Search results for: wood shear wall
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2833

Search results for: wood shear wall

313 The Intensity of Root and Soil Respiration Is Significantly Determined by the Organic Matter and Moisture Content of the Soil

Authors: Zsolt Kotroczó, Katalin Juhos, Áron Béni, Gábor Várbíró, Tamás Kocsis, István Fekete

Abstract:

Soil organic matter plays an extremely important role in the functioning and regulation processes of ecosystems. It follows that the C content of organic matter in soil is one of the most important indicators of soil fertility. Part of the carbon stored in them is returned to the atmosphere during soil respiration. Climate change and inappropriate land use can accelerate these processes. Our work aimed to determine how soil CO2 emissions change over ten years as a result of organic matter manipulation treatments. With the help of this, we were able to examine not only the effects of the different organic matter intake but also the effects of the different microclimates that occur as a result of the treatments. We carried out our investigations in the area of the Síkfőkút DIRT (Detritus Input and Removal Treatment) Project. The research area is located in the southern, hilly landscape of the Bükk Mountains, northeast of Eger (Hungary). GPS coordinates of the project: 47°55′34′′ N and 20°26′ 29′′ E, altitude 320-340 m. The soil of the area is Luvisols. The 27-hectare protected forest area is now under the supervision of the Bükki National Park. The experimental plots in Síkfőkút were established in 2000. We established six litter manipulation treatments each with three 7×7 m replicate plots established under complete canopy cover. There were two types of detritus addition treatments (Double Wood and Double Litter). In three treatments, detritus inputs were removed: No Litter No Roots plots, No Inputs, and the Controls. After the establishment of the plots, during the drier periods, the NR and NI treatments showed the highest CO2 emissions. In the first few years, the effect of this process was evident, because due to the lack of living vegetation, the amount of evapotranspiration on the NR and NI plots was much lower, and transpiration practically ceased on these plots. In the wetter periods, the NL and NI treatments showed the lowest soil respiration values, which were significantly lower compared to the Co, DW, and DL treatments. Due to the lower organic matter content and the lack of surface litter cover, the water storage capacity of these soils was significantly limited, therefore we measured the lowest average moisture content among the treatments after ten years. Soil respiration is significantly influenced by temperature values. Furthermore, the supply of nutrients to the soil microorganisms is also a determining factor, which in this case is influenced by the litter production dictated by the treatments. In the case of dry soils with a moisture content of less than 20% in the initial period, litter removal treatments showed a strong correlation with soil moisture (r=0.74). In very dry soils, a smaller increase in moisture does not cause a significant increase in soil respiration, while it does in a slightly higher moisture range. In wet soils, the temperature is the main regulating factor, above a certain moisture limit, water displaces soil air from the soil pores, which inhibits aerobic decomposition processes, and so heterotrophic soil respiration also declines.

Keywords: soil biology, organic matter, nutrition, DIRT, soil respiration

Procedia PDF Downloads 43
312 Modelling of Solidification in a Latent Thermal Energy Storage with a Finned Tube Bundle Heat Exchanger Unit

Authors: Remo Waser, Simon Maranda, Anastasia Stamatiou, Ludger J. Fischer, Joerg Worlitschek

Abstract:

In latent heat storage, a phase change material (PCM) is used to store thermal energy. The heat transfer rate during solidification is limited and considered as a key challenge in the development of latent heat storages. Thus, finned heat exchangers (HEX) are often utilized to increase the heat transfer rate of the storage system. In this study, a new modeling approach to calculating the heat transfer rate in latent thermal energy storages with complex HEX geometries is presented. This model allows for an optimization of the HEX design in terms of costs and thermal performance of the system. Modeling solidification processes requires the calculation of time-dependent heat conduction with moving boundaries. Commonly used computational fluid dynamic (CFD) methods enable the analysis of the heat transfer in complex HEX geometries. If applied to the entire storage, the drawback of this approach is the high computational effort due to small time steps and fine computational grids required for accurate solutions. An alternative to describe the process of solidification is the so-called temperature-based approach. In order to minimize the computational effort, a quasi-stationary assumption can be applied. This approach provides highly accurate predictions for tube heat exchangers. However, it shows unsatisfactory results for more complex geometries such as finned tube heat exchangers. The presented simulation model uses a temporal and spatial discretization of heat exchanger tube. The spatial discretization is based on the smallest possible symmetric segment of the HEX. The heat flow in each segment is calculated using finite volume method. Since the heat transfer fluid temperature can be derived using energy conservation equations, the boundary conditions at the inner tube wall is dynamically updated for each time step and segment. The model allows a prediction of the thermal performance of latent thermal energy storage systems using complex HEX geometries with considerably low computational effort.

Keywords: modelling of solidification, finned tube heat exchanger, latent thermal energy storage

Procedia PDF Downloads 245
311 Impact of Fischer-Tropsch Wax on Ethylene Vinyl Acetate/Waste Crumb Rubber Modified Bitumen: An Energy-Sustainability Nexus

Authors: Keith D. Nare, Mohau J. Phiri, James Carson, Chris D. Woolard, Shanganyane P. Hlangothi

Abstract:

In an energy-intensive world, minimizing energy consumption is paramount to cost saving and reducing the carbon footprint. Improving mixture procedures utilizing warm mix additive Fischer-Tropsch (FT) wax in ethylene vinyl acetate (EVA) and modified bitumen highlights a greener and sustainable approach to modified bitumen. In this study, the impact of FT wax on optimized EVA/waste crumb rubber modified bitumen is assayed with a maximum loading of 2.5%. The rationale of the FT wax loading is to maintain the original maximum loading of EVA in the optimized mixture. The phase change abilities of FT wax enable EVA co-crystallization with the support of the elastomeric backbone of crumb rubber. Less than 1% loading of FT wax worked in the EVA/crumb rubber modified bitumen energy-sustainability nexus. Response surface methodology approach to the mixture design is implemented amongst the different loadings of FT wax, EVA for a consistent amount of crumb rubber and bitumen. Rheological parameters (complex shear modulus, phase angle and rutting parameter) were the factors used as performance indicators of the different optimized mixtures. The low temperature chemistry of the optimized mixtures is analyzed using elementary beam theory and the elastic-viscoelastic correspondence principle. Master curves and black space diagrams are developed and used to predict age-induced cracking of the different long term aged mixtures. Modified binder rheology reveals that the strain response is not linear and that there is substantial re-arrangement of polymer chains as stress is increased, this is based on the age state of the mixture and the FT wax and EVA loadings. Dominance of individual effects is evident over effects of synergy in co-interaction of EVA and FT wax. All-inclusive FT wax and EVA formulations were best optimized in mixture 4 with mixture 7 reflecting increase in ease of workability. Findings show that interaction chemistry of bitumen, crumb rubber EVA, and FT wax is first and second order in all cases involving individual contributions and co-interaction amongst the components of the mixture.

Keywords: bitumen, crumb rubber, ethylene vinyl acetate, FT wax

Procedia PDF Downloads 148
310 Computational Fluid Dynamics Simulation of Turbulent Convective Heat Transfer in Rectangular Mini-Channels for Rocket Cooling Applications

Authors: O. Anwar Beg, Armghan Zubair, Sireetorn Kuharat, Meisam Babaie

Abstract:

In this work, motivated by rocket channel cooling applications, we describe recent CFD simulations of turbulent convective heat transfer in mini-channels at different aspect ratios. ANSYS FLUENT software has been employed with a mean average error of 5.97% relative to Forrest’s MIT cooling channel study (2014) at a Reynolds number of 50,443 with a Prandtl number of 3.01. This suggests that the simulation model created for turbulent flow was suitable to set as a foundation for the study of different aspect ratios in the channel. Multiple aspect ratios were also considered to understand the influence of high aspect ratios to analyse the best performing cooling channel, which was determined to be the highest aspect ratio channels. Hence, the approximate 28:1 aspect ratio provided the best characteristics to ensure effective cooling. A mesh convergence study was performed to assess the optimum mesh density to collect accurate results. Hence, for this study an element size of 0.05mm was used to generate 579,120 for proper turbulent flow simulation. Deploying a greater bias factor would increase the mesh density to the furthest edges of the channel which would prove to be useful if the focus of the study was just on a single side of the wall. Since a bulk temperature is involved with the calculations, it is essential to ensure a suitable bias factor is used to ensure the reliability of the results. Hence, in this study we have opted to use a bias factor of 5 to allow greater mesh density at both edges of the channel. However, the limitations on mesh density and hardware have curtailed the sophistication achievable for the turbulence characteristics. Also only linear rectangular channels were considered, i.e. curvature was ignored. Furthermore, we only considered conventional water coolant. From this CFD study the variation of aspect ratio provided a deeper appreciation of the effect of small to high aspect ratios with regard to cooling channels. Hence, when considering an application for the channel, the geometry of the aspect ratio must play a crucial role in optimizing cooling performance.

Keywords: rocket channel cooling, ANSYS FLUENT CFD, turbulence, convection heat transfer

Procedia PDF Downloads 126
309 Numerical Investigation of Indoor Environmental Quality in a Room Heated with Impinging Jet Ventilation

Authors: Mathias Cehlin, Arman Ameen, Ulf Larsson, Taghi Karimipanah

Abstract:

The indoor environmental quality (IEQ) is increasingly recognized as a significant factor influencing the overall level of building occupants’ health, comfort and productivity. An air-conditioning and ventilation system is normally used to create and maintain good thermal comfort and indoor air quality. Providing occupant thermal comfort and well-being with minimized use of energy is the main purpose of heating, ventilating and air conditioning system. Among different types of ventilation systems, the most widely known and used ventilation systems are mixing ventilation (MV) and displacement ventilation (DV). Impinging jet ventilation (IJV) is a promising ventilation strategy developed in the beginning of 2000s. IJV has the advantage of supplying air downwards close to the floor with high momentum and thereby delivering fresh air further out in the room compare to DV. Operating in cooling mode, IJV systems can have higher ventilation effectiveness and heat removal effectiveness compared to MV, and therefore a higher energy efficiency. However, how is the performance of IJV when operating in heating mode? This paper presents the function of IJV in a typical office room for winter conditions (heating mode). In this paper, a validated CFD model, which uses the v2-f model is used for the prediction of air flow pattern, thermal comfort and air change effectiveness. The office room under consideration has the dimensions 4.2×3.6×2.5m, which can be designed like a single-person or two-person office. A number of important factors influencing in the room with IJV are studied. The considered parameters are: heating demand, number of occupants and supplied air conditions. A total of 6 simulation cases are carried out to investigate the effects of the considered parameters. Heat load in the room is contributed by occupants, computer and lighting. The model consists of one external wall including a window. The interaction effects of heat sources, supply air flow and down draught from the window result in a complex flow phenomenon. Preliminary results indicate that IJV can be used for heating of a typical office room. The IEQ seems to be suitable in the occupied region for the studied cases.

Keywords: computation fluid dynamics, impinging jet ventilation, indoor environmental quality, ventilation strategy

Procedia PDF Downloads 154
308 Effect of Curing Temperature on the Textural and Rheological of Gelatine-SDS Hydrogels

Authors: Virginia Martin Torrejon, Binjie Wu

Abstract:

Gelatine is a protein biopolymer obtained from the partial hydrolysis of animal tissues which contain collagen, the primary structural component in connective tissue. Gelatine hydrogels have attracted considerable research in recent years as an alternative to synthetic materials due to their outstanding gelling properties, biocompatibility and compostability. Surfactants, such as sodium dodecyl sulfate (SDS), are often used in hydrogels solutions as surface modifiers or solubility enhancers, and their incorporation can influence the hydrogel’s viscoelastic properties and, in turn, its processing and applications. Literature usually focuses on studying the impact of formulation parameters (e.g., gelatine content, gelatine strength, additives incorporation) on gelatine hydrogels properties, but processing parameters, such as curing temperature, are commonly overlooked. For example, some authors have reported a decrease in gel strength at lower curing temperatures, but there is a lack of research on systematic viscoelastic characterisation of high strength gelatine and gelatine-SDS systems at a wide range of curing temperatures. This knowledge is essential to meet and adjust the technological requirements for different applications (e.g., viscosity, setting time, gel strength or melting/gelling temperature). This work investigated the effect of curing temperature (10, 15, 20, 23 and 25 and 30°C) on the elastic modulus (G’) and melting temperature of high strength gelatine-SDS hydrogels, at 10 wt% and 20 wt% gelatine contents, by small-amplitude oscillatory shear rheology coupled with Fourier Transform Infrared Spectroscopy. It also correlates the gel strength obtained by rheological measurements with the gel strength measured by texture analysis. Gelatine and gelatine-SDS hydrogels’ rheological behaviour strongly depended on the curing temperature, and its gel strength and melting temperature can be slightly modified to adjust it to given processing and applications needs. Lower curing temperatures led to gelatine and gelatine-SDS hydrogels with considerably higher storage modulus. However, their melting temperature was lower than those gels cured at higher temperatures and lower gel strength. This effect was more considerable at longer timescales. This behaviour is attributed to the development of thermal-resistant structures in the lower strength gels cured at higher temperatures.

Keywords: gelatine gelation kinetics, gelatine-SDS interactions, gelatine-surfactant hydrogels, melting and gelling temperature of gelatine gels, rheology of gelatine hydrogels

Procedia PDF Downloads 77
307 Slosh Investigations on a Spacecraft Propellant Tank for Control Stability Studies

Authors: Sarath Chandran Nair S, Srinivas Kodati, Vasudevan R, Asraff A. K

Abstract:

Spacecrafts generally employ liquid propulsion for their attitude and orbital maneuvers or raising it from geo-transfer orbit to geosynchronous orbit. Liquid propulsion systems use either mono-propellant or bi-propellants for generating thrust. These propellants are generally stored in either spherical tanks or cylindrical tanks with spherical end domes. The propellant tanks are provided with a propellant acquisition system/propellant management device along with vanes and their conical mounting structure to ensure propellant availability in the outlet for thrust generation even under a low/zero-gravity environment. Slosh is the free surface oscillations in partially filled containers under external disturbances. In a spacecraft, these can be due to control forces and due to varying acceleration. Knowledge of slosh and its effect due to internals is essential for understanding its stability through control stability studies. It is mathematically represented by a pendulum-mass model. It requires parameters such as slosh frequency, damping, sloshes mass and its location, etc. This paper enumerates various numerical and experimental methods used for evaluating the slosh parameters required for representing slosh. Numerical methods like finite element methods based on linear velocity potential theory and computational fluid dynamics based on Reynolds Averaged Navier Stokes equations are used for the detailed evaluation of slosh behavior in one of the spacecraft propellant tanks used in an Indian space mission. Experimental studies carried out on a scaled-down model are also discussed. Slosh parameters evaluated by different methods matched very well and finalized their dispersion bands based on experimental studies. It is observed that the presence of internals such as propellant management devices, including conical support structure, alters slosh parameters. These internals also offers one order higher damping compared to viscous/ smooth wall damping. It is an advantage factor for the stability of slosh. These slosh parameters are given for establishing slosh margins through control stability studies and finalize the spacecraft control system design.

Keywords: control stability, propellant tanks, slosh, spacecraft, slosh spacecraft

Procedia PDF Downloads 210
306 Study the Difference Between the Mohr-Coulomb and the Barton-Bandis Joint Constitutive Models: A Case Study from the Iron Open Pit Mine, Canada

Authors: Abbas Kamalibandpey, Alain Beland, Joseph Mukendi Kabuya

Abstract:

Since a rock mass is a discontinuum medium, its behaviour is governed by discontinuities such as faults, joint sets, lithologic contact, and bedding planes. Thus, rock slope stability analysis in jointed rock masses is largely dependent upon discontinuities constitutive equations. This paper studies the difference between the Mohr-Coulomb (MC) and the Barton-Bandis (BB) joint constitutive numerical models for lithological contacts and joint sets. For the rock in these models, generalized Hoek-Brown criteria have been considered. The joint roughness coefficient (JRC) and the joint wall compressive strength (JCS) are vital parameters in the BB model. The numerical models are applied to the rock slope stability analysis in the Mont-Wright (MW) mine. The Mont-Wright mine is owned and operated by ArcelorMittal Mining Canada (AMMC), one of the largest iron-ore open pit operations in Canada. In this regard, one of the high walls of the mine has been selected to undergo slope stability analysis with RS2D software, finite element method. Three piezometers have been installed in this zone to record pore water pressure and it is monitored by radar. In this zone, the AMP-IF and QRMS-IF contacts and very persistent and altered joint sets in IF control the rock slope behaviour. The height of the slope is more than 250 m and consists of different lithologies such as AMP, IF, GN, QRMS, and QR. To apply the B-B model, the joint sets and geological contacts have been scanned by Maptek, and their JRC has been calculated by different methods. The numerical studies reveal that the JRC of geological contacts, AMP-IF and QRMS-IF, and joint sets in IF had a significant influence on the safety factor. After evaluating the results of rock slope stability analysis and the radar data, the B-B constitutive equation for discontinuities has shown acceptable results to the real condition in the mine. It should be noted that the difference in safety factors in MC and BB joint constitutive models in some cases is more than 30%.

Keywords: barton-Bandis criterion, Hoek-brown and Mohr-Coulomb criteria, open pit, slope stability

Procedia PDF Downloads 74
305 Research on Structural Changes in Plastic Deformation during Rolling and Crimping of Tubes

Authors: Hein Win Zaw

Abstract:

Today, the advanced strategies for aircraft production technology potentially need the higher performance, and on the other hand, those strategies and engineering technologies should meet considerable process and reduce of production costs. Thus, professionals who are working in these scopes are attempting to develop new materials to improve the manufacturability of designs, the creation of new technological processes, tools and equipment. This paper discusses about the research on structural changes in plastic deformation during rotary expansion and crimp of pipes. Pipelines are experiencing high pressure and pulsating load. That is why, it is high demands on the mechanical properties of the material, the quality of the external and internal surfaces, preserve cross-sectional shape and the minimum thickness of the pipe wall are taking into counts. In the manufacture of pipes, various operations: distribution, crimping, bending, etc. are used. The most widely used at various semi-products, connecting elements found the process of rotary expansion and crimp of pipes. In connection with the use of high strength materials and less-plastic, these conventional techniques do not allow obtaining high-quality parts, and also have a low economic efficiency. Therefore, research in this field is relevantly considerable to develop in advanced. Rotary expansion and crimp of pipes are accompanied by inhomogeneous plastic deformation, which leads to structural changes in the material, causes its deformation hardening, by this result changes the operational reliability of the product. Parts of the tube obtained by rotary expansion and crimp differ by multiplicity of form and characterized by various diameter in the various section, which formed in the result of inhomogeneous plastic deformation. The reliability of the coupling, obtained by rotary expansion and crimp, is determined by the structural arrangement of material formed by the formation process; there is maximum value of deformation, the excess of which is unacceptable. The structural state of material in this condition is determined by technological mode of formation in the rotary expansion and crimp. Considering the above, objective of the present study is to investigate the structural changes at different levels of plastic deformation, accompanying rotary expansion and crimp, and the analysis of stress concentrators of different scale levels, responsible for the formation of the primary zone of destruction.

Keywords: plastic deformation, rolling of tubes, crimping of tubes, structural changes

Procedia PDF Downloads 308
304 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study

Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa

Abstract:

The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.

Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity

Procedia PDF Downloads 400
303 Assessment of the Effect of Orally Administered Itopride on Gall Bladder Ejection Fraction by a Fatty Meal Cholescintigraphy in Patients with Diabetes

Authors: Avani Jain, Hasmukh Jain, S. Shelley, M. Indirani, Shilpa Kalal, Jayakanth Amalachandran

Abstract:

Aim of the Study: To assess the effect of orally administered Itopride on gall bladder ejection fraction by fatty meal cholescintigraphy in patients with diabetes. Materials and Methods: Thirty patients (20 males, 10 females, mean age 46+10 yrs) with history of diabetes mellitus (mean duration 4.8+4.1 yrs, fasting blood glucose level 130+35 mg/dl and 2-hours post-prandial blood glucose level 196+76 mg/dl) and found to have gall bladder dysfunction on fatty-meal stimulated cholescintigraphy were selected for this study. These patients underwent a repeat cholescintigraphy similar to baseline study, with 50 mg of Itopride orally along with fatty meal. Pre- and post-Itopride GBEF were then compared to assess the effect of Itopride on gall bladder contraction. Results: Out of these 30 patients, 2 had dyskinetic, 4 had akinetic, 22 had moderately hypokinetic and the remaining 2 had hypokinetic gall bladder function in the baseline study with > 60% GBEF being taken as the normal value. Mean percentage of GBEF in the baseline study was 32%+13% and the mean percentage of GBEF in the post-Itopride study was 57%+17% with change in mean percentage of GBEF being 24%+21%. GBEF of the “baseline study” was significantly lower as compared to GBEF in the “post-Itopride study” (p < 0.05). Conclusion: Diabetic patients with biliary-type pain often tend to have impaired gallbladder function. Cholescintigraphy with fatty meal-stimulation is a simple, cheap and useful investigation for assessment of gallbladder dysfunction in these patients, before any structural changes occur within the lumen or wall of the gall bladder. Improvement in gallbladder ejection fraction after oral administration of a single dose of Itopride, a newer prokinetic drug with fewer side effects, as assessed by cholescintigraphy, provides enough evidence of future therapeutic response. Administration of Itopride, in therapeutic dosage, therefore may be expected to cause significant improvement in gallbladder ejection fraction and hence prolong stone formation within the gall bladder and also prevent the associated long term complications. Hence, based on scintigraphic evidence, Itopride may be recommended, by clinicians, for management of symptomatic diabetic patients having gallbladder dysfunction.

Keywords: itopride, gall bladder ejection fraction, fatty meal, cholescintigraphy, diabetes

Procedia PDF Downloads 399
302 Beta-Cyclodextrin Inclusion Complexes for Antifungal Food Packaging Applications

Authors: Cristina Munoz-Shuguli, Francisco Rodriguez, Julio Bruna, M. Jose Galotto, Abel Guarda

Abstract:

The microbial contamination in fruits due to the presence of fungal is the most important cause of their deterioration and loss. The development of active food packaging materials with antifungal properties has been proposed as an innovative strategy in order to prevent this problem. In this way, natural compounds as the essential oils or their derivatives, also called volatile compounds (VC), can be incorporated in the food packaging materials to control the fungal growth during fruit packaging. However, if the VC is incorporated directly in the packaging material, it is released very fast due to VC high volatility. For this reason, the formation of inclusion complexes through the encapsulation of VC into beta-cyclodextrin (β-CD) and their incorporation in package materials is an alternative to maintain an antifungal atmosphere around the packaged fruits for longer times. In this context, the aim of this work was to develop inclusion complexes based in β-CD and VC (β-CD:VC) for further application in the antifungal food packaging materials development. β-CD:VC inclusion complexes were obtained with two different molar ratios 2:1 and 1:1, through co-precipitation method. The entrapment efficiency of β-CD:VC as well the release of antifungal compound from inclusion complexes exposed to different relative humidity (25, 50, and 97 %) to headspace were determined by gaseous chromatography (GC). Also, thermal and antimicrobial properties of β-CD:VC were determined through thermogravimetric analysis (TGA) and antifungal assays against Botrytis cinerea, respectively. GC results showed that β-CD:VC 2:1 had a higher entrapment efficiency than β-CD:VC 1:1, with values of 75.5 ± 3.71 % and 59.6 ± 1.51 %, respectively. It was probably because during the synthesis of β-CD:VC 1:1, there was less molecular space to the movement of VC molecules. Furthermore, the release of VC from β-CD:VC was directly related with the relative humidity. High amount of VC was released when the inclusion complexes were exposed to high humidity, possibly due to the interactions between the water molecules and the β-CD hydrophilic wall. On the other hand, a better thermal stability of VC in inclusion complexes allowed to verify its effective encapsulation into β-CD. Finally, antimicrobial assays showed that the inclusion complexes had a high antifungal activity at very low concentrations. Therefore, the results obtained in this work allow suggesting the β-CD:VC inclusion complexes as potential candidates to the development of fruit antifungal packaging materials, which activity is relative humidity dependent.

Keywords: Botrytis cinerea, fruit packaging, headspace release, volatile compounds

Procedia PDF Downloads 96
301 Black Soybeans Show Acute and Chronic Liver Protective Functions against CCl4 Induced Liver Damage

Authors: Cheng-Kuang Hsu, Chih-Hsiang Chang, Chi-Chih Wang

Abstract:

Black soybeans contain high amount of antioxidants including polyphenols, anthocyanins and flavones. The protective function of black soybean against CCl4 (a strong oxidant) induced acute and chronic liver damage was investigated in vivo using SD rats or ICR mouse. The evaluation of CCl4 induced oxidative stress in the liver tissues included the measurements of the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the concentration of thiobarbituric acid reactive substances (TBARS), the activities of antioxidant enzymes (superoxide dismutase SOD, catalase, and glutathione peroxidase GPx), as well as the level of histological lesion in the liver tissues. For chronic experiment, a decoction at the concentration of 100 or 1000 mg/kg of body weight, produced by baking black soybean at 130°C for 5 min and followed by immerging in 100°C hot water for 20 min, showed the inhibitory effect against CCl4 induced liver damage in SD rats. Hot-water extract (80 °C for 30 min) from un-preheated black soybean at the concentration of 200 mg/kg of body weight could not reduce ALT and AST levels in CCl4 treated SD rats, but the hot-water extract from preheated black soybean did enhance antioxidant enzymes activities, decline ALT and AST levels. Specially, the hot-water extract from the seed cost of black soybean had the highest liver protective function since it can reduce vacuolization and necrosis in the liver tissues. For acute experiment, the hot-water extracts from black soybean and the seed coat, as well as pure cyanidin-3-glucoside (C3G) could reduce ALT and AST levels of CCl4 induced ICR mouse. The decoction and hot-water extract from the seed coat of black soybean had higher total polyphenols, anthocyanins and flavones contents than those extracts from whole black soybean. Such results agreed with high liver protective function in the decoction and hot-water from the seed coat of black soybean. Black soybean showed protective function only after preheating process (baking at 130°C for 5 to 10 min) because preheating treatment damaged the cell wall and made the extraction of the antioxidants more effectively.

Keywords: black soybean, liver protective function, antioxidant, antioxidative stress

Procedia PDF Downloads 451
300 Behavioral Mapping and Post-Occupancy Evaluation of Meeting-Point Design in an International Airport

Authors: Meng-Cong Zheng, Yu-Sheng Chen

Abstract:

The meeting behavior is a pervasive kind of interaction, which often occurs between the passenger and the shuttle. However, the meeting point set up at the Taoyuan International Airport is too far from the entry-exit, often causing passengers to stop searching near the entry-exit. When the number of people waiting for the rush hour increases, it often results in chaos in the waiting area. This study tried to find out what is the key factor to promote the rapid finding of each other between the passengers and the pick-ups. Then we implemented several design proposals to improve the meeting behavior of passengers and pick-ups based on behavior mapping and post-occupancy evaluation to enhance their meeting efficiency in unfamiliar environments. The research base is the reception hall of the second terminal of Taoyuan International Airport. Behavioral observation and mapping are implemented on the entry of inbound passengers into the welcome space, including the crowd distribution of the people who rely on the separation wall in the waiting area, the behavior of meeting and the interaction between the inbound passengers and the pick-ups. Then we redesign the space planning and signage design based on post-occupancy evaluation to verify the effectiveness of space plan and signage design. This study found that passengers ignore existing meeting-point designs which are placed on distant pillars at both ends. The position of the screen affects the area where the receiver is stranded, causing the pick-ups to block the passenger's moving line. The pick-ups prefer to wait where it is easy to watch incoming passengers and where it is closest to the mode of transport they take when leaving. Large visitors tend to gather next to landmarks, and smaller groups have a wide waiting area in the lobby. The location of the meeting point chosen by the pick-ups is related to the view of the incoming passenger. Finally, this study proposes an improved design of the meeting point, setting the traffic information in it, so that most passengers can see the traffic information when they enter the country. At the same time, we also redesigned the pick-ups desk to improve the efficiency of passenger meeting.

Keywords: meeting point design, post-occupancy evaluation, behavioral mapping, international airport

Procedia PDF Downloads 110
299 Building Carbon Footprint Comparison between Building Permit, as Built, as Built with Circular Material Usage

Authors: Kadri-Ann Kertsmik, Martin Talvik, Kimmo Lylykangas, Simo Ilomets, Targo Kalamees

Abstract:

This study compares the building carbon footprint (CF) values for a case study of a private house located in a cold climate, using the Level(s) methodology. It provides a framework for measuring the environmental performance of buildings throughout their life cycle, taking into account various factors. The study presents the results of the three scenarios, comparing their carbon emissions and highlighting the benefits of circular material usage. The construction process was thoroughly documented, and all materials and components (including minuscule mechanical fasteners, each meter of cable, a kilogram of mortar, and the component of HVAC systems, among other things) delivered to the construction site were noted. Transportation distances of each delivery, the fuel consumption of construction machines, and electricity consumption for temporary heating and electrical tools were also monitored. Using the detailed data on material and energy resources, the CF was calculated for two scenarios: one where circular material usage was applied and another where virgin materials were used instead of reused ones. The results were compared with the CF calculated based on the building permit design model using the Level(s) methodology. To study the range of possible results in the early stage of CF assessment, the same building permit design was given to several experts. Results showed that embodied carbon values for a built scenario were significantly lower than the values predicted by the building permit stage as a result of more precise material quantities, as the calculation methodology is designed to overestimate the CF. Moreover, designers made an effort to reduce the building's CF by reusing certain materials such as ceramic tiles, lightweight concrete blocks, and timber during the construction process. However, in a cold climate context where operational energy (B6) continues to dominate, the total building CF value changes between the three scenarios were less significant. The calculation for the building permit project was performed by several experts, and CF results were in the same range. It alludes that, for the first estimation of preliminary building CF, using average values proves to be an appropriate method for the Estonian national carbon footprint estimation phase during building permit application. The study also identified several opportunities for reducing the carbon footprint of the building, such as reusing materials from other construction sites, preferring local material producers, and reducing wastage on site. The findings suggest that using circular materials can significantly reduce the carbon footprint of buildings. Overall, the study highlights the importance of using a comprehensive approach to measure the environmental performance of buildings, taking into account both the project and the actually built house. It also emphasises the need for ongoing monitoring for designing the building and construction site waste. The study also gives some examples of how to enable future circularity of building components and materials, e.g., building in layers, using wood as untreated, etc.

Keywords: carbon footprint, circular economy, sustainable construction, level(s) methodology

Procedia PDF Downloads 55
298 Strategies of Risk Management for Smallholder Farmers in South Africa: A Case Study on Pigeonpea (Cajanus cajan) Production

Authors: Sanari Chalin Moriri, Kwabena Kingsley Ayisi, Alina Mofokeng

Abstract:

Dryland smallholder farmers in South Africa are vulnerable to all kinds of risks, and it negatively affects crop productivity and profit. Pigeonpea is a leguminous and multipurpose crop that provides food, fodder, and wood for smallholder farmers. The majority of these farmers are still growing pigeonpea from traditional unimproved seeds, which comprise a mixture of genotypes. The objectives of the study were to identify the key risk factors that affect pigeonpea productivity and to develop management strategies on how to alleviate the risk factors in pigeonpea production. The study was conducted in two provinces (Limpopo and Mpumalanga) of South Africa in six municipalities during the 2020/2021 growing seasons. The non-probability sampling method using purposive and snowball sampling techniques were used to collect data from the farmers through a structured questionnaire. A total of 114 pigeonpea producers were interviewed individually using a questionnaire. Key stakeholders in each municipality were also identified, invited, and interviewed to verify the information given by farmers. Data collected were subjected to SPSS statistical software 25 version. The findings of the study were that majority of farmers affected by risk factors were women, subsistence, and old farmers resulted in low food production. Drought, unavailability of improved pigeonpea seeds for planting, access to information, and processing equipment were found to be the main risk factors contributing to low crop productivity in farmer’s fields. Above 80% of farmers lack knowledge on the improvement of the crop and also on the processing techniques to secure high prices during the crop off-season. Market availability, pricing, and incidence of pests and diseases were found to be minor risk factors which were triggered by the major risk factors. The minor risk factors can be corrected only if the major risk factors are first given the necessary attention. About 10% of the farmers found to use the crop as a mulch to reduce soil temperatures and to improve soil fertility. The study revealed that most of the farmers were unaware of its utilisation as fodder, much, medicinal, nitrogen fixation, and many more. The risk of frequent drought in dry areas of South Africa where farmers solely depend on rainfall poses a serious threat to crop productivity. The majority of these risk factors are caused by climate change due to unrealistic, low rainfall with extreme temperatures poses a threat to food security, water, and the environment. The use of drought-tolerant, multipurpose legume crops such as pigeonpea, access to new information, provision of processing equipment, and support from all stakeholders will help in addressing food security for smallholder farmers. Policies should be revisited to address the prevailing risk factors faced by farmers and involve them in addressing the risk factors. Awareness should be prioritized in promoting the crop to improve its production and commercialization in the dryland farming system of South Africa.

Keywords: management strategies, pigeonpea, risk factors, smallholder farmers

Procedia PDF Downloads 184
297 Rheometer Enabled Study of Tissue/biomaterial Frequency-Dependent Properties

Authors: Polina Prokopovich

Abstract:

Despite the well-established dependence of cartilage mechanical properties on the frequency of the applied load, most research in the field is carried out in either load-free or constant load conditions because of the complexity of the equipment required for the determination of time-dependent properties. These simpler analyses provide a limited representation of cartilage properties thus greatly reducing the impact of the information gathered hindering the understanding of the mechanisms involved in this tissue replacement, development and pathology. More complex techniques could represent better investigative methods, but their uptake in cartilage research is limited by the highly specialised training required and cost of the equipment. There is, therefore, a clear need for alternative experimental approaches to cartilage testing to be deployed in research and clinical settings using more user-friendly and financial accessible devices. Frequency dependent material properties can be determined through rheometry that is an easy to use requiring a relatively inexpensive device; we present how a commercial rheometer can be adapted to determine the viscoelastic properties of articular cartilage. Frequency-sweep tests were run at various applied normal loads on immature, mature and trypsinased (as model of osteoarthritis) cartilage samples to determine the dynamic shear moduli (G*, G′ G″) of the tissues. Moduli increased with increasing frequency and applied load; mature cartilage had generally the highest moduli and GAG depleted samples the lowest. Hydraulic permeability (KH) was estimated from the rheological data and decreased with applied load; GAG depleted cartilage exhibited higher hydraulic permeability than either immature or mature tissues. The rheometer-based methodology developed was validated by the close comparison of the rheometer-obtained cartilage characteristics (G*, G′, G″, KH) with results obtained with more complex testing techniques available in literature. Rheometry is relatively simpler and does not require highly capital intensive machinery and staff training is more accessible; thus the use of a rheometer would represent a cost-effective approach for the determination of frequency-dependent properties of cartilage for more comprehensive and impactful results for both healthcare professional and R&D.

Keywords: tissue, rheometer, biomaterial, cartilage

Procedia PDF Downloads 44
296 Modelling for Roof Failure Analysis in an Underground Cave

Authors: M. Belén Prendes-Gero, Celestino González-Nicieza, M. Inmaculada Alvarez-Fernández

Abstract:

Roof collapse is one of the problems with a higher frequency in most of the mines of all countries, even now. There are many reasons that may cause the roof to collapse, namely the mine stress activities in the mining process, the lack of vigilance and carelessness or the complexity of the geological structure and irregular operations. This work is the result of the analysis of one accident produced in the “Mary” coal exploitation located in northern Spain. In this accident, the roof of a crossroad of excavated galleries to exploit the “Morena” Layer, 700 m deep, collapsed. In the paper, the work done by the forensic team to determine the causes of the incident, its conclusions and recommendations are collected. Initially, the available documentation (geology, geotechnics, mining, etc.) and accident area were reviewed. After that, laboratory and on-site tests were carried out to characterize the behaviour of the rock materials and the support used (metal frames and shotcrete). With this information, different hypotheses of failure were simulated to find the one that best fits reality. For this work, the software of finite differences in three dimensions, FLAC 3D, was employed. The results of the study confirmed that the detachment was originated as a consequence of one sliding in the layer wall, due to the large roof span present in the place of the accident, and probably triggered as a consequence of the existence of a protection pillar insufficient. The results allowed to establish some corrective measures avoiding future risks. For example, the dimensions of the protection zones that must be remained unexploited and their interaction with the crossing areas between galleries, or the use of more adequate supports for these conditions, in which the significant deformations may discourage the use of rigid supports such as shotcrete. At last, a grid of seismic control was proposed as a predictive system. Its efficiency was tested along the investigation period employing three control equipment that detected new incidents (although smaller) in other similar areas of the mine. These new incidents show that the use of explosives produces vibrations which are a new risk factor to analyse in a next future.

Keywords: forensic analysis, hypothesis modelling, roof failure, seismic monitoring

Procedia PDF Downloads 96
295 Seismic Active Earth Pressure on Retaining Walls with Reinforced Backfill

Authors: Jagdish Prasad Sahoo

Abstract:

The increase in active earth pressure during the event of an earthquake results sliding, overturning and tilting of earth retaining structures. In order to improve upon the stability of structures, the soil mass is often reinforced with various types of reinforcements such as metal strips, geotextiles, and geogrids etc. The stresses generated in the soil mass are transferred to the reinforcements through the interface friction between the earth and the reinforcement, which in turn reduces the lateral earth pressure on the retaining walls. Hence, the evaluation of earth pressure in the presence of seismic forces with an inclusion of reinforcements is important for the design retaining walls in the seismically active zones. In the present analysis, the effect of reinforcing horizontal layers of reinforcements in the form of sheets (Geotextiles and Geogrids) in sand used as backfill, on reducing the active earth pressure due to earthquake body forces has been studied. For carrying out the analysis, pseudo-static approach has been adopted by employing upper bound theorem of limit analysis in combination with finite elements and linear optimization. The computations have been performed with and out reinforcements for different internal friction angle of sand varying from 30 ° to 45 °. The effectiveness of the reinforcement in reducing the active earth pressure on the retaining walls is examined in terms of active earth pressure coefficient for presenting the solutions in a non-dimensional form. The active earth pressure coefficient is expressed as functions of internal friction angle of sand, interface friction angle between sand and reinforcement, soil-wall interface roughness conditions, and coefficient of horizontal seismic acceleration. It has been found that (i) there always exists a certain optimum depth of the reinforcement layers corresponding to which the value of active earth pressure coefficient becomes always the minimum, and (ii) the active earth pressure coefficient decreases significantly with an increase in length of reinforcements only up to a certain length beyond which a further increase in length hardly causes any reduction in the values active earth pressure. The optimum depth of the reinforcement layers and the required length of reinforcements corresponding to the optimum depth of reinforcements have been established. The numerical results developed in this analysis are expected to be useful for purpose of design of retaining walls.

Keywords: active, finite elements, limit analysis, presudo-static, reinforcement

Procedia PDF Downloads 343
294 Kinetic Study of Municipal Plastic Waste

Authors: Laura Salvia Diaz Silvarrey, Anh Phan

Abstract:

Municipal Plastic Waste (MPW) comprises a mixture of thermoplastics such as high and low density polyethylene (HDPE and LDPE), polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET). Recycling rate of these plastics is low, e.g. only 27% in 2013. The remains were incinerated or disposed in landfills. As MPW generation increases approximately 5% per annum, MPW management technologies have to be developed to comply with legislation . Pyrolysis, thermochemical decomposition, provides an excellent alternative to convert MPW into valuable resources like fuels and chemicals. Most studies on waste plastic kinetics only focused on HDPE and LDPE with a simple assumption of first order decomposition, which is not the real reaction mechanism. The aim of this study was to develop a kinetic study for each of the polymers in the MPW mixture using thermogravimetric analysis (TGA) over a range of heating rates (5, 10, 20 and 40°C/min) in N2 atmosphere and sample size of 1 – 4mm. A model-free kinetic method was applied to quantify the activation energy at each level of conversion. Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) equations jointly with Master Plots confirmed that the activation energy was not constant along all the reaction for all the five plastic studied, showing that MPW decomposed through a complex mechanism and not by first-order kinetics. Master plots confirmed that MPW decomposed following a random scission mechanism at conversions above 40%. According to the random scission mechanism, different radicals are formed along the backbone producing the cleavage of bonds by chain scission into molecules of different lengths. The cleavage of bonds during random scission follows first-order kinetics and it is related with the conversion. When a bond is broken one part of the initial molecule becomes an unsaturated one and the other a terminal free radical. The latter can react with hydrogen from and adjacent carbon releasing another free radical and a saturated molecule or reacting with another free radical and forming an alkane. Not every time a bonds is broken a molecule is evaporated. At early stages of the reaction (conversion and temperature below 40% and 300°C), most products are not short enough to evaporate. Only at higher degrees of conversion most of cleavage of bonds releases molecules small enough to evaporate.

Keywords: kinetic, municipal plastic waste, pyrolysis, random scission

Procedia PDF Downloads 331
293 Influence of Bottom Ash on the Geotechnical Parameters of Clayey Soil

Authors: Tanios Saliba, Jad Wakim, Elie Awwad

Abstract:

Clayey soils exhibit undesirable problems in civil engineering project: poor bearing soil capacity, shrinkage, cracking, …etc. On the other hand, the increasing production of bottom ash and its disposal in an eco-friendly manner is a matter of concern. Soil stabilization using bottom ash is a new technic in the geo-environmental engineering. It can be used wherever a soft clayey soil is encountered in foundations or road subgrade, instead of using old technics such as cement-soil mixing. This new technology can be used for road embankments and clayey foundations platform (shallow or deep foundations) instead of replacing bad soil or using old technics which aren’t eco-friendly. Moreover, applying this new technic in our geotechnical engineering projects can reduce the disposal of the bottom ash problem which is getting bigger day after day. The research consists of mixing clayey soil with different percentages of bottom ash at different values of water content, and evaluates the mechanical properties of every mix: the percentages of bottom ash are 10% 20% 30% 40% and 50% with values of water content of 25% 35% and 45% of the mix’s weight. Before testing the different mixes, clayey soil’s properties were determined: Atterbeg limits, soil’s cohesion and friction angle and particle size distribution. In order to evaluate the mechanical properties and behavior of every mix, different tests are conducted: -Direct shear test in order to determine the cohesion and internal friction angle of every mix. -Unconfined compressive strength (stress strain curve) to determine mix’s elastic modulus and compressive strength. Soil samples are prepared in accordance with the ASTM standards, and tested at different times, in order to be able to emphasize the influence of the curing period on the variation of the mix’s mechanical properties and characteristics. As of today, the results obtained are very promising: the mix’s cohesion and friction angle vary in function of the bottom ash percentage, water content and curing period: the cohesion increases enormously before decreasing for a long curing period (values of mix’s cohesion are larger than intact soil’s cohesion) while internal friction angle keeps on increasing even when the curing period is 28 days (the tests largest curing period), which give us a better soil behavior: less cracks and better soil bearing capacity.

Keywords: bottom ash, Clayey soil, mechanical properties, tests

Procedia PDF Downloads 154
292 Prediction of Finned Projectile Aerodynamics Using a Lattice-Boltzmann Method CFD Solution

Authors: Zaki Abiza, Miguel Chavez, David M. Holman, Ruddy Brionnaud

Abstract:

In this paper, the prediction of the aerodynamic behavior of the flow around a Finned Projectile will be validated using a Computational Fluid Dynamics (CFD) solution, XFlow, based on the Lattice-Boltzmann Method (LBM). XFlow is an innovative CFD software developed by Next Limit Dynamics. It is based on a state-of-the-art Lattice-Boltzmann Method which uses a proprietary particle-based kinetic solver and a LES turbulent model coupled with the generalized law of the wall (WMLES). The Lattice-Boltzmann method discretizes the continuous Boltzmann equation, a transport equation for the particle probability distribution function. From the Boltzmann transport equation, and by means of the Chapman-Enskog expansion, the compressible Navier-Stokes equations can be recovered. However to simulate compressible flows, this method has a Mach number limitation because of the lattice discretization. Thanks to this flexible particle-based approach the traditional meshing process is avoided, the discretization stage is strongly accelerated reducing engineering costs, and computations on complex geometries are affordable in a straightforward way. The projectile that will be used in this work is the Army-Navy Basic Finned Missile (ANF) with a caliber of 0.03 m. The analysis will consist in varying the Mach number from M=0.5 comparing the axial force coefficient, normal force slope coefficient and the pitch moment slope coefficient of the Finned Projectile obtained by XFlow with the experimental data. The slope coefficients will be obtained using finite difference techniques in the linear range of the polar curve. The aim of such an analysis is to find out the limiting Mach number value starting from which the effects of high fluid compressibility (related to transonic flow regime) lead the XFlow simulations to differ from the experimental results. This will allow identifying the critical Mach number which limits the validity of the isothermal formulation of XFlow and beyond which a fully compressible solver implementing a coupled momentum-energy equations would be required.

Keywords: CFD, computational fluid dynamics, drag, finned projectile, lattice-boltzmann method, LBM, lift, mach, pitch

Procedia PDF Downloads 392
291 Energy Content and Spectral Energy Representation of Wave Propagation in a Granular Chain

Authors: Rohit Shrivastava, Stefan Luding

Abstract:

A mechanical wave is propagation of vibration with transfer of energy and momentum. Studying the energy as well as spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing for the study of internal structure of solids. The study of Energy content (Kinetic, Potential and Total Energy) of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain can assist in understanding the energy attenuation due to disorder as a function of propagation distance. The spectral analysis of the energy signal can assist in understanding dispersion as well as attenuation due to scattering in different frequencies (scattering attenuation). The selection of one-dimensional granular chain also helps in studying only the P-wave attributes of the wave and removing the influence of shear or rotational waves. Granular chains with different mass distributions have been studied, by randomly selecting masses from normal, binary and uniform distributions and the standard deviation of the distribution is considered as the disorder parameter, higher standard deviation means higher disorder and lower standard deviation means lower disorder. For obtaining macroscopic/continuum properties, ensemble averaging has been used. Interpreting information from a Total Energy signal turned out to be much easier in comparison to displacement, velocity or acceleration signals of the wave, hence, indicating a better analysis method for wave propagation through granular materials. Increasing disorder leads to faster attenuation of the signal and decreases the Energy of higher frequency signals transmitted, but at the same time the energy of spatially localized high frequencies also increases. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits diffusive like propagation, which eventually becomes localized at long periods of time.

Keywords: discrete elements, energy attenuation, mass disorder, granular chain, spectral energy, wave propagation

Procedia PDF Downloads 263
290 Polygenetic Iron Mineralization in the Baba-Ali and Galali Deposits, Further Evidences from Stable (S, O, H) Isotope Data, NW Hamedan, Iran

Authors: Ghodratollah Rostami Paydar

Abstract:

The Baba-Ali and Galali iron deposits are located in northwest Hamedan and the Iranian Sanandaj-Sirjan geological structural zone. The host rocks of these deposits are metavolcanosedimentary successions of Songhor stratigraphic series with permo-trriassic age. Field investigation, ore geometry, textures and structures and paragenetic sequence of minerals, all indicate that the ore minerals are crystallized in four stages: primary volcanosedimentary stage, secondary regional metamorphism with formation of ductile shear zones, contact metamorphism and metasomatism stage and the finally late hydrothermal mineralization within uplift and exposure. Totally 29 samples of sulfide, oxide-silicate and carbonate minerals of iron orees and gangue has been purified for stable isotope analysis. The isotope ratio data assure that occurrence of dynamothermal metamorphism in these areas typically involves a lengthy period of time, which results in a tendency toward isotopic homogenization specifically in O and H stable isotopes and showing the role of metamorphic waters in mineralization process. Measurement of δ34S (CDT) in first generation of pyrite is higher than another ones, so it confirms the volcanogenic origin of primary iron mineralization. δ13C data measurements in Galali carbonate country rocks show a marine origin. δ18O in magnetite and skarn forming silicates, δ18O and δ13C in limestone and skarn calcite and δ34S in sulphides are all consistent with the interaction of a magmatic-equilibrated fluid with Galali limestone, and a dominantly magmatic source for S. All these data imply skarn formation and mineralisation in a magmatic-hydrothermal system that maintained high salinity to relatively late stages resulting in the formation of the regional Na metasomatic alteration halo. Late stage hydrothermal quartz-calcite veinlets are important for gold mineralization, but the economic evaluation is required to detailed geochemical studies.

Keywords: iron, polygenetic, stable isotope, BabaAli, Galali

Procedia PDF Downloads 269
289 Aerothermal Analysis of the Brazilian 14-X Hypersonic Aerospace Vehicle at Mach Number 7

Authors: Felipe J. Costa, João F. A. Martos, Ronaldo L. Cardoso, Israel S. Rêgo, Marco A. S. Minucci, Antonio C. Oliveira, Paulo G. P. Toro

Abstract:

The Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, at the Institute for Advanced Studies designed the Brazilian 14-X Hypersonic Aerospace Vehicle, which is a technological demonstrator endowed with two innovative technologies: waverider technology, to obtain lift from conical shockwave during the hypersonic flight; and uses hypersonic airbreathing propulsion system called scramjet that is based on supersonic combustion, to perform flights on Earth's atmosphere at 30 km altitude at Mach numbers 7 and 10. The scramjet is an aeronautical engine without moving parts that promote compression and deceleration of freestream atmospheric air at the inlet through the conical/oblique shockwaves generated during the hypersonic flight. During high speed flight, the shock waves and the viscous forces yield the phenomenon called aerodynamic heating, where this physical meaning is the friction between the fluid filaments and the body or compression at the stagnation regions of the leading edge that converts the kinetic energy into heat within a thin layer of air which blankets the body. The temperature of this layer increases with the square of the speed. This high temperature is concentrated in the boundary-layer, where heat will flow readily from the boundary-layer to the hypersonic aerospace vehicle structure. Fay and Riddell and Eckert methods are applied to the stagnation point and to the flat plate segments in order to calculate the aerodynamic heating. On the understanding of the aerodynamic heating it is important to analyze the heat conduction transfer to the 14-X waverider internal structure. ANSYS Workbench software provides the Thermal Numerical Analysis, using Finite Element Method of the 14-X waverider unpowered scramjet at 30 km altitude at Mach number 7 and 10 in terms of temperature and heat flux. Finally, it is possible to verify if the internal temperature complies with the requirements for embedded systems, and, if is necessary to do modifications on the structure in terms of wall thickness and materials.

Keywords: aerodynamic heating, hypersonic, scramjet, thermal analysis

Procedia PDF Downloads 423
288 Waste Scavenging as a Waste-to-Wealth Strategy for Waste Reduction in Port Harcourt City Nigeria: A Mixed Method Study

Authors: Osungwu Emeka

Abstract:

Until recently, Port Harcourt was known as the “Garden City of Nigeria” because of its neatness and the overwhelming presence of vegetation all over the metropolis. But today, the presence of piles of refuse dotting the entire city may have turned Port Harcourt into a “Garbage City”. Indiscriminate dumping of industrial, commercial and household wastes such as food waste, paper, polythene, textiles, scrap metals, glasses, wood, plastic, etc. at street corners and gutters, is still very common. The waste management problem in the state affects the citizens both directly and indirectly. The dumping of waste along the roadside obstructs traffic and, after mixing with rain water may sip underground with the possibility of the leachate contaminating the groundwater. The basic solid waste management processes of collection, transportation, segregation and final disposal appear to be very inefficient. This study was undertaken to assess waste utilization using metal waste scavengers. Highlighting their activities as a part of the informal sector of the solid waste management system with a view to identifying their challenges, prospects and possible contributions to the solid waste management system in the Port Harcourt metropolis. Therefore, the aim was to understand and assess scavenging as a system of solid waste management in Port Harcourt and to identify the main bottlenecks to its efficiency and the way forward. This study targeted people who engage in scavenging metal scraps across 5 major waste dump sites across Port Harcourt. To achieve this, a mixed method study was conducted to provide both experiential evidence on this waste utilization method using a qualitative study and a survey to collect numeric evidence on this subject. The findings from the qualitative string of this study provided insight on scavenging as a waste utilization activity and how their activities can reduce the gross waste generated and collected from the subject areas. It further showed the nature and characteristics of scavengers in the waste recycling system as a means of achieving the millennium development goals towards poverty alleviation, job creation and the development of a sustainable, cleaner environment. The study showed that in Port Harcourt, the waste management practice involves the collection, transportation and disposal of waste by refuse contractors using cart pushers and disposal vehicles at designated dumpsites where the scavengers salvage metal scraps for recycling and reuse. This study further indicates that there is a great demand for metal waste materials/products that are clearly identified as genuinely sustainable, even though they may be perceived as waste. The market for these waste materials shall promote entrepreneurship as a profitable venture for waste recovery and recycling in Port Harcourt. Therefore, the benefit of resource recovery and recycling as a means of the solid waste management system will enhance waste to wealth that will reduce pollution, create job opportunities thereby alleviate poverty.

Keywords: scavengers, metal waste, waste-to-wealth, recycle, Port Harcourt, Nigeria, waste reduction, garden city, waste

Procedia PDF Downloads 67
287 Spatial Design Transformation of Mount Merapi's Dwellings Using Diachronic Approach

Authors: Catharina Dwi Astuti Depari, Gregorius Agung Setyonugroho

Abstract:

In concern for human safety, living in disaster-prone areas is twofold: it is profoundly cataclysmic yet perceptibly contributive. This paradox could be identified in Kalitengah Lor Sub-village community who inhabit Mount Merapi’s most hazardous area, putting them to the highest exposure to eruptions’ cataclysmic impacts. After the devastating incident in 2010, through the Action Plan for Rehabilitation and Reconstruction, the National Government with immediate aid from humanitarian agencies initiated a relocation program by establishing nearly 2,613 temporary shelters throughout the mountain’s region. The problem arose as some of the most affected communities including those in Kalitengah Lor Sub-village, persistently refused to relocate. The obnoxious experience of those living in temporary shelters resulted from the program’s failure to support a long-term living was assumed to instigate the rejection. From the psychological standpoint, this phenomenon reflects the emotional bond between the affected communities with their former dwellings. Regarding this, the paper aims to reveal the factors influencing the emotional attachment of Kalitengah Lor community to their former dwellings including the dwellings’ spatial design transformation prior and post the eruption in 2010. The research adopted Likert five scale-questionnaire comprising a wide range of responses from strongly agree to strongly disagree. The responses were then statistically measured, leading to consensus that provides bases for further interpretations toward the local’s characteristics. Using purposive unit sampling technique, 50 respondents from 217 local households were randomly selected. Questions in the questionnaire were developed with concerns on the aspects of place attachment concept: affection, cognitive, behavior, and perception. Combined with quantitative method, the research adopted diachronic method which was aimed to analyze the spatial design transformation of each dwelling in relation to the inhabitant’s daily activities and personal preferences. The research found that access to natural resources like sand mining, agricultural farms and wood forests, social relationship and physical proximity from house to personal asset like cattle shed, are the dominant factors encouraging the locals to emotionally attached to their former dwellings. Consequently, each dwelling’s spatial design is suffered from changes in which the current house is typically larger in dimension and the bathroom is replaced by public toilet located outside the house’s backyard. Relatively unchanged, the cattle shed is still located in front of the house, the continuous visual relationship, particularly between the living and family room, is maintained, as well as the main orientation of the house towards the local street.

Keywords: diachronic method, former dwellings, local’s characteristics, place attachment, spatial design transformation

Procedia PDF Downloads 141
286 Last ca 2500 Yr History of the Harmful Algal Blooms in South China Reconstructed on Organic-Walled Dinoflagellate Cysts

Authors: Anastasia Poliakova

Abstract:

Harmful algal bloom (HAB) is a known negative phenomenon that is caused both by natural factors and anthropogenic influence. HABs can result in a series of deleterious effects, such as beach fouling, paralytic shellfish poisoning, mass mortality of marine species, and a threat to human health, especially if toxins pollute drinking water or occur nearby public resorts. In South China, the problem of HABs has an ultimately important meaning. For this study, we used a 1.5 m sediment core LAX-2018-2 collected in 2018 from the Zhanjiang Mangrove National Nature Reserve (109°03´E, 20°30´N), Guangdong Province, South China. High-resolution coastal environment reconstruction with a specific focus on the HABs history during the last ca 2500 yrs was attempted. Age control was performed with five radiocarbon dates obtained from benthic foraminifera. A total number of 71 dinoflagellate cyst types was recorded. The most common types found consistently throughout the sediment sequence were autotrophic Spiniferites spp., Spiniferites hyperacanthus and S. mirabilis, S. ramosus, Operculodinium centrocarpum sensu Wall and Dale 1966, Polysphaeridium zoharyi, and heterotrophic Brigantedinium ssp., cyst of Gymnodinium catenatum and cysts mixture of Protoperidinium. Three local dinoflagellate zones LAX-1 to LAX-3 were established based on the results of the constrained cluster analysis and data ordination; additionally, the middle zone LAX-2 was derived into two subzones, LAX-2a and LAX-2b based on the dynamics of toxic and heterotrophic cysts as well as on the significant changes (probability, P=0.89) in percentages of eutrophic indicators. The total cyst count varied from 106 to 410 dinocysts per slide, with 177 cyst types on average. Dinocyst assemblages are characterized by high values of the dost-depositional degradation index (kt) that varies between 3.6 and 7.6 (averaging 5.4), which is relatively high and is very typical for the areas with selective dinoflagellate cyst preservation that is related to bottom-water oxygen concentrations.

Keywords: reconstruction of palaeoenvironment, harmful algal blooms, anthropogenic influence on coastal zones, South China Sea

Procedia PDF Downloads 61
285 Reconstruction of Age-Related Generations of Siberian Larch to Quantify the Climatogenic Dynamics of Woody Vegetation Close the Upper Limit of Its Growth

Authors: A. P. Mikhailovich, V. V. Fomin, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova

Abstract:

Woody vegetation among the upper limit of its habitat is a sensitive indicator of biota reaction to regional climate changes. Quantitative assessment of temporal and spatial changes in the distribution of trees and plant biocenoses calls for the development of new modeling approaches based upon selected data from measurements on the ground level and ultra-resolution aerial photography. Statistical models were developed for the study area located in the Polar Urals. These models allow obtaining probabilistic estimates for placing Siberian Larch trees into one of the three age intervals, namely 1-10, 11-40 and over 40 years, based on the Weilbull distribution of the maximum horizontal crown projection. Authors developed the distribution map for larch trees with crown diameters exceeding twenty centimeters by deciphering aerial photographs made by a UAV from an altitude equal to fifty meters. The total number of larches was equal to 88608, forming the following distribution row across the abovementioned intervals: 16980, 51740, and 19889 trees. The results demonstrate that two processes can be observed in the course of recent decades: first is the intensive forestation of previously barren or lightly wooded fragments of the study area located within the patches of wood, woodlands, and sparse stand, and second, expansion into mountain tundra. The current expansion of the Siberian Larch in the region replaced the depopulation process that occurred in the course of the Little Ice Age from the late 13ᵗʰ to the end of the 20ᵗʰ century. Using data from field measurements of Siberian larch specimen biometric parameters (including height, diameter at root collar and at 1.3 meters, and maximum projection of the crown in two orthogonal directions) and data on tree ages obtained at nine circular test sites, authors developed a model for artificial neural network including two layers with three and two neurons, respectively. The model allows quantitative assessment of a specimen's age based on height and maximum crone projection values. Tree height and crown diameters can be quantitatively assessed using data from aerial photographs and lidar scans. The resulting model can be used to assess the age of all Siberian larch trees. The proposed approach, after validation, can be applied to assessing the age of other tree species growing near the upper tree boundaries in other mountainous regions. This research was collaboratively funded by the Russian Ministry for Science and Education (project No. FEUG-2023-0002) and Russian Science Foundation (project No. 24-24-00235) in the field of data modeling on the basis of artificial neural network.

Keywords: treeline, dynamic, climate, modeling

Procedia PDF Downloads 36
284 Construction of a Dynamic Model of Cerebral Blood Circulation for Future Integrated Control of Brain State

Authors: Tomohiko Utsuki

Abstract:

Currently, brain resuscitation becomes increasingly important due to revising various clinical guidelines pertinent to emergency care. In brain resuscitation, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) is required for stabilizing physiological state of brain, and is described as the essential treatment points in many guidelines of disorder and/or disease such as brain injury, stroke, and encephalopathy. Thus, an integrated control system of BT, ICP, and CBF will greatly contribute to alleviating the burden on medical staff and improving treatment effect in brain resuscitation. In order to develop such a control system, models related to BT, ICP, and CBF are required for control simulation, because trial and error experiments using patients are not ethically allowed. A static model of cerebral blood circulation from intracranial arteries and vertebral artery to jugular veins has already constructed and verified. However, it is impossible to represent the pooling of blood in blood vessels, which is one cause of cerebral hypertension in this model. And, it is also impossible to represent the pulsing motion of blood vessels caused by blood pressure change which can have an affect on the change of cerebral tissue pressure. Thus, a dynamic model of cerebral blood circulation is constructed in consideration of the elasticity of the blood vessel and the inertia of the blood vessel wall. The constructed dynamic model was numerically analyzed using the normal data, in which each arterial blood flow in cerebral blood circulation, the distribution of blood pressure in the Circle of Willis, and the change of blood pressure along blood flow were calculated for verifying against physiological knowledge. As the result, because each calculated numerical value falling within the generally known normal range, this model has no problem in representing at least the normal physiological state of the brain. It is the next task to verify the accuracy of the present model in the case of disease or disorder. Currently, the construction of a migration model of extracellular fluid and a model of heat transfer in cerebral tissue are in progress for making them parts of an integrated model of brain physiological state, which is necessary for developing an future integrated control system of BT, ICP and CBF. The present model is applicable to constructing the integrated model representing at least the normal condition of brain physiological state by uniting with such models.

Keywords: dynamic model, cerebral blood circulation, brain resuscitation, automatic control

Procedia PDF Downloads 135