Search results for: sampling algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4990

Search results for: sampling algorithms

2500 Prevalence of Suicidal Behavioral Experiences in the Tertiary Institution: Implication for Childhood Development

Authors: Moses Onyemaechi Ede, Chinedu Ifedi Okeke

Abstract:

This study examined the prevalence of suicidal behavioural experience in a tertiary institution and its implication for childhood development. In pursuance of the objectives, two specific purposes, two research questions, and two null hypotheses guided this study. This is a descriptive design that utilized university student populations (N= 36,000 students) in the University of Nigeria Nsukka. The sample of the study was made up of 100 students. An accidental sampling technique was used to arrive at the sample. A self-developed questionnaire titled Suicidal Behaviour Questionnaire (SBQ) was used for this study. The data collected was analyzed using mean and percentages. The result showed that university students do not experience suicidal behaviours. It also showed that suicidal experiences are not prevalent. There is no significant influence of gender on the responses of male and female tertiary institution students based on their suicidal behavioural experiences. There is no significant influence of gender on the mean responses of male and female tertiary institution students on the prevalence of suicidal experiences. Based on the findings, it is recommended that there should be the teaching of suicide education and prevention in schools as well as mounting of bulletins on suicidology by the Guidance Counsellors.

Keywords: suicide, behavioural experiences, tertiary institution, childhood development

Procedia PDF Downloads 138
2499 Ingini Seeds: A Qualitative Study on Its Use in Water Purification in the Dry Zone of Sri Lanka

Authors: Iranga Weerakkody, Palitha Sri Geegana Arachchige, Dasith Tilakaratna

Abstract:

The aim of this research is to study how folk wisdom can be applied to assist in the process of purification of water. This is qualitative research, and by random sampling, it is focused on to the dry zone of Sri Lanka. The research limitation has been set to the use of Ingini seeds (Strychnos potatorum) to purify water. Here the research is based on connecting traditional knowledge regarding water purification using Ingini seeds to modern times and the advantages and disadvantages of using Ingini seeds to purify water sources. Ingini seeds have been used among villagers of the dry zone to purify water for a long time by methods such as planting Ingini plants around water sources and depositing seeds covered with a cotton cloth inside wells. Crushed Ingini seeds have been put into clay water pots to reduce the hardness of water, as well as the number of impurities present in the water. This shows that Ingini seeds have a property that is successful in precipitating dissolved impurities in water. Ingini seeds are also used to precipitate solid impurities in herbal wine. The advantages of using Ingini seeds are that it can be obtained naturally from the ecology without an additional cost and that it is completely organic forest produce. Another specialty is that in practices, it is used to treat kidney stones and other water-related diseases affecting the kidneys.

Keywords: folklife, Ingini seeds, Strychnos potatorum, organic forest produce, water purification

Procedia PDF Downloads 198
2498 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment

Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang

Abstract:

2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn  features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.

Keywords: artificial intelligence, machine learning, deep learning, convolutional neural networks

Procedia PDF Downloads 212
2497 Human-Tiger Conflict in Chitwan National Park, Nepal

Authors: Abishek Poudel

Abstract:

Human-tiger conflicts are serious issues of conflicts between local people and park authority and the conflicting situation potentially play negative role in park management. The study aimed (1) To determine the trend and nature of human-tiger conflicts (2) To understand people's perception and mitigation measures towards tiger conservation. Both primary and secondary information were used to determine human- tiger conflicts in Chitwan National Park. Systematic random sampling with 5% intensity was done to collect the perception of the villagers regarding human-tiger conflicts. The study sites were selected based on frequencies of incidences of human attacks and livestock depredation viz. Rajahar and Ayodhyapuri VDCs respectively. The trend of human casualties by tiger has increased in last five year whereas the trend of livestock has decreased. Reportedly, between 2008 and 2012, tigers killed 22 people, injured 10 and killed at least 213 livestock. Conflict was less common in the park and more intense in the sub-optimal habitats of Buffer Zone. Goat was the most vulnerable livestock followed by cattle. The livestock grazing and human intrusion into tiger habitat were the causes of conflicts. Developing local stewardship and support for tiger conservation, livestock insurance, and compensation policy simplification may help reduce human-tiger conflicts.

Keywords: livestock depredation, sub optimal habitat, human-tiger, local stewardship

Procedia PDF Downloads 463
2496 Perception of Nursing Care of Patients in a University Hospital

Authors: Merve Aydin, Mağfiret Kara Kaşikçi

Abstract:

Aim: To determine the perceptions of inpatients about care at Farabi Hospital in KTU. Material and Method: This research was conducted by using the universe known examples of formulas and probability selected by sampling method with 277 chosen patients in the hospital at least 14 days in other internal and surgical clinics except for pediatric, psychiatry, and intensive care unit services between January-March 2014 in KTU Farabi Hospital. The data was collected through the forms of nursing care perception scale of patients and defining characteristics of patients. In the evaluation of data, percentage, mean, Mann Whitney U, Student t and Kurskall Wallis tests were applied. Results: The average point the patients got in nursing care perception scale is 62.64±10.08’dir. 48.7 % of patients regard nursing care well and 36.8 % of them regard it very well. 19 % of the patients regard nursing care badly. When the age, sex, occupation, marital status, educational background, residential place, income level, hospitalization period, hospitalization clinic and having a hospital attendant were compared with nursing care perception average point, the difference among point averages was not found meaningful statistically (p > 0.05). The average point of nursing care perception was found greater in those having chronic disease (p < 0.05). Conclusion: The perception point of patients about nursing care is above the average according to the average of the lowest and highest points. The great majority of patients regard nursing care well or very well.

Keywords: hospital, patient, perception of nursing care, nursing care

Procedia PDF Downloads 396
2495 The Algorithm to Solve the Extend General Malfatti’s Problem in a Convex Circular Triangle

Authors: Ching-Shoei Chiang

Abstract:

The Malfatti’s Problem solves the problem of fitting 3 circles into a right triangle such that these 3 circles are tangent to each other, and each circle is also tangent to a pair of the triangle’s sides. This problem has been extended to any triangle (called general Malfatti’s Problem). Furthermore, the problem has been extended to have 1+2+…+n circles inside the triangle with special tangency properties among circles and triangle sides; we call it extended general Malfatti’s problem. In the extended general Malfatti’s problem, call it Tri(Tn), where Tn is the triangle number, there are closed-form solutions for Tri(T₁) (inscribed circle) problem and Tri(T₂) (3 Malfatti’s circles) problem. These problems become more complex when n is greater than 2. In solving Tri(Tn) problem, n>2, algorithms have been proposed to solve these problems numerically. With a similar idea, this paper proposed an algorithm to find the radii of circles with the same tangency properties. Instead of the boundary of the triangle being a straight line, we use a convex circular arc as the boundary and try to find Tn circles inside this convex circular triangle with the same tangency properties among circles and boundary Carc. We call these problems the Carc(Tn) problems. The CPU time it takes for Carc(T16) problem, which finds 136 circles inside a convex circular triangle with specified tangency properties, is less than one second.

Keywords: circle packing, computer-aided geometric design, geometric constraint solver, Malfatti’s problem

Procedia PDF Downloads 110
2494 Fundamental Problems in the Operation of the Automotive Parts Industry Small and Medium Businesses in the Greater Bangkok and Perimeter

Authors: Thepnarintra Praphanphat

Abstract:

The purposes of this study were to: 1) investigate operation conditions of SME automotive part industry in Bangkok and vicinity and 2) to compare operation problem levels of SME automotive part industry in Bangkok and vicinity according to the sizes of the enterprises. Samples in this study included 196 entrepreneurs of SME automotive part industry in Bangkok and vicinity derived from simple random sampling and calculation from R. V. Krejcie and D. W. Morgan’s tables. Research statistics included frequency, percentage, mean, standard deviation, and T-test. The results revealed that in general the problem levels of SME automotive part industry in Bangkok and vicinity were high. When considering in details, it was found that the problem levels were high at every aspect, i.e. personal, production, export, finance, and marketing respectively. The comparison of the problem levels according to the sizes of the enterprises revealed statistically significant differences at .05. When considering on each aspect, it was found that the aspect with the statistical difference at .05 included 5 aspects, i.e. production, marketing, finance, personal, and export. The findings also showed that small enterprises faced more severe problems than those of medium enterprises.

Keywords: automotive part industry, operation problems, SME, Perimeter

Procedia PDF Downloads 385
2493 Time Optimal Control Mode Switching between Detumbling and Pointing in the Early Orbit Phase

Authors: W. M. Ng, O. B. Iskender, L. Simonini, J. M. Gonzalez

Abstract:

A multitude of factors, including mechanical imperfections of the deployment system and separation instance of satellites from launchers, oftentimes results in highly uncontrolled initial tumbling motion immediately after deployment. In particular, small satellites which are characteristically launched as a piggyback to a large rocket, are generally allocated a large time window to complete detumbling within the early orbit phase. Because of the saturation risk of the actuators, current algorithms are conservative to avoid draining excessive power in the detumbling phase. This work aims to enable time-optimal switching of control modes during the early phase, reducing the time required to transit from launch to sun-pointing mode for power budget conscious satellites. This assumes the usage of B-dot controller for detumbling and PD controller for pointing. Nonlinear Euler's rotation equations are used to represent the attitude dynamics of satellites and Commercial-off-the-shelf (COTS) reaction wheels and magnetorquers are used to perform the manoeuver. Simulation results will be based on a spacecraft attitude simulator and the use case will be for multiple orbits of launch deployment general to Low Earth Orbit (LEO) satellites.

Keywords: attitude control, detumbling, small satellites, spacecraft autonomy, time optimal control

Procedia PDF Downloads 117
2492 Evaluation of the Impact of Information and Communications Technology (ICT) on the Accuracy of Preliminary Cost Estimates of Building Projects in Nigeria

Authors: Nofiu A. Musa, Olubola Babalola

Abstract:

The study explored the effect of ICT on the accuracy of Preliminary Cost Estimates (PCEs) prepared by quantity surveying consulting firms in Nigeria for building projects, with a view to determining the desirability of the adoption and use of the technological innovation for preliminary estimating. Thus, data pertinent to the study were obtained through questionnaire survey conducted on a sample of one hundred and eight (108) quantity surveying firms selected from the list of registered firms compiled by the Nigerian Institute of Quantity Surveyors (NIQS), Lagos State Chapter through systematic random sampling. The data obtained were analyzed with SPSS version 17 using student’s t-tests at 5% significance level. The results obtained revealed that the mean bias and co-efficient of variation of the PCEs of the firms are significantly less at post ICT adoption period than the pre ICT adoption period, F < 0.05 in each case. The paper concluded that the adoption and use of the Technological Innovation (ICT) has significantly improved the accuracy of the Preliminary Cost Estimates (PCEs) of building projects, hence, it is desirable.

Keywords: accepted tender price, accuracy, bias, building projects, consistency, information and communications technology, preliminary cost estimates

Procedia PDF Downloads 429
2491 Intelligent Decision Support for Wind Park Operation: Machine-Learning Based Detection and Diagnosis of Anomalous Operating States

Authors: Angela Meyer

Abstract:

The operation and maintenance cost for wind parks make up a major fraction of the park’s overall lifetime cost. To minimize the cost and risk involved, an optimal operation and maintenance strategy requires continuous monitoring and analysis. In order to facilitate this, we present a decision support system that automatically scans the stream of telemetry sensor data generated from the turbines. By learning decision boundaries and normal reference operating states using machine learning algorithms, the decision support system can detect anomalous operating behavior in individual wind turbines and diagnose the involved turbine sub-systems. Operating personal can be alerted if a normal operating state boundary is exceeded. The presented decision support system and method are applicable for any turbine type and manufacturer providing telemetry data of the turbine operating state. We demonstrate the successful detection and diagnosis of anomalous operating states in a case study at a German onshore wind park comprised of Vestas V112 turbines.

Keywords: anomaly detection, decision support, machine learning, monitoring, performance optimization, wind turbines

Procedia PDF Downloads 168
2490 Adjunct Placement in Educated Nigerian English

Authors: Juliet Charles Udoudom

Abstract:

In nonnative language use environments, language users have been known to demonstrate marked variations both in the spoken and written productions of the target language. For instance, analyses of the written productions of Nigerian users of English have shown inappropriate sequencing of sentence elements resulting in distortions in meaning and/or other problems of syntax. This study analyses the structure of sentences in the written production of 450 educated Nigerian users of English to establish their sensitivity to adjunct placement and the extent to which it exerts on meaning interpretation. The respondents were selected by a stratified random sampling technique from six universities in south-south Nigeria using education as the main yardstick for stratification. The systemic functional grammar analytic format was used in analyzing the sentences selected from the corpus. Findings from the analyses indicate that of the 8,576 tokens of adjuncts in the entire corpus, 4,550 (53.05%) of circumstantial adjuncts were appropriately placed while 2,839 (33.11%) of modal adjuncts occurred at appropriate locations in the clauses analyzed. Conjunctive adjunct placement accounted for 1,187 occurrences, representing 13.84% of the entire corpus. Further findings revealed that prepositional phrases (PPs) were not well construed by respondents to be capable of realizing adjunct functions, and were inappropriately placed.

Keywords: adjunct, adjunct placement, conjunctive adjunct, circumstantial adjunct, systemic grammar

Procedia PDF Downloads 24
2489 Emotional Intelligence and General Self-Efficacy as Predictors of Career Commitment of Secondary School Teachers in Nigeria

Authors: Moyosola Jude Akomolafe

Abstract:

Career commitment among employees is crucial to the success of any organization. However, career commitment has been reported to be very low among teachers in the public secondary schools in Nigeria. This study, therefore, examined the contributions of emotional intelligence and general self-efficacy to career commitment of among secondary school teachers in Nigeria. Descriptive research design of correlational type was adopted for the study. It made use of stratified random sampling technique was used in selecting two hundred and fifty (250) secondary schools teachers for the study. Three standardized instruments namely: The Big Five Inventory (BFI), Emotional Intelligence Scale (EIS), General Self-Efficacy Scale (GSES) and Career Commitment Scale (CCS) were adopted for the study. Three hypotheses were tested at 0.05 level of significance. Data collected were analyzed through Multiple Regression Analysis to investigate the predicting capacity of emotional intelligence and general self-efficacy on career commitment of secondary school teachers. The results showed that the variables when taken as a whole significantly predicted career commitment among secondary school teachers. The relative contribution of each variable revealed that emotional intelligence and general self-efficacy significantly predicted career commitment among secondary school teachers in Nigeria. The researcher recommended that secondary school teachers should be exposed to emotional intelligence and self-efficacy training to enhance their career commitment.

Keywords: career commitment, emotional intelligence, general self-efficacy, secondary school teachers

Procedia PDF Downloads 390
2488 Valuation of Entrepreneurship Education (EE) Curriculum and Self-Employment Generation among Graduates of Tertiary Institutions in Edo State, Nigeria

Authors: Angela Obose Oriazowanlan

Abstract:

Despite the introduction of Entrepreneurship education into the Nigerian University curriculum to prepare graduates for self-employment roles in order to abate employment challenges, their unemployment rate still soars high. The study, therefore, examined the relevance of the curriculum contents and its delivery mechanism to equip graduates with appropriate entrepreneurial skills prior to graduation. Four research questions and two hypotheses guided the study. The survey research design was adopted for the study. An infinite population of graduates of a period of five years with 200 sample representatives using the simple random sampling technique was adopted. A 45-item structured questionnaire was used for data gathering. The gathered data thereof was anlysed using the descriptive statistics of mean and standard deviation, while the formulated hypotheses were tested with Z-score at 0.5 level of significance. The findings revealed, among others, that graduates acquisition of appropriate entrepreneurial skills for self-employment generation is low due to curriculum deficiencies, insufficient time allotment, and the delivery mechanism. It was recommended, among others, that the curriculum should be reviewed to improve its relevancy and that sufficient time should be allotted to enable adequate teaching and learning process.

Keywords: evaluation of entrepreneurship education (EE) curriculum, self-employment generation, graduates of tertiary institutions, Edo state, Nigeria

Procedia PDF Downloads 102
2487 Use of Machine Learning in Data Quality Assessment

Authors: Bruno Pinto Vieira, Marco Antonio Calijorne Soares, Armando Sérgio de Aguiar Filho

Abstract:

Nowadays, a massive amount of information has been produced by different data sources, including mobile devices and transactional systems. In this scenario, concerns arise on how to maintain or establish data quality, which is now treated as a product to be defined, measured, analyzed, and improved to meet consumers' needs, which is the one who uses these data in decision making and companies strategies. Information that reaches low levels of quality can lead to issues that can consume time and money, such as missed business opportunities, inadequate decisions, and bad risk management actions. The step of selecting, identifying, evaluating, and selecting data sources with significant quality according to the need has become a costly task for users since the sources do not provide information about their quality. Traditional data quality control methods are based on user experience or business rules limiting performance and slowing down the process with less than desirable accuracy. Using advanced machine learning algorithms, it is possible to take advantage of computational resources to overcome challenges and add value to companies and users. In this study, machine learning is applied to data quality analysis on different datasets, seeking to compare the performance of the techniques according to the dimensions of quality assessment. As a result, we could create a ranking of approaches used, besides a system that is able to carry out automatically, data quality assessment.

Keywords: machine learning, data quality, quality dimension, quality assessment

Procedia PDF Downloads 151
2486 The Optimum Mel-Frequency Cepstral Coefficients (MFCCs) Contribution to Iranian Traditional Music Genre Classification by Instrumental Features

Authors: M. Abbasi Layegh, S. Haghipour, K. Athari, R. Khosravi, M. Tafkikialamdari

Abstract:

An approach to find the optimum mel-frequency cepstral coefficients (MFCCs) for the Radif of Mirzâ Ábdollâh, which is the principal emblem and the heart of Persian music, performed by most famous Iranian masters on two Iranian stringed instruments ‘Tar’ and ‘Setar’ is proposed. While investigating the variance of MFCC for each record in themusic database of 1500 gushe of the repertoire belonging to 12 modal systems (dastgâh and âvâz), we have applied the Fuzzy C-Mean clustering algorithm on each of the 12 coefficient and different combinations of those coefficients. We have applied the same experiment while increasing the number of coefficients but the clustering accuracy remained the same. Therefore, we can conclude that the first 7 MFCCs (V-7MFCC) are enough for classification of The Radif of Mirzâ Ábdollâh. Classical machine learning algorithms such as MLP neural networks, K-Nearest Neighbors (KNN), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machine (SVM) have been employed. Finally, it can be realized that SVM shows a better performance in this study.

Keywords: radif of Mirzâ Ábdollâh, Gushe, mel frequency cepstral coefficients, fuzzy c-mean clustering algorithm, k-nearest neighbors (KNN), gaussian mixture model (GMM), hidden markov model (HMM), support vector machine (SVM)

Procedia PDF Downloads 448
2485 Exploring Data Leakage in EEG Based Brain-Computer Interfaces: Overfitting Challenges

Authors: Khalida Douibi, Rodrigo Balp, Solène Le Bars

Abstract:

In the medical field, applications related to human experiments are frequently linked to reduced samples size, which makes the training of machine learning models quite sensitive and therefore not very robust nor generalizable. This is notably the case in Brain-Computer Interface (BCI) studies, where the sample size rarely exceeds 20 subjects or a few number of trials. To address this problem, several resampling approaches are often used during the data preparation phase, which is an overly critical step in a data science analysis process. One of the naive approaches that is usually applied by data scientists consists in the transformation of the entire database before the resampling phase. However, this can cause model’ s performance to be incorrectly estimated when making predictions on unseen data. In this paper, we explored the effect of data leakage observed during our BCI experiments for device control through the real-time classification of SSVEPs (Steady State Visually Evoked Potentials). We also studied potential ways to ensure optimal validation of the classifiers during the calibration phase to avoid overfitting. The results show that the scaling step is crucial for some algorithms, and it should be applied after the resampling phase to avoid data leackage and improve results.

Keywords: data leackage, data science, machine learning, SSVEP, BCI, overfitting

Procedia PDF Downloads 154
2484 Blockchain-Resilient Framework for Cloud-Based Network Devices within the Architecture of Self-Driving Cars

Authors: Mirza Mujtaba Baig

Abstract:

Artificial Intelligence (AI) is evolving rapidly, and one of the areas in which this field has influenced is automation. The automobile, healthcare, education, and robotic industries deploy AI technologies constantly, and the automation of tasks is beneficial to allow time for knowledge-based tasks and also introduce convenience to everyday human endeavors. The paper reviews the challenges faced with the current implementations of autonomous self-driving cars by exploring the machine learning, robotics, and artificial intelligence techniques employed for the development of this innovation. The controversy surrounding the development and deployment of autonomous machines, e.g., vehicles, begs the need for the exploration of the configuration of the programming modules. This paper seeks to add to the body of knowledge of research assisting researchers in decreasing the inconsistencies in current programming modules. Blockchain is a technology of which applications are mostly found within the domains of financial, pharmaceutical, manufacturing, and artificial intelligence. The registering of events in a secured manner as well as applying external algorithms required for the data analytics are especially helpful for integrating, adapting, maintaining, and extending to new domains, especially predictive analytics applications.

Keywords: artificial intelligence, automation, big data, self-driving cars, machine learning, neural networking algorithm, blockchain, business intelligence

Procedia PDF Downloads 121
2483 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing

Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor

Abstract:

This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.

Keywords: intelligent transportation system, object detection, vehicle couting, vehicle classification, video processing

Procedia PDF Downloads 324
2482 Identifying Psychosocial, Autonomic, and Pain Sensitivity Risk Factors of Chronic Temporomandibular Disorder by Using Ridge Logistic Regression and Bootstrapping

Authors: Haolin Li, Eric Bair, Jane Monaco, Quefeng Li

Abstract:

The temporomandibular disorder (TMD) is a series of musculoskeletal disorders ranging from jaw pain to chronic debilitating pain, and the risk factors for the onset and maintenance of TMD are still unclear. Prior researches have shown that the potential risk factors for chronic TMD are related to psychosocial factors, autonomic functions, and pain sensitivity. Using data from the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study’s baseline case-control study, we examine whether the risk factors identified by prior researches are still statistically significant after taking all of the risk measures into account in one single model, and we also compare the relative influences of the risk factors in three different perspectives (psychosocial factors, autonomic functions, and pain sensitivity) on the chronic TMD. The statistical analysis is conducted by using ridge logistic regression and bootstrapping, in which the performance of the algorithms has been assessed using extensive simulation studies. The results support most of the findings of prior researches that there are many psychosocial and pain sensitivity measures that have significant associations with chronic TMD. However, it is surprising that most of the risk factors of autonomic functions have not presented significant associations with chronic TMD, as described by a prior research.

Keywords: autonomic function, OPPERA study, pain sensitivity, psychosocial measures, temporomandibular disorder

Procedia PDF Downloads 191
2481 Determination of Verapamil Hydrochloride in Tablets and Injection Solutions With the Verapamil-Selective Electrode and Possibilities of Application in Pharmaceutical Analysis

Authors: Faisal A. Salih

Abstract:

Verapamil hydrochloride (Ver) is a drug used in medicine for arrythmia, angina and hypertension as a calcium channel blocker. For the quantitative determination of Ver in dosage forms, the HPLC method is most often used. A convenient alternative to the chromatographic method is potentiometry using a Verselective electrode, which does not require expensive equipment, can be used without separation from the matrix components, which significantly reduces the analysis time, and does not use toxic organic solvents, being a "green", "environmentally friendly" technique. It has been established in this study that the rational choice of the membrane plasticizer and the preconditioning and measurement algorithms, which prevent nonexchangeable extraction of Ver into the membrane phase, makes it possible to achieve excellent analytical characteristics of Ver-selective electrodes based on commercially available components. In particular, an electrode with the following membrane composition: PVC (32.8 wt %), ortho-nitrophenyloctyl ether (66.6 wt %), and tetrakis-4-chlorophenylborate (0.6 wt % or 0.01 M) have the lower detection limit 4 × 10−8 M and potential reproducibility 0.15–0.22 mV. Both direct potentiometry (DP) and potentiometric titration (PT) methods can be used for the determination of Ver in tablets and injection solutions. Masses of Ver per average tablet weight determined by the methods of DP and PT for the same set of 10 tablets were (80.4±0.2 and80.7±0.2) mg, respectively. The masses of Ver in solutions for injection, determined by DP for two ampoules from one set, were (5.00±0.015 and 5.004±0.006) mg. In all cases, good reproducibility and excellent correspondence with the declared quantities were observed.

Keywords: verapamil, potentiometry, ion-selective electrode, pharmaceutical analysis

Procedia PDF Downloads 89
2480 Empirical Study of Health Behaviors of Employees in Information Technology and Business Process Outsourcing

Authors: Yogesh Pawar

Abstract:

The purpose of this paper is to investigate the behaviors of information technology (IT) and business process outsourcing (BPO) employees in relation to diet, exercise, sleep, stress, and social habits. This was a qualitative research study, using in-depth,semi-structured interviews. Descriptive data were collected from a two-stage purposive sample of 28 IT-BPO employees from two IT companies and one BPOs in Pune. The majority of interviewees reported having an unhealthy diet and/or sedentary lifestyle. Lack of time due to demanding work schedules was the largest barrier to diet and exercise. Given the qualitative study design and limited sampling frame, results may not be generalizable. However, the qualitative data suggests that Pune’s young IT-BPO employees may be at greater risk of lifestyle-related diseases than the general population. The data also suggests that interventions incorporating social influence may be a promising solution, particularly at international call centers. The results from this study provide qualitative insight on the motives for health behaviors of IT-BPO employees, as well as the barriers and facilitators for leading a healthy lifestyle in this industry. The findings provide the framework for future workplace wellness interventions.

Keywords: exercise, information technology, qualitative research, wellness

Procedia PDF Downloads 335
2479 Relation between Sensory Processing Patterns and Working Memory in Autistic Children

Authors: Abbas Nesayan

Abstract:

Background: In recent years, autism has been under consideration in public and research area. Autistic children have dysfunction in communication, socialization, repetitive and stereotyped behaviors. In addition, they clinically suffer from difficulty in attention, challenge with familiar behaviors and sensory processing problems. Several variables are linked to sensory processing problems in autism, one of these variables is working memory. Working memory is part of the executive function which provides the necessary ability to completing multiple stages tasks. Method: This study has categorized in correlational research methods. After determining of entry criteria, according to purposive sampling method, 50 children were selected. Dunn’s sensory profile school companion was used for assessment of sensory processing patterns; behavioral rating inventory of executive functions was used (BRIEF) for assessment of working memory. Pearson correlation coefficient and linear regression were used for data analyzing. Results: The results showed the significant relationship between sensory processing patterns (low registration, sensory seeking, sensory sensitivity and sensory avoiding) with working memory in autistic children. Conclusion: According to the findings, there is the significant relationship between the patterns of sensory processing and working memory. So, in order to improve the working memory could be used some interventions based on the sensory processing.

Keywords: sensory processing patterns, working memory, autism, autistic children

Procedia PDF Downloads 224
2478 Forest Polices and Management in Nigeria: Are Households Willing to Pay for Forest Management?

Authors: A. O. Arowolo, M. U. Agbonlahor, P. A. Okuneye, A. E. Obayelu

Abstract:

Nigeria is rich with abundant resources with an immense contribution of the forest resource to her economic development and to the livelihood of the rural populace over the years. However, this important resource has continued to shrink because it is not sustainably used, managed or conserved. The loss of forest cover has far reaching consequences on regional, national and global economy as well as the environment. This paper reviewed the Nigeria forest management policies, the challenges and willingness to pay (WTP) for management of the community forests in Ogun State, Nigeria. Data for the empirical investigation were obtained using a cross-section survey of 160 rural households by multistage sampling technique. The WTP was assessed by the Dichotomous Choice Contingent Valuation. One major findings is that, the Nigerian forest reserves is established in order to conserve and manage forest resources but has since been neglected while the management plans are either non-existent or abandoned. Also, the free areas termed the community forests where people have unrestricted access to exploit are fast diminishing in both contents and scale. The mean WTP for sustainable management of community forests in the study area was positive with a value of ₦389.04/month. The study recommends policy measures aimed at participatory forest management plan which will include the rural communities in the management of community forests. This will help ensure sustainable management of forest resources as well as improve the welfare of the rural households.

Keywords: forests, management, WTP, Nigeria

Procedia PDF Downloads 391
2477 The Role of Financial Literacy and Personal Non-Cognitive Attributes in Household Financial Fragility

Authors: Ivana Bulog, Ana Rimac Smiljanić, Sandra Pepur

Abstract:

The financial fragility of households has received increased attention following the recent health crisis, which has created uncertainty and caused increased levels of stress and consequently impaired individual and family well-being. Job losses and/or reduced wages and insecurity increased the number of people that were unable to meet unexpected expenses, which, in many cases, led to increased household debt levels. This presents a threat to the stability of the financial system and the whole economy; therefore, reducing financial fragility and improving financial literacy present challenges for academicians, practitioners, and policymakers. Concerning financial fragility, significant research attention has been devoted to financial knowledge and financial literacy. However, apart from specific knowledge, personal characteristics are of great importance in making financial decisions in the household. Self-efficacy is one of the personal non-cognitive attributes that is a valuable framework for understanding how household financial decisions are made. Thus, this research proposes that individual levels of financial literacy and self-efficacy are related to the indebtedness and financial instability of the household. The primary data were collected using a structured, self-administered online questionnaire, and a snowball sampling method was applied to reach the participants. Preliminary results confirm our assumptions on the influence of financial literacy and self-efficacy on household financial stability.

Keywords: financial literacy, self-efficacy, household financial fragility, well-being

Procedia PDF Downloads 88
2476 Hopes of out of School Children with Disabilities for Educational Inclusion

Authors: Afaf Manzoor, Abdul Hameed

Abstract:

Hopes to attend school is the most effective means to overcome the burden of disability and become a self-reliant, productive citizen. The objectives of the study were to develop a valid and reliable scale to measure hopes of out of school children with disabilities and find an association between hopes and various demographic factors such as type of disability, gender, socio-economic status, and locale, etc. Child Hope theory by Snyder (2003) was used as a framework to develop a measure for the hopes of children. According to this theory, hope is defined as a set of cognition that includes self- perception which establish routes to achieve desired goals (pathways) and motivation for achieving the goals (agency). By applying this theory, inclusion hope scale was developed and validated. The data were collected from 361 out of school children with disabilities living in three districts (Lahore, Sheikupura, Kasur) of Lahore Division by using the cluster sampling technique. Findings of the study indicated that children with intellectual challenges were more hopeless as compared to other types of disabilities. Similarly, children living in urban areas have better hopes for inclusion in school. However, no gender disparity was found in terms of being hopeful to attend schools. The study also includes recommendations to improve hopes for educational inclusion among out of school children with disabilities.

Keywords: out of school children, disability, hopes, inclusion

Procedia PDF Downloads 174
2475 Speed Control of DC Motor Using Optimization Techniques Based PID Controller

Authors: Santosh Kumar Suman, Vinod Kumar Giri

Abstract:

The goal of this paper is to outline a speed controller of a DC motor by choice of a PID parameters utilizing genetic algorithms (GAs), the DC motor is extensively utilized as a part of numerous applications such as steel plants, electric trains, cranes and a great deal more. DC motor could be represented by a nonlinear model when nonlinearities such as attractive dissemination are considered. To provide effective control, nonlinearities and uncertainties in the model must be taken into account in the control design. The DC motor is considered as third order system. Objective of this paper three type of tuning techniques for PID parameter. In this paper, an independently energized DC motor utilizing MATLAB displaying, has been outlined whose velocity might be examined utilizing the Proportional, Integral, Derivative (KP, KI , KD) addition of the PID controller. Since, established controllers PID are neglecting to control the drive when weight parameters be likewise changed. The principle point of this paper is to dissect the execution of optimization techniques viz. The Genetic Algorithm (GA) for improve PID controllers parameters for velocity control of DC motor and list their points of interest over the traditional tuning strategies. The outcomes got from GA calculations were contrasted and that got from traditional technique. It was found that the optimization techniques beat customary tuning practices of ordinary PID controllers.

Keywords: DC motor, PID controller, optimization techniques, genetic algorithm (GA), objective function, IAE

Procedia PDF Downloads 423
2474 Stress and Personality as Predictors of Aggressive Behaviour among Nurses of Private Hospitals in Imo State, Nigeria

Authors: Ngozi N. Sydney-Agbor, Chioma N. Ihegboro

Abstract:

Stress and personality as factors influencing nurses’ aggressive behaviour were investigated. The participants comprised of one hundred and fifty nurses selected through convenience sampling technique from four (4) private hospitals in Imo State, Nigeria; namely: Eastern Summit Specialist Clinics and Maternity, St. David Hospital, New Cross Hospital, and Christian Teaching Hospital. The nurses were all females with ages between 20–35 and a mean age of 25.10 years and a standard deviation of 4.15. The participants were administered with Job Related Tension Scale, Type A Behaviour Scale and Buss- Perry Aggressive Behaviour Scale. Two hypotheses were postulated and tested. Cross- sectional survey and Regression Analysis were adopted as design and statistics respectively. Results showed that as stress increased, nurses aggression also increased. Personality also predicted nurses aggressive behaviour with Type As’ exhibiting higher aggression than Type Bs’.The study recommended that hospital management board should improve the welfare of the nurses and their morale should be boosted by involving them in policy-making concerning their welfare and care of their patients, this will help minimise situations capable of increasing aggressive behaviour. There should also be sensitization on the negative impact of aggressive behaviour to patients especially amongst the personality Type A’s who are more susceptible to aggression.

Keywords: aggressive behaviour, nurses, personality, stress

Procedia PDF Downloads 344
2473 Comparative Study on Manet Using Soft Computing Techniques

Authors: Amarjit Singh, Tripatdeep Singh Dua, Vikas Attri

Abstract:

Mobile Ad-hoc Network is a combination of several nodes that create dynamically a specific network without using any base infrastructure. In this study all the mobile nodes can depended upon each other to send any data. Mobile host can pick up data and forwarding to their destination path. Basically MANET depend upon their Quality of Service which is highly constraints to the user. To give better services we need to improve the QOS. In these days MANET QOS requirement to use soft computing techniques. These techniques depend upon their specific requirement and which exists using MANET concepts. Using a soft computing techniques various protocol and algorithms may be considered. In this paper, we provide comparative study review of existing work done in MANET using various kind of soft computing techniques. Our review research is based on their specific protocol or algorithm which provide concern solution of QOS need. We discuss about various protocol through which routing in MANET. In Second section we clear the concepts of Soft Computing and their types. In third section we review the MANET using different kind of soft computing techniques work done before. In forth section we need to understand the concept of QoS requirement which exists in MANET and we done comparative study on different protocol used before and last we conclude the purpose of using MANET with soft computing techniques metrics.

Keywords: mobile ad-hoc network, fuzzy improved genetic approach, neural network, routing protocol, wireless mesh network

Procedia PDF Downloads 351
2472 Building a Performance Outline for Health Care Workers at Teaching Hospitals, Nigeria: The Role of Different Leadership Styles

Authors: Osuagwu Justine Ugochukwu

Abstract:

Investigating the effects of transformational and transactional leadership styles on the performance of healthcare employees at the University Teaching Hospital (UNTH) in Enugu, Nigeria, was the goal of the research. The respondents were asked to fill out a structured questionnaire. The respondents were chosen using a straightforward random sampling technique and consisted of 370 health workers at the hospital. The result of the analysis revealed that transactional and transformational leadership style has a positive while ambidextrous leadership has a negative effect on healthcare workers' performance in UNTH, Enugu. Therefore, the management of public hospitals that have the capacity to change their top management approach to leadership styles will gain substantial support from their employees’ thereby increasing organizational commitment and performance among health workers. This will have remarkable social implications, one of which is a change in the work culture and attitude of medical personnel from the seemingly anti-community of patients to friendly engagement and treatment of patients leading to a harmonious coexistence among these individuals in society. Investigating ambidextrous leadership and the use of nonparametric analysis is unique and has brought brand-new knowledge to leadership literature.

Keywords: workers performance, transformational leadership, transactional leadership, governance quality, ambidextrous leadership

Procedia PDF Downloads 93
2471 The Effect of Media Effect, Conformity, and Personality on Customers’ Purchase Intention under the Influence of COVID-19 Pandemic

Authors: Tsai-Yun Liao, Fang-Yi Hsu

Abstract:

Consumer behavior and consumption patterns have changed in reacting to the threat of COVID-19 pandemic situations. In order to explore the factors affecting customers’ purchase intention under the influence of the COVID-19 pandemic, this research uses structural equation modeling to explore the effect of media effect, conformity, and personality on customers’ purchase intention. Four essential objectives are investigated: how does media affect the conformity and perceived value of customers; the effect of media effect, conformity, and personality on customers’ purchase intention; the moderating effect of personality; and the mediating effect of perceived value toward purchase intention. By convenience sampling method, 428 questionnaires were collected, and the total number of valid samples was 406. Data analysis and results indicate that: (1) The media effect positively affects conformity. (2) The media effect positively affects perceived value. (3) Both conformity and perceived value positively affect purchase intention. (4) Consumer’s personality of openness to experience moderates the relationship between conformity and purchase intention. (5) Media effect affects purchase intention through the mediating effect of perceived value. This study contributes to the research by providing the factors affecting customers’ purchase intention and to the enterprises by maintaining incumbent customers and attracting potential customers.

Keywords: COVID-19, media effect, conformity, personality, purchase intention

Procedia PDF Downloads 147