Search results for: soil stabilisation
494 Oil Water Treatment by Nutshell and Dates Pits
Authors: Abdalrahman D. Alsulaili, Sheikha Y. Aljeraiwi, Athba N. Almanaie, Raghad Y. Alhajeri, Mariam Z. Almijren
Abstract:
The water accompanying oil in the oil production process is increasing and due to its increasing rates a problem with handling it occurred. Current solutions like discharging into the environment, dumping water in evaporation pits, usage in the industry and reinjection in oil reservoirs to enhance oil production are used worldwide. The water injection method has been introduced to the oil industry with a process that either immediately injects water to the reservoir or goes to the filtration process before injection all depending on the porosity of the soil. Reinjection of unfiltered effluent water with high Total Suspended Solid (TSS) and Oil in Water (O/W) into soils with low porosity cause a blockage of pores, whereas soils with high porosity do not need high water quality. Our study mainly talks about the filtration and adsorption of the water using organic media as the adsorbent. An adsorbent is a substance that has the ability to physically hold another substance in its surface. Studies were done on nutshell and date pits with different surface areas and flow rates by using a 10inch filter connected with three tanks to perform as one system for the filtration process. Our approach in the filtration process using different types of medias went as follow: starting first with crushed nutshell, second with ground nutshell, and third using carbonized date pits with medium flow rate then high flow rate to compare different results. The result came out nearly as expected from our study where both O/W and TSS were reduced from our oily water sample by using this organic material. The effect of specific area was noticed when using nutshell as the filter media, where the crushed nutshell gave us better results than ground nutshell. The effect of flow rate was noticed when using carbonized date pits as the filter media whereas the treated water became more acceptable when the flow rate was on the medium level.Keywords: date pits, nutshell, oil water, TSS
Procedia PDF Downloads 154493 Sensitivity Assessment of Spectral Salinity Indices over Desert Sabkha of Western UAE
Authors: Rubab Ammad, Abdelgadir Abuelgasim
Abstract:
UAE typically lies in one of the aridest regions of the world and is thus home to geologic features common to such climatic conditions including vast open deserts, sand dunes, saline soils, inland Sabkha and coastal Sabkha. Sabkha are characteristic salt flats formed in arid environment due to deposition and precipitation of salt and silt over sand surface because of low laying water table and rates of evaporation exceeding rates of precipitation. The study area, which comprises of western UAE, is heavily concentrated with inland Sabkha. Remote sensing is conventionally used to study the soil salinity of agriculturally degraded lands but not so broadly for Sabkha. The focus of this study was to identify these highly saline Sabkha areas on remotely sensed data, using salinity indices. The existing salinity indices in the literature have been designed for agricultural soils and they have not frequently used the spectral response of short-wave infra-red (SWIR1 and SWIR2) parts of electromagnetic spectrum. Using Landsat 8 OLI data and field ground truthing, this study formulated indices utilizing NIR-SWIR parts of spectrum and compared the results with existing salinity indices. Most indices depict reasonably good relationship between salinity and spectral index up until a certain value of salinity after which the reflectance reaches a saturation point. This saturation point varies with index. However, the study findings suggest a role of incorporating near infra-red and short-wave infra-red in salinity index with a potential of showing a positive relationship between salinity and reflectance up to a higher salinity value, compared to rest.Keywords: Sabkha, salinity index, saline soils, Landsat 8, SWIR1, SWIR2, UAE desert
Procedia PDF Downloads 209492 Assessment of Heavy Metal Contamination for the Sustainable Management of Vulnerable Mangrove Ecosystem, the Sundarbans
Authors: S. Begum, T. Biswas, M. A. Islam
Abstract:
The present research investigates the distribution and contamination of heavy metals in core sediments collected from three locations of the Sundarbans mangrove forest. In this research, quality of the analysis is evaluated by analyzing certified reference materials IAEA-SL-1 (lake sediment), IAEA-Soil-7, and NIST-1633b (coal fly ash). Total concentrations of 28 heavy metals (Na, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Zn, Ga, As, Sb, Cs, La, Ce, Sm, Eu, Tb, Dy, Ho, Yb, Hf, Ta, Th, and U) have determined in core sediments of the Sundarbans mangrove by neutron activation analysis (NAA) technique. When compared with upper continental crustal (UCC) values, it is observed that mean concentrations of K, Ti, Zn, Cs, La, Ce, Sm, Hf, and Th show elevated values in the research area is high. In this research, the assessments of metal contamination levels using different environmental contamination indices (EF, Igeo, CF) indicate that Ti, Sb, Cs, REEs, and Th have minor enrichment of the sediments of the Sundarbans. The modified degree of contamination (mCd) of studied samples of the Sundarbans ecosystem show low contamination. The pollution load index (PLI) values for the cores suggested that sampling points are moderately polluted. The possible sources of the deterioration of the sediment quality can be attributed to the different chemical carrying cargo accidents, port activities, ship breaking, agricultural and aquaculture run-off of the area. Pearson correlation matrix (PCM) established relationships among elements. The PCM indicates that most of the metal's distributions have been controlled by the same factors such as Fe-oxy-hydroxides and clay minerals, and also they have a similar origin. The poor correlations of Ca with most of the elements in the sediment cores indicate that calcium carbonate has a less significant role in this mangrove sediment. Finally, the data from this research will be used as a benchmark for future research and help to quantify levels of metal pollutions, as well as to manage future ecological risks of the vulnerable mangrove ecosystem, the Sundarbans.Keywords: contamination, core sediment, trace element, sundarbans, vulnerable
Procedia PDF Downloads 120491 Filled Polymer Composite
Authors: Adishirin Mammadov
Abstract:
Polymers and polymer composites play vital roles in diverse industries, including food and beverage packaging, transportation innovations, and medical advancements. However, the advancements in polymer technology bring certain risks, particularly concerning water and soil pollution due to the presence of polymers. The creation of new polymers is a critical aspect of this field. While the primary focus is on improving their physical and chemical properties, ensuring their ecological compatibility is equally important. An advanced method for developing innovative polymer types involves integrating fillers with diverse characteristics, offering advantages such as cost reduction and improved quality indicators. In the conducted research, efforts were made to enhance environmental aspects by employing waste fillers. Specifically, low-density polyethylene (LDPE) was used as the polymer, and waste from cocoon factories was chosen as the filler. Following a process of cleaning, drying, and crushing the filler to specific dimensions, it was incorporated into polyethylene through a mechanical-chemical method under laboratory conditions. The varied rheological properties of the resulting polyethylene compositions examined at temperatures ranging from 145 to 165 degrees Celsius. These compositions demonstrated different rheological properties at various temperature intervals. Achieving homogeneity in the obtained compositions is crucial in the polymers mechanochemical process. Beyond rheological properties, swelling rates in different environments and percentages of mass loss at different temperatures learned using the differential thermal analysis method. The research revealed that, to a certain extent, the physico-chemical properties of polyethylene were not significantly affected by the polymer compositions. This suggests that incorporating cocoon waste enables cost reduction in composite production while positively impacting the environment.Keywords: polyethylene, polymer, composites, filler, reology
Procedia PDF Downloads 54490 The Comparison of Safety Factor in Dry and Rainy Condition at Coal Bearing Formation. Case Study: Lahat Area South Sumatera Province, Indonesia
Authors: Teguh Nurhidayat, Nurhamid, Dicky Muslim, Zufialdi Zakaria, Irvan Sophian
Abstract:
This paper presents the role of climate change as the factor that induces landslide. Case study is located at Lahat Regency, South Sumatera Province, Indonesia. Study area has high economic value of coal reserves (mostly subbituminous – bituminous), which is developable for open pit coal mining in the future. Seams are found in Muara Enim Formation. This formation is at south Sumatera basin which is formed at Tertiary as a result of collision between the indian plate and eurasian plate. South Sumatera basin which is a basin located in back arc basin. This study aims to unravel the relationship between slope stability with different season condition in tropical climate. Undisturbed soil samples were obtained in the field along with other geological data. Laboratory works were carried out to obtain physical and mechanical properties of soils. Methodology to analyze slope stability is bishop method. Bishop methods are used to identify safety factor of slope. Result shows that slopes in rainy season conditions are more prone to landslides than in dry season. In the dry seasons with moisture content is 22.65%, safety factor is 1.28 the slope in stable condition. If rain is approaching with moisture content increasing to 97.8%, the slope began to be critical. On wet condition groundwater levels is increased, followed by γ (unit weight), c (cohesion), and φ (angle of friction) at 18.04, 5,88 kN/m2, and 28,04°, respectively, which ultimately determines the security factor FS to be 1.01 (slope in unstable conditions).Keywords: rainfall, moisture content, slope analysis, landslide prone
Procedia PDF Downloads 312489 Identification of Groundwater Potential Zones Using Geographic Information System and Multi-Criteria Decision Analysis: A Case Study in Bagmati River Basin
Authors: Hritik Bhattarai, Vivek Dumre, Ananya Neupane, Poonam Koirala, Anjali Singh
Abstract:
The availability of clean and reliable groundwater is essential for the sustainment of human and environmental health. Groundwater is a crucial resource that contributes significantly to the total annual supply. However, over-exploitation has depleted groundwater availability considerably and led to some land subsidence. Determining the potential zone of groundwater is vital for protecting water quality and managing groundwater systems. Groundwater potential zones are marked with the assistance of Geographic Information System techniques. During the study, a standard methodology was proposed to determine groundwater potential using an integration of GIS and AHP techniques. When choosing the prospective groundwater zone, accurate information was generated to get parameters such as geology, slope, soil, temperature, rainfall, drainage density, and lineament density. However, identifying and mapping potential groundwater zones remains challenging due to aquifer systems' complex and dynamic nature. Then, ArcGIS was incorporated with a weighted overlay, and appropriate ranks were assigned to each parameter group. Through data analysis, MCDA was applied to weigh and prioritize the different parameters based on their relative impact on groundwater potential. There were three probable groundwater zones: low potential, moderate potential, and high potential. Our analysis showed that the central and lower parts of the Bagmati River Basin have the highest potential, i.e., 7.20% of the total area. In contrast, the northern and eastern parts have lower potential. The identified potential zones can be used to guide future groundwater exploration and management strategies in the region.Keywords: groundwater, geographic information system, analytic hierarchy processes, multi-criteria decision analysis, Bagmati
Procedia PDF Downloads 102488 Maintaining Experimental Consistency in Geomechanical Studies of Methane Hydrate Bearing Soils
Authors: Lior Rake, Shmulik Pinkert
Abstract:
Methane hydrate has been found in significant quantities in soils offshore within continental margins and in permafrost within arctic regions where low temperature and high pressure are present. The mechanical parameters for geotechnical engineering are commonly evaluated in geomechanical laboratories adapted to simulate the environmental conditions of methane hydrate-bearing sediments (MHBS). Due to the complexity and high cost of natural MHBS sampling, most laboratory investigations are conducted on artificially formed samples. MHBS artificial samples can be formed using different hydrate formation methods in the laboratory, where methane gas and water are supplied into the soil pore space under the methane hydrate phase conditions. The most commonly used formation method is the excess gas method which is considered a relatively simple, time-saving, and repeatable testing method. However, there are several differences in the procedures and techniques used to produce the hydrate using the excess gas method. As a result of the difference between the test facilities and the experimental approaches that were carried out in previous studies, different measurement criteria and analyses were proposed for MHBS geomechanics. The lack of uniformity among the various experimental investigations may adversely impact the reliability of integrating different data sets for unified mechanical model development. In this work, we address some fundamental aspects relevant to reliable MHBS geomechanical investigations, such as hydrate homogeneity in the sample, the hydrate formation duration criterion, the hydrate-saturation evaluation method, and the effect of temperature measurement accuracy. Finally, a set of recommendations for repeatable and reliable MHBS formation will be suggested for future standardization of MHBS geomechanical investigation.Keywords: experimental study, laboratory investigation, excess gas, hydrate formation, standardization, methane hydrate-bearing sediment
Procedia PDF Downloads 57487 Exposure Assessment to Airborne Particulate Matter in Agriculture
Authors: K. Rumchev, S. Gilbey
Abstract:
Airborne particulate matter is a known hazard to human health, with a considerable body of evidence linking agricultural dust exposures to adverse human health effects in exposed populations. It is also known that agricultural workers are exposed to high levels of soil dust and other types of airborne particulate matter within the farming environment. The aim of this study was to examine exposure to agricultural dust among farm workers during the seeding season. Twenty-one wheat-belt farms consented to participate in the study with 30 workers being monitored for dust exposure whilst seeding or undertaking seeding associated tasks. Each farm was visited once and farmers’ were asked to wear a personal air sampler for a 4-hour sampling period. Simultaneous, real-time, tractor cabin air quality monitoring was also undertaken. Data for this study was collected using real-time aerosol dust monitors to determine in-tractor cabin PM exposure to five size fractions (total, PM10, respirable, PM2.5 and PM1), and personal sampling was undertaken to establish individual exposure to inhalable and respirable dust concentrations. The study established a significant difference between personal exposures and simultaneous real-time in-cabin exposures for both inhalable and respirable fractions. No significant difference was shown between in-cabin and personal inhalable dust concentrations during seeding and spraying tasks, although both in-cabin and personal concentrations were two times greater for seeding than spraying. Future research should focus on educating and providing farm owners and workers with more information on adopting safe work practices to minimise harmful exposures to agricultural dust.Keywords: agriculture, air quality, Australia, particulate matter
Procedia PDF Downloads 215486 Hydraulic Performance of Three Types of Imported Drip Emitters Used in Gezira Clay Soils, Sudan
Authors: Hisham Mousa Mohammed Ahmed, Ahmed Wali Mohamed Salad, Yousif Hamed Dldom Gomaa
Abstract:
A drip or Trickle irrigation system is designed to apply a precise amount of water near the plant with a certain degree of uniformity. This study was conducted at the Experimental Farm of the Faculty of Agricultural Sciences, University of Gezira, in March 2018. The study aimed to design and evaluate the hydraulic performance of three drip emitter types using: average discharge (Qavg), discharge variation (Qvar %), coefficient of uniformity (CU %), coefficient of manufacturer variation (CV %), distribution uniformity (DU %), statistical uniformity (Us %), clogging (%) wetted diameter (cm) and wetted depth (cm). The emitter types used are regular gauges (RG), high compensating pressure (HCP) and low compensating pressure (LCP). The treatments were laid out in a randomized complete block design (RCBD) with four replications. Results showed that there were significant differences (P≤0.05) in all tested parameters except clogging, wetted diameter and wetted depth. Discharge variation (Qvar %) values were 12.71, 15.57 and 19.17 for RG, LCP, and HCP, respectively. The variation is quite good and within the acceptable range. Results of coefficient of manufacture variation (CV %) were 10.9, 27.8 and 52.7 for RG, LCP and HCP, respectively. It is considered within the unacceptable range except for RG type, which is excellent. Statistical uniformity (Us %) values were 89.1, 72.2 and 45.7 for RG, LCP and HCP, respectively. It is considered good, acceptable and unacceptable, respectively. Results of the coefficient of uniformity (CU %) were 91.3, 77.7 and 56.7 for RG, LCP and HCP, respectively. It is considered excellent, fair and unacceptable, respectively. Distribution uniformity (DU %) was 90.2, 67.9 and 36.5 for RG, LCP and HCP, respectively. It is considered excellent, poor and poor, respectively. The study recommended regular gauges (RG) type emitters under the heavy clay soil conditions of the Gezira State, Sudan.Keywords: drip irrigation, uniformity, clogging, coefficient, performance
Procedia PDF Downloads 98485 Environmental Degradation of Natural Resources in Broghil National Park in the High Mountains of Pakistan – Empirical Evidence From Local Community and Geoinformatics
Authors: Siddique Ullah Baig, Alisha Manzoor
Abstract:
The remotest, mountainous, and icy Broghil Valley is a high-profile protected area as a national park, which hosts one of the highest altitude permanent human settlements on the earth. This park hosts a distributed but diverse range of habitats. Due to a lack of infrastructures, higher altitudes, and harsh environmental conditions, poverty-stricken inhabitants mostly rely on its resources, causing ecological dis-balance. This study aims to investigate the environmental degradation of natural resources of the park based on empirical evidence from stakeholders and geoinformatics. The result shows that one-fourth of the park is a gently undulating basin dotted with water bodies / grass, and agricultural land and three fourth is entirely rugged with steep mountains and glaciers. There are virtually no forests as the arid cold tundra climate and high altitude prevent tree growth. Rapid three-decadal land cover changes have led to ecological disequilibrium of the park, narrowing the traditional diverse food base, decreasing the resilience of biodiversity and local livelihoods as crop-land has shifted towards fallow, alpine-grass to peat-land and snow/glacial ice area to bare-soil/rocks. The local community believes in exploiting whatever vegetation or organic material is available for use as food, fodder, and fuel. The permanent presence of the community and limited cost-effective options in the park will be a challenge forever to maintain undisturbed natural processes as the objective of a national park.Keywords: Broghil National Park, natural resources, environmental degradation, land cover
Procedia PDF Downloads 64484 Climate Adaptations to Traditional Milpa Farming Practices in Mayan Communities of Southern Belize: A Socio-Ecological Systems Approach
Authors: Kristin Drexler
Abstract:
Climate change has exacerbated food and livelihood insecurity for Mayan milpa farmers in Central America. For centuries, milpa farming has been sustainable for subsistence; however, in the last 50 years, milpas have become less reliable due to accelerating climate change, resource degradation, declining markets, poverty, and other factors. Using interviews with extension leaders and milpa farmers in Belize, this qualitative study examines the capacity for increasing climate-smart agriculture (CSA) aspects of existing traditional milpa practices, specifically no-burn mulching, soil enrichment, and the use of cover plants. Applying community capitals and socio-ecological systems frameworks, this study finds four key capitals were perceived by farmers and agriculture extension leaders as barriers for increasing CSA practices: (1) human-capacity, (2) financial, (3) infrastructure, and (4) governance-justice capitals. The key barriers include a lack of CSA technology and pest management knowledge-sharing (human-capacity), unreliable roads and utility services (infrastructure), the closure of small markets and crop-buying programs in Belize (financial), and constraints on extension services and exacerbating a sense of marginalization in Maya communities (governance-justice). Recommendations are presented for government action to reduce barriers and facilitate an increase in milpa crop productivity, promote food and livelihood security, and enable climate resilience of Mayan milpa communities in Belize.Keywords: socio-ecological systems, community capitals, climate-smart agriculture, food security, milpa, Belize
Procedia PDF Downloads 90483 Remediation Activities in Bagnoli Superfund Site: An Italian Case of Study
Authors: S. Bellagamba, S. Malinconico, P. De Simone, F. Paglietti
Abstract:
Until the 1990s, Italy was among the world’s leading producers of raw asbestos fibres and Asbestos Containing Materials (ACM) and one of the most contaminated Countries in Europe. To reduce asbestos-related health effects, Italy has adopted many laws and regulations regarding exposure thresholds, limits, and remediation tools. The Italian Environmental Ministry (MASE) has identified 42 Italian Superfund sites, 11 of which are mainly contaminated by Asbestos. The highest levels of exposure occur during remediation activities in the 42 superfund-sites and during the management of asbestos containing waste in landfills, which requires specific procedures. INAIL-DIT play a role as MASE scientific consultant on issues concerning pollution, remediation, and Asbestos Containing Waste (ACW) management. The aim is to identify the best Emergency Safety Measures, to suggest specific best pratics for remediation through occupational on site monitorings and laboratory analysis. Moreover, the aim of INAIL research is testing the available technologies for working activities and analytical methodologies. This paper describes the remediation of Bagnoli industrial facility (Naples), an Eternit factory which produced asbestos cement products. The remediation has been analyzed, considering a first phase focused on the demolition of structures and plants and a second phase regarding the characterization, screening, removal, and disposal of polluted soils. The project planned the complete removal of all the asbestos dispersed in the soil and subsoil and the recovery of the clean fraction. This work highlights the remediation techniques used and the prevention measures provide for workers and daily life areas protection. This study, considering the high number of asbestos cement factories in the world, can to serve as an important reference for similar situation at European or international scale.Keywords: safety, asbestos, workers, contaminated sites, hazardous waste
Procedia PDF Downloads 86482 Investigating the Significance of Ground Covers and Partial Root Zone Drying Irrigation for Water Conservation Weed Suppression and Quality Traits of Wheat
Authors: Muhammad Aown Sammar Raza, Salman Ahmad, Muhammad Farrukh Saleem, Muhammad Saqlain Zaheer, Rashid Iqbal, Imran Haider, Muhammad Usman Aslam, Muhammad Adnan Nazar
Abstract:
One of the main negative effects of climate change is the increasing scarcity of water worldwide, especially for irrigation purpose. In order to ensure food security with less available water, there is a need to adopt easy and economic techniques. Two of the effective techniques are; use of ground covers and partial root zone drying (PRD). A field experiment was arranged to find out the most suitable mulch for PRD irrigation system in wheat. The experiment was comprised of two irrigation methods (I0 = irrigation on both sides of roots and I1= irrigation to only one side of the root as alternate irrigation) and four ground covers (M0= open ground without any cover, M1= black plastic cover, M2= wheat straw cover and M4= cotton sticks cover). More plant height, spike length, number of spikelets and number of grains were found in full irrigation treatment. While water use efficiency and grain nutrient (NPK) contents were more in PRD irrigation. All soil covers suppress the weeds and significantly influenced the yield attributes, final yield as well as the grain nutrient contents. However black plastic cover performed the best. It was concluded that joint use of both techniques was more effective for water conservation and increasing grain yield than their sole application and combination of PRD with black plastic mulch performed the best than other ground covers combination used in the experiment.Keywords: ground covers, partial root zone drying, grain yield, quality traits, WUE, weed control efficiency
Procedia PDF Downloads 246481 Process Development for the Conversion of Organic Waste into Valuable Products
Authors: Ife O. Bolaji
Abstract:
Environmental concerns arising from the use of fossil fuels has increased the interest in the development of renewable and sustainable sources of energy. This would minimize the dependence on fossil fuels and serve as future alternatives. Organic wastes contain carbohydrates, proteins and lipids, which can be utilised as carbon sources for the production of bio-based products. Cellulose is the most abundant natural biopolymer, being the main structural component of lignocellulosic materials. The aim of this project is to develop a biological process for the hydrolysis and fermentation of organic wastes into ethanol and organic acids. The hydrolysis and fermentation processes are integrated in a single vessel using undefined mixed culture microorganisms. The anaerobic fermentation of microcrystalline cellulose was investigated in continuous and batch reactors at 25°C with an appropriate growth medium for cellulase formation, hydrolysis, and fermentation. The reactors were inoculated with soil (B1, C1, C3) or sludge from an anaerobic digester (B2, C2) and the breakdown of cellulose was monitored by measuring the production of ethanol, organic acids and the residual cellulose. The batch reactors B1 and B2 showed negligible microbial activity due to inhibition while the continuous reactors, C1, C2 and C3, exhibited little cellulose hydrolysis which was concealed by the cellulose accumulation in the reactor. At the end of the continuous operation, the reactors C1, C2 and C3 were operated under batch conditions. 48%, 34% and 42% cellulose had been fermented by day 88, 55 and 55 respectively of the batch fermentation. Acetic acid, ethanol, propionic acid and butyric acids were the main fermentation products in the reactors. A stable concentration of 0.6 g/l ethanol and 5 g/L acetic acid was maintained in C3 for several weeks due to reduced activity of methanogens caused by the decrease in pH. Thus far, the results have demonstrated that mixed microbial culture is capable of hydrolysing and fermenting cellulose under lenient conditions. The fermentation of cellulose has been found effective in a combination of continuous and batch processes.Keywords: cellulose, hydrolysis, mixed culture, organic waste
Procedia PDF Downloads 365480 Comparative Correlation Investigation of Polynuclear Aromatic Hydrocarbons (PAHs) in Soils of Different Land Uses: Sources Evaluation Perspective
Authors: O. Onoriode Emoyan, E. Eyitemi Akporhonor, Charles Otobrise
Abstract:
Polycyclic Aromatic Hydrocarbons (PAHs) are formed mainly as a result of incomplete combustion of organic materials during industrial, domestic activities or natural occurrence. Their toxicity and contamination of terrestrial and aquatic ecosystem have been established. Though with limited validity index, previous research has focused on PAHs isomer pair ratios of variable physicochemical properties in source identification. The objective of this investigation was to determine the empirical validity of Pearson correlation coefficient (PCC) and cluster analysis (CA) in PAHs source identification along soil samples of different land uses. Therefore, 16 PAHs grouped as endocrine disruption substances (EDSs) were determined in 10 sample stations in top and sub soils seasonally. PAHs was determined the use of Varian 300 gas chromatograph interfaced with flame ionization detector. Instruments and reagents used are of standard and chromatographic grades respectively. PCC and CA results showed that the classification of PAHs along kinetically and thermodyanamically-favoured and those derived directly from plants product through biologically mediated processes used in source signature is about the predominance PAHs are likely to be. Therefore the observed PAHs in the studied stations have trace quantities of the vast majority of the sixteen un-substituted PAHs which may ultimately inhabit the actual source signature authentication. Type and extent of bacterial metabolism, transformation products/substrates, and environmental factors such as: salinity, pH, oxygen concentration, nutrients, light intensity, temperature, co-substrates and environmental medium are hereby recommended as factors to be considered when evaluating possible sources of PAHs.Keywords: comparative correlation, kinetically and thermodynamically-favored PAHs, pearson correlation coefficient, cluster analysis, sources evaluation
Procedia PDF Downloads 418479 The Impact of Air Pollution on Health and the Environment: The Case of Cement Beni-Saf, Western Algeria
Authors: N. Hachemi, I. Benmehdi, O. Hasnaoui
Abstract:
The air like water is an essential element for living beings. Each day, a man breathes about 20m3 of air. It originally consists of a set of gas whose presence and concentrations correspond to the needs of life. This study focuses on air pollution by smoke and dust emitted from the chimney of the cement works of Beni Saf, pathological and their impact on the environment. Dust of the cement plant are harmless to permissible levels for living organisms, but the two combined phenomena namely the release of dust and aridity of the climate, which severely marked area of Beni Saf; have contributed adverse effects in on human health and the degradation of vegetation cover and species especially weakened by environmental stress. The most visible impact is certainly the deposition of dust on the surrounding areas of the cement factory, and seriously affecting the aesthetics of the landscape. Health problems are more important inside and outside the factory. Among the diseases notable caused by the cement works are: deafness, heart disease, asthma and mental. The dust of the cement works is mainly composed of fine particles of limestone, clay, free lime, silicates and also loaded of the gases such as carbon dioxide gas CO2. The accumulation of this gas in the atmosphere is directly involved in the phenomenon of increasing of greenhouse effect. Some gases, for example, are directly toxic. They can change the climate, changing precipitation types and become a greater source of stress by drought, etc. The environment also suffers from air pollution indirectly; it is more precisely the acid rain. They are produced by the combustion of non-metals in air. Acid rain has consequences for contaminating the soil, weakening the flora, fauna and acidifies lakes. Finally, the pollution problems are multiple and specific dust. It can worsen and change, it has reached epidemic proportions quantitatively and qualitatively disturbing and unpredictable.Keywords: atmospheric pollution, cement, dust, environment
Procedia PDF Downloads 335478 Coconut Based Sustainable Agri-Silvicultural System: Success Story from Sri Lanka
Authors: Thavananthan Sivananthawerl
Abstract:
Coconut palm is existing for more than 2000 years in Sri Lanka. However, cultivation on a large scale (plantation) began only in the 19th century. Due to different light perceptions during the growth stages of palm, there is a huge potential to grow crops in-between rows of coconut plants which are grown with wider, fixed spacing. Intercropping under coconut will have multiple benefits such as increasing soil fertility, increasing sunlight utilization, increasing total crop productivity, increasing income & profit, maximum use of resources, reducing the risk, and increasing food security. Growing potential annual, agricultural intercrops could be classified as ‘agri-silvicultural’ system. This is the best agri-silvicultural system that can be named under any perennial crop system in Sri Lanka. In the late 1970’s cassava, pepper and cacao are the major intercrops under the coconut plantations. At the early ages of the palm (<5 years) light-loving crops such as pineapple, passion, papaya, and cassava are recommended and preferred by the cultivators. In between 5-20 years of age, the availability of light is very low, and therefore shade tolerant/loving crops (pasture, yam, ginger) could be used as the intercrops. However, after 20 years of age (>20 years) canopy is getting small, and the light availability on the ground increases. So, light demanding crops such as pepper, banana, pineapple, betel, cassava, and seasonal crops could be grown successfully. Even though this is a sustainable system in several aspects, there are potential challenges ahead to the system. The major ones are land fragmentation and infrastructure development. The other factors are drought, lack of financial support, price instability of the intercrops, availability of improved planting materials, and development of dwarf varieties which reduces the light.Keywords: coconut cultivation, agri-silviculture, intercrop, sunlight, annuals, sustainability
Procedia PDF Downloads 122477 2D Numerical Analysis for Determination of the Effect of Bored Piles Constructed against the Landslide near Karabuk University Stadium
Authors: Dogan Cetin, Burak Turk, Mahmut Candan
Abstract:
Landslides cause remarkable damage and loss of human life every year around the world. They may be made more likely by factors such as earthquakes, heavy precipitation, and incorrect construction activities near or on slopes. The stadium of Karabük University is located at the bottom of a very high slope. After construction of the stadium, severe deformations were observed on the social activity area surrounding the stadium. Some inclinometers were placed behind the stadium to detect the possible landslide activity. According to measurements of the inclinometers, irregular soil movements were detected at depths between 20 m and 45 m. Also, significant heaves and settlements were observed behind the stadium walls located at the toe of the slope. The heaves indicate that the stadium walls were under threat of a significant landslide. After inclinometer readings and field observations, the potential failure geometry was estimated. The protection system was designed based on numerous numerical analysis performed by 2-D Plaxis software. After the design was completed, protective geotechnical work was started. Before the geotechnical work began, new inclinometers were installed to monitor earth movement during the work and afterward. The total horizontal length of the possible failure surface is 220 m. Geotechnical work included two-row-pile construction and three-row-pile construction on the slope. The bored piles were 120 cm in diameter for two-row-pile construction, and 150 cm in diameter for three-row-pile construction. Pile length is 31.30 m for two-row-pile construction and 31.40 m for three-row-pile construction. The distance between two-row-pile and three-row-pile construction is 60 m. With these bored piles, the landslide was divided into three parts. In this way, the earth's pressure was reduced. After a number of inclinometer readings, it was seen that deformation continued during the work, but after the work was done, the movement reversed, and total deformation stayed in mm dimension. It can be said that the protection work eliminated the possible landslide.Keywords: landslide, landslide protection, inclinometer measurement, bored piles
Procedia PDF Downloads 144476 The Impact of Dust Storm Events on the Chemical and Toxicological Characteristics of Ambient Particulate Matter in Riyadh, Saudi Arabia
Authors: Abdulmalik Altuwayjiri, Milad Pirhadi, Mohammed Kalafy, Badr Alharbi, Constantinos Sioutas
Abstract:
In this study, we investigated the chemical and toxicological characteristics of PM10 in the metropolitan area of Riyadh, Saudi Arabia. PM10 samples were collected on quartz and teflon filters during cold (December 2019–April 2020) and warm (May 2020–August 2020) seasons, including dust and non-dust events. The PM10 constituents were chemically analyzed for their metal, inorganic ions, and elemental and organic carbon (EC/OC) contents. Additionally, the PM10 oxidative potential was measured by means of the dithiothreitol (DTT) assay. Our findings revealed that the oxidative potential of the collected ambient PM10 samples was significantly higher than those measured in many urban areas worldwide. The oxidative potential of the collected ambient PM¹⁰⁻ samples was also higher during dust episodes compared to non-dust events, mainly due to higher concentrations of metals during these events. We performed Pearson correlation analysis, principal component analysis (PCA), and multi-linear regression (MLR) to identify the most significant sources contributing to the toxicity of PM¹⁰⁻ The results of the MLR analyses indicated that the major pollution sources contributing to the oxidative potential of ambient PM10 were soil and resuspended dust emissions (identified by Al, K, Fe, and Li) (31%), followed by secondary organic aerosol (SOA) formation (traced by SO₄-² and NH+₄) (20%), and industrial activities (identified by Se and La) (19%), and traffic emissions (characterized by EC, Zn, and Cu) (17%). Results from this study underscore the impact of transported dust emissions on the oxidative potential of ambient PM10 in Riyadh and can be helpful in adopting appropriate public health policies regarding detrimental outcomes of exposure to PM₁₀-Keywords: ambient PM10, oxidative potential, source apportionment, Riyadh, dust episodes
Procedia PDF Downloads 171475 The Assessment Groundwater Geochemistry of Some Wells in Rafsanjan Plain, Southeast of Iran
Authors: Milad Mirzaei Aminiyan, Abdolreza Akhgar, Farzad Mirzaei Aminiyan
Abstract:
Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Pistachio is a main crop that accounts for a considerable portion of Iranian agricultural exports. Give that pistachio tree is a tolerant type of tree to saline and alkaline soil and water conditions, but groundwater and irrigation water quality play important roles in main production this crop. For this purpose, 94 well water samples were taken from 25 wells and samples were analyzed. The results showed give that region’s geological, climatic characteristics, statistical analysis, and based on dominant cations and anions in well water samples (piper diagram); four main types of water were found: Na-Cl, K-Cl, Na-SO4, and K-SO4. It seems that most wells in terms of water quality (salinity and alkalinity) and based on Wilcox diagram have critical status. The analysis suggested that more than eighty-seven percentage of the well water samples have high values of EC that these values are higher than into critical limit EC value for irrigation water, which may be due to the sandy soils in this area. Most groundwater were relatively unsuitable for irrigation but it could be used by application of correct management such as removing and reducing the ion concentrations of Cl‾, SO42‾, Na+ and total hardness in groundwater and also the concentrated deep groundwater was required treatment to reduce the salinity and sodium hazard. Given that irrigation water quality in this area was relatively unsuitable for most agriculture production but pistachio tree was adapted to this area conditions. The integrated management of groundwater for irrigation is the way to solve water quality issues not only in Rafsanjan area, but also in other arid and semi-arid areas.Keywords: groundwater quality, irrigation water quality, salinity, alkalinity, Rafsanjan plain, pistachio
Procedia PDF Downloads 415474 Large Herbivores Benefit Plant Growth via Diverse and Indirect Pathways in a Temperate Grassland
Authors: Xiaofei Li, Zhiwei Zhong, Deli Wang
Abstract:
Large herbivores affect plant growth not only through their direct, consumptive effects, but also through indirect effects that alter species interactions. Indirect effects can be either positive or negative, therefore having the potential to mitigate or enhance the direct impacts of herbivores. However, until recently, we know considerably less about the indirect effects than the direct effects of large herbivores on plants, and few studies have explored multiple indirect pathways simultaneously. Here, we investigated how large domestic herbivores, cattle (Bos taurus), can shape population growth of an intermediately preferred forb species, Artemsisa scoparia, through diverse pathways in a temperate grassland of northeast China. We found that, although exposure to direct consumption of cattle, A. scoparia growth was not inhibited, but rather showed a significant increase in the grazed than ungrazed areas. This unexpected result was due to grazing-induced multiple indirect, positive effects overwhelmed the direct, negative consumption effects of cattle on plant growth. The much more intensive consumption on the dominant Leymus chinensis grass, ground litter removal, and increases in ant nest abundance induced by cattle, exerted significant indirect, positive effects on A. scoparia growth. These pathways benefited A.scoparia growth by lessening interspecific competition, mitigating negative effects of litter accumulation, and increasing soil nutrient availability, respectively. Our results highlight the need to integrate indirect effects into the traditional food web theory, which is based primary on direct, trophic linkages, to fully understand community organization and dynamics. Large herbivores are important conservation and management targets, our results suggest that these mammals should be managed with the understanding that they can affect primary producers through diverse paths.Keywords: grasslands, large herbivores, plant growth, indirect effects
Procedia PDF Downloads 269473 The Magnetic Susceptibility of the Late Quaternary Loess in North-East of Iran and Its Correlation with Other Palaeoclimatical Parameters
Authors: Fereshteh M. Haskouei, Habib Alimohammadian
Abstract:
Magnetic susceptibility (χ) is operational to identify of late quaternary glacial-interglacial cycles in loess-paleosol sequences. It is well accepted that many loess-paleosol sequences bear witness to cold-dry/warm-humid periods, well known as glacial-interglacial cycles, respectively. For this study, loess-paleosol sequence of north-east of Iran was magnetically investigated. The study area is situated at about 8 km away of Neka city, on the main road of Sari-Behshahr, in Mazandaran Province, north of Iran. The youngest deposits of study area are the late Quaternary wind-blown accumulations. In this study, the total number of 117 samples was collected from loess-paleosols units. After that, the natural remnant magnetization (NRM) and magnetic susceptibility (MS) of the samples were measured. Variation of MS of more than 110 loess samples was plotted to reveal the correlation of the MS and paleoclimatic changes. This study aims reconstruction of climatic changes (glacial-interglacial and stadials-interstadials cycles). To confirm our results we compared MS (χ) and the curves of other investigations in paleoclimatology. This correspondence abled us to recognize worldly events in the study area such as: Younger Dryas, the Last Glacial Maximum (LGM), deglaciation of Northern Hemisphere etc. The obtained magnetic data indicate that during almost 50 ka, at least two glacial-interglacial periods occurred in north-east of Iran. Further, variation of χ values revealed short period of climatically cycles known as stadials-interstadials. We recognized 4 stadials and a single stadial as colder sub-periods for S0 (recently soil-paleosol) and S2 (lower paleosol), respectively, Moreover, we recognized 6 warmer sub-periods (interstadials) for L1 (upper loess) and one interstadial L2 (lower loess).Keywords: glacial-interglacial cycles, Iran, last glacial maximum (LGM), loess, magnetic susceptibility (χ), Neka, stadials-interstadials sub-periods, younger dryas
Procedia PDF Downloads 123472 Investigation of the Effect of Anaerobic Digestate on Antifungal Activity and in Different Parameters of Maize
Authors: Nazia Zaffar, Alam Khan, Abdul Haq, Malik Badshah
Abstract:
Pakistan is an agricultural country. The increasing population leads to an increase in demand for food. A large number of crops are infected by different microbes, and nutrient deficiency of soil adversely affects the yield of crops. Furthermore, the use of chemical fertilizers like Nitrogen, Phosphorus, Potassium (NPK) Urea, and Diammonium phosphate (DAP) and pesticides have environmental consequences. Therefore, there is an urgent need to explore alternative renewable and sustainable biofertilizers. Maize is one of the top growing crops in Pakistan, but it has low yield compared to other countries due to deficiency of organic matter, widespread nutrients deficiency (phosphorus and nitrogen), unbalanced use of fertilizers and various fungal diseases. In order to get rid of all these disadvantages, Digestate emerged as a win-win opportunity for the control of a few plant diseases and a replacement for the chemical fertilizers. The present study was designed to investigate the effect of Anerobic digestate on Antifungal Activity and in different parameters of Maize. The antifungal activity, minimum inhibitory concentration (MIC), and minimum fungicidal concentration (MFC) against selected phytopathogens (Colletotrichum coccodis, Pythium ultimum, Phytophthora capsci, Rhizoctonia solani, Bipolaris oryzae and Fusarium Fujikuroi) were determined by microtiter plate method. The effect of various fertilizers in different growth parameters height, diameter, chlorophyll, leaf area, biomass, and yield were studied in field experiments. The extracts from anaerobic digestate have shown antifungal activity against selected phytopathogens, the highest activity was noted against P. ultimum, the MIC activity was high in case of P. ultimum and B. oryzae. The present study concludes that anaerobic digestate have a positive effect on maize growth and yield as well as an antifungal activity which can be potentially a good biofertilizer.Keywords: anaerobic digestate, antifungal activity, MIC, phytopathogens
Procedia PDF Downloads 122471 Site Investigations and Mitigation Measures of Landslides in Sainj and Tirthan Valley of Kullu District, Himachal Pradesh, India
Authors: Laxmi Versain, R. S. Banshtu
Abstract:
Landslides are found to be the most commonly occurring geological hazards in the mountainous regions of the Himalaya. This mountainous zone is facing large number of seismic turbulences, climatic changes, and topography changes due to increasing urbanization. That eventually has lead several researchers working for best suitable methodologies to infer the ultimate results. Landslide Hazard Zonation has widely come as suitable method to know the appropriate factors that trigger the lansdslide phenomenon on higher reaches. Most vulnerable zones or zones of weaknesses are indentified and safe mitigation measures are to be suggested to mitigate and channelize the study of an effected area. Use of Landslide Hazard Zonation methodology in relative zones of weaknesses depend upon the data available for the particular site. The causative factors are identified and data is made available to infer the results. Factors like seismicity in mountainous region have closely associated to make the zones of thrust and faults or lineaments more vulnerable. Data related to soil, terrain, rainfall, geology, slope, nature of terrain, are found to be varied for various landforms and areas. Thus, the relative causes are to be identified and classified by giving specific weightage to each parameter. Factors which cause the instability of slopes are several and can be grouped to infer the potential modes of failure. The triggering factors of the landslides on the mountains are not uniform. The urbanization has crawled like ladder and emergence of concrete jungles are in a very fast pace on hilly region of Himalayas. The local terrains has largely been modified and hence instability of several zones are triggering at very fast pace. More strategic and pronounced methods are required to reduce the effect of landslide.Keywords: zonation, LHZ, susceptible, weightages, methodology
Procedia PDF Downloads 195470 Review on the Role of Sustainability Techniques in Development of Green Building
Authors: Ubaid Ur Rahman, Waqar Younas, Sooraj Kumar Chhabira
Abstract:
Environmentally sustainable building construction has experienced significant growth during the past 10 years at international level. This paper shows that the conceptual framework adopts sustainability techniques in construction to develop environment friendly building called green building. Waste occurs during the different construction phases which causes the environmental problems like, deposition of waste on ground surface creates major problems such as bad smell. It also gives birth to different health diseases and produces toxic waste agent which is specifically responsible for making soil infertile. Old recycled building material is used in the construction of new building. Sustainable construction is economical and saves energy sources. Sustainable construction is the major responsibility of designer and project manager. The designer has to fulfil the client demands while keeping the design environment friendly. Project manager has to deliver and execute sustainable construction according to sustainable design. Steel is the most appropriate sustainable construction material. It is more durable and easily recyclable. Steel occupies less area and has more tensile and compressive strength than concrete, making it a better option for sustainable construction as compared to other building materials. New technology like green roof has made the environment pleasant, and has reduced the construction cost. It minimizes economic, social and environmental issues. This paper presents an overview of research related to the material use of green building and by using this research recommendation are made which can be followed in the construction industry. In this paper, we go through detailed analysis on construction material. By making suitable adjustments to project management practices it is shown that a green building improves the cost efficiency of the project, makes it environmental friendly and also meets future generation demands.Keywords: sustainable construction, green building, recycled waste material, environment
Procedia PDF Downloads 244469 Diversification of Rice-Based Cropping Systems under Irrigated Condition
Authors: A. H. Nanher, N. P. Singh
Abstract:
In India, Agriculture is largely in rice- based cropping system. It has indicated decline in factor productivity along with emergence of multi - nutrient deficiency, buildup of soil pathogen and weed flora because it operates and removes nutrients from the same rooting depth. In designing alternative cropping systems, the common approaches are crop intensification, crop diversification and cultivar options. The intensification leads to the diversification of the cropping system. Intensification is achieved by introducing an additional component crop in a pre-dominant sequential system by desirable adjustments in cultivars of one or all the component crops. Invariably, this results in higher land use efficiency and productivity per unit time Crop Diversification through such crop and inclusion of fodder crops help to improve the economic situation of small and marginal farmers because of higher income. Inclusion of crops in sequential and intercropping systems reduces some obnoxious weeds through formation of canopies due to competitive planting pattern and thus provides an opportunity to utilize cropping systems as a tool of weed management with non-chemical means. Use of organic source not only acts as supplement for fertilizer (nitrogen) but also improve the physico-chemical properties of soils. Production and use of nitrogen rich biomass offer better prospect for supplementing chemical fertilizers on regular basis. Such biological diversity brings yield and economic stability because of its potential for compensation among components of the system. In a particular agro-climatic and resource condition, the identification of most suitable crop sequence is based on its productivity, stability, land use efficiency as well as production efficiency and its performance is chiefly judged in terms of productivity and net return.Keywords: integrated farming systems, sustainable intensification, system of crop intensification, wheat
Procedia PDF Downloads 423468 The Status of Precision Agricultural Technology Adoption on Row Crop Farms vs. Specialty Crop Farms
Authors: Shirin Ghatrehsamani
Abstract:
Higher efficiency and lower environmental impact are the consequence of using advanced technology in farming. They also help to decrease yield variability by diminishing weather variability impact, optimizing nutrient and pest management as well as reducing competition from weeds. A better understanding of the pros and cons of applying technology and finding the main reason for preventing the utilization of the technology has a significant impact on developing technology adoption among farmers and producers in the digital agriculture era. The results from two surveys carried out in 2019 and 2021 were used to investigate whether the crop types had an impact on the willingness to utilize technology on the farms. The main focus of the questionnaire was on utilizing precision agriculture (PA) technologies among farmers in some parts of the united states. Collected data was analyzed to determine the practical application of various technologies. The survey results showed more similarities in the main reason not to use PA between the two crop types, but the present application of using technology in specialty crops is generally five times larger than in row crops. GPS receiver applications were reported similar for both types of crops. Lack of knowledge and high cost of data handling were cited as the main problems. The most significant difference was among using variable rate technology, which was 43% for specialty crops while was reported 0% for row crops. Pest scouting and mapping were commonly used for specialty crops, while they were rarely applied for row crops. Survey respondents found yield mapping, soil sampling map, and irrigation scheduling were more valuable for specialty crops than row crops in management decisions. About 50% of the respondents would like to share the PA data in both types of crops. Almost 50 % of respondents got their PA information from retailers in both categories, and as the second source, using extension agents were more common in specialty crops than row crops.Keywords: precision agriculture, smart farming, digital agriculture, technology adoption
Procedia PDF Downloads 113467 Geomorphologic Evolution of the Southern Habble-Rud River Basin, North of Iran
Authors: Maryam Jaberi, Siavosh Shayan, Mojtaba Yamani
Abstract:
Habble-Rud River basin (HR), up to 100 km length, one of the largest watersheds which drain into deserts to the north of Central Iran (Dasht-e Kavir). This stream is oblique with the NE-SW trending, flow in the southern range of central Alborz Mountains and the northern border of Central Iran. The end of the ~17 km suddenly change direction and with the southern trending to have a morphology which meanders passes through the Alborz Mountain ridge and flows into the Garmsar plain where it forms one of the largest alluvial fans in Iran, i.e. the vast Garmsar alluvial fan with an area of 476 km2. This study was carried out through morphometric analyses, longitudinal river profiles, and study of geomorpholic evidence such as fluvial terraces, gypsum-salt domes, seismic data, and satellite images. This study aimed to investigate the changes in the pattern of rivers in the southern part of the HR river basin. The southern part of HR river basin located at the southern foothills of the Central Alborz is characterized the thrust faults (Sorkheh-Kalut and Garmsar faults), folds,diapirs and arid climate. The activity of more than 10 salt domes that belong to the Oligocene-Miocene period has considerably influenced the pattern of streams in this region. Dissolution of these domes has not only reduced the quality of water and soil resources, but also has led to the formation of badlands and gullies.Our results indicated that the pattern of rivers in the southern part of HR river basin was influenced by discharge of the HR river in Quaternary, geological structure, subsidence of Central Iran and vertical uplift of Alborz mountain. These agents caused the formation meanders in the southern part of the HR River and evaluation of the seasonal rivers like Shoor-Darre and Garmabsar.Keywords: geomorphologic evaluation, rivers pattern, Habble-Rud River basin, seasonal rivers
Procedia PDF Downloads 500466 Intercropping Immature Oil Palm (Elaeisguineensis) with Banana, Ginger and Turmeric in Galle District, Sri Lanka
Authors: S. M. Dissanayake, I. R. Palihakkara , K. G. Premathilaka
Abstract:
Oil palm (Elaeisguineensis) is the world’s leading vegetable oil-producing plant and is well established as a perennial plantation crop in tropical countries. Oil palm in Sri Lanka has spread over 10,000 hectares in the wet zone of the Island. In immature plantations, land productivity can be increased with some selected intercrops. At the immature stage of the plantations (age up to 3-5 years), there is a large amount of free space available inside the plantations. This study attempts to determine the suitability of different intercrops during the immature phase of the oil palm. A field experiment is being conducted at Thalgaswella estate (WL2a) in Galle district, Sri Lanka. The objectives of the study are to evaluate and recommend a suitable immature oil palm-based intercropping system/s. This experiment was established with randomized complete block design (RCBD) with four treatments, including control in three replicates. Banana, ginger, and turmeric were selected as intercrops. Growth parameters of intercrops (plant height, length, width of D-leaf, and yield of intercrops) and girth, length, and number of leaflets of 17th frond in oil palms were taken at two months intervals. In addition to this, chlorophyll content was also measured in both intercrops and oil palm trees. Soil chemical parameters were measured annually. Results were statistically analyzed with SAS software. Results revealed that intercropped banana, turmeric, and ginger had given yields of 7.61Mt/ha, 4.92Mt/ha, and 4.53Mt/ha, respectively. When comparing these yields with mono-crop, banana, turmeric, and ginger intercrop yields as percentages of 16.9%, 24.6%, and 30.2%, respectively. The results of this study could be used to make appropriate policies to increase the unit land productivity in oil palm plantations in a low country wet zone (WL2a) of Sri Lanka.Keywords: inter-cropping, oil palm, policies, mono-crop, land productivity
Procedia PDF Downloads 156465 Impact of Urbanization on Natural Drainage Pattern in District of Larkana, Sindh Pakistan
Authors: Sumaira Zafar, Arjumand Zaidi
Abstract:
During past few years, several floods have adversely affected the areas along lower Indus River. Besides other climate related anomalies, rapidly increasing urbanization and blockage of natural drains due to siltation or encroachments are two other critical causes that may be responsible for these disasters. Due to flat topography of river Indus plains and blockage of natural waterways, drainage of storm water takes time adversely affecting the crop health and soil properties of the area. Government of Sindh is taking a keen interest in revival of natural drainage network in the province and has initiated this work under Sindh Irrigation and Drainage Authority. In this paper, geospatial techniques are used to analyze landuse/land-cover changes of Larkana district over the past three decades (1980-present) and their impact on natural drainage system. Satellite derived Digital Elevation Model (DEM) and topographic sheets (recent and 1950) are used to delineate natural drainage pattern of the district. The urban landuse map developed in this study is further overlaid on drainage line layer to identify the critical areas where the natural floodwater flows are being inhibited by urbanization. Rainfall and flow data are utilized to identify areas of heavy flow, whereas, satellite data including Landsat 7 and Google Earth are used to map previous floods extent and landuse/cover of the study area. Alternatives to natural drainage systems are also suggested wherever possible. The output maps of natural drainage pattern can be used to develop a decision support system for urban planners, Sindh development authorities and flood mitigation and management agencies.Keywords: geospatial techniques, satellite data, natural drainage, flood, urbanization
Procedia PDF Downloads 505