Laboratory experiments were conducted to examine scratch of the strip, galling and surface roughness of the roll materials under severe tribological conditions. The critical sliding length for onset of galling was estimated for stainless steel with four different lubricants. Laboratory experiments result of performance evaluation of resistance capability of rolls toward adhesive wear under severe conditions for low and high reductions. Vancron 40 in combination with cold rolling lubricant gave good surface quality, prevents galling of metal surfaces and good bearing capacity.

Keywords: Vancron 40, cold rolling, adhesive wear, galling, surface finish, lubricant, stainless steel

Procedia PDF Downloads 528
522 Inkjet Printed Silver Nanowire Network as Semi-Transparent Electrode for Organic Photovoltaic Devices

Authors: Donia Fredj, Marie Parmentier, Florence Archet, Olivier Margeat, Sadok Ben Dkhil, Jorg Ackerman

Abstract:

Transparent conductive electrodes (TCEs) or transparent electrodes (TEs) are a crucial part of many electronic and optoelectronic devices such as touch panels, liquid crystal displays (LCDs), organic light-emitting diodes (OLEDs), solar cells, and transparent heaters. The indium tin oxide (ITO) electrode is the most widely utilized transparent electrode due to its excellent optoelectrical properties. However, the drawbacks of ITO, such as the high cost of this material, scarcity of indium, and the fragile nature, limit the application in large-scale flexible electronic devices. Importantly, flexibility is becoming more and more attractive since flexible electrodes have the potential to open new applications which require transparent electrodes to be flexible, cheap, and compatible with large-scale manufacturing methods. So far, several materials as alternatives to ITO have been developed, including metal nanowires, conjugated polymers, carbon nanotubes, graphene, etc., which have been extensively investigated for use as flexible and low-cost electrodes. Among them, silver nanowires (AgNW) are one of the promising alternatives to ITO thanks to their excellent properties, high electrical conductivity as well as desirable light transmittance. In recent years, inkjet printing became a promising technique for large-scale printed flexible and stretchable electronics. However, inkjet printing of AgNWs still presents many challenges. In this study, a synthesis of stable AgNW that could compete with ITO was developed. This material was printed by inkjet technology directly on a flexible substrate. Additionally, we analyzed the surface microstructure, optical and electrical properties of the printed AgNW layers. Our further research focused on the study of all inkjet-printed organic modules with high efficiency.

Keywords: transparent electrodes, silver nanowires, inkjet printing, formulation of stable inks

Procedia PDF Downloads 222
521 Comparison of Water Curing and Carbonation Curing on Mortar Mix Incorporating Cement Kiln Dust

Authors: Devender Sharma, Shweta Goyal

Abstract:

Sustainable development is a key to protect the environment for a secure future. Accelerated carbonation curing is a comparatively new technique for curing of concrete which involves sequestration of carbon dioxide gas into the precast concrete, resulting in improvement of the properties of concrete. This paper presents the results of a study to evaluate the effect of carbonation curing on cement mortars incorporating cement kiln dust (CKD) as partial replacement of cement. The mortar specimens were prepared by replacing cement with CKD in varying percentages of 0-50% by the weight of cement. The specimens were subjected to 12 hour carbonation curing, followed by sealed packing till testing age. The results were compared with the normal curing procedure, in which the specimens were water cured till the testing age. Compressive strength and microstructure of the mix were studied. It was noted that on increasing the percentage of CKD up to 10% by the weight of the cement, no considerable change was observed in the compressive strength. But as the percentage of CKD was further increased, there was a decrease in compressive strength, with strength decreasing up to 40% when 50% of the cement was replaced with CKD. The decrease in strength is due to the lesser lime content in CKD as compared to cement. High ettringite formation was observed in mixes with high percentages of CKD, thus indicating a decrease in the compressive strength. With carbonation curing, an early age strength gain was observed in mortars, even with higher percentages of CKD. The early strength of the carbonation cured mixes was found to be greater than water cured mixes irrespective of the percentage of CKD. 7 days and 28 days compressive strength of the mix was comparable for both the carbonation cured and water cured specimen. The increase in compressive strength can be attributed to the conversion of unstable Ca(OH)2 into stable CaCO3, which causes densification of the mix. CaCO3 precipitation and greater CSH gel formation was clearly observed in the SEM images of carbonation cured specimen, indicating higher compressive strength. Thus, carbonation curing can be used as an efficient method to enhance the properties of concrete.

Keywords: carbonation, cement kiln dust, compressive strength, microstructure

Procedia PDF Downloads 229
520 Application of Homer Optimization to Investigate the Prospects of Hybrid Renewable Energy System in Rural Area: Case of Rwanda

Authors: Emile Niringiyimana, LI Ji Qing, Giovanni Dushimimana, Virginie Umwere

Abstract:

The development and utilization of renewable energy (RE) can not only effectively reduce carbon dioxide (CO2) emissions, but also became a solution to electricity shortage mitigation in rural areas. Hybrid RE systems are promising ways to provide consistent and continuous power for isolated areas. This work investigated the prospect and cost effectiveness of hybrid system complementarity between a 100kW solar PV system and a small-scale 200kW hydropower station in the South of Rwanda. In order to establish the optimal size of a RE system with adequate sizing of system components, electricity demand, solar radiation, hydrology, climate data are utilized as system input. The average daily solar radiation in Rukarara is 5.6 kWh/m2 and average wind speed is 3.5 m/s. The ideal integrated RE system, according to Homer optimization, consists of 91.21kW PV, 146kW hydropower, 12 x 24V li-ion batteries with a 20kW converter. The method of enhancing such hybrid systems control, sizing and choice of components is to reduce the Net present cost (NPC) of the system, unmet load, the cost of energy and reduction of CO2. The power consumption varies according to dominant source of energy in the system by controlling the energy compensation depending on the generation capacity of each power source. The initial investment of the RE system is $977,689.25, and its operation and maintenance expenses is $142,769.39 over a 25-year period. Although the investment is very high, the targeted profits in future are huge, taking into consideration of high investment in rural electrification structure implementations, tied with an increase of electricity cost and the 5 years payback period. The study outcomes suggest that the standalone hybrid PV-Hydropower system is feasible with zero pollution in Rukara community.

Keywords: HOMER optimization, hybrid power system, renewable energy, NPC and solar pv systems

Procedia PDF Downloads 61
519 Ramp Rate and Constriction Factor Based Dual Objective Economic Load Dispatch Using Particle Swarm Optimization

Authors: Himanshu Shekhar Maharana, S. K .Dash

Abstract:

Economic Load Dispatch (ELD) proves to be a vital optimization process in electric power system for allocating generation amongst various units to compute the cost of generation, the cost of emission involving global warming gases like sulphur dioxide, nitrous oxide and carbon monoxide etc. In this dissertation, we emphasize ramp rate constriction factor based particle swarm optimization (RRCPSO) for analyzing various performance objectives, namely cost of generation, cost of emission, and a dual objective function involving both these objectives through the experimental simulated results. A 6-unit 30 bus IEEE test case system has been utilized for simulating the results involving improved weight factor advanced ramp rate limit constraints for optimizing total cost of generation and emission. This method increases the tendency of particles to venture into the solution space to ameliorate their convergence rates. Earlier works through dispersed PSO (DPSO) and constriction factor based PSO (CPSO) give rise to comparatively higher computational time and less good optimal solution at par with current dissertation. This paper deals with ramp rate and constriction factor based well defined ramp rate PSO to compute various objectives namely cost, emission and total objective etc. and compares the result with DPSO and weight improved PSO (WIPSO) techniques illustrating lesser computational time and better optimal solution. 

Keywords: economic load dispatch (ELD), constriction factor based particle swarm optimization (CPSO), dispersed particle swarm optimization (DPSO), weight improved particle swarm optimization (WIPSO), ramp rate and constriction factor based particle swarm optimization (RRCPSO)

Procedia PDF Downloads 382