Search results for: stuck particles separation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2936

Search results for: stuck particles separation

416 Enhancing Animal Protection: Topical RNAi with Polymer Carriers for Sustainable Animal Health in Australian Sheep Flystrike

Authors: Yunjia Yang, Yakun Yan, Peng Li, Gordon Xu, Timothy Mahony, Neena Mitter, Karishma Mody

Abstract:

Sheep flystrike is one of the most economically important diseases affecting the Australian sheep and wool industry (>356M/annually). Currently, control of Lucillia cuprina relies almost exclusively on chemicals controls and the parasite has developed resistance to nearly all control chemicals used in the past. It is therefore critical to develop an alternative solution for the sustainable control and management of flystrike. RNA interference (RNAi) technologies have been successfully explored in multiple animal industries for developing parasites controls. This research project aims to develop a RNAi based biological control for sheep blowfly. Double-stranded RNA (dsRNA) has already proven successful against viruses, fungi and insects. However, the environmental instability of dsRNA is a major bottleneck with a protection window only lasting 5-7 days. Bentonite polymer (BenPol) technology can overcome this problem, as it can be tuned for controlled release of the dsRNA in the gut challenging pH environment of the blowfly larvae, prolonging its exposure time to and uptake by target cells. We have investigated four different BenPol carriers for their dsRNA loading capabilities of which three of them were able to afford dsRNA stability under multiple temperatures (4°C, 22°C, 40°C, 55°C) in the sheep serum. Based on stability results, we further tested dsRNA from potential targeted genes loaded with BenPol carrier in larvae feeding assay, and get three knockdowns. Our results, establish that the dsRNA when loaded on BenPol particles is stable unlike naked dsRNA which is rapidly degraded in the sheep serum. A stable nanoparticles delivery system that can protect and increase the inherent stability of the dsRNA molecules at higher temperatures in a complex biological fluid like serum, offers a great deal of promise for the future use of this approach for enhancing animal protection.

Keywords: RNA interference, Lucillia cuprina, polymer carriers, polymer stability

Procedia PDF Downloads 81
415 The Concentration of Selected Cosmogenic and Anthropogenic Radionuclides in the Ground Layer of the Atmosphere (Polar and Mid-Latitudes Regions)

Authors: A. Burakowska, M. Piotrowski, M. Kubicki, H. Trzaskowska, R. Sosnowiec, B. Myslek-Laurikainen

Abstract:

The most important source of atmospheric radioactivity are radionuclides generated as a result of the impact of primary and secondary cosmic radiation, with the nuclei of nitrogen oxygen and carbon in the upper troposphere and lower stratosphere. This creates about thirty radioisotopes of more than twenty elements. For organisms, the four of them are most important: ³H, ⁷Be, ²²Na, ¹⁴C. The natural radionuclides, which are present in Earth crust, also settle on dust and particles of water vapor. By this means, the derivatives of uranium and thorium, and long-life 40K get into the air. ¹³⁷Cs is the most widespread isotope, that is implemented by humans into the environment. To determine the concentration of radionuclides in the atmosphere, high volume air samplers were used, where the aerosol collection took place on a special filter fabric (Petrianov filter tissue FPP-15-1.5). In 2002 the high volume air sampler AZA-1000 was installed at the Polish Polar Observatory of the Polish Academy of Science in Hornsund, Spitsbergen (77°00’N, 15°33’E), designed to operate in all weather conditions of the cold polar region. Since 1991 (with short breaks) the ASS-500 air sampler has been working, which is located in Swider at the Kalinowski Geophysical Observatory of Geophysics Institute of the Polish Academy of Science (52°07’N, 21°15’E). The following results of radionuclides concentrations were obtained from both stations using gamma spectroscopy analysis: ⁷Be, ¹³⁷Cs, ¹³⁴Cs, ²¹⁰Pb, ⁴⁰K. For gamma spectroscopy analysis HPGe (High Purity Germanium) detector were used. These data were compared with each other. The preliminary results gave evidence that radioactivity measured in aerosols is not proportional to the amount of dust for both studied regions. Furthermore, the results indicate annual variability (seasonal fluctuations) as well as a decrease in the average activity of ⁷Be with increasing latitude. The content of ⁷Be in surface air also indicates the relationship with solar activity cycles.

Keywords: aerosols, air filters, atmospheric beryllium, environmental radionuclides, gamma spectroscopy, mid-latitude regions radionuclides, polar regions radionuclides, solar cycles

Procedia PDF Downloads 141
414 Efficacy of Crystalline Admixtures in Self-Healing Capacity of Fibre Reinforced Concrete

Authors: Evangelia Tsampali, Evangelos Yfantidis, Andreas Ioakim, Maria Stefanidou

Abstract:

The purpose of this paper is the characterization of the effects of crystalline admixtures on concrete. Crystallites, aided by the presence of humidity, form idiomorphic crystals that block cracks and pores resulting in reduced porosity. In this project, two types of crystallines have been employed. The hydrophilic nature of crystalline admixtures helps the components to react with water and cement particles in the concrete to form calcium silicate hydrates and pore-blocking precipitates in the existing micro-cracks and capillaries. The underlying mechanism relies on the formation of calcium silicate hydrates and the resulting deposits of these crystals become integrally bound with the hydrated cement paste. The crystalline admixtures continue to activate throughout the life of the composite material when in the presence of moisture entering the concrete through hairline cracks, sealing additional gaps. The resulting concrete exhibits significantly increased resistance to water penetration under stress. Admixtures of calcium aluminates can also contribute to this healing mechanism in the same manner. However, this contribution is negligible compared to the calcium silicate hydrates due to the abundance of the latter. These crystalline deposits occur throughout the concrete volume and are a permanent part of the concrete mass. High-performance fibre reinforced cementitious composite (HPFRCC) were produced in the laboratory. The specimens were exposed in three healing conditions: water immersion until testing at 15 °C, sea water immersion until testing at 15 °C, and wet/dry cycles (immersion in tap water for 3 days and drying for 4 days). Specimens were pre-cracked at 28 days, and the achieved cracks width were in the range of 0.10–0.50 mm. Furthermore, microstructure observations and Ultrasonic Pulse Velocity tests have been conducted. Based on the outcomes, self-healing related indicators have also been defined. The results show almost perfect healing capability for specimens healed under seawater, better than for specimens healed in water while inadequate for the wet/dry exposure in both of the crystalline types.

Keywords: autogenous self-healing, concrete, crystalline admixtures, ultrasonic pulse velocity test

Procedia PDF Downloads 127
413 Influence of Single and Multiple Skin-Core Debonding on Free Vibration Characteristics of Innovative GFRP Sandwich Panels

Authors: Indunil Jayatilake, Warna Karunasena, Weena Lokuge

Abstract:

An Australian manufacturer has fabricated an innovative GFRP sandwich panel made from E-glass fiber skin and a modified phenolic core for structural applications. Debonding, which refers to separation of skin from the core material in composite sandwiches, is one of the most common types of damage in composites. The presence of debonding is of great concern because it not only severely affects the stiffness but also modifies the dynamic behaviour of the structure. Generally, it is seen that the majority of research carried out has been concerned about the delamination of laminated structures whereas skin-core debonding has received relatively minor attention. Furthermore, it is observed that research done on composite slabs having multiple skin-core debonding is very limited. To address this gap, a comprehensive research investigating dynamic behaviour of composite panels with single and multiple debonding is presented. The study uses finite-element modelling and analyses for investigating the influence of debonding on free vibration behaviour of single and multilayer composite sandwich panels. A broad parametric investigation has been carried out by varying debonding locations, debonding sizes and support conditions of the panels in view of both single and multiple debonding. Numerical models were developed with Strand7 finite element package by innovatively selecting the suitable elements to diligently represent their actual behavior. Three-dimensional finite element models were employed to simulate the physically real situation as close as possible, with the use of an experimentally and numerically validated finite element model. Comparative results and conclusions based on the analyses are presented. For similar extents and locations of debonding, the effect of debonding on natural frequencies appears greatly dependent on the end conditions of the panel, giving greater decrease in natural frequency when the panels are more restrained. Some modes are more sensitive to debonding and this sensitivity seems to be related to their vibration mode shapes. The fundamental mode seems generally the least sensitive mode to debonding with respect to the variation in free vibration characteristics. The results indicate the effectiveness of the developed three-dimensional finite element models in assessing debonding damage in composite sandwich panels

Keywords: debonding, free vibration behaviour, GFRP sandwich panels, three dimensional finite element modelling

Procedia PDF Downloads 315
412 Metabolic Profiling in Breast Cancer Applying Micro-Sampling of Biological Fluids and Analysis by Gas Chromatography – Mass Spectrometry

Authors: Mónica P. Cala, Juan S. Carreño, Roland J.W. Meesters

Abstract:

Recently, collection of biological fluids on special filter papers has become a popular micro-sampling technique. Especially, the dried blood spot (DBS) micro-sampling technique has gained much attention and is momently applied in various life sciences reserach areas. As a result of this popularity, DBS are not only intensively competing with the venous blood sampling method but are at this moment widely applied in numerous bioanalytical assays. In particular, in the screening of inherited metabolic diseases, pharmacokinetic modeling and in therapeutic drug monitoring. Recently, microsampling techniques were also introduced in “omics” areas, whereunder metabolomics. For a metabolic profiling study we applied micro-sampling of biological fluids (blood and plasma) from healthy controls and from women with breast cancer. From blood samples, dried blood and plasma samples were prepared by spotting 8uL sample onto pre-cutted 5-mm paper disks followed by drying of the disks for 100 minutes. Dried disks were then extracted by 100 uL of methanol. From liquid blood and plasma samples 40 uL were deproteinized with methanol followed by centrifugation and collection of supernatants. Supernatants and extracts were evaporated until dryness by nitrogen gas and residues derivated by O-methyxyamine and MSTFA. As internal standard C17:0-methylester in heptane (10 ppm) was used. Deconvolution and alignment of and full scan (m/z 50-500) MS data were done by AMDIS and SpectConnect (http://spectconnect.mit.edu) software, respectively. Statistical Data analysis was done by Principal Component Analysis (PCA) using R software. The results obtained from our preliminary study indicate that the use of dried blood/plasma on paper disks could be a powerful new tool in metabolic profiling. Many of the metabolites observed in plasma (liquid/dried) were also positively identified in whole blood samples (liquid/dried). Whole blood could be a potential substitute matrix for plasma in Metabolomic profiling studies as well also micro-sampling techniques for the collection of samples in clinical studies. It was concluded that the separation of the different sample methodologies (liquid vs. dried) as observed by PCA was due to different sample treatment protocols applied. More experiments need to be done to confirm obtained observations as well also a more rigorous validation .of these micro-sampling techniques is needed. The novelty of our approach can be found in the application of different biological fluid micro-sampling techniques for metabolic profiling.

Keywords: biofluids, breast cancer, metabolic profiling, micro-sampling

Procedia PDF Downloads 411
411 Removal of Chromium by UF5kDa Membrane: Its Characterization, Optimization of Parameters, and Evaluation of Coefficients

Authors: Bharti Verma, Chandrajit Balomajumder

Abstract:

Water pollution is escalated owing to industrialization and random ejection of one or more toxic heavy metal ions from the semiconductor industry, electroplating, metallurgical, mining, chemical manufacturing, tannery industries, etc., In semiconductor industry various kinds of chemicals in wafers preparation are used . Fluoride, toxic solvent, heavy metals, dyes and salts, suspended solids and chelating agents may be found in wastewater effluent of semiconductor manufacturing industry. Also in the chrome plating, in the electroplating industry, the effluent contains heavy amounts of Chromium. Since Cr(VI) is highly toxic, its exposure poses an acute risk of health. Also, its chronic exposure can even lead to mutagenesis and carcinogenesis. On the contrary, Cr (III) which is naturally occurring, is much less toxic than Cr(VI). Discharge limit of hexavalent chromium and trivalent chromium are 0.05 mg/L and 5 mg/L, respectively. There are numerous methods such as adsorption, chemical precipitation, membrane filtration, ion exchange, and electrochemical methods for the heavy metal removal. The present study focuses on the removal of Chromium ions by using flat sheet UF5kDa membrane. The Ultra filtration membrane process is operated above micro filtration membrane process. Thus separation achieved may be influenced due to the effect of Sieving and Donnan effect. Ultrafiltration is a promising method for the rejection of heavy metals like chromium, fluoride, cadmium, nickel, arsenic, etc. from effluent water. Benefits behind ultrafiltration process are that the operation is quite simple, the removal efficiency is high as compared to some other methods of removal and it is reliable. Polyamide membranes have been selected for the present study on rejection of Cr(VI) from feed solution. The objective of the current work is to examine the rejection of Cr(VI) from aqueous feed solutions by flat sheet UF5kDa membranes with different parameters such as pressure, feed concentration and pH of the feed. The experiments revealed that with increasing pressure, the removal efficiency of Cr(VI) is increased. Also, the effect of pH of feed solution, the initial dosage of chromium in the feed solution has been studied. The membrane has been characterized by FTIR, SEM and AFM before and after the run. The mass transfer coefficients have been estimated. Membrane transport parameters have been calculated and have been found to be in a good correlation with the applied model.

Keywords: heavy metal removal, membrane process, waste water treatment, ultrafiltration

Procedia PDF Downloads 139
410 Simulation of the Visco-Elasto-Plastic Deformation Behaviour of Short Glass Fibre Reinforced Polyphthalamides

Authors: V. Keim, J. Spachtholz, J. Hammer

Abstract:

The importance of fibre reinforced plastics continually increases due to the excellent mechanical properties, low material and manufacturing costs combined with significant weight reduction. Today, components are usually designed and calculated numerically by using finite element methods (FEM) to avoid expensive laboratory tests. These programs are based on material models including material specific deformation characteristics. In this research project, material models for short glass fibre reinforced plastics are presented to simulate the visco-elasto-plastic deformation behaviour. Prior to modelling specimens of the material EMS Grivory HTV-5H1, consisting of a Polyphthalamide matrix reinforced by 50wt.-% of short glass fibres, are characterized experimentally in terms of the highly time dependent deformation behaviour of the matrix material. To minimize the experimental effort, the cyclic deformation behaviour under tensile and compressive loading (R = −1) is characterized by isothermal complex low cycle fatigue (CLCF) tests. Combining cycles under two strain amplitudes and strain rates within three orders of magnitude and relaxation intervals into one experiment the visco-elastic deformation is characterized. To identify visco-plastic deformation monotonous tensile tests either displacement controlled or strain controlled (CERT) are compared. All relevant modelling parameters for this complex superposition of simultaneously varying mechanical loadings are quantified by these experiments. Subsequently, two different material models are compared with respect to their accuracy describing the visco-elasto-plastic deformation behaviour. First, based on Chaboche an extended 12 parameter model (EVP-KV2) is used to model cyclic visco-elasto-plasticity at two time scales. The parameters of the model including a total separation of elastic and plastic deformation are obtained by computational optimization using an evolutionary algorithm based on a fitness function called genetic algorithm. Second, the 12 parameter visco-elasto-plastic material model by Launay is used. In detail, the model contains a different type of a flow function based on the definition of the visco-plastic deformation as a part of the overall deformation. The accuracy of the models is verified by corresponding experimental LCF testing.

Keywords: complex low cycle fatigue, material modelling, short glass fibre reinforced polyphthalamides, visco-elasto-plastic deformation

Procedia PDF Downloads 215
409 School and Family Impairment Associated with Childhood Anxiety Disorders: Examining Differences in Parent and Child Report

Authors: Melissa K. Hord, Stephen P. Whiteside

Abstract:

Impairment in functioning is a requirement for diagnosing psychopathology, identifying individuals in need of treatment, and documenting improvement with treatment. Further, identifying different types of functional impairment can guide educators and treatment providers. However, most assessment tools focus on symptom severity and few measures assess impairment associated with childhood anxiety disorders. The child- and parent-report versions of the Child Sheehan Disability Scale (CSDS) are measures that may provide useful information regarding impairment. The purpose of the present study is to examine whether children diagnosed with different anxiety disorders have greater impairment in school or home functioning based on self or parent report. The sample consisted of 844 children ages 5 to 19 years of age (mean 13.43, 61% female, 90.9% Caucasian), including 281 children diagnosed with obsessive compulsive disorder (OCD), 200 with generalized anxiety disorder (GAD), 176 with social phobia, 83 with separation anxiety, 61 with anxiety not otherwise specified (NOS), 30 with panic disorder, and 13 with panic with agoraphobia. To assess whether children and parents reported greater impairment in school or home functioning, a multivariate analysis of variance was conducted. (The assumptions of independence and homogeneity of variance were checked and met). A significant difference was found, Pillai's trace = .143, F (4, 28) = 4.19, p < .001, partial eta squared = .04. Post hoc comparisons using the Tukey HSD test indicated that children report significantly greater impairment in school with panic disorder (M=5.18, SD=3.28), social phobia (M=4.95, SD=3.20), and OCD (M=4.62, SD=3.32) compared to other diagnoses; whereas parents endorse significantly greater school impairment when their child has a social phobia (M=5.70, SD=3.39) diagnosis. Interestingly, both children and parents reported greater impairment in family functioning for an OCD (child report M=5.37, SD=3.20; parent report M=5.59, SD=3.38) diagnosis compared to other anxiety diagnoses. (Additional findings for the anxiety disorders associated with less impairment will also be presented). The results of the current study have important implications for educators and treatment providers who are working with anxious children. First, understanding that differences exist in how children and parents view impairment related to childhood anxiety can help those working with these families to be more sensitive during interactions. Second, evidence suggests that difficulties in one environment do not necessarily translate to another environment, thus caregivers may benefit from careful explanation of observations obtained by educators. Third, results support the use of the CSDS measure by treatment providers to identify impairment across environments in order to more effectively target interventions.

Keywords: anxiety, childhood, impairment, school functioning

Procedia PDF Downloads 278
408 Mesoporous Na2Ti3O7 Nanotube-Constructed Materials with Hierarchical Architecture: Synthesis and Properties

Authors: Neumoin Anton Ivanovich, Opra Denis Pavlovich

Abstract:

Materials based on titanium oxide compounds are widely used in such areas as solar energy, photocatalysis, food industry and hygiene products, biomedical technologies, etc. Demand for them has also formed in the battery industry (an example of this is the commercialization of Li4Ti5O12), where much attention has recently been paid to the development of next-generation systems and technologies, such as sodium-ion batteries. This dictates the need to search for new materials with improved characteristics, as well as ways to obtain them that meet the requirements of scalability. One of the ways to solve these problems can be the creation of nanomaterials that often have a complex of physicochemical properties that radically differ from the characteristics of their counterparts in the micro- or macroscopic state. At the same time, it is important to control the texture (specific surface area, porosity) of such materials. In view of the above, among other methods, the hydrothermal technique seems to be suitable, allowing a wide range of control over the conditions of synthesis. In the present study, a method was developed for the preparation of mesoporous nanostructured sodium trititanate (Na2Ti3O7) with a hierarchical architecture. The materials were synthesized by hydrothermal processing and exhibit a complex hierarchically organized two-layer architecture. At the first level of the hierarchy, materials are represented by particles having a roughness surface, and at the second level, by one-dimensional nanotubes. The products were found to have high specific surface area and porosity with a narrow pore size distribution (about 6 nm). As it is known, the specific surface area and porosity are important characteristics of functional materials, which largely determine the possibilities and directions of their practical application. Electrochemical impedance spectroscopy data show that the resulting sodium trititanate has a sufficiently high electrical conductivity. As expected, the synthesized complexly organized nanoarchitecture based on sodium trititanate with a porous structure can be practically in demand, for example, in the field of new generation electrochemical storage and energy conversion devices.

Keywords: sodium trititanate, hierarchical materials, mesoporosity, nanotubes, hydrothermal synthesis

Procedia PDF Downloads 107
407 Computational Fluid Dynamics Design and Analysis of Aerodynamic Drag Reduction Devices for a Mazda T3500 Truck

Authors: Basil Nkosilathi Dube, Wilson R. Nyemba, Panashe Mandevu

Abstract:

In highway driving, over 50 percent of the power produced by the engine is used to overcome aerodynamic drag, which is a force that opposes a body’s motion through the air. Aerodynamic drag and thus fuel consumption increase rapidly at speeds above 90kph. It is desirable to minimize fuel consumption. Aerodynamic drag reduction in highway driving is the best approach to minimize fuel consumption and to reduce the negative impacts of greenhouse gas emissions on the natural environment. Fuel economy is the ultimate concern of automotive development. This study aims to design and analyze drag-reducing devices for a Mazda T3500 truck, namely, the cab roof and rear (trailer tail) fairings. The aerodynamic effects of adding these append devices were subsequently investigated. To accomplish this, two 3D CAD models of the Mazda truck were designed using the Design Modeler. One, with these, append devices and the other without. The models were exported to ANSYS Fluent for computational fluid dynamics analysis, no wind tunnel tests were performed. A fine mesh with more than 10 million cells was applied in the discretization of the models. The realizable k-ε turbulence model with enhanced wall treatment was used to solve the Reynold’s Averaged Navier-Stokes (RANS) equation. In order to simulate the highway driving conditions, the tests were simulated with a speed of 100 km/h. The effects of these devices were also investigated for low-speed driving. The drag coefficients for both models were obtained from the numerical calculations. By adding the cab roof and rear (trailer tail) fairings, the simulations show a significant reduction in aerodynamic drag at a higher speed. The results show that the greatest drag reduction is obtained when both devices are used. Visuals from post-processing show that the rear fairing minimized the low-pressure region at the rear of the trailer when moving at highway speed. The rear fairing achieved this by streamlining the turbulent airflow, thereby delaying airflow separation. For lower speeds, there were no significant differences in drag coefficients for both models (original and modified). The results show that these devices can be adopted for improving the aerodynamic efficiency of the Mazda T3500 truck at highway speeds.

Keywords: aerodynamic drag, computation fluid dynamics, fluent, fuel consumption

Procedia PDF Downloads 140
406 Experimental Study Analyzing the Similarity Theory Formulations for the Effect of Aerodynamic Roughness Length on Turbulence Length Scales in the Atmospheric Surface Layer

Authors: Matthew J. Emes, Azadeh Jafari, Maziar Arjomandi

Abstract:

Velocity fluctuations of shear-generated turbulence are largest in the atmospheric surface layer (ASL) of nominal 100 m depth, which can lead to dynamic effects such as galloping and flutter on small physical structures on the ground when the turbulence length scales and characteristic length of the physical structure are the same order of magnitude. Turbulence length scales are a measure of the average sizes of the energy-containing eddies that are widely estimated using two-point cross-correlation analysis to convert the temporal lag to a separation distance using Taylor’s hypothesis that the convection velocity is equal to the mean velocity at the corresponding height. Profiles of turbulence length scales in the neutrally-stratified ASL, as predicted by Monin-Obukhov similarity theory in Engineering Sciences Data Unit (ESDU) 85020 for single-point data and ESDU 86010 for two-point correlations, are largely dependent on the aerodynamic roughness length. Field measurements have shown that longitudinal turbulence length scales show significant regional variation, whereas length scales of the vertical component show consistent Obukhov scaling from site to site because of the absence of low-frequency components. Hence, the objective of this experimental study is to compare the similarity theory relationships between the turbulence length scales and aerodynamic roughness length with those calculated using the autocorrelations and cross-correlations of field measurement velocity data at two sites: the Surface Layer Turbulence and Environmental Science Test (SLTEST) facility in a desert ASL in Dugway, Utah, USA and the Commonwealth Scientific and Industrial Research Organisation (CSIRO) wind tower in a rural ASL in Jemalong, NSW, Australia. The results indicate that the longitudinal turbulence length scales increase with increasing aerodynamic roughness length, as opposed to the relationships derived by similarity theory correlations in ESDU models. However, the ratio of the turbulence length scales in the lateral and vertical directions to the longitudinal length scales is relatively independent of surface roughness, showing consistent inner-scaling between the two sites and the ESDU correlations. Further, the diurnal variation of wind velocity due to changes in atmospheric stability conditions has a significant effect on the turbulence structure of the energy-containing eddies in the lower ASL.

Keywords: aerodynamic roughness length, atmospheric surface layer, similarity theory, turbulence length scales

Procedia PDF Downloads 124
405 Chemical Synthesis, Characterization and Dose Optimization of Chitosan-Based Nanoparticles of MCPA for Management of Broad-Leaved Weeds (Chenopodium album, Lathyrus aphaca, Angalis arvensis and Melilotus indica) of Wheat

Authors: Muhammad Ather Nadeem, Bilal Ahmad Khan, Tasawer Abbas

Abstract:

Nanoherbicides utilize nanotechnology to enhance the delivery of biological or chemical herbicides using combinations of nanomaterials. The aim of this research was to examine the efficacy of chitosan nanoparticles containing MCPA herbicide as a potential eco-friendly alternative for weed control in wheat crops. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and ultraviolet absorbance were used to analyze the developed nanoparticles. The SEM analysis indicated that the average size of the particles was 35 nm, forming clusters with a porous structure. Both nanoparticles of fluroxyper + MCPA exhibited maximal absorption peaks at a wavelength of 320 nm. The compound fluroxyper +MCPA has a strong peak at a 2θ value of 30.55°, which correlates to the 78 plane of the anatase phase. The weeds, including Chenopodium album, Lathyrus aphaca, Angalis arvensis, and Melilotus indica, were sprayed with the nanoparticles while they were in the third or fourth leaf stage. There were seven distinct dosages used: doses (D0 (Check weeds), D1 (Recommended dose of traditional herbicide, D2 (Recommended dose of Nano-herbicide (NPs-H)), D3 (NPs-H with 05-fold lower dose), D4 ((NPs-H) with 10-fold lower dose), D5 (NPs-H with 15-fold lower dose), and D6 (NPs-H with 20-fold lower dose)). The chitosan-based nanoparticles of MCPA at the prescribed dosage of conventional herbicide resulted in complete death and visual damage, with a 100% fatality rate. The dosage that was 5-fold lower exhibited the lowest levels of plant height (3.95 cm), chlorophyll content (5.63%), dry biomass (0.10 g), and fresh biomass (0.33 g) in the broad-leaved weed of wheat. The herbicide nanoparticles, when used at a dosage 10-fold lower than that of conventional herbicides, had a comparable impact on the prescribed dosage. Nano-herbicides have the potential to improve the efficiency of standard herbicides by increasing stability and lowering toxicity.

Keywords: mortality, visual injury, chlorophyl contents, chitosan-based nanoparticles

Procedia PDF Downloads 65
404 Soil/Phytofisionomy Relationship in Southeast of Chapada Diamantina, Bahia, Brazil

Authors: Marcelo Araujo da Nóbrega, Ariel Moura Vilas Boas

Abstract:

This study aims to characterize the physicochemical aspects of the soils of southeastern Chapada Diamantina - Bahia related to the phytophysiognomies of this area, rupestrian field, small savanna (savanna fields), small dense savanna (savanna fields), savanna (Cerrado), dry thorny forest (Caatinga), dry thorny forest/savanna, scrub (Carrasco - ecotone), forest island (seasonal semi-deciduous forest - Capão) and seasonal semi-deciduous forest. To achieve the research objective, soil samples were collected in each plant formation and analyzed in the soil laboratory of ESALQ - USP in order to identify soil fertility through the determination of pH, organic matter, phosphorus, potassium, calcium, magnesium, potential acidity, sum of bases, cation exchange capacity and base saturation. The composition of soil particles was also checked; that is, the texture, step made in the terrestrial ecosystems laboratory of the Department of Ecology of USP and in the soil laboratory of ESALQ. Another important factor also studied was to show the variations in the vegetation cover in the region as a function of soil moisture in the different existing physiographic environments. Another study carried out was a comparison between the average soil moisture data with precipitation data from three locations with very different phytophysiognomies. The soils found in this part of Bahia can be classified into 5 classes, with a predominance of oxisols. All of these classes have a great diversity of physical and chemical properties, as can be seen in photographs and in particle size and fertility analyzes. The deepest soils are located in the Central Pediplano of Chapada Diamantina where the dirty field, the clean field, the executioner and the semideciduous seasonal forest (Capão) are located, and the shallower soils were found in the rupestrian field, dry thorny forest, and savanna fields, the latter located on a hillside. As for the variations in water in the region's soil, the data indicate that there were large spatial variations in humidity in both the rainy and dry periods.

Keywords: Bahia, Brazil, chapada diamantina, phytophysiognomies, soils

Procedia PDF Downloads 144
403 Hansen Solubility Parameter from Surface Measurements

Authors: Neveen AlQasas, Daniel Johnson

Abstract:

Membranes for water treatment are an established technology that attracts great attention due to its simplicity and cost effectiveness. However, membranes in operation suffer from the adverse effect of membrane fouling. Bio-fouling is a phenomenon that occurs at the water-membrane interface, and is a dynamic process that is initiated by the adsorption of dissolved organic material, including biomacromolecules, on the membrane surface. After initiation, attachment of microorganisms occurs, followed by biofilm growth. The biofilm blocks the pores of the membrane and consequently results in reducing the water flux. Moreover, the presence of a fouling layer can have a substantial impact on the membrane separation properties. Understanding the mechanism of the initiation phase of biofouling is a key point in eliminating the biofouling on membrane surfaces. The adhesion and attachment of different fouling materials is affected by the surface properties of the membrane materials. Therefore, surface properties of different polymeric materials had been studied in terms of their surface energies and Hansen solubility parameters (HSP). The difference between the combined HSP parameters (HSP distance) allows prediction of the affinity of two materials to each other. The possibilities of measuring the HSP of different polymer films via surface measurements, such as contact angle has been thoroughly investigated. Knowing the HSP of a membrane material and the HSP of a specific foulant, facilitate the estimation of the HSP distance between the two, and therefore the strength of attachment to the surface. Contact angle measurements using fourteen different solvents on five different polymeric films were carried out using the sessile drop method. Solvents were ranked as good or bad solvents using different ranking method and ranking was used to calculate the HSP of each polymeric film. Results clearly indicate the absence of a direct relation between contact angle values of each film and the HSP distance between each polymer film and the solvents used. Therefore, estimating HSP via contact angle alone is not sufficient. However, it was found if the surface tensions and viscosities of the used solvents are taken in to the account in the analysis of the contact angle values, a prediction of the HSP from contact angle measurements is possible. This was carried out via training of a neural network model. The trained neural network model has three inputs, contact angle value, surface tension and viscosity of solvent used. The model is able to predict the HSP distance between the used solvent and the tested polymer (material). The HSP distance prediction is further used to estimate the total and individual HSP parameters of each tested material. The results showed an accuracy of about 90% for all the five studied films

Keywords: surface characterization, hansen solubility parameter estimation, contact angle measurements, artificial neural network model, surface measurements

Procedia PDF Downloads 94
402 Design of Large Parallel Underground Openings in Himalayas: A Case Study of Desilting Chambers for Punatsangchhu-I, Bhutan

Authors: Kanupreiya, Rajani Sharma

Abstract:

Construction of a single underground structure is itself a challenging task, and it becomes more critical in tectonically active young mountains such as the Himalayas which are highly anisotropic. The Himalayan geology mostly comprises of incompetent and sheared rock mass in addition to fold/faults, rock burst, and water ingress. Underground tunnels form the most essential and important structure in run-of-river hydroelectric projects. Punatsangchhu I hydroelectric project (PHEP-I), Bhutan (1200 MW) is a run-of-river scheme which has four parallel underground desilting chambers. The Punatsangchhu River carries a large quantity of silt load during monsoon season. Desilting chambers were provided to remove the silt particles of size greater than and equal to 0.2 mm with 90% efficiency, thereby minimizing the rate of damage to turbines. These chambers are 330 m long, 18 m wide at the center and 23.87 m high, with a 5.87 m hopper portion. The geology of desilting chambers was known from an exploratory drift which exposed low dipping foliation joint and six joint sets. The RMR and Q value in this reach varied from 40 to 60 and 1 to 6 respectively. This paper describes different rock engineering principles undertaken for safe excavation and rock support of the moderately jointed, blocky and thinly foliated biotite gneiss. For the design of rock support system of desilting chambers, empirical and numerical analysis was adopted. Finite element analysis was carried out for cavern design and finalization of pillar width using Phase2. Phase2 is a powerful tool for simulation of stage-wise excavation with simultaneous provision of support system. As the geology of the region had 7 sets of joints, in addition to FEM based approach, safety factors for potentially unstable wedges were checked using UnWedge. The final support recommendations were based on continuous face mapping, numerical modelling, empirical calculations, and practical experiences.

Keywords: dam siltation, Himalayan geology, hydropower, rock support, numerical modelling

Procedia PDF Downloads 92
401 H2 Permeation Properties of a Catalytic Membrane Reactor in Methane Steam Reforming Reaction

Authors: M. Amanipour, J. Towfighi, E. Ganji Babakhani, M. Heidari

Abstract:

Cylindrical alumina microfiltration membrane (GMITM Corporation, inside diameter=9 mm, outside diameter=13 mm, length= 50 mm) with an average pore size of 0.5 micrometer and porosity of about 0.35 was used as the support for membrane reactor. This support was soaked in boehmite sols, and the mean particle size was adjusted in the range of 50 to 500 nm by carefully controlling hydrolysis time, and calcined at 650 °C for two hours. This process was repeated with different boehmite solutions in order to achieve an intermediate layer with an average pore size of about 50 nm. The resulting substrate was then coated with a thin and dense layer of silica by counter current chemical vapour deposition (CVD) method. A boehmite sol with 10 wt.% of nickel which was prepared by a standard procedure was used to make the catalytic layer. BET, SEM, and XRD analysis were used to characterize this layer. The catalytic membrane reactor was placed in an experimental setup to evaluate the permeation and hydrogen separation performance for a steam reforming reaction. The setup consisted of a tubular module in which the membrane was fixed, and the reforming reaction occurred at the inner side of the membrane. Methane stream, diluted with nitrogen, and deionized water with a steam to carbon (S/C) ratio of 3.0 entered the reactor after the reactor was heated up to 500 °C with a specified rate of 2 °C/ min and the catalytic layer was reduced at presence of hydrogen for 2.5 hours. Nitrogen flow was used as sweep gas through the outer side of the reactor. Any liquid produced was trapped and separated at reactor exit by a cold trap, and the produced gases were analyzed by an on-line gas chromatograph (Agilent 7890A) to measure total CH4 conversion and H2 permeation. BET analysis indicated uniform size distribution for catalyst with average pore size of 280 nm and average surface area of 275 m2.g-1. Single-component permeation tests were carried out for hydrogen, methane, and carbon dioxide at temperature range of 500-800 °C, and the results showed almost the same permeance and hydrogen selectivity values for hydrogen as the composite membrane without catalytic layer. Performance of the catalytic membrane was evaluated by applying membranes as a membrane reactor for methane steam reforming reaction at gas hourly space velocity (GHSV) of 10,000 h−1 and 2 bar. CH4 conversion increased from 50% to 85% with increasing reaction temperature from 600 °C to 750 °C, which is sufficiently above equilibrium curve at reaction conditions, but slightly lower than membrane reactor with packed nickel catalytic bed because of its higher surface area compared to the catalytic layer.

Keywords: catalytic membrane, hydrogen, methane steam reforming, permeance

Procedia PDF Downloads 256
400 Effect of Farsi gum (Amygdalus Scoparia Spach) in Combination with Sodium Caseinate on Textural, Stability, Sensory Characteristics and Rheological Properties of Whipped Cream

Authors: Samaneh Mashayekhi

Abstract:

Cream (whipped cream) is one of the dairy products that can be used in desserts, pastries, cakes, and ice creams. In this product, some parameters such as taste and flavor, quality stability, whipping ability, and stability of foam after whipping are very important. The objective of this study is applicable of Farsi gum and sodium caseinate in 3 biopolymer ratios (1:1, 1:2, and 2:1) and 0.15, 0.30, and 0.45 %wt. concentrations in whipped cream formulation. Sample without hydrocolloids was considered as a control. Before whipping, viscosity of all creams was increased continuously with increasing shear rate. In addition, the viscosity was increased with the increasing hydrocolloids addition (in constant shear rate). Microscopic observations showed that polydispersity of systems before whipping. Overrun of F, FC11, and FC21 samples were increased (with increasing total hydrocollid concentration 0.15 to 0.30 % wt.); then decreased this parameter with increasing to 0.45 % wt. concentration. However, mean comparison of FC12 samples overrun showed that this value was increased with increasing total hydrocolloids concentration. 0.45FC21 sample had significantly (P<0.05) highest overrun (118.44±9.11). Synersis of whipped cream samples are reduced with hydrocolloid addition. B sample had significantly (P<0.05) highest serum separation (16.66±0.80%), and 0.45FC12 had a low one (5.94±0.19%) in compered with others synersis. Mean comparison of hardness and adhesiveness of whipped cream revealed that Farsi gum addition alone and in combination with sodium caseinate increased the previous textural characteristics. Results exhibited that 0.4FG12 had significantly (P<0.05) highest hardness (267.00±18.38 g).Mean comparison of droplet size of cream sample before whipping displaced that hydrocolloid addition had no significant effect (P>0.05), and mean droplet size of the samples ranged between 1.93-2.16 µm. Generally, the mean droplet size of whipped cream increased after whipping with increasing hydrocolloid concentration (0.15-0.45 % wt.). Color parameter analysis showed that Farsi gum addition alone and in combination with sodium caseinate had no significant effect (P>0.05) on these parameters (Lightness, Redness, and Yellowness). Based on sensory evaluation results, appearance, color, flavor, and taste of whipped creams not influenced by hydrocolloids addition; but 0.45FC12 sample had higher value. Based on the above results, Farsi gum had suggested to potential application in a whipped cream formulation; however, further research need to foundingof their functionality.

Keywords: whipped cream, farsi gum, sodium caseinate, overrun, droplet size, texture analysis, sensory evaluation

Procedia PDF Downloads 98
399 Repurposing Dairy Manure Solids as a Non- Polluting Fertilizer and the Effects on Nutrient Recovery in Tomatoes (Solanum Lycopersicum)

Authors: Devon Simpson

Abstract:

Recycled Manure Solids (RMS), attained via centrifugation from Canadian dairy farms, were synthesized into a non-polluting fertilizer by bonding micronutrients (Fe, Zn, and Mn) to cellulose fibers and then assessed for the effectiveness of nutrient recovery in tomatoes. Manure management technology is critical for improving the sustainability of agroecosystems and has the capacity to offer a truly circular economy. The ability to add value to manure byproducts offers an opportunity for economic benefits while generating tenable solutions to livestock waste. The dairy industry is under increasing pressure from new environmental protections such as government restrictions on manure applications, limitations on herd size as well as increased product demand from a growing population. Current systems use RMS as bedding, so there is a lack of data pertaining to RMS use as a fertilizer. This is because of nutrient distribution, where most nutrients are retained in the liquid effluent of the solid-liquid separation. A literature review on the physical and chemical properties of dairy manure further revealed more data for raw manure than centrifuged solids. This research offers an innovative perspective and a new avenue of exploration in the use of RMS. Manure solids in this study were obtained directly from dairy farms in Salmon Arm and Abbotsford, British Columbia, and underwent physical, chemical, and biological characterizations pre- and post-synthesis processing. Samples were sent to A&L labs Canada for analysis. Once characterized and bonded to micronutrients, the effect of synthesized RMS on nutrient recovery in tomatoes was studied in a greenhouse environment. The agricultural research package ‘agricolae’ for R was used for experimental design and data analysis. The growth trials consisted of a randomized complete block design (RCBD) that allowed for analysis of variance (ANOVA). The primary outcome was to measure nutrient uptake, and this was done using an Inductively Coupled Plasma Mass Spectrometer (IC-PMS) to analyze the micronutrient content of both the tissue and fruit of the tomatoes. It was found that treatments containing bonded dairy manure solids had an increased micronutrient concentration. Treatments with bonded dairy manure solids also saw an increase in yield, and a brix analysis showed higher sugar content than the untreated control and a grower standard.

Keywords: aoecosystems, dairy manure, micronutrient fertilizer, manure management, nutrient recovery, nutrient recycling, recycled manure solids, regenerative agricugrlture, sustainable farming

Procedia PDF Downloads 193
398 Computational Study of Composite Films

Authors: Rudolf Hrach, Stanislav Novak, Vera Hrachova

Abstract:

Composite and nanocomposite films represent the class of promising materials and are often objects of the study due to their mechanical, electrical and other properties. The most interesting ones are probably the composite metal/dielectric structures consisting of a metal component embedded in an oxide or polymer matrix. Behaviour of composite films varies with the amount of the metal component inside what is called filling factor. The structures contain individual metal particles or nanoparticles completely insulated by the dielectric matrix for small filling factors and the films have more or less dielectric properties. The conductivity of the films increases with increasing filling factor and finally a transition into metallic state occurs. The behaviour of composite films near a percolation threshold, where the change of charge transport mechanism from a thermally-activated tunnelling between individual metal objects to an ohmic conductivity is observed, is especially important. Physical properties of composite films are given not only by the concentration of metal component but also by the spatial and size distributions of metal objects which are influenced by a technology used. In our contribution, a study of composite structures with the help of methods of computational physics was performed. The study consists of two parts: -Generation of simulated composite and nanocomposite films. The techniques based on hard-sphere or soft-sphere models as well as on atomic modelling are used here. Characterizations of prepared composite structures by image analysis of their sections or projections follow then. However, the analysis of various morphological methods must be performed as the standard algorithms based on the theory of mathematical morphology lose their sensitivity when applied to composite films. -The charge transport in the composites was studied by the kinetic Monte Carlo method as there is a close connection between structural and electric properties of composite and nanocomposite films. It was found that near the percolation threshold the paths of tunnel current forms so-called fuzzy clusters. The main aim of the present study was to establish the correlation between morphological properties of composites/nanocomposites and structures of conducting paths in them in the dependence on the technology of composite films.

Keywords: composite films, computer modelling, image analysis, nanocomposite films

Procedia PDF Downloads 393
397 Gene Expression and Staining Agents: Exploring the Factors That Influence the Electrophoretic Properties of Fluorescent Proteins

Authors: Elif Tugce Aksun Tumerkan, Chris Lowe, Hannah Krupa

Abstract:

Fluorescent proteins are self-sufficient in forming chromophores with a visible wavelength from 3 amino acids sequence within their own polypeptide structure. This chromophore – a molecule that absorbs a photon of light and exhibits an energy transition equal to the energy of the absorbed photon. Fluorescent proteins (FPs) consisted of a chain of 238 amino acid residues and composed of 11 beta strands shaped in a cylinder surrounding an alpha helix structure. A better understanding of the system of the chromospheres and the increasing advance in protein engineering in recent years, the properties of FPs offers the potential for new applications. They have used sensors and probes in molecular biology and cell-based research that giving a chance to observe these FPs tagged cell localization, structural variation and movement. For clarifying functional uses of fluorescent proteins, electrophoretic properties of these proteins are one of the most important parameters. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis is used for determining electrophoretic properties commonly. While there are many techniques are used for determining the functionality of protein-based research, SDS-PAGE analysis can only provide a molecular level assessment of the proteolytic fragments. Before SDS-PAGE analysis, fluorescent proteins need to successfully purified. Due to directly purification of the target, FPs is difficult from the animal, gene expression is commonly used which must be done by transformation with the plasmid. Furthermore, used gel within electrophoresis and staining agents properties have a key role. In this review, the different factors that have the impact on the electrophoretic properties of fluorescent proteins explored. Fluorescent protein separation and purification are the essential steps before electrophoresis that should be done very carefully. For protein purification, gene expression process and following steps have a significant function. For successful gene expression, the properties of selected bacteria for expression, used plasmid are essential. Each bacteria has own characteristics which are very sensitive to gene expression, also used procedure is the important factor for fluorescent protein expression. Another important factors are gel formula and used staining agents. Gel formula has an effect on the specific proteins mobilization and staining with correct agents is a key step for visualization of electrophoretic bands of protein. Visuality of proteins can be changed depending on staining reagents. Apparently, this review has emphasized that gene expression and purification have a stronger effect than electrophoresis protocol and staining agents.

Keywords: cell biology, gene expression, staining agents, SDS-page

Procedia PDF Downloads 194
396 Effluent from Royal LERD Wastewater Treatment Systems to Furnish Nutrients for Phytoplankton to Generate the Abundance of Hard Clam (Meretrix spp.) on Muddy Beach

Authors: O. Phewnil, S. Khowhit, W. Inkapatanakul, A. Boutson, K. Chunkao, O. Chueawong, T. Pattamapitoon, N. Chanwong, C. Nimpee

Abstract:

The King’s Royally Initiated Laem Phak Bia Environmental Research and Development Project (“the Royal LERD Project”) is located in Laem Phak Bia Sub-District, Ban Laem District, Phetchaburi Province, Thailand. Phetchaburi municipal wastewater was treated with a simple technology by using aquatic plants, constructed wetland, oxidation ponds through a nature-by-nature process. The effluent from the Royal LERD Project was discharged into Laem Phak Bia muddy beach. The soil sediment samples were collected from two zones (200 and 600 meters from the coast of the beach), and tested for cation-exchange capacity (CEC), pH and organic matter and soil particles content. The marine water samples were also collected from the beach in wet and dry seasons and analyzed for its quality and compositions, including but not limited to, biochemical oxygen demand (BOD), dissolved oxygen (DO), suspended solids (SS), nutrients, heavy metals (As, Cd, Cr, Hg, and Pb), and phytoplankton at high and low tides. The soil texture was sandy loam with high concentration of calcium and magnesium which showed a property of base (pH 8). The marine water was qualified with the standard limits of coastal water quality. A dominant species was Coscinodiscus sp. It was found approximately 70.46% of total phytoplankton species in Meretrix casta gastrointestinal tract. The concentration of the heavy metals (As, Cd, Cr, Hg, Ni and Pb) in the tissues and water content of two species of hard clams indicated that heavy metals in Meretrix casta were higher than those in Meretrix meretrix. However, the heavy metals in both species were under the standard limits and safe for consumption. It can be concluded that nutrients in effluent from the wastewater treatment systems play important role in promoting the growth of phytoplankton and generating abundance of hard clams on muddy beach.

Keywords: wastewater, phytoplankton, hard clam (Meretrix spp.), muddy beach

Procedia PDF Downloads 307
395 Treatment of Municipal Wastewater by Means of Uv-Assisted Irradiation Technologies: Fouling Studies and Optimization of Operational Parameters

Authors: Tooba Aslam, Efthalia Chatzisymeon

Abstract:

UV-assisted irradiation technologies are well-established for water and wastewater treatment. UVC treatments are widely used at large-scale, while UVA irradiation has more often been applied in combination with a catalyst (e.g. TiO₂ or FeSO₄) in smaller-scale systems. A technical issue of these systems is the formation of fouling on the quartz sleeves that houses the lamps. This fouling can prevent complete irradiation, therefore reducing the efficiency of the process. This paper investigates the effects of operational parameters, such as the type of wastewater, irradiation source, H₂O₂ addition, and water pH on fouling formation and, ultimately, the treatment of municipal wastewater. Batch experiments have been performed at lab-scale while monitoring water quality parameters including: COD, TS, TSS, TDS, temperature, pH, hardness, alkalinity, turbidity, TOC, UV transmission, UV₂₅₄ absorbance, and metal concentrations. The residence time of the wastewater in the reactor was 5 days in order to observe any fouling formation on the quartz surface. Over this period, it was observed that chemical oxygen demand (COD) decreased by 30% and 59% during photolysis (Ultraviolet A) and photo-catalysis (UVA/Fe/H₂O₂), respectively. Higher fouling formation was observed with iron-rich and phosphorous-rich wastewater. The highest rate of fouling was developed with phosphorous-rich wastewater, followed by the iron-rich wastewater. Photo-catalysis (UVA/Fe/H₂O₂) had better removal efficiency than photolysis (UVA). This was attributed to the Photo-Fenton reaction, which was initiated under these operational conditions. Scanning electron microscope (SEM) measurements of fouling formed on the quartz sleeves showed that particles vary in size, shape, and structure; some have more distinct structures and are generally larger and have less compact structure than the others. Energy-dispersive X-ray spectroscopy (EDX) results showed that the major metals present in the fouling cake were iron, phosphorous, and calcium. In conclusion, iron-rich wastewaters are more suitable for UV-assisted treatment since fouling formation on quartz sleeves can be minimized by the formation of oxidizing agents during treatment, such as hydroxyl radicals.

Keywords: advanced oxidation processes, photo-fenton treatment, photo-catalysis, wastewater treatment

Procedia PDF Downloads 77
394 Peat Soil Stabilization by Using Sugarcane Bagasse Ash (SCBA)

Authors: Mohd. Khaidir Abu Talib, Noriyuki Yasufuku, Ryohei Ishikura

Abstract:

It is well recognized that peat can impede the proper hydration of cement because of high organic content, presence of humic acid and less solid particles. That means the large amount of cement is required in order to neutralize the acids or otherwise the process of the peat stabilization remains retarded. Nevertheless, adding a great quantity of cement into the peat is absolutely an unfriendly and uneconomical solution. Sugarcane production is world number one commodities and produced a lot of bagasse. Bagasse is burnt to generate power required for diverse activities in the factory and leave bagasse ash as a waste. Increasing concern of disposal of bagasse residual creates interest to explore the potential application of this material. The objective of this study is to develop alternative binders that are environment friendly and contribute towards sustainable management by utilizing sugarcane bagasse ash (SCBA) in the stabilization of peat soil. Alongside SCBA, Ordinary Portland Cement (OPC), calcium chloride (CaCl2) and silica sand (K7) were used as additives to stabilize the peat that sampled from Hokkaido, Japan. In obtaining the optimal mix design, specimens of stabilized peat were tested in unconfined compression. It was found that stabilized peat comprising 20% and 5% (PCB1-20 and PCB2-5) partial replacement of OPC with SCBA 1 and SCBA 2 attain the maximum unconfined compressive strength (UCS) and discovered greater than untreated soil (P) and UCS of peat-cement (PC) specimen. At the optimal mix design, the UCS of the stabilized peat specimens increased with increasing of curing time, preloading during curing, OPC dosage and K7 dosage. For PCB1-20 mixture, inclusion of a minimum OPC dosage of 300 kg/m3 and K7 dosage of 500 kg/m3 along with curing under 20kPa pressure is recommendable for the peat stabilization to be effective. However for PCB2-5 mixture, it suggested to use more OPC and K7 dosage or alternatively increase the preloading during curing to 40kPa in order to achieve minimum strength target. It can be concluded that SCBA 1 has better quality than SCBA 2 in peat stabilization especially the contribution made by its fine particle size.

Keywords: peat stabilization, sugarcane bagasse ash utilization, partial cement replacement, unconfined strength

Procedia PDF Downloads 535
393 Chemical, Physical and Microbiological Characteristics of a Texture-Modified Beef- Based 3D Printed Functional Product

Authors: Elvan G. Bulut, Betul Goksun, Tugba G. Gun, Ozge Sakiyan Demirkol, Kamuran Ayhan, Kezban Candogan

Abstract:

Dysphagia, difficulty in swallowing solid foods and thin liquids, is one of the common health threats among the elderly who require foods with modified texture in their diet. Although there are some commercial food formulations or hydrocolloids to thicken the liquid foods for dysphagic individuals, there is still a need for developing and offering new food products with enriched nutritional, textural and sensory characteristics to safely nourish these patients. 3D food printing is an appealing alternative in creating personalized foods for this purpose with attractive shape, soft and homogenous texture. In order to modify texture and prevent phase separation, hydrocolloids are generally used. In our laboratory, an optimized 3D printed beef-based formulation specifically for people with swallowing difficulties was developed based on the research project supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK Project # 218O017). The optimized formulation obtained from response surface methodology was 60% beef powder, 5.88% gelatin, and 0.74% kappa-carrageenan (all in a dry basis). This product was enriched with powders of freeze-dried beet, celery, and red capia pepper, butter, and whole milk. Proximate composition (moisture, fat, protein, and ash contents), pH value, CIE lightness (L*), redness (a*) and yellowness (b*), and color difference (ΔE*) values were determined. Counts of total mesophilic aerobic bacteria (TMAB), lactic acid bacteria (LAB), mold and yeast, total coliforms were conducted, and detection of coagulase positive S. aureus, E. coli, and Salmonella spp. were performed. The 3D printed products had 60.11% moisture, 16.51% fat, 13.68% protein, and 1.65% ash, and the pH value was 6.19, whereas the ΔE* value was 3.04. Counts of TMAB, LAB, mold and yeast and total coliforms before and after 3D printing were 5.23-5.41 log cfu/g, < 1 log cfu/g, < 1 log cfu/g, 2.39-2.15 log EMS/g, respectively. Coagulase positive S. aureus, E. coli, and Salmonella spp. were not detected in the products. The data obtained from this study based on determining some important product characteristics of functional beef-based formulation provides an encouraging basis for future research on the subject and should be useful in designing mass production of 3D printed products of similar composition.

Keywords: beef, dysphagia, product characteristics, texture-modified foods, 3D food printing

Procedia PDF Downloads 111
392 Statistical Modeling of Constituents in Ash Evolved From Pulverized Coal Combustion

Authors: Esam Jassim

Abstract:

Industries using conventional fossil fuels have an interest in better understanding the mechanism of particulate formation during combustion since such is responsible for emission of undesired inorganic elements that directly impact the atmospheric pollution level. Fine and ultrafine particulates have tendency to escape the flue gas cleaning devices to the atmosphere. They also preferentially collect on surfaces in power systems resulting in ascending in corrosion inclination, descending in the heat transfer thermal unit, and severe impact on human health. This adverseness manifests particularly in the regions of world where coal is the dominated source of energy for consumption. This study highlights the behavior of calcium transformation as mineral grains verses organically associated inorganic components during pulverized coal combustion. The influence of existing type of calcium on the coarse, fine and ultrafine mode formation mechanisms is also presented. The impact of two sub-bituminous coals on particle size and calcium composition evolution during combustion is to be assessed. Three mixed blends named Blends 1, 2, and 3 are selected according to the ration of coal A to coal B by weight. Calcium percentage in original coal increases as going from Blend 1 to 3. A mathematical model and a new approach of describing constituent distribution are proposed. Analysis of experiments of calcium distribution in ash is also modeled using Poisson distribution. A novel parameter, called elemental index λ, is introduced as a measuring factor of element distribution. Results show that calcium in ash that originally in coal as mineral grains has index of 17, whereas organically associated calcium transformed to fly ash shown to be best described when elemental index λ is 7. As an alkaline-earth element, calcium is considered the fundamental element responsible for boiler deficiency since it is the major player in the mechanism of ash slagging process. The mechanism of particle size distribution and mineral species of ash particles are presented using CCSEM and size-segregated ash characteristics. Conclusions are drawn from the analysis of pulverized coal ash generated from a utility-scale boiler.

Keywords: coal combustion, inorganic element, calcium evolution, fluid dynamics

Procedia PDF Downloads 335
391 Oligoalkylamine Modified Poly(Amidoamine) Generation 4.5 Dendrimer for the Delivery of Small Interfering RNA

Authors: Endris Yibru Hanurry, Wei-Hsin Hsu, Hsieh-Chih Tsai

Abstract:

In recent years, the discovery of small interfering RNAs (siRNAs) has got great attention for the treatment of cancer and other diseases. However, the therapeutic efficacy of siRNAs has been faced with many drawbacks because of short half-life in blood circulation, poor membrane penetration, weak endosomal escape and inadequate release into the cytosol. To overcome these drawbacks, we designed a non-viral vector by conjugating polyamidoamine generation 4.5 dendrimer (PDG4.5) with diethylenetriamine (DETA)- and tetraethylenepentamine (TEPA) followed by binding with siRNA to form polyplexes through electrostatic interaction. The result of 1H nuclear magnetic resonance (NMR), 13C NMR, correlation spectroscopy, heteronuclear single–quantum correlation spectroscopy, and Fourier transform infrared spectroscopy confirmed the successful conjugation of DETA and TEPA with PDG4.5. Then, the size, surface charge, morphology, binding ability, stability, release assay, toxicity and cellular internalization were analyzed to explore the physicochemical and biological properties of PDG4.5-DETA and PDG4.5-TEPA polyplexes at specific N/P ratios. The polyplexes (N/P = 8) exhibited spherical nanosized (125 and 85 nm) particles with optimum surface charge (13 and 26 mV), showed strong siRNA binding ability, protected the siRNA against enzyme digestion and accepted biocompatibility to the HeLa cells. Qualitatively, the fluorescence microscopy image revealed the delocalization (Manders’ coefficient 0.63 and 0.53 for PDG4.5-DETA and PDG4.5-TEPA, respectively) of polyplexes and the translocation of the siRNA throughout the cytosol to show a decent cellular internalization and intracellular biodistribution of polyplexes in HeLa cells. Quantitatively, the flow cytometry result indicated that a significant (P < 0.05) amount of siRNA was internalized by cells treated with PDG4.5-DETA (68.5%) and PDG4.5-TEPA (73%) polyplexes. Generally, PDG4.5-DETA and PDG4.5-TEPA were ideal nanocarriers of siRNA in vitro and might be used as promising candidates for in vivo study and future pharmaceutical applications.

Keywords: non-viral carrier, oligoalkylamine, poly(amidoamine) dendrimer, polyplexes, siRNA

Procedia PDF Downloads 132
390 Observationally Constrained Estimates of Aerosol Indirect Radiative Forcing over Indian Ocean

Authors: Sofiya Rao, Sagnik Dey

Abstract:

Aerosol-cloud-precipitation interaction continues to be one of the largest sources of uncertainty in quantifying the aerosol climate forcing. The uncertainty is increasing from global to regional scale. This problem remains unresolved due to the large discrepancy in the representation of cloud processes in the climate models. Most of the studies on aerosol-cloud-climate interaction and aerosol-cloud-precipitation over Indian Ocean (like INDOEX, CAIPEEX campaign etc.) are restricted to either particular to one season or particular to one region. Here we developed a theoretical framework to quantify aerosol indirect radiative forcing using Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol and cloud products of 15 years (2000-2015) period over the Indian Ocean. This framework relies on the observationally constrained estimate of the aerosol-induced change in cloud albedo. We partitioned the change in cloud albedo into the change in Liquid Water Path (LWP) and Effective Radius of Clouds (Reff) in response to an aerosol optical depth (AOD). Cloud albedo response to an increase in AOD is most sensitive in the range of LWP between 120-300 gm/m² for a range of Reff varying from 8-24 micrometer, which means aerosols are most sensitive to this range of LWP and Reff. Using this framework, aerosol forcing during a transition from indirect to semi-direct effect is also calculated. The outcome of this analysis shows best results over the Arabian Sea in comparison with the Bay of Bengal and the South Indian Ocean because of heterogeneity in aerosol spices over the Arabian Sea. Over the Arabian Sea during Winter Season the more absorbing aerosols are dominating, during Pre-monsoon dust (coarse mode aerosol particles) are more dominating. In winter and pre-monsoon majorly the aerosol forcing is more dominating while during monsoon and post-monsoon season meteorological forcing is more dominating. Over the South Indian Ocean, more or less same types of aerosol (Sea salt) are present. Over the Arabian Sea the Aerosol Indirect Radiative forcing are varying from -5 ± 4.5 W/m² for winter season while in other seasons it is reducing. The results provide observationally constrained estimates of aerosol indirect forcing in the Indian Ocean which can be helpful in evaluating the climate model performance in the context of such complex interactions.

Keywords: aerosol-cloud-precipitation interaction, aerosol-cloud-climate interaction, indirect radiative forcing, climate model

Procedia PDF Downloads 175
389 Energy Dissipation Characteristics of an Elastomer under Dynamic Condition: A Comprehensive Assessment Using High and Low Frequency Analyser

Authors: K. Anas, M. Selvakumar, Samson David, R. R. Babu, S. Chattopadhyay

Abstract:

The dynamic deformation of a visco elastic material can cause heat generation. This heat generation is aspect energy dissipation. The present work investigates the contribution of various factors like; elastomer structure, cross link type and density, filler networking, reinforcement potential and temperature at energy dissipation mechanism. The influences of these elements are investigated using very high frequency analyzer (VHF ) and dynamical mechanical analysis(DMA).VHF follows transmissibility and vibration isolation principle whereas DMA works on dynamical mechanical deformation principle. VHF analysis of different types of elastomers reveals that elastomer can act as a transmitter or damper of energy depending on the applied frequency ratio (ω/ωn). Dynamic modulus (G') of low damping rubbers like natural rubber does not varies rapidly with frequency but vice-versa for high damping rubber like butyl rubber (IIR). VHF analysis also depicts that polysulfidic linkages has high damping ratio (ζ) than mono sulfidic linkages due to its dissipative nature. At comparable cross link density, mono sulfidic linkages shows higher glass transition temperature (Tg) than poly sulfidic linkages. The intensity and location of loss modulus (G'') peak of different types of carbon black filled natural rubber compounds suggests that segmental relaxation at glass transition temperature (Tg) is seldom affected by filler particles, but the filler networks can influence the cross link density by absorbing the curatives. The filler network breaking and reformation during a dynamic strain is a thermally activated process. Thus, stronger aggregates are highly dissipative in nature. Measurements indicate that at lower temperature regimes polymeric chain friction is highly dissipative in nature.

Keywords: damping ratio, natural frequency, crosslinking density, segmental motion, surface activity, dissipative, polymeric chain friction

Procedia PDF Downloads 295
388 Drug Delivery Nanoparticles of Amino Acid Based Biodegradable Polymers

Authors: Sophio Kobauri, Tengiz Kantaria, Temur Kantaria, David Tugushi, Nina Kulikova, Ramaz Katsarava

Abstract:

Nanosized environmentally responsive materials are of special interest for various applications, including targeted drug to a considerable potential for treatment of many human diseases. The important technological advantages of nanoparticles (NPs) usage as drug carriers (nanocontainers) are their high stability, high carrier capacity, feasibility of encapsulation of both hydrophilic or hydrophobic substances, as well as a high variety of possible administration routes, including oral application and inhalation. NPs can also be designed to allow controlled (sustained) drug release from the matrix. These properties of NPs enable improvement of drug bioavailability and might allow drug dosage decrease. The targeted and controlled administration of drugs using NPs might also help to overcome drug resistance, which is one of the major obstacles in the control of epidemics. Various degradable and non-degradable polymers of both natural and synthetic origin have been used for NPs construction. One of the most promising for the design of NPs are amino acid-based biodegradable polymers (AABBPs) which can clear from the body after the fulfillment of their function. The AABBPs are composed of naturally occurring and non-toxic building blocks such as α-amino acids, fatty diols and dicarboxylic acids. The particles designed from these polymers are expected to have an improved bioavailability along with a high biocompatibility. The present work deals with a systematic study of the preparation of NPs by cost-effective polymer deposition/solvent displacement method using AABBPs. The influence of the nature and concentration of surfactants, concentration of organic phase (polymer solution), and the ratio organic phase/inorganic (water) phase, as well as of some other factors on the size of the fabricated NPs have been studied. It was established that depending on the used conditions the NPs size could be tuned within 40-330 nm. As the next step of this research an evaluation of biocompatibility and bioavailability of the synthesized NPs has been performed, using two stable human cell culture lines – HeLa and A549. This part of study is still in progress now.

Keywords: amino acids, biodegradable polymers, nanoparticles (NPs), non-toxic building blocks

Procedia PDF Downloads 432
387 Study on Pd Catalyst Supported on Carbon Materials for C₂ Hydrogenation

Authors: Huanru Wang, Jianzhun Jiang

Abstract:

At present, the preparation of the catalyst by carbon carrier is one of the improvement directions of the C₂ pre-hydrogenation catalyst. Carbon materials can be prepared from coal direct liquefaction residues, coconut shells, biomass, etc., and the pore structure of carbon carrier materials can be adjusted through the preparation process; at high temperatures, the carbon carrier itself also shows certain catalytic activity. Therefore, this paper mainly selected typical activated carbon and coconut shell carbon as carbon carrier materials, studied their microstructure and surface properties, prepared a series of carbon-based catalysts loaded with Pd, and investigated the effects of the content of promoter Ag and the concentration of reductant on the structure and performance of the catalyst and its catalytic performance for the pre hydrogenation of C₂. In this paper, the carbon supports from two sources and the catalysts prepared by them were characterized in detail. The results showed that the morphology and structure of different supports and the performance of the catalysts prepared were also obviously different. The catalyst supported on coconut shell carbon has a small specific surface area and large pore diameter. The catalyst supported on activated carbon has a large specific surface area and rich pore structure. The active carbon support is mainly a mixture of amorphous graphite and microcrystalline graphite. For the catalyst prepared with coconut shell carbon as the carrier, the sample is very uneven, and its specific surface area and pore volume are irregular. Compared with coconut shell carbon, activated carbon is more suitable as the carrier of the C₂ hydrogenation catalyst. The conversion of acetylene, methyl acetylene, and butadiene decreased, and the ethylene selectivity increased after Ag was added to the supported Pd catalyst. When the amount of promoter Ag is 0.01-0.015%, the catalyst has relatively good catalytic performance. Ag and Pd form an alloying effect, thus reducing the effective demand for Ag. The Pd Ag ratio is the key factor affecting the catalytic performance. When the addition amount of Ag is 0.01-0.015%, the dispersion of Pd on the carbon support surface can be significantly improved, and the size of active particles can be reduced. The Pd Ag ratio is the main factor in improving the selectivity of the catalyst. When the additional amount of sodium formate is 1%, the catalyst prepared has both high acetylene conversion and high ethylene selectivity.

Keywords: C₂ hydrogenation, activated carbon, Ag promoter, Pd catalysts

Procedia PDF Downloads 121