Search results for: nonlinear mathematical model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18240

Search results for: nonlinear mathematical model

15780 Tackling the Value-Action-Gap: Improving Civic Participation Using a Holistic Behavioral Model Approach

Authors: Long Pham, Julia Blanke

Abstract:

An increasingly popular way of establishing citizen engagement within communities is through ‘city apps’. Currently, most of these mobile applications seem to be extensions of the existing communication media, sometimes merely replicating the information available on the classical city web sites, and therefore provide minimal additional impact on citizen behavior and engagement. In order to overcome this challenge, we propose to use a holistic behavioral model to generate dynamic and contextualized app content based on optimizing well defined city-related performance goals constrained by the proposed behavioral model. In this paper, we will show how the data collected by the CorkCitiEngage project in the Irish city of Cork can be utilized to calibrate aspects of the proposed model enabling the design of a personalized citizen engagement app aiming at positively influencing people’s behavior towards more active participation in their communities. We will focus on the important aspect of intentions to act, which is essential for understanding the reasons behind the common value-action-gap being responsible for the mismatch between good intentions and actual observable behavior, and will discuss how customized app design can be based on a rigorous model of behavior optimized towards maximizing well defined city-related performance goals.

Keywords: city apps, holistic behaviour model, intention to act, value-action-gap, citizen engagement

Procedia PDF Downloads 226
15779 Optimal Path Motion of Positional Electric Drive

Authors: M. A. Grigoryev, A. N. Shishkov, N. V. Savosteenko

Abstract:

The article identifies optimal path motion of positional electric drive, for example, the feed of cold pilgering mill. It is shown that triangle is the optimum shape of the speed curve, and the ratio of its sides depends on the type of load diagram, in particular from the influence of the main drive of pilgering mill, and is not dependent on the presence of backlash and elasticity in the system. This thesis is proved analytically, and confirmed the results are obtained by a mathematical model that take into account the influence of the main drive-to-drive feed. By statistical analysis of oscillograph traces obtained on the real object allowed to give recommendations on the optimal control of the electric drive feed cold pilgering mill 450. Based on the data that the load torque depends on by hit the pipe in rolls of pilgering mill, occurs in the interval (0,6…0,75) tc, the recommended ratio of start time to the braking time is 2:1. Optimized path motion allowed get up to 25% more RMS torque for the cycle that allowed increased the productivity of the mill.

Keywords: optimal curve speed, positional electric drive, cold pilgering mill 450, optimal path motion

Procedia PDF Downloads 318
15778 A Comprehensive Approach to Scour Depth Estimation Through HEC-RAS 2D and Physical Modeling

Authors: Ashvinie Thembiliyagoda, Kasun De Silva, Nimal Wijayaratna

Abstract:

The lowering of the riverbed level as a result of water erosion is termed as scouring. This phenomenon remarkably undermines the potential stability of the bridge pier, causing a threat of failure or collapse. The formation of vortices in the vicinity of bridges due to the obstruction caused by river flow is the main reason behind this pursuit. Scouring is aggravated by factors including high flow rates, bridge pier geometry, sediment configuration etc. Tackling scour-related problems when they become severe is more costly and disruptive compared to implementing preventive measures based on predicted scour depths. This paper presents a comprehensive investigation of the development of a numerical model that could reproduce the scouring effect around bridge piers and estimate the scour depth. The numerical model was developed for one selected bridge in Sri Lanka, the Kelanisiri Bridge. HEC-RAS two-dimensional (2D) modeling approach was utilized for the development of the model and was calibrated and validated with field data. To further enhance the reliability of the model, a physical model was developed, allowing for additional validation. Results from the numerical model were compared with those obtained from the physical model, revealing a strong correlation between the two methods and confirming the numerical model's accuracy in predicting scour depths. The findings from this study underscore the ability of the HEC-RAS two-dimensional modeling approach for the estimation of scour depth around bridge piers. The developed model is able to estimate the scour depth under varying flow conditions, and its flexibility allows it to be adapted for application to other bridges with similar hydraulic and geomorphological conditions, providing a robust tool for widespread use in scour estimation. The developed two-dimensional model not only offers reliable predictions for the case study bridge but also holds significant potential for broader implementation, contributing to the improved design and maintenance of bridge structures in diverse environments.

Keywords: piers, scouring, HEC-RAS, physical model

Procedia PDF Downloads 15
15777 Parametric Optimization of High-Performance Electric Vehicle E-Gear Drive for Radiated Noise Using 1-D System Simulation

Authors: Sanjai Sureshkumar, Sathish G. Kumar, P. V. V. Sathyanarayana

Abstract:

For e-gear drivetrain, the transmission error and the resulting variation in mesh stiffness is one of the main source of excitation in High performance Electric Vehicle. These vibrations are transferred through the shaft to the bearings and then to the e-Gear drive housing eventually radiating noise. A parametrical model developed in 1-D system simulation by optimizing the micro and macro geometry along with bearing properties and oil filtration to achieve least transmission error and high contact ratio. Histogram analysis is performed to condense the actual road load data into condensed duty cycle to find the bearing forces. The structural vibration generated by these forces will be simulated in a nonlinear solver obtaining the normal surface velocity of the housing and the results will be carried forward to Acoustic software wherein a virtual environment of the surrounding (actual testing scenario) with accurate microphone position will be maintained to predict the sound pressure level of radiated noise and directivity plot of the e-Gear Drive. Order analysis will be carried out to find the root cause of the vibration and whine noise. Broadband spectrum will be checked to find the rattle noise source. Further, with the available results, the design will be optimized, and the next loop of simulation will be performed to build a best e-Gear Drive on NVH aspect. Structural analysis will be also carried out to check the robustness of the e-Gear Drive.

Keywords: 1-D system simulation, contact ratio, e-Gear, mesh stiffness, micro and macro geometry, transmission error, radiated noise, NVH

Procedia PDF Downloads 149
15776 Half-Circle Fuzzy Number Threshold Determination via Swarm Intelligence Method

Authors: P. W. Tsai, J. W. Chen, C. W. Chen, C. Y. Chen

Abstract:

In recent years, many researchers are involved in the field of fuzzy theory. However, there are still a lot of issues to be resolved. Especially on topics related to controller design such as the field of robot, artificial intelligence, and nonlinear systems etc. Besides fuzzy theory, algorithms in swarm intelligence are also a popular field for the researchers. In this paper, a concept of utilizing one of the swarm intelligence method, which is called Bacterial-GA Foraging, to find the stabilized common P matrix for the fuzzy controller system is proposed. An example is given in in the paper, as well.

Keywords: half-circle fuzzy numbers, predictions, swarm intelligence, Lyapunov method

Procedia PDF Downloads 685
15775 Drying Kinetics, Energy Requirement, Bioactive Composition, and Mathematical Modeling of Allium Cepa Slices

Authors: Felix U. Asoiro, Meshack I. Simeon, Chinenye E. Azuka, Harami Solomon, Chukwuemeka J. Ohagwu

Abstract:

The drying kinetics, specific energy consumed (SEC), effective moisture diffusivity (EMD), flavonoid, phenolic, and vitamin C contents of onion slices dried under convective oven drying (COD) were compared with microwave drying (MD). Drying was performed with onion slice thicknesses of 2, 4, 6, and 8 mm; air drying temperatures of 60, 80, and 100°C for COD, and microwave power of 450 W for MD. A decrease in slice thickness and an increase in drying air temperature led to a drop in the drying time. As thickness increased from 2 – 8 mm, EMD rose from 1.1-4.35 x 10⁻⁸ at 60°C, 1.1-5.6 x 10⁻⁸ at 80°C, and 1.25-6.12 x 10⁻⁸ at 100°C with MD treatments yielding the highest mean value (6.65 x 10⁻⁸ m² s⁻¹) at 8 mm. Maximum SEC for onion slices in COD was 238.27 kWh/kg H₂O (2 mm thickness), and the minimum was 39.4 kWh/kg H₂O (8 mm thickness) whereas maximum during MD was 25.33 kWh/kg H₂O (8 mm thickness) and minimum, 18.7 kWh/kg H₂O (2 mm thickness). MD treatment gave a significant (p 0.05) increase in the flavonoid (39.42 – 64.4%), phenolic (38.0 – 46.84%), and vitamin C (3.7 – 4.23 mg 100 g⁻¹) contents, while COD treatment at 60°C and 100°C had positive effects on only vitamin C and phenolic contents, respectively. In comparison, the Weibull model gave the overall best fit (highest R²=0.999; lowest SSE=0.0002, RSME=0.0123, and χ²= 0.0004) when drying 2 mm onion slices at 100°C.

Keywords: allium cepa, drying kinetics, specific energy consumption, flavonoid, vitamin C, microwave oven drying

Procedia PDF Downloads 137
15774 A Scalable Model of Fair Socioeconomic Relations Based on Blockchain and Machine Learning Algorithms-1: On Hyperinteraction and Intuition

Authors: Merey M. Sarsengeldin, Alexandr S. Kolokhmatov, Galiya Seidaliyeva, Alexandr Ozerov, Sanim T. Imatayeva

Abstract:

This series of interdisciplinary studies is an attempt to investigate and develop a scalable model of fair socioeconomic relations on the base of blockchain using positive psychology techniques and Machine Learning algorithms for data analytics. In this particular study, we use hyperinteraction approach and intuition to investigate their influence on 'wisdom of crowds' via created mobile application which was created for the purpose of this research. Along with the public blockchain and private Decentralized Autonomous Organization (DAO) which were elaborated by us on the base of Ethereum blockchain, a model of fair financial relations of members of DAO was developed. We developed a smart contract, so-called, Fair Price Protocol and use it for implementation of model. The data obtained from mobile application was analyzed by ML algorithms. A model was tested on football matches.

Keywords: blockchain, Naïve Bayes algorithm, hyperinteraction, intuition, wisdom of crowd, decentralized autonomous organization

Procedia PDF Downloads 169
15773 Exploring the Design of Prospective Human Immunodeficiency Virus Type 1 Reverse Transcriptase Inhibitors through a Comprehensive Approach of Quantitative Structure Activity Relationship Study, Molecular Docking, and Molecular Dynamics Simulations

Authors: Mouna Baassi, Mohamed Moussaoui, Sanchaita Rajkhowa, Hatim Soufi, Said Belaaouad

Abstract:

The objective of this paper is to address the challenging task of targeting Human Immunodeficiency Virus type 1 Reverse Transcriptase (HIV-1 RT) in the treatment of AIDS. Reverse Transcriptase inhibitors (RTIs) have limitations due to the development of Reverse Transcriptase mutations that lead to treatment resistance. In this study, a combination of statistical analysis and bioinformatics tools was adopted to develop a mathematical model that relates the structure of compounds to their inhibitory activities against HIV-1 Reverse Transcriptase. Our approach was based on a series of compounds recognized for their HIV-1 RT enzymatic inhibitory activities. These compounds were designed via software, with their descriptors computed using multiple tools. The most statistically promising model was chosen, and its domain of application was ascertained. Furthermore, compounds exhibiting comparable biological activity to existing drugs were identified as potential inhibitors of HIV-1 RT. The compounds underwent evaluation based on their chemical absorption, distribution, metabolism, excretion, toxicity properties, and adherence to Lipinski's rule. Molecular docking techniques were employed to examine the interaction between the Reverse Transcriptase (Wild Type and Mutant Type) and the ligands, including a known drug available in the market. Molecular dynamics simulations were also conducted to assess the stability of the RT-ligand complexes. Our results reveal some of the new compounds as promising candidates for effectively inhibiting HIV-1 Reverse Transcriptase, matching the potency of the established drug. This necessitates further experimental validation. This study, beyond its immediate results, provides a methodological foundation for future endeavors aiming to discover and design new inhibitors targeting HIV-1 Reverse Transcriptase.

Keywords: QSAR, ADMET properties, molecular docking, molecular dynamics simulation, reverse transcriptase inhibitors, HIV type 1

Procedia PDF Downloads 92
15772 Reduced Model Investigations Supported by Fuzzy Cognitive Map to Foster Circular Economy

Authors: A. Buruzs, M. F. Hatwágner, L. T. Kóczy

Abstract:

The aim of the present paper is to develop an integrated method that may provide assistance to decision makers during system planning, design, operation and evaluation. In order to support the realization of Circular Economy (CE), it is essential to evaluate local needs and conditions which help to select the most appropriate system components and resource needs. Each of these activities requires careful planning, however, the model of CE offers a comprehensive interdisciplinary framework. The aim of this research was to develop and to introduce a practical methodology for evaluation of local and regional opportunities to promote CE.

Keywords: circular economy, factors, fuzzy cognitive map, model reduction, sustainability

Procedia PDF Downloads 244
15771 The Use of Geographically Weighted Regression for Deforestation Analysis: Case Study in Brazilian Cerrado

Authors: Ana Paula Camelo, Keila Sanches

Abstract:

The Geographically Weighted Regression (GWR) was proposed in geography literature to allow relationship in a regression model to vary over space. In Brazil, the agricultural exploitation of the Cerrado Biome is the main cause of deforestation. In this study, we propose a methodology using geostatistical methods to characterize the spatial dependence of deforestation in the Cerrado based on agricultural production indicators. Therefore, it was used the set of exploratory spatial data analysis tools (ESDA) and confirmatory analysis using GWR. It was made the calibration a non-spatial model, evaluation the nature of the regression curve, election of the variables by stepwise process and multicollinearity analysis. After the evaluation of the non-spatial model was processed the spatial-regression model, statistic evaluation of the intercept and verification of its effect on calibration. In an analysis of Spearman’s correlation the results between deforestation and livestock was +0.783 and with soybeans +0.405. The model presented R²=0.936 and showed a strong spatial dependence of agricultural activity of soybeans associated to maize and cotton crops. The GWR is a very effective tool presenting results closer to the reality of deforestation in the Cerrado when compared with other analysis.

Keywords: deforestation, geographically weighted regression, land use, spatial analysis

Procedia PDF Downloads 363
15770 Dislocation Density-Based Modeling of the Grain Refinement in Surface Mechanical Attrition Treatment

Authors: Reza Miresmaeili, Asghar Heydari Astaraee, Fereshteh Dolati

Abstract:

In the present study, an analytical model based on dislocation density model was developed to simulate grain refinement in surface mechanical attrition treatment (SMAT). The correlation between SMAT time and development in plastic strain on one hand, and dislocation density evolution, on the other hand, was established to simulate the grain refinement in SMAT. A dislocation density-based constitutive material law was implemented using VUHARD subroutine. A random sequence of shots is taken into consideration for multiple impacts model using Python programming language by utilizing a random function. The simulation technique was to model each impact in a separate run and then transferring the results of each run as initial conditions for the next run (impact). The developed Finite Element (FE) model of multiple impacts describes the coverage evolution in SMAT. Simulations were run to coverage levels as high as 4500%. It is shown that the coverage implemented in the FE model is equal to the experimental coverage. It is depicted that numerical SMAT coverage parameter is adequately conforming to the well-known Avrami model. Comparison between numerical results and experimental measurements for residual stresses and depth of deformation layers confirms the performance of the established FE model for surface engineering evaluations in SMA treatment. X-ray diffraction (XRD) studies of grain refinement, including resultant grain size and dislocation density, were conducted to validate the established model. The full width at half-maximum in XRD profiles can be used to measure the grain size. Numerical results and experimental measurements of grain refinement illustrate good agreement and show the capability of established FE model to predict the gradient microstructure in SMA treatment.

Keywords: dislocation density, grain refinement, severe plastic deformation, simulation, surface mechanical attrition treatment

Procedia PDF Downloads 136
15769 The Grand Unified Theory of Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow Model

Authors: Tory Erickson

Abstract:

The "Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model introduces a framework aimed at unifying general relativity (GR) and quantum mechanics (QM). By proposing a concept of bidirectional spacetime, this model suggests that time can flow in more than one direction, thus offering a perspective on temporal dynamics. Integrated with spatial covariance and wave-particle duality in spacetime flow, the BST-SCWPDF Model resolves long-standing discrepancies between GR and QM. This unified theory has profound implications for quantum gravity, potentially offering insights into quantum entanglement, the collapse of the wave function, and the fabric of spacetime itself. The Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model offers researchers a framework for a better understanding of theoretical physics.

Keywords: astrophysics, quantum mechanics, general relativity, unification theory, theoretical physics

Procedia PDF Downloads 87
15768 Generalized Additive Model for Estimating Propensity Score

Authors: Tahmidul Islam

Abstract:

Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.

Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching

Procedia PDF Downloads 367
15767 Thermal Characterisation of Multi-Coated Lightweight Brake Rotors for Passenger Cars

Authors: Ankit Khurana

Abstract:

The sufficient heat storage capacity or ability to dissipate heat is the most decisive parameter to have an effective and efficient functioning of Friction-based Brake Disc systems. The primary aim of the research was to analyse the effect of multiple coatings on lightweight disk rotors surface which not only alleviates the mass of vehicle & also, augments heat transfer. This research is projected to aid the automobile fraternity with an enunciated view over the thermal aspects in a braking system. The results of the project indicate that with the advent of modern coating technologies a brake system’s thermal curtailments can be removed and together with forced convection, heat transfer processes can see a drastic improvement leading to increased lifetime of the brake rotor. Other advantages of modifying the surface of a lightweight rotor substrate will be to reduce the overall weight of the vehicle, decrease the risk of thermal brake failure (brake fade and fluid vaporization), longer component life, as well as lower noise and vibration characteristics. A mathematical model was constructed in MATLAB which encompassing the various thermal characteristics of the proposed coatings and substrate materials required to approximate the heat flux values in a free and forced convection environment; resembling to a real-time braking phenomenon which could easily be modelled into a full cum scaled version of the alloy brake rotor part in ABAQUS. The finite element of a brake rotor was modelled in a constrained environment such that the nodal temperature between the contact surfaces of the coatings and substrate (Wrought Aluminum alloy) resemble an amalgamated solid brake rotor element. The initial results obtained were for a Plasma Electrolytic Oxidized (PEO) substrate wherein the Aluminum alloy gets a hard ceramic oxide layer grown on its transitional phase. The rotor was modelled and then evaluated in real-time for a constant ‘g’ braking event (based upon the mathematical heat flux input and convective surroundings), which reflected the necessity to deposit a conducting coat (sacrificial) above the PEO layer in order to inhibit thermal degradation of the barrier coating prematurely. Taguchi study was then used to bring out certain critical factors which may influence the maximum operating temperature of a multi-coated brake disc by simulating brake tests: a) an Alpine descent lasting 50 seconds; b) an Autobahn stop lasting 3.53 seconds; c) a Six–high speed repeated stop in accordance to FMVSS 135 lasting 46.25 seconds. Thermal Barrier coating thickness and Vane heat transfer coefficient were the two most influential factors and owing to their design and manufacturing constraints a final optimized model was obtained which survived the 6-high speed stop test as per the FMVSS -135 specifications. The simulation data highlighted the merits for preferring Wrought Aluminum alloy 7068 over Grey Cast Iron and Aluminum Metal Matrix Composite in coherence with the multiple coating depositions.

Keywords: lightweight brakes, surface modification, simulated braking, PEO, aluminum

Procedia PDF Downloads 408
15766 Systematic and Simple Guidance for Feed Forward Design in Model Predictive Control

Authors: Shukri Dughman, Anthony Rossiter

Abstract:

This paper builds on earlier work which demonstrated that Model Predictive Control (MPC) may give a poor choice of default feed forward compensator. By first demonstrating the impact of future information of target changes on the performance, this paper proposes a pragmatic method for identifying the amount of future information on the target that can be utilised effectively in both finite and infinite horizon algorithms. Numerical illustrations in MATLAB give evidence of the efficacy of the proposal.

Keywords: model predictive control, tracking control, advance knowledge, feed forward

Procedia PDF Downloads 547
15765 Research on Detection of Web Page Visual Salience Region Based on Eye Tracker and Spectral Residual Model

Authors: Xiaoying Guo, Xiangyun Wang, Chunhua Jia

Abstract:

Web page has been one of the most important way of knowing the world. Humans catch a lot of information from it everyday. Thus, understanding where human looks when they surfing the web pages is rather important. In normal scenes, the down-top features and top-down tasks significantly affect humans’ eye movement. In this paper, we investigated if the conventional visual salience algorithm can properly predict humans’ visual attractive region when they viewing the web pages. First, we obtained the eye movement data when the participants viewing the web pages using an eye tracker. By the analysis of eye movement data, we studied the influence of visual saliency and thinking way on eye-movement pattern. The analysis result showed that thinking way affect human’ eye-movement pattern much more than visual saliency. Second, we compared the results of web page visual salience region extracted by Itti model and Spectral Residual (SR) model. The results showed that Spectral Residual (SR) model performs superior than Itti model by comparison with the heat map from eye movements. Considering the influence of mind habit on humans’ visual region of interest, we introduced one of the most important cue in mind habit-fixation position to improved the SR model. The result showed that the improved SR model can better predict the human visual region of interest in web pages.

Keywords: web page salience region, eye-tracker, spectral residual, visual salience

Procedia PDF Downloads 276
15764 A Dynamical Study of Fractional Order Obesity Model by a Combined Legendre Wavelet Method

Authors: Hakiki Kheira, Belhamiti Omar

Abstract:

In this paper, we propose a new compartmental fractional order model for the simulation of epidemic obesity dynamics. Using the Legendre wavelet method combined with the decoupling and quasi-linearization technique, we demonstrate the validity and applicability of our model. We also present some fractional differential illustrative examples to demonstrate the applicability and efficiency of the method. The fractional derivative is described in the Caputo sense.

Keywords: Caputo derivative, epidemiology, Legendre wavelet method, obesity

Procedia PDF Downloads 421
15763 An Optimal Approach for Full-Detailed Friction Model Identification of Reaction Wheel

Authors: Ghasem Sharifi, Hamed Shahmohamadi Ousaloo, Milad Azimi, Mehran Mirshams

Abstract:

The ever-increasing use of satellites demands a search for increasingly accurate and reliable pointing systems. Reaction wheels are rotating devices used commonly for the attitude control of the spacecraft since provide a wide range of torque magnitude and high reliability. The numerical modeling of this device can significantly enhance the accuracy of the satellite control in space. Modeling the wheel rotation in the presence of the various frictions is one of the critical parts of this approach. This paper presents a Dynamic Model Control of a Reaction Wheel (DMCR) in the current control mode. In current-mode, the required current is delivered to the coils in order to achieve the desired torque. During this research, all the friction parameters as viscous and coulomb, motor coefficient, resistance and voltage constant are identified. In order to model identification of a reaction wheel, numerous varying current commands apply on the particular wheel to verify the estimated model. All the parameters of DMCR are identified by classical Levenberg-Marquardt (CLM) optimization method. The experimental results demonstrate that the developed model has an appropriate precise and can be used in the satellite control simulation.

Keywords: experimental modeling, friction parameters, model identification, reaction wheel

Procedia PDF Downloads 233
15762 Ant Colony Optimization Control for Multilevel STATCOM

Authors: H. Tédjini, Y. Meslem, B. Guesbaoui, A. Safa

Abstract:

Flexible AC Transmission Systems (FACTS) are potentially becoming more flexible and more economical local controllers in the power system; and because of the high MVA ratings, it would be expensive to provide independent, equal, regulated DC voltage sources to power the multilevel converters which are presently proposed for STATCOMs. DC voltage sources can be derived from the DC link capacitances which are charged by the rectified ac power. In this paper a new stronger control combined of nonlinear control based Lyapunov’s theorem and Ant Colony Algorithm (ACA) to maintain stability of multilevel STATCOM and the utility.

Keywords: Static Compensator (STATCOM), ant colony optimization (ACO), lyapunov control theory, Decoupled power control, neutral point clamped (NPC)

Procedia PDF Downloads 556
15761 A Graph-Based Retrieval Model for Passage Search

Authors: Junjie Zhong, Kai Hong, Lei Wang

Abstract:

Passage Retrieval (PR) plays an important role in many Natural Language Processing (NLP) tasks. Traditional efficient retrieval models relying on exact term-matching, such as TF-IDF or BM25, have nowadays been exceeded by pre-trained language models which match by semantics. Though they gain effectiveness, deep language models often require large memory as well as time cost. To tackle the trade-off between efficiency and effectiveness in PR, this paper proposes Graph Passage Retriever (GraphPR), a graph-based model inspired by the development of graph learning techniques. Different from existing works, GraphPR is end-to-end and integrates both term-matching information and semantics. GraphPR constructs a passage-level graph from BM25 retrieval results and trains a GCN-like model on the graph with graph-based objectives. Passages were regarded as nodes in the constructed graph and were embedded in dense vectors. PR can then be implemented using embeddings and a fast vector-similarity search. Experiments on a variety of real-world retrieval datasets show that the proposed model outperforms related models in several evaluation metrics (e.g., mean reciprocal rank, accuracy, F1-scores) while maintaining a relatively low query latency and memory usage.

Keywords: efficiency, effectiveness, graph learning, language model, passage retrieval, term-matching model

Procedia PDF Downloads 150
15760 Adaptive Control Approach for an Unmanned Aerial Manipulator

Authors: Samah Riache, Madjid Kidouche

Abstract:

In this paper, we propose a nonlinear controller for Aerial Manipulator (AM) consists of a Quadrotor equipped with two degrees of freedom robotic arm. The kinematic and dynamic models were developed by considering the aerial manipulator as a coupled system. The proposed controller was designed using Nonsingular Terminal Sliding Mode Control. The objective of our approach is to improve performances and attenuate the chattering drawback using an adaptive algorithm in the discontinuous control part. Simulation results prove the effectiveness of the proposed control strategy compared with Sliding Mode Controller.

Keywords: adaptive algorithm, quadrotor, robotic arm, sliding mode control

Procedia PDF Downloads 184
15759 On Reliability of a Credit Default Swap Contract during the EMU Debt Crisis

Authors: Petra Buzkova, Milos Kopa

Abstract:

Reliability of the credit default swap market had been questioned repeatedly during the EMU debt crisis. The article examines whether this development influenced sovereign EMU CDS prices in general. We regress the CDS market price on a model risk neutral CDS price obtained from an adopted reduced form valuation model in the 2009-2013 period. We look for a break point in the single-equation and multi-equation econometric models in order to show the changes in relations between CDS market and model prices. Our results differ according to the risk profile of a country. We find that in the case of riskier countries, the relationship between the market and model price changed when market participants started to question the ability of CDS contracts to protect their buyers. Specifically, it weakened after the change. In the case of less risky countries, the change happened earlier and the effect of a weakened relationship is not observed.

Keywords: chow stability test, credit default swap, debt crisis, reduced form valuation model, seemingly unrelated regression

Procedia PDF Downloads 263
15758 Application of Global Predictive Real Time Control Strategy to Improve Flooding Prevention Performance of Urban Stormwater Basins

Authors: Shadab Shishegar, Sophie Duchesne, Genevieve Pelletier

Abstract:

Sustainability as one of the key elements of Smart cities, can be realized by employing Real Time Control Strategies for city’s infrastructures. Nowadays Stormwater management systems play an important role in mitigating the impacts of urbanization on natural hydrological cycle. These systems can be managed in such a way that they meet the smart cities standards. In fact, there is a huge potential for sustainable management of urban stormwater and also its adaptability to global challenges like climate change. Hence, a dynamically managed system that can adapt itself to instability of the environmental conditions is desirable. A Global Predictive Real Time Control approach is proposed in this paper to optimize the performance of stormwater management basins in terms of flooding prevention. To do so, a mathematical optimization model is developed then solved using Genetic Algorithm (GA). Results show an improved performance at system-level for the stormwater basins in comparison to static strategy.

Keywords: environmental sustainability, optimization, real time control, storm water management

Procedia PDF Downloads 177
15757 Application of a Generalized Additive Model to Reveal the Relations between the Density of Zooplankton with Other Variables in the West Daya Bay, China

Authors: Weiwen Li, Hao Huang, Chengmao You, Jianji Liao, Lei Wang, Lina An

Abstract:

Zooplankton are a central issue in the ecology which makes a great contribution to maintaining the balance of an ecosystem. It is critical in promoting the material cycle and energy flow within the ecosystems. A generalized additive model (GAM) was applied to analyze the relationships between the density (individuals per m³) of zooplankton and other variables in West Daya Bay. All data used in this analysis (the survey month, survey station (longitude and latitude), the depth of the water column, the superficial concentration of chlorophyll a, the benthonic concentration of chlorophyll a, the number of zooplankton species and the number of zooplankton species) were collected through monthly scientific surveys during January to December 2016. GLM model (generalized linear model) was used to choose the significant variables’ impact on the density of zooplankton, and the GAM was employed to analyze the relationship between the density of zooplankton and the significant variables. The results showed that the density of zooplankton increased with an increase of the benthonic concentration of chlorophyll a, but decreased with a decrease in the depth of the water column. Both high numbers of zooplankton species and the overall total number of zooplankton individuals led to a higher density of zooplankton.

Keywords: density, generalized linear model, generalized additive model, the West Daya Bay, zooplankton

Procedia PDF Downloads 151
15756 Construction of a Dynamic Model of Cerebral Blood Circulation for Future Integrated Control of Brain State

Authors: Tomohiko Utsuki

Abstract:

Currently, brain resuscitation becomes increasingly important due to revising various clinical guidelines pertinent to emergency care. In brain resuscitation, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) is required for stabilizing physiological state of brain, and is described as the essential treatment points in many guidelines of disorder and/or disease such as brain injury, stroke, and encephalopathy. Thus, an integrated control system of BT, ICP, and CBF will greatly contribute to alleviating the burden on medical staff and improving treatment effect in brain resuscitation. In order to develop such a control system, models related to BT, ICP, and CBF are required for control simulation, because trial and error experiments using patients are not ethically allowed. A static model of cerebral blood circulation from intracranial arteries and vertebral artery to jugular veins has already constructed and verified. However, it is impossible to represent the pooling of blood in blood vessels, which is one cause of cerebral hypertension in this model. And, it is also impossible to represent the pulsing motion of blood vessels caused by blood pressure change which can have an affect on the change of cerebral tissue pressure. Thus, a dynamic model of cerebral blood circulation is constructed in consideration of the elasticity of the blood vessel and the inertia of the blood vessel wall. The constructed dynamic model was numerically analyzed using the normal data, in which each arterial blood flow in cerebral blood circulation, the distribution of blood pressure in the Circle of Willis, and the change of blood pressure along blood flow were calculated for verifying against physiological knowledge. As the result, because each calculated numerical value falling within the generally known normal range, this model has no problem in representing at least the normal physiological state of the brain. It is the next task to verify the accuracy of the present model in the case of disease or disorder. Currently, the construction of a migration model of extracellular fluid and a model of heat transfer in cerebral tissue are in progress for making them parts of an integrated model of brain physiological state, which is necessary for developing an future integrated control system of BT, ICP and CBF. The present model is applicable to constructing the integrated model representing at least the normal condition of brain physiological state by uniting with such models.

Keywords: dynamic model, cerebral blood circulation, brain resuscitation, automatic control

Procedia PDF Downloads 153
15755 Synthesis and Characterization of Model Amines for Corrosion Applications

Authors: John Vergara, Giuseppe Palmese

Abstract:

Fundamental studies aimed at elucidating the key contributions to corrosion performance are needed to make progress toward effective and environmentally compliant corrosion control. Epoxy/amine systems are typically employed as barrier coatings for corrosion control. However, the hardening agents used for coating applications can be very complex, making fundamental studies of water and oxygen permeability challenging to carry out. Creating model building blocks for epoxy/amine coatings is the first step in carrying out these studies. We will demonstrate the synthesis and characterization of model amine building blocks from saturated fatty acids and simple amines such as diethylenetriamine (DETA) and Bis(3-aminopropyl)amine. The structure-property relationship of thermosets made from these model amines and Diglycidyl ether of bisphenol A (DGBEA) will be discussed.

Keywords: building block, amine, synthesis, characterization

Procedia PDF Downloads 541
15754 Copper Price Prediction Model for Various Economic Situations

Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin

Abstract:

Copper is an essential raw material used in the construction industry. During the year 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war, which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two ANN-LSTM price prediction models, using Python, that can forecast the average monthly copper prices traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022, and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices and economic indicators of the three major exporting countries of copper, depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-Month prediction model is better than the 1-Month prediction model, but still, both models can act as predicting tools for diverse economic situations.

Keywords: copper prices, prediction model, neural network, time series forecasting

Procedia PDF Downloads 113
15753 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition

Authors: Yalong Jiang, Zheru Chi

Abstract:

In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.

Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation

Procedia PDF Downloads 153
15752 Numerical Simulation on Bacteria-Carrying Particles Transport and Deposition in an Open Surgical Wound

Authors: Xiuguo Zhao, He Li, Alireza Yazdani, Xiaoning Zheng, Xinxi Xu

Abstract:

Wound infected poses a serious threat to the surgery on the patient during the process of surgery. Understanding the bacteria-carrying particles (BCPs) transportation and deposition in the open surgical wound model play essential role in protecting wound against being infected. Therefore BCPs transportation and deposition in the surgical wound model were investigated using force-coupling method (FCM) based computational fluid dynamics. The BCPs deposition in the wound was strongly associated with BCPs diameter and concentration. The results showed that the rise on the BCPs deposition was increasing not only with the increase of BCPs diameters but also with the increase of the BCPs concentration. BCPs deposition morphology was impacted by the combination of size distribution, airflow patterns and model geometry. The deposition morphology exhibited the characteristic with BCPs deposition on the sidewall in wound model and no BCPs deposition on the bottom of the wound model mainly because the airflow movement in one direction from up to down and then side created by laminar system constructing airflow patterns and then made BCPs hard deposit in the bottom of the wound model due to wound geometry limit. It was also observed that inertial impact becomes a main mechanism of the BCPs deposition. This work may contribute to next study in BCPs deposition limit, as well as wound infected estimation in surgical-site infections.

Keywords: BCPs deposition, computational fluid dynamics, force-coupling method (FCM), numerical simulation, open surgical wound model

Procedia PDF Downloads 289
15751 Parking Service Effectiveness at Commercial Malls

Authors: Ahmad AlAbdullah, Ali AlQallaf, Mahdi Hussain, Mohammed AlAttar, Salman Ashknani, Magdy Helal

Abstract:

We study the effectiveness of the parking service provided at Kuwaiti commercial malls and explore potential problems and feasible improvements. Commercial malls are important to Kuwaitis as the entertainment and shopping centers due to the lack of other alternatives. The difficulty and relatively long times wasted in finding a parking spot at the mall are real annoyances. We applied queuing analysis to one of the major malls that offer paid-parking (1040 parking spots) in addition to free parking. Patrons of the mall usually complained of the traffic jams and delays at entering the paid parking (average delay to park exceeds 15 min for about 62% of the patrons, while average time spent in the mall is about 2.6 hours). However, the analysis showed acceptable service levels at the check-in gates of the parking garage. Detailed review of the vehicle movement at the gateways indicated that arriving and departing cars both had to share parts of the gateway to the garage, which caused the traffic jams and delays. A simple comparison we made indicated that the largest commercial mall in Kuwait does not suffer such parking issues, while other smaller, yet important malls do, including the one we studied. It was suggested that well-designed inlets and outlets of that gigantic mall permitted smooth parking despite being totally free and mall is the first choice for most people for entertainment and shopping. A simulation model is being developed for further analysis and verification. Simulation can overcome the mathematical difficulty in using non-Poisson queuing models. The simulation model is used to explore potential changes to the parking garage entrance layout. And with the inclusion of the drivers’ behavior inside the parking, effectiveness indicators can be derived to address the economic feasibility of extending the parking capacity and increasing service levels. Outcomes of the study are planned to be generalized as appropriate to other commercial malls in Kuwait

Keywords: commercial malls, parking service, queuing analysis, simulation modeling

Procedia PDF Downloads 340