Search results for: magneto-active material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6667

Search results for: magneto-active material

4177 Location3: A Location Scouting Platform for the Support of Film and Multimedia Industries

Authors: Dimitrios Tzilopoulos, Panagiotis Symeonidis, Michael Loufakis, Dimosthenis Ioannidis, Dimitrios Tzovaras

Abstract:

The domestic film industry in Greece has traditionally relied heavily on state support. While film productions are crucial for the country's economy, it has not fully capitalized on attracting and promoting foreign productions. The lack of motivation, organized state support for attraction and licensing, and the absence of location scouting have hindered its potential. Although recent legislative changes have addressed the first two of these issues, the development of a comprehensive location database and a search engine that would effectively support location scouting at the pre-production location scouting is still in its early stages. In addition to the expected benefits of the film, television, marketing, and multimedia industries, a location-scouting service platform has the potential to yield significant financial gains locally and nationally. By promoting featured places like cultural and archaeological sites, natural monuments, and attraction points for visitors, it plays a vital role in both cultural promotion and facilitating tourism development. This study introduces LOCATION3, an internet platform revolutionizing film production location management. It interconnects location providers, film crews, and multimedia stakeholders, offering a comprehensive environment for seamless collaboration. The platform's central geodatabase (PostgreSQL) stores each location’s attributes, while web technologies like HTML, JavaScript, CSS, React.js, and Redux power the user-friendly interface. Advanced functionalities, utilizing deep learning models, developed in Python, are integrated via Node.js. Visual data presentation is achieved using the JS Leaflet library, delivering an interactive map experience. LOCATION3 sets a new standard, offering a range of essential features to enhance the management of film production locations. Firstly, it empowers users to effortlessly upload audiovisual material enriched with geospatial and temporal data, such as location coordinates, photographs, videos, 360-degree panoramas, and 3D location models. With the help of cutting-edge deep learning algorithms, the application automatically tags these materials, while users can also manually tag them. Moreover, the application allows users to record locations directly through its user-friendly mobile application. Users can then embark on seamless location searches, employing spatial or descriptive criteria. This intelligent search functionality considers a combination of relevant tags, dominant colors, architectural characteristics, emotional associations, and unique location traits. One of the application's standout features is the ability to explore locations by their visual similarity to other materials, facilitated by a reverse image search. Also, the interactive map serves as both a dynamic display for locations and a versatile filter, adapting to the user's preferences and effortlessly enhancing location searches. To further streamline the process, the application facilitates the creation of location lightboxes, enabling users to efficiently organize and share their content via email. Going above and beyond location management, the platform also provides invaluable liaison, matchmaking, and online marketplace services. This powerful functionality bridges the gap between visual and three-dimensional geospatial material providers, local agencies, film companies, production companies, etc. so that those interested in a specific location can access additional material beyond what is stored on the platform, as well as access production services supporting the functioning and completion of productions in a location (equipment provision, transportation, catering, accommodation, etc.).

Keywords: deep learning models, film industry, geospatial data management, location scouting

Procedia PDF Downloads 69
4176 Eu³⁺ PVC Membrane Sensor Based on 1,2-Diaminopropane-N,N,N',N'-Tetraacetic Acid

Authors: Noshin Mehrabian, Mohammad Reza Abedi, Hassan Ali Zamani

Abstract:

A highly selective poly(vinyl chloride)-based membrane sensor produced by using 1,2-Diaminopropane-N,N,N',N'-tetraacetic acid (DAPTA) as active material is described. The electrode displays Nernstian behavior over the concentration range 1.0×10⁻⁶ to 1.0×10⁻² M. The detection limit of the electrode is 7.2×10⁻⁷ M. The best performance was obtained with the membrane containing 30% polyvinyl chloride (PVC), 65% nitrobenzene (NB), 2% sodium tetra phenyl borate (Na TPB), 3% DAPTA. The potentiometric response of the proposed electrode is pH independent in the range of 2.5–‎‎9.1. ‎The proposed sensor displays a fast response time 'less than 10s'. The electrode shows a good selectivity for Eu (III) ion with respect to most common cations including alkali, alkaline earth, transition, and heavy metal ions. It was used as an indicator electrode in potentiometric ‎titration of 25 mL of a 1.0×10⁻⁴ M Eu (III) solution with a 1.0×10⁻² M EDTA solution.

Keywords: potentiometry, PVC membrane, sensor, ion-selective electrode

Procedia PDF Downloads 190
4175 Natural Mexican Zeolite Modified with Iron to Remove Arsenic Ions from Water Sources

Authors: Maritza Estela Garay-Rodriguez, Mirella Gutierrez-Arzaluz, Miguel Torres-Rodriguez, Violeta Mugica-Alvarez

Abstract:

Arsenic is an element present in the earth's crust and is dispersed in the environment through natural processes and some anthropogenic activities. Naturally released into the environment through the weathering and erosion of sulphides mineral, some activities such as mining, the use of pesticides or wood preservatives potentially increase the concentration of arsenic in air, water, and soil. The natural arsenic release of a geological material is a threat to the world's drinking water sources. In aqueous phase is found in inorganic form, as arsenate and arsenite mainly, the contamination of groundwater by salts of this element originates what is known as endemic regional hydroarsenicism. The International Agency for Research on Cancer (IARC) categorizes the inorganic As within group I, as a substance with proven carcinogenic action for humans. It has been found the presence of As in groundwater in several countries such as Argentina, Mexico, Bangladesh, Canada and the United States. Regarding the concentration of arsenic in drinking water according to the World Health Organization (WHO) and the Environmental Protection Agency (EPA) establish maximum concentrations of 10 μg L⁻¹. In Mexico, in some states as Hidalgo, Morelos and Michoacán concentrations of arsenic have been found in bodies of water around 1000 μg L⁻¹, a concentration that is well above what is allowed by Mexican regulations with the NOM-127- SSA1-1994 that establishes a limit of 25 μg L⁻¹. Given this problem in Mexico, this research proposes the use of a natural Mexican zeolite (clinoptilolite type) native to the district of Etla in the central valley region of Oaxaca, as an adsorbent for the removal of arsenic. The zeolite was subjected to a conditioning with iron oxide by the precipitation-impregnation method with 0.5 M iron nitrate solution, in order to increase the natural adsorption capacity of this material. The removal of arsenic was carried out in a column with a fixed bed of conditioned zeolite, since it combines the advantages of a conventional filter with those of a natural adsorbent medium, providing a continuous treatment, of low cost and relatively easy to operate, for its implementation in marginalized areas. The zeolite was characterized by XRD, SEM/EDS, and FTIR before and after the arsenic adsorption tests, the results showed that the modification methods used are adequate to prepare adsorbent materials since it does not modify its structure, the results showed that with a particle size of 1.18 mm, an initial concentration of As (V) ions of 1 ppm, a pH of 7 and at room temperature, a removal of 98.7% was obtained with an adsorption capacity of 260 μg As g⁻¹ zeolite. The results obtained indicated that the conditioned zeolite is favorable for the elimination of arsenate in water containing up to 1000 μg As L⁻¹ and could be suitable for removing arsenate from pits of water.

Keywords: adsorption, arsenic, iron conditioning, natural zeolite

Procedia PDF Downloads 171
4174 Carbonyl Iron Particles Modified with Pyrrole-Based Polymer and Electric and Magnetic Performance of Their Composites

Authors: Miroslav Mrlik, Marketa Ilcikova, Martin Cvek, Josef Osicka, Michal Sedlacik, Vladimir Pavlinek, Jaroslav Mosnacek

Abstract:

Magnetorheological elastomers (MREs) are a unique type of materials consisting of two components, magnetic filler, and elastomeric matrix. Their properties can be tailored upon application of an external magnetic field strength. In this case, the change of the viscoelastic properties (viscoelastic moduli, complex viscosity) are influenced by two crucial factors. The first one is magnetic performance of the particles and the second one is off-state stiffness of the elastomeric matrix. The former factor strongly depends on the intended applications; however general rule is that higher magnetic performance of the particles provides higher MR performance of the MRE. Since magnetic particles possess low stability properties against temperature and acidic environment, several methods how to improve these drawbacks have been developed. In the most cases, the preparation of the core-shell structures was employed as a suitable method for preservation of the magnetic particles against thermal and chemical oxidations. However, if the shell material is not single-layer substance, but polymer material, the magnetic performance is significantly suppressed, due to the in situ polymerization technique, when it is very difficult to control the polymerization rate and the polymer shell is too thick. The second factor is the off-state stiffness of the elastomeric matrix. Since the MR effectivity is calculated as the relative value of the elastic modulus upon magnetic field application divided by elastic modulus in the absence of the external field, also the tuneability of the cross-linking reaction is highly desired. Therefore, this study is focused on the controllable modification of magnetic particles using a novel monomeric system based on 2-(1H-pyrrol-1-yl)ethyl methacrylate. In this case, the short polymer chains of different chain lengths and low polydispersity index will be prepared, and thus tailorable stability properties can be achieved. Since the relatively thin polymer chains will be grafted on the surface of magnetic particles, their magnetic performance will be affected only slightly. Furthermore, also the cross-linking density will be affected, due to the presence of the short polymer chains. From the application point of view, such MREs can be utilized for, magneto-resistors, piezoresistors or pressure sensors especially, when the conducting shell on the magnetic particles will be created. Therefore, the selection of the pyrrole-based monomer is very crucial and controllably thin layer of conducting polymer can be prepared. Finally, such composite particle consisting of magnetic core and conducting shell dispersed in elastomeric matrix can find also the utilization in shielding application of electromagnetic waves.

Keywords: atom transfer radical polymerization, core-shell, particle modification, electromagnetic waves shielding

Procedia PDF Downloads 207
4173 Low Power CNFET SRAM Design

Authors: Pejman Hosseiniun, Rose Shayeghi, Iman Rahbari, Mohamad Reza Kalhor

Abstract:

CNFET has emerged as an alternative material to silicon for high performance, high stability and low power SRAM design in recent years. SRAM functions as cache memory in computers and many portable devices. In this paper, a new SRAM cell design based on CNFET technology is proposed. The proposed SRAM cell design for CNFET is compared with SRAM cell designs implemented with the conventional CMOS and FinFET in terms of speed, power consumption, stability, and leakage current. The HSPICE simulation and analysis show that the dynamic power consumption of the proposed 8T CNFET SRAM cell’s is reduced about 48% and the SNM is widened up to 56% compared to the conventional CMOS SRAM structure at the expense of 2% leakage power and 3% write delay increase.

Keywords: SRAM cell, CNFET, low power, HSPICE

Procedia PDF Downloads 413
4172 Characteristics of Asphalt Mixtures with Cocoa Shell Ash as Filler

Authors: Muhammad Nur Hidayat, Muksalmina, Chairul Fajar

Abstract:

An alternative to improve the quality of asphalt as a pavement material is to use modified asphalt with the addition of cocoa shell ash as a filler. This research aims to determine the effect of asphalt mixture and cocoa shell ash after testing the physical properties of asphalt. The method used was experimental by testing the physical properties of asphalt. The results showed that the optimum asphalt content of the cocoa husk ash mixture was 2%, with an asphalt penetration value of 60.03 mm. The result of the asphalt softening point test was 51.0°C. Asphalt ductility test results in 144 cm. Asphalt specific gravity test result 1.076 gr/ml. Asphalt weight loss test results in 0.0183%. In conclusion, cocoa shell ash has an effect on asphalt characteristics, namely increasing stability, flexibility and fatigue resistance.

Keywords: cocoa husk ash, asphalt characteristics, physical properties testing, filler

Procedia PDF Downloads 32
4171 An Overview of Nano-Particles Effect on Mechanical Properties of Composites

Authors: Ganiyu I. Lawal, Olatunde I. Sekunowo, Stephen I. Durowaye

Abstract:

Composites depending on the nature of their constituents and mode of production are regarded as one of the advanced materials that drive today’s technology. This paper attempts a short review of the subject matter with a general aim of pushing to the next level the frontier of knowledge as it impacts the technology of nano-particles manufacturing. The objectives entail an effort to; aggregate recent research efforts in this field, analyse research findings and observations, streamline research efforts and support industry in taking decision on areas of fund deployment. It is envisaged that this work will serve as a quick hand-on compendium material for researchers in this field and a guide to relevant government departments wishing to fund a research whose outcomes have the potential of improving the nation’s GDP.

Keywords: advanced materials, composites, mechanical properties, nano-particles

Procedia PDF Downloads 274
4170 Nature, Elixir of Architecture: A Contemplation on Human, Nature and Architecture in Islam

Authors: A. Kabiri-Samani, M. J. Seddighi

Abstract:

There is no doubt that a key factor in the manifestation of architecture is the interaction of human and nature. Explaining the type of relationship defined by “the architect” between architecture and nature opens a window towards understanding the theoretical conceptions of the architect as the creator of “architecture”. Now, if these theoretical foundations are put under scrutiny from the viewpoint of Islam, and an architect considers the relationship of human and nature within the context of Islam, he would let nature to manifest itself in architecture. The reasons for such a relationship is explicable in terms of the degree and nature of knowledge of the architect about nature; while the way it comes to existence is explained by defining the force of nature – ruling the entire nature – and its acts. It is by the scientific command of the architect and his mastery in the hermetic force of nature that the material bodies of buildings evolve from artificial to natural. Additionally, the presence of nature creates hermetic architectural spaces for the spiritual development of humans while serving for living at different levels.

Keywords: nature, Islam, cognition, science, presence, elixir

Procedia PDF Downloads 487
4169 Liquid-Liquid Equilibrium Study in Solvent Extraction of o-Cresol from Coal Tar

Authors: Dewi Selvia Fardhyanti, Astrilia Damayanti

Abstract:

Coal tar is a liquid by-product of the process of coal gasification and carbonation, also in some industries such as steel, power plant, cement, and others. This liquid oil mixture contains various kinds of useful compounds such as aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. This research investigates thermodynamic modelling of liquid-liquid equilibria (LLE) in solvent extraction of o-Cresol from the coal tar. The equilibria are modeled by ternary components of Wohl, Van Laar, and Three-Suffix Margules models. The values of the parameters involved are obtained by curve-fitting to the experimental data. Based on the comparison between calculated and experimental data, it turns out that among the three models studied, the Three-Suffix Margules seems to be the best to predict the LLE of o-Cresol for those system.

Keywords: coal tar, o-Cresol, Wohl, Van Laar, three-suffix margules

Procedia PDF Downloads 275
4168 The Effect of Increase in Aluminium Content on Fluidity of ZA Alloys Processed by Centrifugal Casting

Authors: P. N. Jyothi, A. Shailesh Rao, M. C. Jagath, K. Channakeshavalu

Abstract:

Uses of ZA alloys as bearing material have been increased due to their superior mechanical properties, wear characteristics and tribological properties. Among ZA alloys, ZA 27 alloy has higher strength, low density with excellent bearing and wear characteristics. From the past research work, it is observed that in continuous casting as Al content increases, the fluidity also increases. In present work, ZA 8, ZA 12 and ZA 27 alloys have been processed through centrifugal casting process at 600 rotational speed of the mould. Uniform full cylinder is casted with ZA 8 alloy. For ZA 12 and ZA 27 alloys where the Al content is higher, cast tubes were not complete and uniform. The reason is Al may be acting as a refiner and reduce the melt flow in the rotating mould. This is mainly due to macro-segregation of Al, which has occurred due to difference in densities of Al and Zn.

Keywords: centrifugal casting, metal flow, characterization, systems engineering

Procedia PDF Downloads 326
4167 The Four Elements of Zoroastrianism and Sustainable Ecosystems with an Ecological Approach

Authors: Esmat Momeni, Shabnam Basari, Mohammad Beheshtinia

Abstract:

The purpose of this study is to provide a symbolic explanation of the four elements in Zoroastrianism and sustainable ecosystems with an ecological approach. The research method is fundamental and deductive content analysis. Data collection has been done through library and documentary methods and through reading books and related articles. The population and sample of the present study are Yazd city and Iran country after discovering symbolic concepts derived from the theoretical foundations of Zoroastrianism in four elements of water, air, soil, fire and conformity with Iranian architecture with the ecological approach in Yazd city, the sustainable ecosystem it is explained by the system of nature. The validity and reliability of the results are based on the trust and confidence of the research literature. Research findings show that Yazd was one of the bases of Zoroastrianism in Iran. Many believe that the first person to discuss the elements of nature and respect Zoroastrians is the Prophet of this religion. Keeping the environment clean and pure by paying attention to and respecting these four elements. The water element is a symbol of existence in Zoroastrianism, so the people of Yazd used the aqueduct and designed a pool in front of the building. The soil element is a symbol of the raw material of human creation in the Zoroastrian religion, the most readily available material in the desert areas of Yazd, used as bricks and adobes, creating one of the most magnificent roof coverings is the dome. The wind element represents the invisible force of the soul in Creation in Zoroastrianism, the most important application of wind in the windy, which is a highly efficient cooling system. The element of fire, which is always a symbol of purity in Zoroastrianism, is located in a special place in Yazd's Ataskadeh (altar/ temple), where the most important religious prayers are held in and against the fire. Consequently, indigenous knowledge and attention to indigenous architecture is a part of the national capital of each nation that encompasses their beliefs, values, methods, and knowledge. According to studies on the four elements of Zoroastrianism, the link between these four elements are that due to the hot and dry fire at the beginning, it is the fire that begins to follow the nature of the movement in the stillness of the earth, and arises from the heat of the fire and because of vigor and its decreases, cold (wind) emerges, and from cold, humidity and wetness. And by examining books and resources on Yazd's architectural design with an ecological approach to the values of the four elements Zoroastrianism has been inspired, it can be concluded that in order to have environmentally friendly architecture, it is essential to use sustainable architectural principles, to link religious and sacrament culture and ecology through architecture.

Keywords: ecology, architecture, quadruple elements of air, soil, water, fire, Zoroastrian religion, sustainable ecosystem, Iran, Yazd city

Procedia PDF Downloads 115
4166 Assessment of the Properties of Microcapsules with Different Polymeric Shells Containing a Reactive Agent for their Suitability in Thermoplastic Self-healing Materials

Authors: Małgorzata Golonka, Jadwiga Laska

Abstract:

Self-healing polymers are one of the most investigated groups of smart materials. As materials engineering has recently focused on the design, production and research of modern materials and future technologies, researchers are looking for innovations in structural, construction and coating materials. Based on available scientific articles, it can be concluded that most of the research focuses on the self-healing of cement, concrete, asphalt and anticorrosion resin coatings. In our study, a method of obtaining and testing the properties of several types of microcapsules for use in self-healing polymer materials was developed. A method to obtain microcapsules exhibiting various mechanical properties, especially compressive strength was developed. The effect was achieved by using various polymer materials to build the shell: urea-formaldehyde resin (UFR), melamine-formaldehyde resin (MFR), melamine-urea-formaldehyde resin (MUFR). Dicyclopentadiene (DCPD) was used as the core material due to the possibility of its polymerization according to the ring-opening olefin metathesis (ROMP) mechanism in the presence of a solid Grubbs catalyst showing relatively high chemical and thermal stability. The ROMP of dicyclopentadiene leads to a polymer with high impact strength, high thermal resistance, good adhesion to other materials and good chemical and environmental resistance, so it is potentially a very promising candidate for the self-healing of materials. The capsules were obtained by condensation polymerization of formaldehyde with urea, melamine or copolymerization with urea and melamine in situ in water dispersion, with different molar ratios of formaldehyde, urea and melamine. The fineness of the organic phase dispersed in water, and consequently the size of the microcapsules, was regulated by the stirring speed. In all cases, to establish such synthesis conditions as to obtain capsules with appropriate mechanical strength. The microcapsules were characterized by determining the diameters and their distribution and measuring the shell thickness using digital optical microscopy and scanning electron microscopy, as well as confirming the presence of the active substance in the core by FTIR and SEM. Compression tests were performed to determine mechanical strength of the microcapsules. The highest repeatability of microcapsule properties was obtained for UFR resin, while the MFR resin had the best mechanical properties. The encapsulation efficiency of MFR was much lower compared to UFR, though. Therefore, capsules with a MUFR shell may be the optimal solution. The chemical reaction between the active substance present in the capsule core and the catalyst placed outside the capsules was confirmed by FTIR spectroscopy. The obtained autonomous repair systems (microcapsules + catalyst) were introduced into polyethylene in the extrusion process and tested for the self-repair of the material.

Keywords: autonomic self-healing system, dicyclopentadiene, melamine-urea-formaldehyde resin, microcapsules, thermoplastic materials

Procedia PDF Downloads 45
4165 Real Time Detection, Prediction and Reconstitution of Rain Drops

Authors: R. Burahee, B. Chassinat, T. de Laclos, A. Dépée, A. Sastim

Abstract:

The purpose of this paper is to propose a solution to detect, predict and reconstitute rain drops in real time – during the night – using an embedded material with an infrared camera. To prevent the system from needing too high hardware resources, simple models are considered in a powerful image treatment algorithm reducing considerably calculation time in OpenCV software. Using a smart model – drops will be matched thanks to a process running through two consecutive pictures for implementing a sophisticated tracking system. With this system drops computed trajectory gives information for predicting their future location. Thanks to this technique, treatment part can be reduced. The hardware system composed by a Raspberry Pi is optimized to host efficiently this code for real time execution.

Keywords: reconstitution, prediction, detection, rain drop, real time, raspberry, infrared

Procedia PDF Downloads 417
4164 The Effects of Boronizing Treatment on the Friction and Wear Behavior of 0.35 VfTiC- Ti3SiC2 Composite

Authors: M. Hadji, A. Haddad, Y. Hadji

Abstract:

The effects of boronizing treatment on the friction coefficient and wear behavior of 0.35 Vf TiC- Ti3 SiC2 composite were investigated. In order to modity the surface properties of Ti3SiC2, boronizing treatment was carried out through powder pack cementation in the 1150-1350 °C temperature range. After boronizing treatment, one mixture layer, composed of TiB2 and SiC, forms on the surface of Ti3SiC2. The growth of the coating is processed by inward diffusion of Boron and obeys a linear rule. The Boronizing treatment increases the hardness of Ti3SiC2 from 6 GPa to 13 GPa. In the pin-on-disc test, i twas found that the material undergoes a steady-state coefficient of friction of around 0.8 and 0.45 in case of Ti3SiC2/Al2O3 tribocouple under 7N load for the non treated and the boronized samples, respectively. The wear resistance of Ti3SiC2 underAl2O3 ball sliding has been significantly improved, which indicated that the boronizing treatment is a promising surface modification way of Ti3SiC2.

Keywords: MAX phase, wearing, friction, boronizing

Procedia PDF Downloads 455
4163 Experimental Measurements of Fire Retardants on Plywood at Fire Test

Authors: Gisele C. A. Martins, Leonardo A. Marcolin, Laurenn B. de Macedo, Francisco A. Rocco Lahr, Carlito Calil Jr

Abstract:

The use and development of wood composite materials increased in the past few years. However, in Brazil there are some restrictions on these products regarding their use since it could be considered a potential risk in a fire situation. Thus, becomes evident the need for research aiming to fit these in safety standards. This study aims to evaluate the efficiency of two new fire retardant products produced by a Brazilian industry. Tests were performed on plywood panels of Pinus spp previously immersed, varying the products concentrations and compared with untreated samples. The test used to evaluate the flame spread in a panel was the modified Schlyter test. The product in question was proved efficient, before and after shutting off the burner. Comparing panels with the panels without treatment, there was a decrease of 400% of the height of the flame spread on the treated ones.

Keywords: fire retardant, flame spread, plywood, wood-based material

Procedia PDF Downloads 431
4162 Sunlight-Activated Graphene Heterostructure Transparent Cathodes for High-Performance Graphene/Si Schottky Junction Photovoltaics

Authors: Po-Sun Ho, Chun-Wei Chen

Abstract:

This work demonstrated a “sunlight-activated” graphene-heterostructure transparent electrode in which photogenerated charges from a light-absorbing material are transferred to graphene, resulting in the modulation of electrical properties of the graphene transparent electrode caused by a strong light–matter interaction at graphene-heterostructure interfaces. A photoactive graphene/TiOx-heterostructure transparent cathode was used to fabricate an n-graphene/p-Si Schottky junction solar cell, achieving a record-high power conversion efficiency (>10%). The photoactive graphene-heterostructure transparent electrode, which exhibits excellent tunable electrical properties under sunlight illumination, has great potential for use in the future development of graphene-based photovoltaics and optoelectronics.

Keywords: graphene, transparent electrode, graphene/Si Schottky junction, solar cells

Procedia PDF Downloads 311
4161 Dry Reforming of Methane Using Metal Supported and Core Shell Based Catalyst

Authors: Vinu Viswanath, Lawrence Dsouza, Ugo Ravon

Abstract:

Syngas typically and intermediary gas product has a wide range of application of producing various chemical products, such as mixed alcohols, hydrogen, ammonia, Fischer-Tropsch products methanol, ethanol, aldehydes, alcohols, etc. There are several technologies available for the syngas production. An alternative to the conventional processes an attractive route of utilizing carbon dioxide and methane in equimolar ratio to generate syngas of ratio close to one has been developed which is also termed as Dry Reforming of Methane technology. It also gives the privilege to utilize the greenhouse gases like CO2 and CH4. The dry reforming process is highly endothermic, and indeed, ΔG becomes negative if the temperature is higher than 900K and practically, the reaction occurs at 1000-1100K. At this temperature, the sintering of the metal particle is happening that deactivate the catalyst. However, by using this strategy, the methane is just partially oxidized, and some cokes deposition occurs that causing the catalyst deactivation. The current research work was focused to mitigate the main challenges of dry reforming process such coke deposition, and metal sintering at high temperature.To achieve these objectives, we employed three different strategies of catalyst development. 1) Use of bulk catalysts such as olivine and pyrochlore type materials. 2) Use of metal doped support materials, like spinel and clay type material. 3) Use of core-shell model catalyst. In this approach, a thin layer (shell) of redox metal oxide is deposited over the MgAl2O4 /Al2O3 based support material (core). For the core-shell approach, an active metal is been deposited on the surface of the shell. The shell structure formed is a doped metal oxide that can undergo reduction and oxidation reactions (redox), and the core is an alkaline earth aluminate having a high affinity towards carbon dioxide. In the case of metal-doped support catalyst, the enhanced redox properties of doped CeO2 oxide and CO2 affinity property of alkaline earth aluminates collectively helps to overcome coke formation. For all of the mentioned three strategies, a systematic screening of the metals is carried out to optimize the efficiency of the catalyst. To evaluate the performance of them, the activity and stability test were carried out under reaction conditions of temperature ranging from 650 to 850 ̊C and an operating pressure ranging from 1 to 20 bar. The result generated infers that the core-shell model catalyst showed high activity and better stable DR catalysts under atmospheric as well as high-pressure conditions. In this presentation, we will show the results related to the strategy.

Keywords: carbon dioxide, dry reforming, supports, core shell catalyst

Procedia PDF Downloads 174
4160 A Review on Upcycling: Current Body of Literature, Knowledge Gaps and a Way Forward

Authors: Kyungeun Sung

Abstract:

Upcycling is a process in which used materials are converted into something of higher value and/or quality in their second life. It has been increasingly recognised as one promising means to reduce material and energy use and also to engender sustainable production and consumption. For this reason and other foreseeable benefits, the concept of upcycling has received more attention from numerous researchers and business practitioners in recent years. This has been seen in the growing number of publications on this topic since the 1990s. However, the overall volume of literature dealing with upcycling is still low and no major review has been presented. Therefore, in order to further establish this field, this paper analyses and summarises the current body of literature on upcycling, focusing on different definitions, trends in practices, benefits, drawbacks and barriers in a number of subject areas and gives suggestions for future research by illuminating knowledge gaps in the area of upcycling.

Keywords: circular economy, cradle to cradle, sustainable production and consumption, upcycling, waste management

Procedia PDF Downloads 417
4159 The Impact of an Interactive E-Book on Mathematics Reading and Spatial Ability in Middle School Students

Authors: Abebayehu Yohannes, Hsiu-Ling Chen, Chiu-Chen Chang

Abstract:

Mathematics reading and spatial ability are important learning components in mathematics education. However, many students struggle to understand real-world problems and lack the spatial ability to form internal imagery. To cope with this problem, in this study, an interactive e-book was developed. The result indicated that both groups had a significant increase in the mathematics reading ability test, and a significant difference was observed in the overall mathematics reading score in favor of the experimental group. In addition, the interactive e-book learning mode had significant impacts on students’ spatial ability. It was also found that the richness of content with visual and interactive elements provided in the interactive e-book enhanced students’ satisfaction with the teaching material.

Keywords: interactive e-books, spatial ability, mathematics reading, satisfaction, three view

Procedia PDF Downloads 189
4158 Comparison of Different Data Acquisition Techniques for Shape Optimization Problems

Authors: Attila Vámosi, Tamás Mankovits, Dávid Huri, Imre Kocsis, Tamás Szabó

Abstract:

Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. The shape optimization problem of rubber parts led to the study of FEM based calculation processes. This type of problems was posed and investigated by several authors. In this paper the time demand of certain calculation methods are studied and the possibilities of time reduction is presented.

Keywords: rubber bumper, data acquisition, finite element analysis, support vector regression

Procedia PDF Downloads 469
4157 An Investigation of Foam Glass Production from Sheet Glass Waste and SiC Foaming Agent

Authors: Aylin Sahin, Recep Artir, Mustafa Kara

Abstract:

Foam glass is a remarkable material with having incomparable properties like low weight, rigidity, high thermal insulation capacity and porous structure. In this study, foam glass production was investigated with using glass powder from sheet glass waste and SiC powder as foaming agent. Effects of SiC powders and sintering temperatures on foaming process were examined. It was seen that volume expansions (%), cellular structures and pore diameters of obtained foam glass samples were highly depending on composition ratios and sintering temperature. The study showed that various foam glass samples having with homogenous closed porosity, low weight and low thermal conductivity were achieved by optimizing composition ratios and sintering temperatures.

Keywords: foam glass, foaming, waste glass, silicon carbide

Procedia PDF Downloads 383
4156 Active Deformable Micro-Cutters with Nano-Abrasives

Authors: M. Pappa, C. Efstathiou, G. Livanos, P. Xidas, D. Vakondios, E. Maravelakis, M. Zervakis, A. Antoniadis

Abstract:

The choice of cutting tools in manufacturing processes is an essential parameter on which the required manufacturing time, the consumed energy and the cost effort all depend. If the number of tool changing times could be minimized or even eliminated by using a single convex tool providing multiple profiles, then a significant benefit of time and energy saving, as well as tool cost, would be achieved. A typical machine contains a variety of tools in order to deal with different curvatures and material removal rates. In order to minimize the required cutting tool changes, Actively Deformable micro-Cutters (ADmC) will be developed. The design of the Actively Deformable micro-Cutters will be based on the same cutting technique and mounting method as that in typical cutters.

Keywords: deformable cutters, cutting tool, milling, turning, manufacturing

Procedia PDF Downloads 450
4155 Physical and Thermo-Physical Properties of High Strength Concrete Containing Raw Rice Husk after High Temperature Effect

Authors: B. Akturk, N. Yuzer, N. Kabay

Abstract:

High temperature is one of the most detrimental effects that cause important changes in concrete’s mechanical, physical, and thermo-physical properties. As a result of these changes, especially high strength concrete (HSC), may exhibit damages such as cracks and spallings. To overcome this problem, incorporating polymer fibers such as polypropylene (PP) in concrete is a very well-known method. In this study, using RRH as a sustainable material instead of PP fiber in HSC to prevent spallings and improve physical and thermo-physical properties were investigated. Therefore, seven HSC mixtures with 0.25 water to binder ratio were prepared, incorporating silica fume and blast furnace slag. PP and RRH were used at 0.2-0.5% and 0.5-3% by weight of cement, respectively. All specimens were subjected to high temperatures (20 (control), 300, 600 and 900˚C) with a heating rate of 2.5˚C/min and after cooling, residual physical and thermo-physical properties were determined.

Keywords: high temperature, high strength concrete, polypropylene fiber, raw rice husk, thermo-physical properties

Procedia PDF Downloads 272
4154 Finite Element Modeling and Analysis of Reinforced Concrete Coupled Shear Walls Strengthened with Externally Bonded Carbon Fiber Reinforced Polymer Composites

Authors: Sara Honarparast, Omar Chaallal

Abstract:

Reinforced concrete (RC) coupled shear walls (CSWs) are very effective structural systems in resisting lateral loads due to winds and earthquakes and are particularly used in medium- to high-rise RC buildings. However, most of existing old RC structures were designed for gravity loads or lateral loads well below the loads specified in the current modern seismic international codes. These structures may behave in non-ductile manner due to poorly designed joints, insufficient shear reinforcement and inadequate anchorage length of the reinforcing bars. This has been the main impetus to investigate an appropriate strengthening method to address or attenuate the deficiencies of these structures. The objective of this paper is to twofold: (i) evaluate the seismic performance of existing reinforced concrete coupled shear walls under reversed cyclic loading; and (ii) investigate the seismic performance of RC CSWs strengthened with externally bonded (EB) carbon fiber reinforced polymer (CFRP) sheets. To this end, two CSWs were considered as follows: (a) the first one is representative of old CSWs and therefore was designed according to the 1941 National Building Code of Canada (NBCC, 1941) with conventionally reinforced coupling beams; and (b) the second one, representative of new CSWs, was designed according to modern NBCC 2015 and CSA/A23.3 2014 requirements with diagonally reinforced coupling beam. Both CSWs were simulated using ANSYS software. Nonlinear behavior of concrete is modeled using multilinear isotropic hardening through a multilinear stress strain curve. The elastic-perfectly plastic stress-strain curve is used to simulate the steel material. Bond stress–slip is modeled between concrete and steel reinforcement in conventional coupling beam rather than considering perfect bond to better represent the slip of the steel bars observed in the coupling beams of these CSWs. The old-designed CSW was strengthened using CFRP sheets bonded to the concrete substrate and the interface was modeled using an adhesive layer. The behavior of CFRP material is considered linear elastic up to failure. After simulating the loading and boundary conditions, the specimens are analyzed under reversed cyclic loading. The comparison of results obtained for the two unstrengthened CSWs and the one retrofitted with EB CFRP sheets reveals that the strengthening method improves the seismic performance in terms of strength, ductility, and energy dissipation capacity.

Keywords: carbon fiber reinforced polymer, coupled shear wall, coupling beam, finite element analysis, modern code, old code, strengthening

Procedia PDF Downloads 197
4153 Fluorescence-Based Biosensor for Dopamine Detection Using Quantum Dots

Authors: Sylwia Krawiec, Joanna Cabaj, Karol Malecha

Abstract:

Nowadays, progress in the field of the analytical methods is of great interest for reliable biological research and medical diagnostics. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements. Chemical sensors have displaced the conventional analytical methods - sensors combine precision, sensitivity, fast response and the possibility of continuous-monitoring. Biosensor is a chemical sensor, which except of conventer also possess a biologically active material, which is the basis for the detection of specific chemicals in the sample. Each biosensor device mainly consists of two elements: a sensitive element, where is recognition of receptor-analyte, and a transducer element which receives the signal and converts it into a measurable signal. Through these two elements biosensors can be divided in two categories: due to the recognition element (e.g immunosensor) and due to the transducer (e.g optical sensor). Working of optical sensor is based on measurements of quantitative changes of parameters characterizing light radiation. The most often analyzed parameters include: amplitude (intensity), frequency or polarization. Changes in the optical properties one of the compound which reacts with biological material coated on the sensor is analyzed by a direct method, in an indirect method indicators are used, which changes the optical properties due to the transformation of the testing species. The most commonly used dyes in this method are: small molecules with an aromatic ring, like rhodamine, fluorescent proteins, for example green fluorescent protein (GFP), or nanoparticles such as quantum dots (QDs). Quantum dots have, in comparison with organic dyes, much better photoluminescent properties, better bioavailability and chemical inertness. These are semiconductor nanocrystals size of 2-10 nm. This very limited number of atoms and the ‘nano’-size gives QDs these highly fluorescent properties. Rapid and sensitive detection of dopamine is extremely important in modern medicine. Dopamine is very important neurotransmitter, which mainly occurs in the brain and central nervous system of mammals. Dopamine is responsible for the transmission information of moving through the nervous system and plays an important role in processes of learning or memory. Detection of dopamine is significant for diseases associated with the central nervous system such as Parkinson or schizophrenia. In developed optical biosensor for detection of dopamine, are used graphene quantum dots (GQDs). In such sensor dopamine molecules coats the GQD surface - in result occurs quenching of fluorescence due to Resonance Energy Transfer (FRET). Changes in fluorescence correspond to specific concentrations of the neurotransmitter in tested sample, so it is possible to accurately determine the concentration of dopamine in the sample.

Keywords: biosensor, dopamine, fluorescence, quantum dots

Procedia PDF Downloads 362
4152 The Strength and Metallography of a Bimetallic Friction Stir Bonded Joint between AA6061 and High Hardness Steel

Authors: Richard E. Miller

Abstract:

12.7-mm thick plates of 6061-T6511 aluminum alloy and high hardness steel (528 HV) were successfully joined by a friction stir bonding process using a tungsten-rhenium stir tool. Process parameter variation experiments, which included tool design geometry, plunge and traverse rates, tool offset, spindle tilt, and rotation speed, were conducted to develop a parameter set which yielded a defect free joint. Laboratory tensile tests exhibited yield stresses which exceed the strengths of comparable AA6061-to-AA6061 fusion and friction stir weld joints. Scanning electron microscopy and energy dispersive X-ray spectroscopy analysis also show atomic diffusion at the material interface region.

Keywords: dissimilar materials, friction stir, welding, materials science

Procedia PDF Downloads 267
4151 Tank Barrel Surface Damage Detection Algorithm

Authors: Tomáš Dyk, Stanislav Procházka, Martin Drahanský

Abstract:

The article proposes a new algorithm for detecting damaged areas of the tank barrel based on the image of the inner surface of the tank barrel. Damage position is calculated using image processing techniques such as edge detection, discrete wavelet transformation and image segmentation for accurate contour detection. The algorithm can detect surface damage in smoothbore and even in rifled tank barrels. The algorithm also calculates the volume of the detected damage from the depth map generated, for example, from the distance measurement unit. The proposed method was tested on data obtained by a tank barrel scanning device, which generates both surface image data and depth map. The article also discusses tank barrel scanning devices and how damaged surface impacts material resistance.

Keywords: barrel, barrel diagnostic, image processing, surface damage detection, tank

Procedia PDF Downloads 136
4150 Impact of Rebar-Reinforcement on Flexural Response of Shear-Critical Ultrahigh-Performance Concrete Beams

Authors: Yassir M. Abbas, Mohammad Iqbal Khan, Galal Fare

Abstract:

In the present work, the structural responses of 12 ultrahigh-performance concrete (UHPC) beams to four-point loading conditions were experimentally and analytically studied. The inclusion of a fibrous system in the UHPC material increased its compressive and flexural strengths by 31.5% and 237.8%, respectively. Based on the analysis of the load-deflection curves of UHPC beams, it was found that UHPC beams with a low reinforcement ratio are prone to sudden brittle failure. This failure behavior was changed, however, to a ductile one in beams with medium to high ratios. The implication is that improving UHPC beam tensile reinforcement could result in a higher level of safety. More reinforcement bars also enabled the load-deflection behavior to be improved, particularly after yielding.

Keywords: ultrahigh-performance concrete, moment capacity, RC beams, hybrid fiber, ductility

Procedia PDF Downloads 67
4149 Optimum Design of Attenuator of Spun-Bond Production System

Authors: Nasser Ghassembaglou, Abdullah Bolek, Oktay Yilmaz, Ertan Oznergiz, Hikmet Kocabas, Safak Yilmaz

Abstract:

Nanofibers are effective material which have frequently been investigated to produce high quality air filters. As an environmental approach our aim is to achieve nanofibers by melting. In spun-bond systems extruder, spin-pump, nozzle package and attenuator are used. Molten polymer which flows from extruder is made steady by spin-pump. Regular melt passes through nozzle holes and forms fibers under high pressure. The fibers pulled from nozzle are shrunk to micron size by an attenuator, after solidification they are collected on a conveyor. In this research different designs of attenuator system have been studied and also CFD analysis have been done on them. Afterwards, one of these designs tested and finally some optimizations have been done to reduce pressure loss and increase air velocity.

Keywords: attenuator, nanofiber, spun-bond, extruder

Procedia PDF Downloads 412
4148 Structural Integrity Analysis of Baffle Former Assembly in Pressurized Water Reactors Considering Irradiation Aging

Authors: Jong-Sung Kim, Myung-Jo Jhung

Abstract:

BFA is one of the reactor internals components in PWR. The BFA has the intended functions to support fuel assembly, to keep structural integrity of upper/lower core support structures, and to secure reactor coolant flow path. Failure of the BFA may give rise to significant effect on reactor safety operation and stop. The BFA is subject to relatively high neutron irradiation dose due to location close to the core. Therefore, IASCC can occur on the BFA due to damage accumulation as operating year increases. In this study, IASCC susceptibility on the BFA was assessed via the FEA considering variations of mechanical material behaviors with neutron irradiation. As a result of the assessment, some points have susceptibility more than 0.2 to IASCC during design lifetime.

Keywords: baffle former assembly, finite element analysis, irradiation aging, nuclear power plant, pressurized water reactor

Procedia PDF Downloads 358