Search results for: hyperthermic stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3930

Search results for: hyperthermic stress

1470 The Physical Impact of Nano-Layer Due to Dispersions of Carbon Nano-Tubes through an Absorbent Channel: A Numerical Nano-Fluid Flow Model

Authors: Muhammad Zubair Akbar Qureshi, Abdul Bari Farooq

Abstract:

The intention of the current study to analyze the significance of nano-layer in incompressible magneto-hydrodynamics (MHD) flow of a Newtonian nano-fluid consisting of carbon nano-materials has been considered through an absorbent channel with moving porous walls. Using applicable similarity transforms, the governing equations are converted into a system of nonlinear ordinary differential equations which are solved by using the 4th-order Runge-Kutta technique together with shooting methodology. The phenomena of nano-layer have also been modeled mathematically. The inspiration behind this segment is to reveal the behavior of involved parameters on velocity and temperature profiles. A detailed table is presented in which the effects of involved parameters on shear stress and heat transfer rate are discussed. Specially presented the impact of the thickness of the nano-layer and radius of the particle on the temperature profile. We observed that due to an increase in the thickness of the nano-layer, the heat transfer rate increases rapidly. The consequences of this research may be advantageous to the applications of biotechnology and industrial motive.

Keywords: carbon nano-tubes, magneto-hydrodynamics, nano-layer, thermal conductivity

Procedia PDF Downloads 131
1469 Optimal Design of Composite Cylindrical Shell Based on Nonlinear Finite Element Analysis

Authors: Haider M. Alsaeq

Abstract:

The present research is an attempt to figure out the best configuration of composite cylindrical shells of the sandwich type, i.e. the lightest design of such shells required to sustain a certain load over a certain area. The optimization is based on elastic-plastic geometrically nonlinear incremental-iterative finite element analysis. The nine-node degenerated curved shell element is used in which five degrees of freedom are specified at each nodal point, with a layered model. The formulation of the geometrical nonlinearity problem is carried out using the well-known total Lagrangian principle. For the structural optimization problem, which is dealt with as a constrained nonlinear optimization, the so-called Modified Hooke and Jeeves method is employed by considering the weight of the shell as the objective function with stress and geometrical constraints. It was concluded that the optimum design of composite sandwich cylindrical shell that have a rigid polyurethane foam core and steel facing occurs when the area covered by the shell becomes almost square with a ratio of core thickness to facing thickness lies between 45 and 49, while the optimum height to length ration varies from 0.03 to 0.08 depending on the aspect ratio of the shell and its boundary conditions.

Keywords: composite structure, cylindrical shell, optimization, non-linear analysis, finite element

Procedia PDF Downloads 394
1468 Application of Adaptive Neuro Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel AASTM A516 Grade 70

Authors: Omar Al Denali, Abdelaziz Badi

Abstract:

The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of post-weld heat treatment (PWHT) experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556 %, which confirms the high accuracy of the model.

Keywords: prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, mean absolute percentage error

Procedia PDF Downloads 159
1467 The Effects of Health Education Programme on Knowledge and Prevention of Cerebrovascular Disease among Hypertensive Patients in University College Hospital, Ibadan

Authors: T. A. Ajiboye

Abstract:

This study examines the effects of health education programme on knowledge and prevention of cerebrovascular disease among hypertensive patients in University College Hospital, Ibadan. A quasi-experimental design was adopted for the study. 100 hypertensive patients were conveniently selected from general outpatient department in UCH. Data generated were analyzed using ANOVA at 0.05 alpha levels. The findings of the study revealed that health education programme significantly influenced both the knowledge of hypertensive patients (F=22.70; DF=1/99; p < .05) and their attitude (F=10.377; DF=1/99; p < .05) on cerebrovascular disease. Findings also discovered that health education programme significantly reduce the complication of hypertension to cerebrovascular disease (F= 16.41; DF=7/286; p < 0.05) among the hypertensive patients at UCH. Based on the findings, it is recommended that hypertensive patients should relieve themselves from stress, engage themselves on regular exercises, compliance with drug and diet regimes coupled with keeping up of regular appointment. Government should design health information that will center on hypertension and cerebrovascular disease so as to keep health and community development problems to the barest minimum. Finally, there should be provision of social amenities and recreational centers, as this will prevents hypertension problems.

Keywords: cerebrovascular disease, effectiveness, health education, hypertension, knowledge, prevention

Procedia PDF Downloads 304
1466 Bearded Dragons as Therapeutic Animals: A Case Study of Autism and a Bearded Dragon

Authors: Maya Schwartz Laufer

Abstract:

Assisted Therapy (AAT) is the usage of animals as a therapeutic method; it is the planned integration of animals into a treatment plan. Animal-assisted therapy has been practiced for many years and can be a practical intervention for individuals or groups. Animal Assisted Therapy has been used with humans in the western world for decades, treating children, adolescents, adults, and the elderly. Animal’s therapeutic potential was first identified in the 1800s, through observations and surveys conducted by psychiatric institutions, by using small animals that helped reduce anxiety in patients. Animal assistive therapy focus mainly on “mainstream” animals; such as: dogs, cats, bunnies, Guinee pigs, parrots and horses. This paper will explore reptiles in general - as therapeutic animals and bearded dragons in particular. It will show how one particular bearded dragon managed to assist in reducing stress levels in a young boy with autism, how we managed to control anxiety attacks accompanied by hyperventilation, undesirable vocal bursts, extreme violent outrages integrated with personal endangerment. By understating how to correlate the suitable animal to a person’s needs at a given time; we can assist a larger and more diverse of humans.

Keywords: animal assisted therapy, autism, anxiety, reptiles, bearded dragons

Procedia PDF Downloads 0
1465 The Use of Electrical Resistivity Measurement, Cracking Test and Ansys Simulation to Predict Concrete Hydration Behavior and Crack Tendency

Authors: Samaila Bawa Muazu

Abstract:

Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were separately monitored using non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance method respectively. The results show highest resistivity of C30 at the beginning until reaching the acceleration point when C50 accelerated and overtaken the others, and this period corresponds to its final setting time range, from resistivity derivative curve, hydration process can be divided into dissolution, induction, acceleration and deceleration periods, restrained shrinkage crack and setting time tests demonstrated the earliest cracking and setting time of C50, therefore, this method conveniently and rapidly determines the concrete’s crack potential. The highest inflection time (ti), the final setting time (tf) were obtained and used with crack time in coming up with mathematical models for the prediction of concrete’s cracking age for the range being considered. Finally, ANSYS numerical simulations supports the experimental findings in terms of the earliest crack age of C50 and the crack location that, highest stress concentration is always beneath the artificially introduced expansion joint of C50.

Keywords: concrete hydration, electrical resistivity, restrained shrinkage crack, setting time, simulation

Procedia PDF Downloads 213
1464 Plot Scale Estimation of Crop Biophysical Parameters from High Resolution Satellite Imagery

Authors: Shreedevi Moharana, Subashisa Dutta

Abstract:

The present study focuses on the estimation of crop biophysical parameters like crop chlorophyll, nitrogen and water stress at plot scale in the crop fields. To achieve these, we have used high-resolution satellite LISS IV imagery. A new methodology has proposed in this research work, the spectral shape function of paddy crop is employed to get the significant wavelengths sensitive to paddy crop parameters. From the shape functions, regression index models were established for the critical wavelength with minimum and maximum wavelengths of multi-spectrum high-resolution LISS IV data. Moreover, the functional relationships were utilized to develop the index models. From these index models crop, biophysical parameters were estimated and mapped from LISS IV imagery at plot scale in crop field level. The result showed that the nitrogen content of the paddy crop varied from 2-8%, chlorophyll from 1.5-9% and water content variation observed from 40-90% respectively. It was observed that the variability in rice agriculture system in India was purely a function of field topography.

Keywords: crop parameters, index model, LISS IV imagery, plot scale, shape function

Procedia PDF Downloads 170
1463 Influence of Salicylic Acid on Yield and Some Physiological Parameters in Chickpea (Cicer arietinum L.)

Authors: Farid Shekari

Abstract:

Salicylic Acid (SA) is a plant hormone that improves some physiological responses of plants under stress conditions. Seeds of two desi type chickpea cultivars, viz., Kaka and Pirooz, primed with 250, 500, 750, and 1000 μM of SA and a group of seeds without any treating (as control) were evaluated under rain fed conditions. Seed priming in both cultivars led to higher efficiency compare to non-primed treatments. In general, seed priming with 500 and 750 μM of SA had appropriate effects; however the cultivars responses were different in this regard. Kaka showed better performance both in primed and non-primed seed than Pirooz. Results of this study revealed that not only yield quantity but also yield quality, as seed protein amounts, could positively affect by SA treatments. It seems that SA by enhancing of soluble sugars and proline amounts enhanced total water potential (ψ) and RWC. The increment in RWC led to rose of chlorophyll content of plants chlorophyll stability. In general, SA increased water use efficiency, both in biologic and seed yield base, and drought tolerance of chickpea plants. HI was a little decreased in SA treatments and it shows that SA more effective in biomass production than seed yield.

Keywords: chlorophyll, harvest index, proline, seed protein, soluble sugar, water use efficiency, yield component

Procedia PDF Downloads 426
1462 An Experimental Study of Bolt Inclination in a Composite Single Bolted Joint

Authors: Youcef Faci, Djillali Allou, Ahmed Mebtouche, Badredine Maalem

Abstract:

The inclination of the bolt in a fastened joint of composite material during a tensile test can be influenced by several parameters, including material properties, bolt diameter and length, the type of composite material being used, the size and dimensions of the bolt, bolt preload, surface preparation, the design and configuration of the joint, and finally testing conditions. These parameters should be carefully considered and controlled to ensure accurate and reliable results during tensile testing of composite materials with fastened joints. Our work focuses on the effect of the stacking sequence and the geometry of specimens. An experimental test is carried out to obtain the inclination of a bolt during a tensile test of a composite material using acoustic emission and digital image correlation. Several types of damage were obtained during load. Digital image correlation techniques permit to obtain the inclination of bolt angle value during tensile test. We concluded that the inclination of the bolt during a tensile test of a composite material can be related to the damage that occurs in the material. It can cause stress concentrations and localized deformation in the material, leading to damage such as delamination, fiber breakage, matrix cracking, and other forms of failure.

Keywords: damage, digital image correlation, bolt inclination angle, joint

Procedia PDF Downloads 73
1461 Antioxidative Effect of Bauhinia acuminata Water Extract Consumption in Rat

Authors: Amornnat Thuppia, Pornrut Rabintossaporn, Suphaket Saenthaweesuk, Nuntiya Somparn

Abstract:

The aim of this present study was to determine the antioxidant effects and its mechanism of aqueous leaves extract of Bauhinia acuminata (BA) in rat. The extract was screened for its phytochemical contents and antioxidant activity in vitro. Moreover, the extract was studied in rats to evaluate its effects in vivo. Rats were orally administered with the extract at the dose of 50, 100 and 200 mg/kg for 28 days. Phytochemical screening of plant extracts showed the presence of saponin, alkaloid, cardiac glycosides, flavonoids, tannin and steroid compounds. The extract contained phenolic compounds 53.36 ± 1.01 mg of gallic acid equivalents per gram BA extract. The free radical scavenging activity assessed by DPPH assay gave IC50 of 44.47 ± 2.83 µg/mL, which is relatively lower than that of BHT with IC50 of 12.34 ± 1.14µg/mL. In the animals, the extract was well tolerated by the animals throughout the 28 days of study as shown by normal serum levels AST, ALP, ALT, BUN and Cr as well as normal histology of liver and pancreatic and kidney tissue. Significantly, reduction of serum oxidative stress markers malondialdehyde (MDA) was found in rat treated with BA extract compared with control. Taken together, this study provides evidence that Bauhinia acuminata (BA) exhibits direct antioxidant properties and induces cytoprotective enzyme in vivo.

Keywords: Bauhinia acuminata, antioxidant, malondialdehyde (MDA), oxidative marker

Procedia PDF Downloads 274
1460 Understanding Health-Related Properties of Grapes by Pharmacokinetic Modelling of Intestinal Absorption

Authors: Sophie N. Selby-Pham, Yudie Wang, Louise Bennett

Abstract:

Consumption of grapes promotes health and reduces the risk of chronic diseases due to the action of grape phytochemicals in regulation of Oxidative Stress and Inflammation (OSI). The bioefficacy of phytochemicals depends on their absorption in the human body. The time required for phytochemicals to achieve maximal plasma concentration (Tₘₐₓ) after oral intake reflects the time window of maximal bioefficacy of phytochemicals, with Tₘₐₓ dependent on physicochemical properties of phytochemicals. This research collated physicochemical properties of grape phytochemicals from white and red grapes to predict their Tₘₐₓ using pharmacokinetic modelling. The predicted values of Tₘₐₓ were then compared to the measured Tₘₐₓ collected from clinical studies to determine the accuracy of prediction. In both liquid and solid intake forms, white grapes exhibit a shorter Tₘₐₓ range (0.5-2.5 h) versus red grapes (1.5-5h). The prediction accuracy of Tₘₐₓ for grape phytochemicals was 33.3% total error of prediction compared to the mean, indicating high prediction accuracy. Pharmacokinetic modelling allows prediction of Tₘₐₓ without costly clinical trials, informing dosing frequency for sustained presence of phytochemicals in the body to optimize the health benefits of phytochemicals.

Keywords: absorption kinetics, phytochemical, phytochemical absorption prediction model, Vitis vinifera

Procedia PDF Downloads 151
1459 Postprandial effect of Breadsticks intake from Durum Wheat Flour Mixtures on in Healthy Volunteers

Authors: Haralabos C. karantonis, Afroditi Michalaki

Abstract:

High intakes of carbohydrates and fats have been associated with an increased risk of chronic diseases due to the role of postprandial oxidative stress. This pilot nutritional intervention aimed to examine the acute effect of consuming two different types of breadsticks prepared from durum wheat flour mixtures differing in total phenolic content on postprandial inflammatory and oxidant responses in healthy volunteers. A cross-over, controlled, and single-blind clinical trial was designed, and two isocaloric high-fat and high-carbohydrate meals were tested. Serum total, High Density Lipoprotein (HDL)- and Low Density Lipoprotein (LDL)-cholesterol, triglycerides, glucose, C-reactive protein (CRP), uric acid, plasma total antioxidant capacity, and antiplatelet activity were determined in fasting and 30, 60, and 120 min after consumption. The results showed a better postprandial HDL-cholesterol and total antioxidant activity response in the intervention group. The choice of durum wheat flours with higher phenolic content and antioxidant activity is presented as promising for human health, and clinical studies will expand to draw safer conclusions.

Keywords: antioxidant, antiplatelet, durum wheat, nutritional value

Procedia PDF Downloads 61
1458 Strength Investigation of Liquefied Petroleum Gas Cylinders: Dynamic Loads

Authors: Moudar Zgoul, Hashem Alkhaldi

Abstract:

A large number of transportable LPG cylinders are manufactured annually for domestic use. These LPG cylinders are manufactured from mild steel and filled maximally with 12.5 kg liquefied gas under internal pressure of 0.6 N/mm² at a temperature of 50°C. Many millions of such LPG cylinders are in daily use mainly, for purposes of space heating, water heating, and cooking. Thereby, they are imposed to severe conditions leading to their failure. Each year not less than 5000 of these LPG cylinders fail, some of those failures cause damage and loss in lives and properties. In this work, LPG cylinders were investigated; Stress calculations and deformations under dynamic (impact) loadings were carried out to simulate the effects of such loads on the cylinders while in service. Analysis of the LPG cylinders was carried out using the finite element method; shell and cylindrical elements were used at the top, bottom, and in middle (weld region), permitting elastic-plastic analysis for a thin-walled LPG cylinder. Variables such as maximum stresses and maximum deflections under the effect of impact loading were investigated in this work. Results showed that the maximum stresses reach 680 MPa when dropped from 3m-height. The maximum radial deformation occurs at the cylinder’s top in case of the top-position impact. This information should be useful for enhancing the strength of such cylinders and to for prolonging their service life.

Keywords: dynamic analysis, finite element method, impact load, LPG cylinders

Procedia PDF Downloads 328
1457 Laboratory Model Tests on Encased Group Columns

Authors: Kausar Ali

Abstract:

There are several ground treatment techniques which may meet the twin objectives of increasing the bearing capacity with simultaneous reduction of settlements, but the use of stone columns is one of the most suited techniques for flexible structures such as embankments, oil storage tanks etc. that can tolerate some settlement and used worldwide. However, when the stone columns in very soft soils are loaded; stone columns undergo excessive settlement due to low lateral confinement provided by the soft soil, leading to the failure of the structure. The poor performance of stone columns under these conditions can be improved by encasing the columns with a suitable geosynthetic. In this study, the effect of reinforcement on bearing capacity of composite soil has been investigated by conducting laboratory model tests on floating and end bearing long stone columns with l/d ratio of 12. The columns were reinforced by providing geosynthetic encasement over varying column length (upper 25%, 50%, 75%, and 100% column length). In this study, a group of columns has been used instead of single column, because in the field, columns used for the purpose always remain in groups. The tests indicate that the encasement over the full column length gives higher failure stress as compared to the encasement over the partial column length for both floating and end bearing long columns. The performance of end-bearing columns was found much better than the floating columns.

Keywords: geosynthetic, ground improvement, soft clay, stone column

Procedia PDF Downloads 438
1456 The Effect of Expressive Therapies on Children and Youth Impacted by Refugee Trauma: A Meta-Analysis

Authors: Brian Kristopher Cambra

Abstract:

Millions of displaced families are seeking refuge in countries that are not their own due to war, violence, persecution, political unrest, and natural disasters. This global crisis is forcing researchers and practitioners to consider how refugees are coping with the trauma associated with their migration process. Effective therapeutic approaches are needed in a global effort to address the traumatic impact of forced migration. This meta-analytical study investigates the effectiveness of expressive therapeutic modalities, including play, art, music, sandplay, theatre, and writing therapies, in helping children and adolescents cope with refugee trauma. Seventeen pre-post and between-group comparison studies were analyzed using a random-effects model. The combined effect size for pre-post comparisons was medium (g = 0.58), whereas the combined effect size for between-group comparisons was small (g = 0.32). Overall, art therapy was found to be most effective in treating stress symptoms. Heterogeneity tests, however, suggest effect sizes cannot be interpreted as meaningful due to substantial variance. Nevertheless, findings of this meta-analysis indicate that expressive therapies may be among beneficial modalities to integrate with other trauma-informed approaches.

Keywords: expressive therapies, forced migration, meta-analysis, refugees, trauma

Procedia PDF Downloads 151
1455 Assessing the Impact of Underground Cavities on Buildings with Stepped Foundations on Sloping Lands

Authors: Masoud Mahdavi

Abstract:

The use of sloping lands is increasing due to the reduction of suitable lands for the construction of buildings. In the design and construction of buildings on sloping lands, the foundation has special loading conditions that require the designer and executor to use the slopped foundation. The creation of underground cavities, including urban and subway tunnels, sewers, urban facilities, etc., inside the ground, causes the behavior of the foundation to be unknown. In the present study, using Abacus software, a 45-degree stepped foundation on the ground is designed. The foundations are placed on the ground in a cohesive (no-hole) manner with circular cavities that show the effect of increasing the cross-sectional area of ​​the underground cavities on the foundation's performance. The Kobe earthquake struck the foundation and ground for two seconds. The underground cavities have a circular cross-sectional area with a radius of 5 m, which is located at a depth of 22.54 m above the ground. The results showed that as the number of underground cavities increased, von Mises stress (in the vertical direction) increased. With the increase in the number of underground cavities, the plastic strain on the ground has increased. Also, with the increase in the number of underground cavities, the change in location and speed in the foundation has increased.

Keywords: stepped foundation, sloping ground, Kobe earthquake, Abaqus software, underground excavations

Procedia PDF Downloads 159
1454 Cellulose Acetate/Polyacrylic Acid Filled with Nano-Hydroxapatite Composites: Spectroscopic Studies and Search for Biomedical Applications

Authors: E. M. AbdelRazek, G. S. ElBahy, M. A. Allam, A. M. Abdelghany, A. M. Hezma

Abstract:

Polymeric biocomposite of hydroxyapatite/polyacrylic acid were prepared and their thermal and mechanical properties were improved by addition of cellulose acetate. FTIR spectroscopy technique and X-ray diffraction analysis were employed to examine the physical and chemical characteristics of the biocomposites. Scanning electron microscopy shows a uniform distribution of HAp nano-particles through the polymeric matrix of two organic/inorganic composites weight ratios (60/40 and 70/30), at which the material crystallinity reaches a considerable value appropriate for the needed applications were studied and revealed that the HAp nano-particles are uniformly distributed in the polymeric matrix. Kinetic parameters were determined from the weight loss data using non isothermal thermogravimetric analysis (TGA). Also, the main degradation steps were described and discussed. The mechanical properties of composites were evaluated by measuring tensile strength and elastic modulus. The data indicate that the addition of cellulose acetate can make homogeneous composites scaffold significantly resistant to higher stress. Elastic modulus of the composites was also improved by the addition of cellulose acetate, making them more appropriate for bioapplications.

Keywords: biocomposite, chemical synthesis, infrared spectroscopy, mechanical properties

Procedia PDF Downloads 461
1453 Numerical Multi-Scale Modeling of Rubber Friction on Rough Pavements Using Finite Element Method

Authors: Ashkan Nazari, Saied Taheri

Abstract:

Knowledge of tire-pavement interaction plays a crucial role in designing safer and more reliable tires. Characterizing the tire-pavement frictional interaction leads to a better understanding of vehicle performance in braking and acceleration. In this work, we devise a multi-scale simulation approach to incorporate the effect of pavement surface asperities in different length-scales. We construct two- and three-dimensional Finite Element (FE) models to simulate the interaction between a rubber block and a rough pavement surface with asperities in different scales. To achieve this, the road profile is scanned via a laser profilometer and the obtained asperities are implemented in an FE software (ABAQUS) in micro and macro length-scales. The hysteresis friction, which is due to the dissipative nature of rubber, is the main component of the friction force and therefore is the subject of study in this work. Using different scales not only will assist in characterizing the pavement asperities with sufficient details but also, it is highly effective in preventing extreme local deformations and stress gradients which results in divergence in FE simulations. The simulation results will be validated with experimental results as well as the results reported in the literature.

Keywords: friction, finite element, multi-scale modeling, rubber

Procedia PDF Downloads 139
1452 Seed Germination, Seedling Emergence and Response to Herbicides of Papaver Species (Papaver rhoeas and P. dubium)

Authors: Faezeh Zaefarian1, Sajedeh Golmohammadzadeh, Mohammad Rezvani

Abstract:

Weed management decisions for weed species can be derived from knowledge of seed germination biology. Experiments were conducted in laboratory and greenhouse to determine the effects of light, temperature, salt and water stress, seed burial depth on seed germination and seedling emergence of Papaver rhoeas and P.dubium and to assay the response of these species to commonly available POST herbicides. Germination of the Papaver seeds was influenced by the tested temperatures (day/night temperatures of 20 and 25 °C) and light. The concentrations of sodium chloride, ranging from 0 to 80 mM, influence germination of seeds. The osmotic potential required for 50% inhibition of maximum germination of P. rhoeas was -0.27 MPa and for P. dubium species was 0.25 MPa. Seedling emergence was greatest for the seeds placed at 1 cm and emergence declined with increased burial depth in the soil. No seedlings emerged from a burial depth of 6 cm. The herbicide 2,4-D at 400 g ai ha-1 provided excellent control of both species when applied at the four-leaf and six-leaf stages. However, at the six-leaf stage, percent control was reduced. The information gained from this study could contribute to developing components of integrated weed management strategies for Papaver species.

Keywords: germination, papaver species, planting depth, POST herbicides

Procedia PDF Downloads 249
1451 Numerical Investigation of Static and Dynamic Responses of Fiber Reinforced Sand

Authors: Sandeep Kumar, Mahesh Kumar Jat, Rajib Sarkar

Abstract:

Soil reinforced with randomly distributed fibers is an attractive means to improve the performance of soil in a cost effective manner. Static and dynamic characterization of fiber reinforced soil have become important to evaluate adequate performance for all classes of geotechnical engineering problems. Present study investigates the behaviour of fiber reinforced cohesionless soil through numerical simulation of triaxial specimen. The numerical model has been validated with the existing literature of laboratory triaxial compression testing. A parametric study has been done to find out optimum fiber content for shear resistance. Cyclic triaxial testing has been simulated and the stress-strain response of fiber-reinforced sand has been examined considering different combination of fiber contents. Shear modulus values and damping values of fiber-reinforced sand are evaluated. It has been observed from results that for 1.0 percent fiber content shear modulus increased 2.28 times and damping ratio decreased 4.6 times. The influence of amplitude of cyclic strain, confining pressure and frequency of loading on the dynamic properties of fiber reinforced sand has been investigated and presented.

Keywords: damping, fiber reinforced soil, numerical modelling, shear modulus

Procedia PDF Downloads 282
1450 A Comprehensive Safety Analysis for a Pressurized Water Reactor Fueled with Mixed-Oxide Fuel as an Accident Tolerant Fuel

Authors: Mohamed Y. M. Mohsen

Abstract:

The viability of utilising mixed-oxide fuel (MOX) ((U₀.₉, rgPu₀.₁) O₂) as an accident-tolerant fuel (ATF) has been thoroughly investigated. MOX fuel provides the best example of a nuclear waste recycling process. The MCNPX 2.7 code was used to determine the main neutronic features, especially the radial power distribution, to identify the hot channel on which the thermal-hydraulic (TH) study was performed. Based on the computational fluid dynamics technique, the simulation of the rod-centered thermal-hydraulic subchannel model was implemented using COMSOL Multiphysics. TH analysis was utilised to determine the axially and radially distributed temperatures of the fuel and cladding materials, as well as the departure from the nucleate boiling ratio (DNBR) along the coolant channel. COMSOL Multiphysics can simulate reality by coupling multiphysics, such as coupling between heat transfer and solid mechanics. The main solid structure parameters, such as the von Mises stress, volumetric strain, and displacement, were simulated using this coupling. When the neutronic, TH, and solid structure performances of UO₂ and ((U₀.₉, rgPu₀.₁) O₂) were compared, the results showed considerable improvement and an increase in safety margins with the use of ((U₀.₉, rgPu₀.₁) O₂).

Keywords: mixed-oxide, MCNPX, neutronic analysis, COMSOL-multiphysics, thermal-hydraulic, solid structure

Procedia PDF Downloads 110
1449 Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System

Authors: O. Afshar

Abstract:

A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope.

Keywords: receiver tube, heat convection, heat conduction, Nusselt number

Procedia PDF Downloads 360
1448 Simulation Studies of Solid-Particle and Liquid-Drop Erosion of NiAl Alloy

Authors: Rong Liu, Kuiying Chen, Ju Chen, Jingrong Zhao, Ming Liang

Abstract:

This article presents modeling studies of NiAl alloy under solid-particle erosion and liquid-drop erosion. In the solid particle erosion simulation, attention is paid to the oxide scale thickness variation on the alloy in high-temperature erosion environments. The erosion damage is assumed to be deformation wear and cutting wear mechanisms, incorporating the influence of the oxide scale on the eroded surface; thus the instantaneous oxide thickness is the result of synergetic effect of erosion and oxidation. For liquid-drop erosion, special interest is in investigating the effects of drop velocity and drop size on the damage of the target surface. The models of impact stress wave, mean depth of penetration, and maximum depth of erosion rate (Max DER) are employed to develop various maps for NiAl alloy, including target thickness vs. drop size (diameter), rate of mean depth of penetration (MDRP) vs. drop impact velocity, and damage threshold velocity (DTV) vs. drop size.

Keywords: liquid-drop erosion, NiAl alloy, oxide scale thickness, solid-particle erosion

Procedia PDF Downloads 581
1447 Heart Rate Variability Responses Pre-, during, and Post-Exercise among Special Olympics Athletes

Authors: Kearney Dover, Viviene Temple, Lynneth Stuart-Hill

Abstract:

Heart Rate Variability (HRV) is the beat-to-beat variation in adjacent heartbeats. HRV is a non-invasive measure of the autonomic nervous system (ANS) and provides information about the sympathetic (SNS) and parasympathetic (PNS) nervous systems. The HRV of a well-conditioned heart is generally high at rest, whereas low HRV has been associated with adverse outcomes/conditions, including congestive heart failure, diabetic neuropathy, depression, and hospital admissions. HRV has received very little research attention among individuals with intellectual disabilities in general or Special Olympic athletes. Purpose: 1) Having a longer post-exercise rest and recovery time to establish how long it takes for the athletes’ HRV components to return to pre-exercise levels, 2) To determine if greater familiarization with the testing processes influences HRV. Participants: Two separate samples of 10 adult Special Olympics athletes will be recruited for 2 separate studies. Athletes will be between 18 and 50 years of age and will be members of Special Olympics BC. Anticipated Findings: To answer why the Special Olympics athletes display poor cardiac responsiveness to changes in autonomic modulation during exercise. By testing the cortisol levels in the athletes, we can determine their stress levels which will then explain their measured HRV.

Keywords: 6MWT, autonomic modulation, cortisol levels, intellectual disability

Procedia PDF Downloads 309
1446 Thymoquinone Prevented the Development of Symptoms in Animal Model of Parkinson’s Disease

Authors: Kambiz Hassanzadeh, Seyedeh Shohreh Ebrahimi, Shahrbanoo Oryan, Arman Rahimmi, Esmael Izadpanah

Abstract:

Parkinson’s disease is one of the most prevalent neurodegenerative diseases which occurs in elderly. There are convincing evidences that oxidative stress has an important role in both the initiation and progression of Parkinson’s disease. Thymoquinone (TQ) is shown to have antioxidant and anti-inflammatory properties in invitro and invivo studies. It is well documented that TQ acts as a free radical scavenger and prevents the cell damage. Therefore this study aimed to evaluate the effect of TQ on motor and non-motor symptoms in animal model of Parkinson’s disease. Male Wistar rats (10-12 months) received rotenone (1mg/kg/day, sc) to induce Parkinson’s disease model. Pretreatment with TQ (7.5 and 15 mg/kg/day, po) was administered one hour before the rotenone injection. Three motor tests (rotarod, rearing and bar tests) and two non-motor tests (forced swimming and elevated plus maze) were performed for behavioral assessment. Our results indicated that TQ significantly ameliorated the rotenone-induced motor dysfunction in rotarod and rearing tests also it could prevent the non-motor dysfunctions in forced swimming and elevated plus maze tests. In conclusion we found that TQ delayed the Parkinson's disease induction by rotenone and this effect might be related to its proved antioxidant effect.

Keywords: Parkinson's disease, thymoquinone, motor and non-motor symptoms, neurodegenerative disease

Procedia PDF Downloads 551
1445 Kindergarten Children’s Reactions to the COVID-19 Pandemic: Creating a Sense of Coherence

Authors: Bilha Paryente, Roni Gez Langerman

Abstract:

Background and Objectives: The current study focused on how kindergarten children have experienced the COVID-19 pandemic. The main goals were understanding children’s emotions, coping strategies, and thoughts regarding the presence of the COVID-19 virus in their daily lives, using the salute genic approach to study their sense of coherence, and to promote relevant professional instruction. Design and Method: Semistructured in-depth interviews were held with 130 five- to six-year-old children, with an equal number of boys and girls. All of the children were recruited from kindergartens affiliated with the state's secular education system. Results: Data were structured into three themes: 1) the child’s pandemic perception as manageable through meaningful accompanying and missing figures; 2) the child’s comprehension of the virus as dangerous, age differentiating, and contagious. 3) the child’s emotional processing of the pandemic as arousing fear of death and, through images, as thorny and as a monster. Conclusions: Results demonstrate the young children’s sense of coherence, characterized as extrapersonal perception, interpersonal coping, and intrapersonal emotional processing, and the need for greater acknowledgement of child-parent educators' informed interventions that could give children a partial feeling of the adult’s awareness of their needs.

Keywords: kindergarten children, continuous stress, COVID-19, salutogenic approach

Procedia PDF Downloads 180
1444 A Two Year Follow Up of Sexually Abused Children

Authors: Horesh Reinman Netta

Abstract:

Early research on child sexual abuse (CSA) attempted to assess its possible effects. Researchers found that victims of CSA are prone to a host of emotional disorders, including post-traumatic stress disorder, depression, dissociative disorders, anxiety disorders and suicidality later in life. The study examined the development of symptoms over a two-year period at base line and after six months. Factors including the age at the onset of abuse, the gender of the abused child and academic achievements were also examined. Other variables examined include the complex association among self-disclosure, self-esteem, the child’s attachment and coping styles, and psychological adjustment. The abused child’s domestic environment has been found to have a relevant impact on the psychological outcomes of CSA. The study examined inter-parental conflicts, cohesion in the child’s home, parental attachment styles and psychopathology. To the best of our knowledge, no investigation of this nature has yet been performed. Hence, the study makes a major contribution to research in this field. In addition, a combined examination of abuse characteristics, child characteristics, domestic environment and therapeutic history will facilitate enhanced understanding of the interactions among CSA, mediating factors and psychological outcomes.

Keywords: sexual abuse, follow up, victimization, children

Procedia PDF Downloads 78
1443 Evaluation of European Surveys in the Area of Health and Safety at Work and Identification of New Risks in the Labor Environment

Authors: Alena Dadova, Katarina Holla, Anna Cidlinova, Linda Makovicka Osvaldova, Jiri Vala, Samuel Kockar

Abstract:

Occupational health and safety (ASH) is an area in which procedures and applications are constantly evolving and changing through legislation and new directives and guidelines. In this way, the relevant organizations strive to ensure continuous progress and the advantage of up-to-date information to ensure safety and prevent occupational accidents. Three ESENER surveys have been carried out in the European Union, led by the Agency for Safety and Health at Work (EU-OSHA). On the basis of surveys, it was determined how European workplaces manage risks and how they manage the field of safety and health protection at work. Thousands of companies and organizations in the European Union were involved in the surveys. Organizations and businesses were presented with a questionnaire that focused on the following topics: the impact of general risks on the field of OSH and the possibility of their management, psychosocial risks and other factors such as stress, harassment and bullying, and employee participation in OSH procedures. The article is dedicated to the fundamental conclusions from these surveys and their subsequent connection with the strategic intent of the Strategic Framework of European Union for the years 2021 - 2027. In the conclusion, emerging risks are identified and EU will soon have to deal with them.

Keywords: ESENER, emerging risks, strategic framework in OSH, EU

Procedia PDF Downloads 118
1442 Empirical Study of Health Behaviors of Employees in Information Technology and Business Process Outsourcing

Authors: Yogesh Pawar

Abstract:

The purpose of this paper is to investigate the behaviors of information technology (IT) and business process outsourcing (BPO) employees in relation to diet, exercise, sleep, stress, and social habits. This was a qualitative research study, using in-depth,semi-structured interviews. Descriptive data were collected from a two-stage purposive sample of 28 IT-BPO employees from two IT companies and one BPOs in Pune. The majority of interviewees reported having an unhealthy diet and/or sedentary lifestyle. Lack of time due to demanding work schedules was the largest barrier to diet and exercise. Given the qualitative study design and limited sampling frame, results may not be generalizable. However, the qualitative data suggests that Pune’s young IT-BPO employees may be at greater risk of lifestyle-related diseases than the general population. The data also suggests that interventions incorporating social influence may be a promising solution, particularly at international call centers. The results from this study provide qualitative insight on the motives for health behaviors of IT-BPO employees, as well as the barriers and facilitators for leading a healthy lifestyle in this industry. The findings provide the framework for future workplace wellness interventions.

Keywords: exercise, information technology, qualitative research, wellness

Procedia PDF Downloads 338
1441 Experimental Investigation on the Mechanical Behaviour of Three-Leaf Masonry Walls under In-Plane Loading

Authors: Osama Amer, Yaser Abdel-Aty, Mohamed Abd El Hady

Abstract:

The present paper illustrates an experimental approach to provide understanding of the mechanical behavior and failure mechanisms of different typologies of unreinforced three-leaf masonry walls of historical Islamic architectural heritage in Egypt. The main objective of this study is to investigate the propagation of possible cracking, ultimate load, deformations and failure mechanisms. Experimental data on interface-shear and compression tests on large scale three-leaf masonry wallets are provided. The wallets were built basically of Egyptian limestone and modified lime mortar. External wallets were built of stone blocks while the inner leaf was built of rubble limestone. Different loading conditions and dimensions of core layer for two types of collar joints (with and without shear keys) are considered in the tests. Mechanical properties of the constituent materials of masonry were tested and a database of characteristic properties was created. The results of the experiments will highlight the properties, force-displacement curves, stress distribution of multiple-leaf masonry walls contributing to the derivation of rational design rules and validation of numerical models.

Keywords: masonry, three-leaf walls, mechanical behavior, testing, architectural heritage

Procedia PDF Downloads 298