Search results for: retinal ganglion cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3738

Search results for: retinal ganglion cell

1248 Investigation on the Capacitive Deionization of Functionalized Carbon Nanotubes (F-CNTs) and Silver-Decorated F-CNTs for Water Softening

Authors: Khrizelle Angelique Sablan, Rizalinda De Leon, Jaeyoung Lee, Joey Ocon

Abstract:

The impending water shortage drives us to find alternative sources of water. One of the possible solutions is desalination of seawater. There are numerous processes by which it can be done and one if which is capacitive deionization. Capacitive deionization is a relatively new technique for water desalination. It utilizes the electric double layer for ion adsorption. Carbon-based materials are commonly used as electrodes for capacitive deionization. In this study, carbon nanotubes (CNTs) were treated in a mixture of nitric and sulfuric acid. The silver addition was also facilitated to incorporate antimicrobial action. The acid-treated carbon nanotubes (f-CNTs) and silver-decorated f-CNTs (Ag@f-CNTs) were used as electrode materials for seawater deionization and compared with CNT and acid-treated CNT. The synthesized materials were characterized using TEM, EDS, XRD, XPS and BET. The electrochemical performance was evaluated using cyclic voltammetry, and the deionization performance was tested on a single cell with water containing 64mg/L NaCl. The results showed that the synthesized Ag@f-CNT-10 H could have better performance than CNT and a-CNT with a maximum ion removal efficiency of 50.22% and a corresponding adsorption capacity of 3.21 mg/g. It also showed antimicrobial activity against E. coli. However, the said material lacks stability as the efficiency decreases with repeated usage of the electrode.

Keywords: capacitive deionization, carbon nanotubes, desalination, acid functionalization, silver

Procedia PDF Downloads 229
1247 Online Battery Equivalent Circuit Model Estimation on Continuous-Time Domain Using Linear Integral Filter Method

Authors: Cheng Zhang, James Marco, Walid Allafi, Truong Q. Dinh, W. D. Widanage

Abstract:

Equivalent circuit models (ECMs) are widely used in battery management systems in electric vehicles and other battery energy storage systems. The battery dynamics and the model parameters vary under different working conditions, such as different temperature and state of charge (SOC) levels, and therefore online parameter identification can improve the modelling accuracy. This paper presents a way of online ECM parameter identification using a continuous time (CT) estimation method. The CT estimation method has several advantages over discrete time (DT) estimation methods for ECM parameter identification due to the widely separated battery dynamic modes and fast sampling. The presented method can be used for online SOC estimation. Test data are collected using a lithium ion cell, and the experimental results show that the presented CT method achieves better modelling accuracy compared with the conventional DT recursive least square method. The effectiveness of the presented method for online SOC estimation is also verified on test data.

Keywords: electric circuit model, continuous time domain estimation, linear integral filter method, parameter and SOC estimation, recursive least square

Procedia PDF Downloads 381
1246 Comparative Study of IC and Perturb and Observe Method of MPPT Algorithm for Grid Connected PV Module

Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati

Abstract:

The purpose of this paper is to study and compare two maximum power point tracking (MPPT) algorithms in a photovoltaic simulation system and also show a simulation study of maximum power point tracking (MPPT) for photovoltaic systems using perturb and observe algorithm and Incremental conductance algorithm. Maximum power point tracking (MPPT) plays an important role in photovoltaic systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency and minimize the overall system cost. Since the maximum power point (MPP) varies, based on the irradiation and cell temperature, appropriate algorithms must be utilized to track the (MPP) and maintain the operation of the system in it. MATLAB/Simulink is used to establish a model of photovoltaic system with (MPPT) function. This system is developed by combining the models established of solar PV module and DC-DC Boost converter. The system is simulated under different climate conditions. Simulation results show that the photovoltaic simulation system can track the maximum power point accurately.

Keywords: incremental conductance algorithm, perturb and observe algorithm, photovoltaic system, simulation results

Procedia PDF Downloads 554
1245 An Experimental Investigation into Fluid Forces on Road Vehicles in Unsteady Flows

Authors: M. Sumida, S. Morita

Abstract:

In this research, the effect of unsteady flows acting on road vehicles was experimentally investigated, using an advanced and recently introduced wind tunnel. The aims of this study were to extract the characteristics of fluid forces acting on road vehicles under unsteady wind conditions and obtain new information on drag forces in a practical on-road test. We applied pulsating wind as a representative example of the atmospheric fluctuations that vehicles encounter on the road. That is, we considered the case where the vehicles are moving at constant speed in the air, with large wind oscillations. The experimental tests were performed on the Ahmed-type test model, which is a simplified vehicle model. This model was chosen because of its simplicity and the data accumulated under steady wind conditions. The experiments were carried out with a time-averaged Reynolds number of Re = 4.16x10⁵ and a pulsation period of T = 1.5 s, with amplitude of η = 0.235. Unsteady fluid forces of drag and lift were obtained utilizing a multi-component load cell. It was observed that the unsteady aerodynamic forces differ significantly from those under steady wind conditions. They exhibit a phase shift and an enhanced response to the wind oscillations. Furthermore, their behavior depends on the slant angle of the rear shape of the model.

Keywords: Ahmed body, automotive aerodynamics, unsteady wind, wind tunnel test

Procedia PDF Downloads 292
1244 Study the Effect of Lipoid Acid as a Protective Against Rheumatoid Arthritis Through Diminishing Pro-inflammatory Markers and Chemokine Expression

Authors: Khairy Mohamed Abdalla Zoheir

Abstract:

One of the most severe complications of Rheumatoid arthritis is delayed recovery. lipoic acid possesses antioxidant, hypoglycemic, and anti-inflammatory activity. In the present study, the effects of lipoic acid were investigated on the key mediators of Rheumatoid arthritis, namely, CD4+CD25+ T cell subsets, GITR expressing cells, CD4+CD25+Foxp3+ regulatory T (Treg) cells, T-helper-17 (Th17) cells and pro-inflammatory cytokines Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and Tumor Necrosis Factor- α (TNF-α)] through flow-cytometry and qPCR analyses. Lipoic acid-treated mice showed a significant decrease in Rheumatoid arthritis, the frequency of GITR-expressing cells, and Th1 cytokines (IL-17A, TNF-αand Interferon- γ (IFN-γ) compared with positive and negative controlled mice. Lipoic acid treatment also downregulated the mRNA expression of the inflammatory mediators compared with the Rheumatoid arthritis mouse model and untreated mice. The number of Tregs was also found to be significantly upregulated in lipoic acid-treated mice. Our results were confirmed by the histopathological examination. This study showed the beneficial role of lipoic acid in promoting a well-balanced tool for the therapy of Rheumatoid arthritis.

Keywords: lipoic acid, inflammatory markers, rheumatoid arthritis, qPCR

Procedia PDF Downloads 98
1243 Underdiagnosis of Supraclavicular Brachial Plexus Metastasis in the Shadow of Cervical Disc Herniation: Insights from a Lung Cancer Case Study

Authors: Eunhwa Jun

Abstract:

This case report describes the misdiagnosis of a patient who presented with right arm pain as cervical disc herniation. The patient had several underlying conditions, including hypertension, diabetes mellitus, liver cirrhosis, a history of lung cancer with left lower lobe lobectomy, and adjuvant chemoradiotherapy. An external cervical spine MRI revealed central protruding discs at the C4-5-6-7 levels. Despite treatment with medication and epidural blocks, the patient's pain persisted. A C-RACZ procedure was planned, but the patient's pain had worsened before admission. Using ultrasound, a brachial plexus block was attempted, but the brachial plexus eluded clear visualization, hinting at underlying neurological complexities. Chest CT revealed a new, large soft tissue mass in the right supraclavicular region with adjacent right axillary lymphadenopathy, leading to the diagnosis of metastatic squamous cell carcinoma. Palliative radiation therapy and chemotherapy were initiated as part of the treatment plan, and the patient's pain score decreased to 3 out of 10 on the Numeric Rating Scale (NRS), revealing the pain was due to metastatic lung cancer.

Keywords: supraclavicula brachial plexus metastasis, cervical disc herniation, brachial plexus block, metastatic lung cancer

Procedia PDF Downloads 42
1242 Metastatic Ovarian Tumor Discovered Accidentally during Cesarean Section in a 34 Year Old Woman: A Case Report

Authors: Ghada E. Esheba, Ghufran Kheshaifaty, Kholoud Al-Harbi, Wafa'a Al-Harbi, Ala'a Al-Orabi, Moayad Turkistani

Abstract:

Krukenberg tumor is a rare metastatic ovarian carcinoma that usually occurs in female between 30 - 40 year old and rarely seen after menopause. Stomach is the most common primary site. Histopathological features of krukenberg tumors appear as diffuse stromal proliferation, mucus-production, and numerous signet-cells and these tumors spread mostly by lymphatic route. Treatment and prognostic factors are not well established. This study describes a 34 year old female with a unilateral ovarian mass discovered accidentally during cesarean section delivery and it was misdiagnosed as luteoma of pregnancy, but histopathological examination showed a diffuse infiltration of the ovary and omentum by signet ring cells. These findings were not correlated with luteoma of pregnancy or any other types of primary ovarian tumors like surface epithelial tumor, sex cord stromal tumor or germ cell tumor. However, after the analysis of immunohistochemical results (negative CK7, positive CK20 and CDX-2), the finding was the diagnostic of metastatic krukenberg tumor. Two weeks later, the patient was evaluated and a large gastric tumor was found in her stomach and she underwent gastrectomy.

Keywords: CK7, CK20, CDX-2, Krukenburg tumor, metastatic ovarian tumor

Procedia PDF Downloads 313
1241 Study of Functional Relevant Conformational Mobility of β-2 Adrenoreceptor by Means of Molecular Dynamics Simulation

Authors: G. V. Novikov, V. S. Sivozhelezov, S. S. Kolesnikov, K. V. Shaitan

Abstract:

The study reports about the influence of binding of orthosteric ligands as well as point mutations on the conformational dynamics of β-2-adrenoreceptor. Using molecular dynamics simulation we found that there was a little fraction of active states of the receptor in its apo (ligand free) ensemble corresponded to its constitutive activity. Analysis of MD trajectories indicated that such spontaneous activation of the receptor is accompanied by the motion in intracellular part of its alpha-helices. Thus receptor’s constitutive activity directly results from its conformational dynamics. On the other hand the binding of a full agonist resulted in a significant shift of the initial equilibrium towards its active state. Finally, the binding of the inverse agonist stabilized the receptor in its inactive state. It is likely that the binding of inverse agonists might be a universal way of constitutive activity inhibition in vivo. Our results indicate that ligand binding redistribute pre-existing conformational degrees of freedom (in accordance to the Monod-Wyman-Changeux-Model) of the receptor rather than cause induced fit in it. Therefore, the ensemble of biologically relevant receptor conformations is encoded in its spatial structure, and individual conformations from that ensemble might be used by the cell in conformity with the physiological behaviour.

Keywords: seven-transmembrane receptors, constitutive activity, activation, x-ray crystallography, principal component analysis, molecular dynamics simulation

Procedia PDF Downloads 254
1240 Impacts of Environmental Science in Biodiversity Conservation

Authors: S. O. Ekpo

Abstract:

Environmental science deals with everyday challenges such as a cell for call for good and safe quality air, water, food and healthy leaving condition which include destruction of biodiversity and how to conserve these natural resources for sustainable development. Biodiversity or species richness is the sum of all the different species of animals, plants, fungi and microorganisms leaving on earth and variety of habitats in which they leave. Human beings leave on plants and animals on daily basis for food, clothing, medicine, housing, research and trade or commerce; besides this, biodiversity serves to purify the air, water and land of contaminant, and recycle useful materials for continual use of man. However, man continual incessant exploitation and exploration has affected biodiversity negatively in many ways such habitant fragmentation and destruction, introduction of invasive species, pollution, overharvesting, prediction and pest control amongst others. Measures such as recycling material, establishing natural parks, sperm bank, limiting the exploitation of renewable resources to sustainable yield and urban and industrial development as well as prohibiting hunting endangered species and release of non native live forms into an area will go a long way towards conserving biodiversity for continues profitable yield.

Keywords: biodiversity, conservation, exploitation and exploration sustainable yield, recycling of materials

Procedia PDF Downloads 223
1239 Stability Analysis of Tumor-Immune Fractional Order Model

Authors: Sadia Arshad, Yifa Tang, Dumitru Baleanu

Abstract:

A fractional order mathematical model is proposed that incorporate CD8+ cells, natural killer cells, cytokines and tumor cells. The tumor cells growth in the absence of an immune response is modeled by logistic law as it was the simplest form for which predictions also agreed with the experimental data. Natural Killer Cells are our first line of defense. NK cells directly kill tumor cells through several mechanisms, including the release of cytoplasmic granules containing perforin and granzyme, expression of tumor necrosis factor (TNF) family members. The effect of the NK cells on the tumor cell population is expressed with the product term. Rational form is used to describe interaction between CD8+ cells and tumor cells. A number of cytokines are produced by NKs, including tumor necrosis factor TNF, IFN, and interleukin (IL-10). Source term for cytokines is modeled by Michaelis-Menten form to indicate the saturated effects of the immune response. Stability of the equilibrium points is discussed for biologically significant values of bifurcation parameters. We studied the treatment of fractional order system by investigating analytical conditions of tumor eradication. Numerical simulations are presented to illustrate the analytical results.

Keywords: cancer model, fractional calculus, numerical simulations, stability analysis

Procedia PDF Downloads 313
1238 Effects of β-Glucan on the Release of Nitric Oxide by RAW264.7 Cells Stimulated with Escherichia coli Lipopolysaccharide

Authors: Eun Young Choi, So Hui Choe, Jin Yi Hyeon, Ji Young Jin, Bo Ram Keum, Jong Min Lim, Hyung Rae Cho, Kwang Keun Cho, In Soon Choi

Abstract:

This research analyzed the effect of β-glucan that is expected to alleviate the production of inflammatory mediator in macrophagocyte, which was processed by the lipopolysaccharide (LPS) of Escherichia, a pathogen related to allergy. The incubated layer was used for nitric oxide (NO) analysis. The DNA-binding activation of the small unit of NF-κB was measured using ELISA-based kit. In RAW264.7 cells that were vitalized by E.coli LPS, β-glucan inhibited both the combatant and rendering phases of inducible NO synthase (iNOS)-derived NO. β-glucan increased the expression of heme oxygenase-1 (HO-1) in the cell that was stimulated by E.coli LPS, and HO-1 activation was inhibited by SnPP. This shows that NO production induced by LPS is related to the inhibition effect of β-glucan. The phosphorylation of JNK and p38 induced by LPS were not influenced by β-glucan, and IκB-α decomposition was not influenced either. Instead, β-glucan remarkably inhibited the phosphorylation of STAT1 that was induced by E.coli LPS. Overall, β-glucan inhibited the production of NO in macrophagocyte that was vitalized by E.coli LPS through HO-1 induction and STAT1 pathways inhibition in this research. As the host inflammation reaction control by β-glucan weakens the progress of allergy, β-glucan can be used as an effective treatment method.

Keywords: β-glucan, lipopolysaccharide (LPS), nitric oxide (NO), RAW264.7 cells, STAT1

Procedia PDF Downloads 406
1237 Surface Passivation of Multicrystalline Silicon Solar Cell via Combination of LiBr/Porous Silicon and Grain Boundaies Grooving

Authors: Dimassi Wissem

Abstract:

In this work, we investigate the effect of combination between the porous silicon (PS) layer passivized with Lithium Bromide (LiBr) and grooving of grain boundaries (GB) in multi crystalline silicon. The grain boundaries were grooved in order to reduce the area of these highly recombining regions. Using optimized conditions, grooved GB's enable deep phosphorus diffusion and deep metallic contacts. We have evaluated the effects of LiBr on the surface properties of porous silicon on the performance of silicon solar cells. The results show a significant improvement of the internal quantum efficiency, which is strongly related to the photo-generated current. We have also shown a reduction of the surface recombination velocity and an improvement of the diffusion length after the LiBr process. As a result, the I–V characteristics under the dark and AM1.5 illumination were improved. It was also observed a reduction of the GB recombination velocity, which was deduced from light-beam-induced-current (LBIC) measurements. Such grooving in multi crystalline silicon enables passivization of GB-related defects. These results are discussed and compared to solar cells based on untreated multi crystalline silicon wafers.

Keywords: Multicrystalline silicon, LiBr, porous silicon, passivation

Procedia PDF Downloads 394
1236 Modeling of Micro-Grid System Components Using MATLAB/Simulink

Authors: Mahmoud Fouad, Mervat Badr, Marwa Ibrahim

Abstract:

Micro-grid system is presently considered a reliable solution for the expected deficiency in the power required from future power systems. Renewable power sources such as wind, solar and hydro offer high potential of benign power for future micro-grid systems. Micro-Grid (MG) is basically a low voltage (LV) or medium voltage (MV) distribution network which consists of a number of called distributed generators (DG’s); micro-sources such as photovoltaic array, fuel cell, wind turbine etc. energy storage systems and loads; operating as a single controllable system, that could be operated in both grid-connected and islanded mode. The capacity of the DG’s is sufficient to support all; or most, of the load connected to the micro-grid. This paper presents a micro-grid system based on wind and solar power sources and addresses issues related to operation, control, and stability of the system. Using Matlab/Simulink, the system is modeled and simulated to identify the relevant technical issues involved in the operation of a micro-grid system based on renewable power generation units.

Keywords: micro-grid system, photovoltaic, wind turbine, energy storage, distributed generation, modeling

Procedia PDF Downloads 432
1235 Comparison between Simulation and Experimentally Observed Interactions between Two Different Sized Magnetic Beads in a Fluidic System

Authors: Olayinka Oduwole, Steve Sheard

Abstract:

The magnetic separation of biological cells using super-magnetic beads has been used widely for various bioassays. These bioassays can further be integrated with other laboratory components to form a biosensor which can be used for cell sorting, mixing, purification, transport, manipulation etc. These bio-sensing applications have also been facilitated by the wide availability of magnetic beads which range in size and magnetic properties produced by different manufacturers. In order to improve the efficiency and separation capabilities of these biosensors, it is important to determine the magnetic force induced velocities and interaction of beads within the magnetic field; this will help biosensor users choose the desired magnetic bead for their specific application. This study presents for the first time the interaction between a pair of different sized super-paramagnetic beads suspended in a static fluid moving within a uniform magnetic field using a modified finite-time-finite-difference scheme. A captured video was used to record the trajectory pattern and a good agreement was obtained between the simulated trajectories and the video data. The model is, therefore, a good approximation for predicting the velocities as well as the interaction between various magnetic particles which differ in size and magnetic properties for bio-sensing applications requiring a low concentration of magnetic beads.

Keywords: biosensor, magnetic field, magnetic separation, super-paramagnetic bead

Procedia PDF Downloads 471
1234 The Influence of C Element on the Phase Transformation in Weldment of Complex Stainless Steels 2507/316/316L

Authors: Lin Dong-Yih, Yang S. M., Huang B. W., Lian J. A.

Abstract:

Super duplex stainless steel has excellent mechanical properties and corrosion resistance. It becomes important structural material as its application has been extended to the fields such as renewable energy and the chemical industry because of its excellent properties. As examples are offshore wind power, solar cell machinery, and pipes in the chemical industry. The mechanical properties and corrosion resistance of super duplex stainless steel can be eliminated by welding due to the precipitation of the hard and brittle σ phase, which is rich of chromium, and molybdenum elements. This paper studies the influence of carbon element on the phase transformation of -ferrite and σ phase in 2507 super duplex stainless steel. The 2507 will be under argon gas protection welded with 316 and 316L extra low carbon stainless steel separately. The microstructural phases of stainless steels before and after welding, in fusion, heat affected zones, and base material will be studied via X-ray, OM, SEM, EPMA i.e. their quantity, size, distribution, and morphology. The influences of diffusion by carbon element will be compared according to the microstructures, hardness, and corrosion tests.

Keywords: complex stainless steel, welding, phase formation, carbon element, sigma phase, delta ferrite

Procedia PDF Downloads 98
1233 An Investigation of Anticancer Fluorinated Aza-Heterocycles

Authors: Darya O. Prima, Elena V. Vorontsova, Yuri G. Slizhov, Andrey V. Zibarev

Abstract:

A broad family of carbocycle-fluorinated aza-heterocycles including 1,3-benzodiazoles (benzimidazoles), 1,2,3-benzotriazoles, 2,1,3-benzothia/selenadiazoles and 1,4-benzodiazines (quinoxalines) was synthesized in the unified way and assessed for cytotoxicity towards the Hep2 (laryngeal epidermoid carcinoma, a kind of oral cancer) cells. The diazoles, triazoles and selenadiazoles revealed low medium inhibitory concentrations IC50 = 2.2-26.4 µМ and induced the cells’ apoptosis at low concentrations C = 1-25 µМ. For selenadiazoles, cell death dynamics was observed already in the first hours after the treatment. Replacement of one atom F by group Me2N in some cases enlarged apoptotic activity of the compounds towards the Hep2 cells. In contrast, the archetypal (i.e. non-fluorinated) 1,3-benzodiazole, 1,2,3-benzotriazole and 2,1,3-benzoselenadiazole were low toxic (IC50 > 100 µM) and induced apoptosis only at high concentrations. The chlorinated congeners of the heterocycles under discussion were highly toxic towards the Hep2 cells but revealed insignificant ability to induce their apoptosis. Overall, the findings above suggest that fluorinated 1,3-benzodiazole, 1,2,3-benzotriazole and 2,1,3-benzoselenadiazole derivatives can be considered as potential anticancer drugs. For the laryngeal epidermoid carcinoma (for which, according to available statistics, the five-year survival rate remained ~50% during the past 30 years), it is especially important since surgical treatment is seriously complicated here thus encouraging medicament one.

Keywords: Apoptosis, aza-heterocycles, cytotoxicity, fluorinated, Hep2 cells, synthesis

Procedia PDF Downloads 338
1232 Heterocyclic Ring Extension of Estrone: Synthesis and Cytotoxicity of Fused Pyrin, Pyrimidine and Thiazole Derivatives

Authors: Rafat M. Mohareb

Abstract:

Several D-ring alkylated estrone analogues display exceptionally high affinity for estrogen receptors. In particular, compounds in which an E-ring is formed are known to be involved in the inhibition of steroidogenic enzymes. Such compounds also have an effect on steroid dehydrogenase activity and the ability to inhibit the detrimental action of the steroid sulfatase enzyme. Generally, E-ring extended steroids have been accessed by modification of the C17-ketone in the D-ring by either arylimine or oximino formation, addition of a carbon nucleophile or hydrazone formation. Other approaches have included ketone reduction, silyl enol ether formation or ring-closing metathesis (giving five- or six-membered E-rings). Chemical modification of the steroid D-ring provides a way to alter the functional groups, sizes and stereochemistry of the D-ring, and numerous structure-activity relationships have been established by such synthetic alterations. Steroids bearing heterocycles fused to the D-ring of the steroid nucleus have been of pharmaceutical interest. In the present paper, we report on the efficient synthesis of estrone possessing pyran, pyrimidine and thiazole ring systems. This study focused on the synthesis and biochemical evaluation of newly synthesized heterocyclic compounds which were then subjected through inhibitory evaluations towards human cancer and normal cell lines.

Keywords: estrone, heterocyclization, cytotoxicity, biomedicine

Procedia PDF Downloads 292
1231 Nanobiomaterials: Revolutionizing Drug Delivery and Tissue Engineering for Advanced Therapeutic Applications

Authors: Mohammad Hamed Asosheh

Abstract:

The development of nanobiomaterials has opened new avenues in the field of biomedical engineering, offering unparalleled possibilities for advanced therapeutic applications. This study explores the synthesis and characterization of a distinct class of nanobiomaterials designed to enhance drug delivery systems and support tissue engineering. By integrating biodegradable polymers with bioactive nanoparticles, we have engineered a multifunctional platform that ensures controlled drug release, targeted delivery, and improved biocompatibility. Our findings demonstrate that these nanobiomaterials not only exhibit excellent mechanical properties but also promote cell proliferation and differentiation, making them ideal candidates for regenerative medicine. Furthermore, in vitro and in vivo assessments reveal that the engineered materials significantly reduce cytotoxicity while enhancing the therapeutic efficacy of encapsulated drugs. This research presents a promising approach to addressing current challenges in drug delivery and tissue regeneration, with the potential to revolutionize the treatment of chronic diseases and injury repair. Future work will focus on optimizing the material composition for specific clinical applications and conducting large-scale studies to evaluate long-term safety and effectiveness.

Keywords: nanobiomaterials, drug delivery systems, therapeutic efficacy, bioactive nanoparticles

Procedia PDF Downloads 26
1230 Optimization of Parameters for Electrospinning of Pan Nanofibers by Taguchi Method

Authors: Gamze Karanfil Celep, Kevser Dincer

Abstract:

The effects of polymer concentration and electrospinning process parameters on the average diameters of electrospun polyacrylonitrile (PAN) nanofibers were experimentally investigated. Besides, mechanical and thermal properties of PAN nanofibers were examined by tensile test and thermogravimetric analysis (TGA), respectively. For this purpose, the polymer concentration, solution feed rate, supply voltage and tip-to-collector distance were determined as the control factors. To succeed these aims, Taguchi’s L16 orthogonal design (4 parameters, 4 level) was employed for the experimental design. Optimal electrospinning conditions were defined using the signal-to-noise (S/N) ratio that was calculated from diameters of the electrospun PAN nanofibers according to "the-smaller-the-better" approachment. In addition, analysis of variance (ANOVA) was evaluated to conclude the statistical significance of the process parameters. The smallest diameter of PAN nanofibers was observed. According to the S/N ratio response results, the most effective parameter on finding out of nanofiber diameter was determined. Finally, the Taguchi design of experiments method has been found to be an effective method to statistically optimize the critical electrospinning parameters used in nanofiber production. After determining the optimum process parameters of nanofiber production, electrical conductivity and fuel cell performance of electrospun PAN nanofibers on the carbon papers will be evaluated.

Keywords: nanofiber, electrospinning, polyacrylonitrile, Taguchi method

Procedia PDF Downloads 203
1229 Impact of Cytokines Alone and Primed with Macrophages on Balamuthia mandrillaris Interactions with Human Brain Microvascular Endothelial Cells in vitro

Authors: Abdul Matin, Salik Nawaz, Suk-Yul Jung

Abstract:

Balamuthia mandrillaris is well known to cause fatal Balamuthia amoebic encephalitis (BAE). Amoebic transmission into the central nervous system (CNS), haematogenous spread is thought to be the prime step, followed by blood-brain barrier (BBB) dissemination. Macrophages are considered to be the foremost line of defense and present in excessive numbers during amoebic infections. The aim of the present investigation was to evaluate the effects of macrophages alone or primed with cytokines on the biological characteristics of Balamuthia in vitro. Using human brain microvascular endothelial cells (HBMEC), which constitutes the BBB, we have shown that Balamuthia demonstrated > 90% binding and > 70% cytotoxicity to host cells. However, macrophages further increased amoebic binding and Balamuthia-mediated cell cytotoxicity. Furthermore, macrophages exhibited no amoebicidal effect against Balamuthia. Zymography assay demonstrated that macrophages exhibited no inhibitory effect on proteolytic activity of Balamuthia. Overall, to our best knowledge, we have shown for the first time macrophages has no inhibitory effects on the biological properties of Balamuthia in vitro. This also strengthened the concept that how and why Balamuthia can cause infections in both immuno-competent and immuno-compromised individuals.

Keywords: Balamuthia mandrillaris, macrophages, cytokines, human brain microvascular endothelial cells, Balamuthia amoebic encephalitis

Procedia PDF Downloads 155
1228 An Insight into the Conformational Dynamics of Glycan through Molecular Dynamics Simulation

Authors: K. Veluraja

Abstract:

Glycan of glycolipids and glycoproteins is playing a significant role in living systems particularly in molecular recognition processes. Molecular recognition processes are attributed to their occurrence on the surface of the cell, sequential arrangement and type of sugar molecules present in the oligosaccharide structure and glyosidic linkage diversity (glycoinformatics) and conformational diversity (glycoconformatics). Molecular Dynamics Simulation study is a theoretical-cum-computational tool successfully utilized to establish glycoconformatics of glycan. The study on various oligosaccharides of glycan clearly indicates that oligosaccharides do exist in multiple conformational states and these conformational states arise due to the flexibility associated with a glycosidic torsional angle (φ,ψ) . As an example: a single disaccharide structure NeuNacα(2-3) Gal exists in three different conformational states due to the differences in the preferential value of glycosidic torsional angles (φ,ψ). Hence establishing three dimensional structural and conformational models for glycan (cartesian coordinates of every individual atoms of an oligosaccharide structure in a preferred conformation) is quite crucial to understand various molecular recognition processes such as glycan-toxin interaction and glycan-virus interaction. The gycoconformatics models obtained for various glycan through Molecular Dynamics Simulation stored in our 3DSDSCAR (3DSDSCAR.ORG) a public domain database and its utility value in understanding the molecular recognition processes and in drug design venture will be discussed.

Keywords: glycan, glycoconformatics, molecular dynamics simulation, oligosaccharide

Procedia PDF Downloads 136
1227 Hollowfiber Poly Lactid Co-Glycolic Acid (PLGA)-Collagen Coated by Chitosan as a Candidate of Small Diameter Vascular Graft

Authors: Dita Mayasari, Zahrina Mardina, Riki Siswanto, Agresta Ifada, Ova Oktavina, Prihartini Widiyanti

Abstract:

Heart failure is a serious major health problem with high number of mortality per year. Bypass is one of the solutions that has often been taken. Natural vascular graft (xenograft) as the substitute in bypass is inconvenient due to ethic problems and the risk of infection transmission caused by the usage of another species transgenic vascular. Nowadays, synthetic materials have been fabricated from polymers. The aim of this research is to make a synthetic vascular graft with great physical strength, high biocompatibility, and good affordability. The method of this research was mixing PLGA and collagen by magnetic stirrer. This composite were shaped by spinneret with water as coagulant. Then it was coated by chitosan with 3 variations of weight (1 gram, 2 grams, and 3 grams) to increase hemo and cytocompatibility, proliferation, and cell attachment in order for the vascular graft candidates to be more biocompatible. Mechanical strength for each variation was 5,306 MPa (chitosan 1 gram), 3,433 MPa (chitosan 2 grams) and 3,745 MPa (chitosan 3 grams). All the tensile values were higher than human vascular tensile strength. Toxicity test showed that the living cells in all variations were more than 60% in number, thus the vascular graft is not toxic.

Keywords: chitosan, collagen, PLGA, spinneret

Procedia PDF Downloads 395
1226 Biodegradable Magnesium Alloys with Addition of Rare Earth Elements for Biomedical Applications

Authors: Yuncang Li, Cuie Wen

Abstract:

Biodegradable metallic materials such as magnesium (Mg)-based alloys have attracted extensive interest for use as bone implant materials. However, the high biodegradation rate of existing Mg alloys in the physiological environment of human body leads to losing mechanical integrity before adequate bone healing and producing a large volume of hydrogen gas. Therefore, slowing down the biodegradation rate of Mg alloys is a critical task in developing new biodegradable Mg alloy implant materials. One of the most effective approaches to achieve this is to strategically design new Mg alloys with low biodegradation rate, excellent biocompatibility, and enhanced mechanical properties. Our research selected biocompatible and biofunctional alloying elements such as zirconium (Zr), strontium (Sr), and rare earth elements (REEs) to alloy Mg and has developed a new series of Mg-Zr-Sr-REEs alloys for biodegradable implant applications. Research results indicated that Sr and Zr additions could refine the grain size, decrease the biodegradation rate, and enhance the biological behaviors of the Mg alloys. The REE addition, such as holmium (Ho) and dysprosium (Dy) to Mg-Zr-Sr alloys resulted in enhanced mechanical strength and decreased biodegradation rate. In addition, Ho and Dy additions (≤ 5 wt.%) to Mg-Zr-Sr alloys led to enhancement of cell adhesion and proliferation of osteoblast cells on the Mg-Zr-Sr-Ho/Dy alloys.

Keywords: biocompatibility, magnesium, mechanical and biodegrade properties, rare earth elements

Procedia PDF Downloads 119
1225 Cellular Energy Metabolism Decreases with Age in the Trophocytes and Oenocytes of Honeybees (Apis Mellifera)

Authors: Chin-Yuan Hsu, Yu-Lung Chuang

Abstract:

The expression, concentration, and activity of mitochondrial energy-utilized molecules and cellular energy-regulated molecules decreased with age in the trophocytes and oenocytes of honeybees (Apis mellifera), but those of cellular energy-metabolized molecules is unknown. In this study, the expression, concentration, and activity of cellular energy-metabolized molecules were assayed in the trophocytes and fat cells of young and old worker bees by using the techniques of cell and biochemistry. The results showed that (i) the •-hydroxylacyl-coenzyme A dehydrogenase (HOAD) activity/citrate synthase (CS) activity ratio, non-esterified fatty acids concentrations, the expression of eukaryotic initiation factor 4E, and the expression of phosphorylated eIF4E binding protein 1 decreased with age; (ii) fat and glycogen accumulation increased with age; and (iii) the pyruvate dehydrogenase (PDH) activity/citrate synthase (CS) activity ratio was not correlated with age. These finding indicated that •-oxidation (HOAD/CS) and protein synthsis decreased with age. Glycolysis (PDH/CS) was unchanged with age. The most likely reason is that sugars are the vital food of worker bees. Taken together these data reveal that young workers have higher cellular energy metabolism than old workers and that aging results in a decline in the cellular energy metabolism in worker honeybees.

Keywords: aging, energy, honeybee, metabolism

Procedia PDF Downloads 468
1224 Smart Polymeric Nanoparticles Loaded with Vincristine Sulfate for Applications in Breast Cancer Drug Delivery in MDA-MB 231 and MCF7 Cell Lines

Authors: Reynaldo Esquivel, Pedro Hernandez, Aaron Martinez-Higareda, Sergio Tena-Cano, Enrique Alvarez-Ramos, Armando Lucero-Acuna

Abstract:

Stimuli-responsive nanomaterials play an essential role in loading, transporting and well-distribution of anti-cancer compounds in the cellular surroundings. The outstanding properties as the Lower Critical Solution Temperature (LCST), hydrolytic cleavage and protonation/deprotonation cycle, govern the release and delivery mechanisms of payloads. In this contribution, we experimentally determine the load efficiency and release of antineoplastic Vincristine Sulfate into PNIPAM-Interpenetrated-Chitosan (PIntC) nanoparticles. Structural analysis was performed by Fourier Transform Infrared Spectroscopy (FT-IR) and Proton Nuclear Magnetic Resonance (1HNMR). ζ-Potential (ζ) and Hydrodynamic diameter (DH) measurements were monitored by Electrophoretic Mobility (EM) and Dynamic Light scattering (DLS) respectively. Mathematical analysis of the release pharmacokinetics reveals a three-phase model above LCST, while a monophasic of Vincristine release model was observed at 32 °C. Cytotoxic essays reveal a noticeable enhancement of Vincristine effectiveness at low drug concentration on HeLa cervix cancer and MDA-MB-231 breast cancer.

Keywords: nanoparticles, vincristine, drug delivery, PNIPAM

Procedia PDF Downloads 154
1223 Micropillar-Assisted Electric Field Enhancement for High-Efficiency Inactivation of Bacteria

Authors: Sanam Pudasaini, A. T. K. Perera, Ahmed Syed Shaheer Uddin, Sum Huan Ng, Chun Yang

Abstract:

Development of high-efficiency and environment friendly bacterial inactivation methods is of great importance for preventing waterborne diseases which are one of the leading causes of death in the world. Traditional bacterial inactivation methods (e.g., ultraviolet radiation and chlorination) have several limitations such as longer treatment time, formation of toxic byproducts, bacterial regrowth, etc. Recently, an electroporation-based inactivation method was introduced as a substitute. Here, an electroporation-based continuous flow microfluidic device equipped with an array of micropillars is developed, and the device achieved high bacterial inactivation performance ( > 99.9%) within a short exposure time ( < 1 s). More than 99.9% reduction of Escherichia coli bacteria was obtained for the flow rate of 1 mL/hr, and no regrowth of bacteria was observed. Images from scanning electron microscope confirmed the formation of electroporation-induced nano-pore within the cell membrane. Through numerical simulation, it has been shown that sufficiently large electric field strength (3 kV/cm), required for bacterial electroporation, were generated using PDMS micropillars for an applied voltage of 300 V. Further, in this method of inactivation, there is no involvement of chemicals and the formation of harmful by-products is also minimum.

Keywords: electroporation, high-efficiency, inactivation, microfluidics, micropillar

Procedia PDF Downloads 177
1222 Copper Related Toxicity of 1-Hydroxy-2-Thiopyridines

Authors: Elena G. Salina, Vadim A. Makarov

Abstract:

With the emergence of primary resistance to the current drugs and wide distribution of latent tuberculosis infection, a need for new compounds with a novel mode of action is growing steadily. Copper-mediated innate immunity and antibacterial toxicity propose novel strategies in TB drug discovery and development. Transcriptome of M. tuberculosis was obtained by RNA-seq, intracellular copper content was measured by ISP MS and complexes of 1-hydroxy-2-thiopyridines with copper were detected by HPLC.1-hydroxy-2-thiopyridine derivatives were found to be highly active in vitro against both actively growing and dormant non-culturable M. tuberculosis. Transcriptome response to 1-hydroxy-2-thiopyridines revealed signs of copper toxicity in M. tuberculosis bacilli. Indeed, Cu was found to accumulate inside cells treated with 1-hydroxy-2-thiopyridines. These compounds were found to form stable charged lipophylic complexes with Cu²⁺ ions which transport into mycobacterial cell. Subsequent metabolic destruction of the complex led to transformation of 1-hydroxy-2-thiopyridines into 2-methylmercapto-2-ethoxycarbonylpyridines, which did not possess antitubercular activity and releasing of free Cu²⁺ in the cytoplasm. 1-hydroxy-2-thiopyridines are a potent class of Cu-dependent inhibitors of M. tuberculosis which may control M. tuberculosis infection by impairment of copper homeostasis. Acknowledgment: This work was financially supported by the Ministry of Education and Science of the RussianFederation (Agreement No 14.616.21.0065; unique identifier RFMEFI61616X0065).

Keywords: copper toxicity, drug discovery, M. tuberculosis inhibitors, 2-thiopyridines

Procedia PDF Downloads 167
1221 Tensile Force Estimation for Real-Size Pre-Stressed Concrete Girder using Embedded Elasto-Magnetic Sensor

Authors: Junkyeong Kim, Jooyoung Park, Aoqi Zhang, Seunghee Park

Abstract:

The tensile force of Pre-Stressed Concrete (PSC) girder is the most important factor for evaluating the performance of PSC girder bridges. To measure the tensile force of PSC girder, several NDT methods were studied. However, conventional NDT method cannot be applied to the real-size PSC girder because the PS tendons could not be approached. To measure the tensile force of real-size PSC girder, this study proposed embedded EM sensor based tensile force estimation method. The embedded EM sensor could be installed inside of PSC girder as a sheath joint before the concrete casting. After curing process, the PS tendons were installed, and the tensile force was induced step by step using hydraulic jacking machine. The B-H loop was measured using embedded EM sensor at each tensile force steps and to compare with actual tensile force, the load cell was installed at each end of girder. The magnetization energy loss, that is the closed area of B-H loop, was decreased according to the increase of tensile force with regular pattern. Thus, the tensile force could be estimated by the tracking the change of magnetization energy loss of PS tendons. Through the experimental result, the proposed method can be used to estimate the tensile force of the in-situ real-size PSC girder bridge.

Keywords: tensile force estimation, embedded EM sensor, magnetization energy loss, PSC girder

Procedia PDF Downloads 335
1220 Peak Data Rate Enhancement Using Switched Micro-Macro Diversity in Cellular Multiple-Input-Multiple-Output Systems

Authors: Jihad S. Daba, J. P. Dubois, Yvette Antar

Abstract:

With the exponential growth of cellular users, a new generation of cellular networks is needed to enhance the required peak data rates. The co-channel interference between neighboring base stations inhibits peak data rate increase. To overcome this interference, multi-cell cooperation known as coordinated multipoint transmission is proposed. Such a solution makes use of multiple-input-multiple-output (MIMO) systems under two different structures: Micro- and macro-diversity. In this paper, we study the capacity and bit error rate in cellular networks using MIMO technology. We analyse both micro- and macro-diversity schemes and develop a hybrid model that switches between macro- and micro-diversity in the case of hard handoff based on a cut-off range of signal-to-noise ratio values. We conclude that our hybrid switched micro-macro MIMO system outperforms classical MIMO systems at the cost of increased hardware and software complexity.

Keywords: cooperative multipoint transmission, ergodic capacity, hard handoff, macro-diversity, micro-diversity, multiple-input-multiple output systems, orthogonal frequency division multiplexing

Procedia PDF Downloads 310
1219 PBI Based Composite Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells

Authors: Kwangwon Seo, Haksoo Han

Abstract:

Al-Si was synthesized and introduced in poly 2,2’-m-(phenylene)-5,5’-bibenzimidazole (PBI). As a result, a series of five Al-Si/PBI composite (ASPBI) membranes (0, 3, 6, 9, and 12 wt.%) were developed and characterized for application in high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). The chemical and morphological structure of ASPBI membranes were analyzed by Fourier transform infrared spectroscopy, X-ray diffractometer and scanning electron microscopy. According to the doping level test and thermogravimetric analysis, as the concentration of Al-Si increased, the doping level increased up to 475%. Moreover, the proton conductivity, current density at 0.6V, and maximum power density of ASPBI membranes increased up to 0.31 Scm-1, 0.320 Acm-2, and 0.370 Wcm-2, respectively, because the increased concentration of Al-Si allows the membranes to hold more PA. Alternatively, as the amount of Al-Si increased, the tensile strength of PA-doped and -undoped membranes decreased. This was resulted by both excess PA and aggregation, which can cause serious degradation of the membrane and induce cracks. Moreover, the PA-doped and -undoped ASPBI12 had the lowest tensile strength. The improved performances of ASPBI membranes imply that ASPBI membranes are possible candidates for HT-PEMFC applications. However, further studies searching to improve the compatibility between PBI matrix and inorganic and optimize the loading of Al-Si should be performed.

Keywords: composite membrane, high temperature polymer electrolyte membrane fuel cell, membrane electrode assembly, polybenzimidazole, polymer electrolyte membrane, proton conductivity

Procedia PDF Downloads 525