Search results for: guava plants
91 Antioxidant Activity of Some Important Indigenous Plant Foods of the North Eastern Region of India
Authors: L. Bidyalakshmi, R. Ananthan, T. Longvah
Abstract:
Antioxidants are substances that can prevent or delay oxidative damage of lipids, proteins and nucleic acids by reactive oxygen species. These help in lowering incidence of degenerative diseases such as cancer, arthritis, atherosclerosis, heart disease, inflammation, brain dysfunction and acceleration of the ageing process. The north eastern part of India falls among the global hotspots of biodiversity. Over the years, the local communities in the region have developed ingenious uses of many wild plants within their environment as food sources. Many of these less familiar foods form an integral part of the diet of these communities, and some are traditionally valued for its therapeutic effects. So the study was carried to estimate the antioxidant activity of some of these indigenous foods. Twenty-eight indigenous plant foods were studied for their antioxidant activity. Antioxidant activities were determined by using DPPH (2, 2-diphenyl-1-picrylhydrazyl) assay, FRAP (Ferric Reducing Antioxidant Power) assay and SOSA (Super Oxide Scavenging Assay). Out of the twenty-eight plant foods, there were thirteen leafy vegetables, four fruits, five roots and tubers, four spices and two mushrooms. Water extract and methanol extract of the samples were used for the analysis. The leafy vegetable samples exhibited antioxidant capacity with IC50 ranging from 8-1414 mg/ml for lipid extract and 34-37878 mg/ml for aqueous extract in DPPH assay. Total FRAP value ranging from 58-1005 mmol FeSO4 Eq/100g of the sample, which is comparatively higher than the antioxidant capacity of some commonly consumed leafy vegetables. In SOSA, water extract of leafy vegetables show a range of 0.05-193.68 µmol ascorbic acid equivalent/g of the samples. While the methanol extract of the samples show 0.20-21.94 µmol Trolox equivalent/g of the samples. Polygonum barbatum, Wendlandia glabrata and Polygonum posumbu have higher antioxidant activity among the leafy vegetables analysed. Among the fruits, Rhus hookerii showed the highest antioxidant activities in both FRAP and SOSA methods while Spondias magnifera exhibited higher antioxidant activity in DPPH method. Alocasia cucullata exhibited higher antioxidant activity in DPPH and FRAP assays while Alpinia galanga showed higher antioxidant activity in SOSA assay when compared to the other samples of roots and tubers. Elsholtzia communis showed high antioxidant activity in all the three parameters among the spices. For the mushrooms, Pleurotus ostreatus exhibited higher antioxidant activity than Auricularia delicate in DPPH and SOSA. The samples analysed exhibited antioxidant activity at varying levels and some exhibited higher antioxidant activity than the commonly consumed foods. So consumption of these less familiar foods may play a role in preventing human disease in which free radicals are involved. Further studies on these food samples on phytonutrients and its contribution to the antioxidant activities are required.Keywords: antioxidant activity, DPPH, FRAP, SOSA
Procedia PDF Downloads 27890 Anti-proliferative Activity and HER2 Receptor Expression Analysis of MCF-7 (Breast Cancer Cell) Cells by Plant Extract Coleus Barbatus (Andrew)
Authors: Anupalli Roja Rani, Pavithra Dasari
Abstract:
Background: Among several, breast cancer has emerged as the most common female cancer in developing countries. It is the most common cause of cancer-related deaths worldwide among women. It is a molecularly and clinically heterogeneous disease. Moreover, it is a hormone–dependent tumor in which estrogens can regulate the growth of breast cells by binding with estrogen receptors (ERs). Moreover, the use of natural products in cancer therapeutics is due to their properties of biocompatibility and less toxicity. Plants are the vast reservoirs for various bioactive compounds. Coleus barbatus (Lamiaceae) contains anticancer properties against several cancer cell lines. Method: In the present study, an attempt is being made to enrich the knowledge of the anticancer activity of pure compounds extracted from Coleus barbatus (Andrew). On human breast cancer cell lines MCF-7. Here in, we are assessing the antiproliferative activity of Coleus barbatus (Andrew) plant extracts against MCF 7 and also evaluating their toxicity in normal human mammary cell lines such as Human Mammary Epithelial Cells (HMEC). The active fraction of plant extract was further purified with the help of Flash chromatography, Medium Pressure Liquid Chromatography (MPLC) and preparative High-Performance Liquid Chromatography (HPLC). The structure of pure compounds will be elucidated by using modern spectroscopic methods like Nuclear magnetic resonance (NMR), Electrospray Ionisation Mass Spectrometry (ESI-MS) methods. Later, the growth inhibition morphological assessment of cancer cells and cell cycle analysis of purified compounds were assessed using FACS. The growth and progression of signaling molecules HER2, GRP78 was studied by secretion assay using ELISA and expression analysis by flow cytometry. Result: Cytotoxic effect against MCF-7 with IC50 values were derived from dose response curves, using six concentrations of twofold serially diluted samples, by SOFTMax Pro software (Molecular device) and respectively Ellipticine and 0.5% DMSO were used as a positive and negative control. Conclusion: The present study shows the significance of various bioactive compounds extracted from Coleus barbatus (Andrew) root material. It acts as an anti-proliferative and shows cytotoxic effects on human breast cancer cell lines MCF7. The plant extracts play an important role pharmacologically. The whole plant has been used in traditional medicine for decades and the studies done have authenticated the practice. Earlier, as described, the plant has been used in the ayurveda and homeopathy medicine. However, more clinical and pathological studies must be conducted to investigate the unexploited potential of the plant. These studies will be very useful for drug designing in the future.Keywords: coleus barbatus, HPLC, MPLC, NMR, MCF7, flash chromatograph, ESI-MS, FACS, ELISA.
Procedia PDF Downloads 11289 Treatment of Wastewater by Constructed Wetland Eco-Technology: Plant Species Alters the Performance and the Enrichment of Bacteria Ries Alters the Performance and the Enrichment of Bacteria
Authors: Kraiem Khadija, Hamadi Kallali, Naceur Jedidi
Abstract:
Constructed wetland systems are eco-technology recognized as environmentally friendly and emerging innovative solutions remediation as these systems are cost-effective and sustainable wastewater treatment systems. The performance of these biological system is affected by various factors such as plant, substrate, wastewater type, hydraulic loading rate, hydraulic retention time, water depth, and operation mood. The objective of this study was to to assess the alters of plant species on pollutants reduction and enrichment of anammox and nitrifing denitrifing bacteria in a modified vertical flow (VFCW) constructed wetland. This tests were carried out using three modified vertical constructed wetlands with a surface of 0.23 m² and depth 80 cm. It was a saturated vertical constructed wetland at the bottom. The saturation zone is maintained by the siphon structure at the outlet. The VFCW (₁) system was unplanted, VFCW (₂) planted with Typha angustofolia, and VFCW(₃) planted with Phragmites australis. The experimental units were fed with domestic wastewater and were operated by batch mode during 8 months at an average hydraulic loading rate around 20 cm day− 1. The operation cycle was two days feeding and five days rest. Results indicated that plants presence improved the removal efficiency; the removal rates of organic matter (85.1–90.9%; COD and 81.8–88.9%; BOD5), nitrogen (54.2–73%; NTK and 66–77%; NH4 -N) were higher by 10.7–30.1% compared to the unplanted vertical constructed wetland. On the other hand, the plant species had no significant effect on removal efficiency of COD, The removal of COD was similar in VFCW (₂) and VFCW (₃) (p > 0.05), attaining average removal efficiencies of 88.7% and 85.2%, respectively. Whereas it had a significant effect on NTK removal (p > 0.05), with an average removal rate of 72% versus 51% for VFCW (₂) and VFCW (₃), respectively. Among the three sets of vertical flow constructed wetlands, the VFCW(₂) removed the highest percent of total streptococcus, fecal streptococcus total coliforms, fecal coliforms, E. coli as 59, 62, 52, 63, and 58%, respectively. The presence and the plant species alters the community composition and abundance of the bacteria. The abundance of bacteria in the planted wetland was much higher than that in the unplanted one. VFCW(₃) had the highest relative abundance of nitrifying bacteria such as Nitrosospira (18%), Nitrosospira (12%), and Nitrobacter (8%). Whereas the vertical constructed wetland planted with typha had larger number of denitrifying species, with relative abundances of Aeromonas (13%), Paracoccus (11%), Thauera (7%), and Thiobacillus (6%). However, the abundance of nitrifying bacteria was very lower in this system than VFCW(₂). Interestingly, the presence of Thypha angustofolia species favored the enrichment of anammox bacteria compared to unplanted system and system planted with phragmites australis. The results showed that the middle layer had the most accumulation of anammox bacteria, which the anaerobic condition is better and the root system is moderate. Vegetation has several characteristics that make it an essential component of wetlands, but its exact effects are complex and debated.Keywords: wastawater, constructed wetland, anammox, removal
Procedia PDF Downloads 10488 Management of Urine Recovery at the Building Level
Authors: Joao Almeida, Ana Azevedo, Myriam Kanoun-Boule, Maria Ines Santos, Antonio Tadeu
Abstract:
The effects of the increasing expansion of cities and climate changes have encouraged European countries and regions to adopt nature-based solutions with ability to mitigate environmental issues and improve life in cities. Among these strategies, green roofs and urban gardens have been considered ingenious solutions, since they have the desirable potential to improve air quality, prevent floods, reduce the heat island effect and restore biodiversity in cities. However, an additional consumption of fresh water and mineral nutrients is necessary to sustain larger green urban areas. This communication discusses the main technical features of a new system to manage urine recovery at the building level and its application in green roofs. The depletion of critical nutrients like phosphorus constitutes an emergency. In turn, their elimination through urine is one of the principal causes for their loss. Thus, urine recovery in buildings may offer numerous advantages, constituting a valuable fertilizer abundantly available in cities and reducing the load on wastewater treatment plants. Although several urine-diverting toilets have been developed for this purpose and some experiments using urine directly in agriculture have already been carried out in Europe, several challenges have emerged with this practice concerning collection, sanitization, storage and application of urine in buildings. To our best knowledge, current buildings are not designed to receive these systems and integrated solutions with ability to self-manage the whole process of urine recovery, including separation, maturation and storage phases, are not known. Additionally, if from a hygiene point of view human urine may be considered a relatively safe fertilizer, the risk of disease transmission needs to be carefully analysed. A reduction in microorganisms can be achieved by storing the urine in closed tanks. However, several factors may affect this process, which may result in a higher survival rate for some pathogens. In this work, urine effluent was collected under real conditions, stored in closed containers and kept in climatic chambers under variable conditions simulating cold, temperate and tropical climates. These samples were subjected to a first physicochemical and microbiological control, which was repeated over time. The results obtained so far suggest that maturation conditions were reached for all the three temperatures and that a storage period of less than three months is required to achieve a strong depletion of microorganisms. The authors are grateful for the Project WashOne (POCI-01-0247-FEDER-017461) funded by the Operational Program for Competitiveness and Internationalization (POCI) of Portugal 2020, with the support of the European Regional Development Fund (FEDER).Keywords: sustainable green roofs and urban gardens, urban nutrient cycle, urine-based fertilizers, urine recovery in buildings
Procedia PDF Downloads 16687 Assessing the Plant Diversity's Quality, Threats and Opportunities for the Support of Sustainable City Development of the City Raipur, India
Authors: Katharina Lapin, Debashis Sanyal
Abstract:
Worldwide urban areas are growing. Urbanization has a great impact on social and economic development and ecosystem services. This global trend of urbanization also has significant impact on habitat and biodiversity. The impact of urbanization on the biodiversity of cities in Europe and North America is well studied, while there is a lack of data from cities in currently fast growing urban areas. Indian cities are expanding. The scientific community and the governmental authorities are facing the ongoing urbanization process as an opportunity for the environment. This case study supports the evaluation of urban biodiversity of the city Raipur in the North-West of India. The aim of this study is to assess the overview of the environmental and ecological implications of urbanization. The collected data and analysis was used to discuss the challenges for the sustainable city development. Vascular plants were chosen as an appropriate indicator for the assessment of local biodiversity changes. On the one hand, the vegetation cover is sensible to anthropogenic influence, and in the other hand, the local species composition is comparable to changes at the regional and national scale, using the plant index of India. Further information of abiotic situation can be gathered with the determination of indicator species. In order to calculate the influence of urbanization on the native plant diversity, the Shannon diversity index H´ was chosen. The Pielou`s pooled quadrate method was used for estimating diversity when a random sample is not expected. It was used to calculate the Pilou´s index of evenness. The estimated species coverage was used for calculating the H´ and J. Pearson correlation was performed to test the relationship between urbanization pattern and plant diversity. Further, a SWOT analysis was used in for analyzing internal and external factors impinging on a decision making process. The city of Raipur (21.25°N 81.63°E) has a population of 1,010,087 inhabitants living in an urban area of 226km², in the district of the Indian state of Chhattisgarh. Within the last decade, the urban area of Raipur increased. The results show that various novel ecosystems exist in the urban area of Raipur. The high amount of native flora is mainly to find at the shore of urban lakes and along the river Karun. These areas of high Biodiversity Index are to protect as urban biodiversity hot spots. The governmental authorities are well informed about the environmental challenges for the sustainable development of the city. Together with the scientific community of the Technical University of Raipur many engineering solutions are discussed for implementation of the future. The case study helped to point out the importance environmental measures that support the ecosystem services of green infrastructure. The fast process of urbanization is difficult to control. Uncontrolled creation of urban housing leads to difficulties in unsustainable use of natural resources. This is the major threat for the urban biodiversity.Keywords: India, novel ecosystems, plant diversity, urban ecology
Procedia PDF Downloads 27786 Alkaloid Levels in Experimental Lines of Ryegrass in Southtern Chile
Authors: Leonardo Parra, Manuel Chacón-Fuentes, Andrés Quiroz
Abstract:
One of the most important factors in beef and dairy production in the world as well as also in Chile, is related to the correct choice of cultivars or mixtures of forage grasses and legumes to ensure high yields and quality of grassland. However, a great problem is the persistence of the grasses as a result of the action of different hypogeous as epigean pests. The complex insect pests associated with grassland include white grubs (Hylamorpha elegans, Phytoloema herrmanni), blackworm (Dalaca pallens) and Argentine stem weevil (Listronotus bonariensis). In Chile, the principal strategy utilized for controlling this pest is chemical control, through the use of synthetic insecticides, however, underground feeding habits of larval and flight activity of adults makes this uneconomic method. Furthermore, due to problems including environmental degradation, development of resistance and chemical residues, there is a worldwide interest in the use of alternative environmentally friendly pest control methods. In this sense, in recent years there has been an increasing interest in determining the role of endophyte fungi in controlling epigean and hypogeous pest. Endophytes from ryegrass (Lolium perenne), establish a biotrophic relationship with the host, defined as mutualistic symbiosis. The plant-fungi association produces a “cocktail of alkaloids” where peramine is the main toxic substance present in endophyte of ryegrass and responsible for damage reduction of L. bonariensis. In the last decade, few studies have been developed on the effectiveness of new ryegrass cultivars carriers of endophyte in controlling insect pests. Therefore, the aim of this research is to provide knowledge concerning to evaluate the alkaloid content, such as peramine and Lolitrem B, present in new experimental lines of ryegrass and feasible to be used in grasslands of southern Chile. For this, during 2016, ryegrass plants of six experimental lines and two commercial cultivars sown at the Instituto de Investigaciones Agropecuarias Carrillanca (Vilcún, Chile) were collected and subjected to a process of chemical extraction to identify and quantify the presence of peramine and lolitrem B by the technique of liquid chromatography of high resolution (HPLC). The results indicated that the experimental lines EL-1 and EL-3 had high content of peramine (0.25 and 0.43 ppm, respectively) than with lolitrem B (0.061 and 0.19 ppm, respectively). Furthermore, the higher contents of lolitrem B were detected in the EL-4 and commercial cultivar Alto (positive control) with 0.08 and 0.17 ppm, respectively. Peramine and lolitrem B were not detected in the cultivar Jumbo (negative control). These results suggest that EL-3 would have potential as future cultivate because it has high content of peramine, alkaloid responsible for controlling insect pest. However, their current role on the complex insects attacking ryegrass grasslands should be evaluated. The information obtained in this research could be used to improve control strategies against hypogeous and epigean pests of grassland in southern Chile and also to reduce the use of synthetic pesticides.Keywords: HPLC, Lolitrem B, peramine, pest
Procedia PDF Downloads 24285 Development of Solar Poly House Tunnel Dryer (STD) for Medicinal Plants
Authors: N. C. Shahi, Anupama Singh, E. Kate
Abstract:
Drying is practiced to enhance the storage life, to minimize losses during storage, and to reduce transportation costs of agricultural products. Drying processes range from open sun drying to industrial drying. In most of the developing countries, use of fossil fuels for drying of agricultural products has not been practically feasible due to unaffordable costs to majority of the farmers. On the other hand, traditional open sun drying practiced on a large scale in the rural areas of the developing countries suffers from high product losses due to inadequate drying, fungal growth, encroachment of insects, birds and rodents, etc. To overcome these problems a middle technology dryer having low cost need to be developed for farmers. In case of mechanical dryers, the heated air is the main driving force for removal of moisture. The air is heated either electrically or by burning wood, coal, natural gas etc. using heaters. But, all these common sources have finite supplies. The lifetime is estimated to range from 15 years for a natural gas to nearly 250 years for coal. So, mankind must turn towards its safe and reliable utilization and may have undesirable side effects. The mechanical drying involves higher cost of drying and open sun drying deteriorates the quality. The solar tunnel dryer is one of promising option for drying various agricultural and agro-industrial products on large scale. The advantage of Solar tunnel dryer is its relatively cheaper cost of construction and operation. Although many solar dryers have been developed, still there is a scope of modification in them. Therefore, an attempt was made to develop Solar tunnel dryer and test its performance using highly perishable commodity i.e. leafy vegetables (spinach). The effect of air velocity, loading density and shade net on performance parameters namely, collector efficiency, drying efficiency, overall efficiency of dryer and specific heat energy consumption were also studied. Thus, the need for an intermediate level technology was realized and an effort was made to develop a small scale Solar Tunnel Dryer . A dryer consisted of base frame, semi cylindrical drying chamber, solar collector and absorber, air distribution system with chimney and auxiliary heating system, and wheels for its mobility were the main functional components. Drying of fenugreek was carried out to analyze the performance of the dryer. The Solar Tunnel Dryer temperature was maintained using the auxiliary heating system. The ambient temperature was in the range of 12-33oC. The relative humidity was found inside and outside the Solar Tunnel Dryer in the range of 21-75% and 35-79%, respectively. The solar radiation was recorded in the range of 350-780W/m2 during the experimental period. Studies revealed that total drying time was in range of 230 to 420 min. The drying time in Solar Tunnel Dryer was considerably reduced by 67% as compared to sun drying. The collector efficiency, drying efficiency, overall efficiency and specific heat consumption were determined and were found to be in the range of 50.06- 38.71%, 15.53-24.72%, 4.25 to 13.34% and 1897.54-3241.36 kJ/kg, respectively.Keywords: overall efficiency, solar tunnel dryer, specific heat consumption, sun drying
Procedia PDF Downloads 31384 Effect of Polymer Coated Urea on Nutrient Efficiency and Nitrate Leaching Using Maize and Annual Ryegrass
Authors: Amrei Voelkner, Nils Peters, Thomas Mannheim
Abstract:
The worldwide exponential growth of the population and the simultaneous increasing food production requires the strategic realization of sustainable and improved cultivation systems to ensure the fertility of arable land and to guarantee the food supply for the whole world. To fulfill this target, large quantities of fertilizers have to be applied to the field, but the long-term environmental impacts remain uncertain. Thus, a combined system would be necessary to increase the nutrient availability for plants while reducing nutrient losses (e.g. NO3- by leaching) to the environment. To enhance the nutrient efficiency, polymer coated fertilizer with a controlled release behavior have been developed. This kind of fertilizer ensures a delayed release of nutrients to synchronize the nutrient supply with the demand of different crops. In the last decades, research focused primarily on semi-permeable polyurethane coatings, which remain in the soil for a long period after the complete solvation of the fertilizer core. Within the implementation of the new European Regulation Directive the replacement of non-degradable synthetic polymers by degradable coatings is necessary. It was, therefore, the objective of this study to develop a total biodegradable polymer (to CO2 and H2O) coating according to ISO 17556 and to compare the retarding effect of the biodegradable coatings with commercially available non-degradable products. To investigate the effect of ten selected coated urea fertilizer on the yield of annual ryegrass and maize, the fresh and dry mass, the percentage of total nitrogen and main nutrients were analyzed in greenhouse experiments in sixfold replications using near-infrared spectroscopy. For the experiments, a homogenized and air-dried loamy sand (Cambic Luvisol) was equipped with a basic fertilization of P, K, Mg and S. To investigate the effect of nitrogen level increase, three levels (80%, 100%, 120%) were established, whereas the impact of CRF granules was determined using a N-level of 100%. Additionally, leaching of NO3- from pots planted with annual ryegrass was examined to evaluate the retention capacity of urea by the polymer coating. For this, leachate from Kick-Brauckmann-Pots was collected daily and analyzed for total nitrogen, NO3- and NH4+ in twofold repetition once a week using near-infrared spectroscopy. We summarize from the results that the coated fertilizer have a clear impact on the yield of annual ryegrass and maize. Compared to the control, an increase of fresh and dry mass could be recognized. Partially, the non-degradable coatings showed a retarding effect for a longer period, which was however reflected by a lower fresh and dry mass. It was ascertained that the percentage of leached-out nitrate could be reduced markedly. As a conclusion, it could be pointed out that the impact of coated fertilizer of all polymer types might contribute to a reduction of negative environmental impacts in addition to their fertilizing effect.Keywords: biodegradable polymers, coating, enhanced efficiency fertilizers, nitrate leaching
Procedia PDF Downloads 27083 Numerical Analysis of NOₓ Emission in Staged Combustion for the Optimization of Once-Through-Steam-Generators
Authors: Adrien Chatel, Ehsan Askari Mahvelati, Laurent Fitschy
Abstract:
Once-Through-Steam-Generators are commonly used in the oil-sand industry in the heavy fuel oil extraction process. They are composed of three main parts: the burner, the radiant and convective sections. Natural gas is burned through staged diffusive flames stabilized by the burner. The heat generated by the combustion is transferred to the water flowing through the piping system in the radiant and convective sections. The steam produced within the pipes is then directed to the ground to reduce the oil viscosity and allow its pumping. With the rapid development of the oil-sand industry, the number of OTSG in operation has increased as well as the associated emissions of environmental pollutants, especially the Nitrous Oxides (NOₓ). To limit the environmental degradation, various international environmental agencies have established regulations on the pollutant discharge and pushed to reduce the NOₓ release. To meet these constraints, OTSG constructors have to rely on more and more advanced tools to study and predict the NOₓ emission. With the increase of the computational resources, Computational Fluid Dynamics (CFD) has emerged as a flexible tool to analyze the combustion and pollutant formation process. Moreover, to optimize the burner operating condition regarding the NOx emission, field characterization and measurements are usually accomplished. However, these kinds of experimental campaigns are particularly time-consuming and sometimes even impossible for industrial plants with strict operation schedule constraints. Therefore, the application of CFD seems to be more adequate in order to provide guidelines on the NOₓ emission and reduction problem. In the present work, two different software are employed to simulate the combustion process in an OTSG, namely the commercial software ANSYS Fluent and the open source software OpenFOAM. RANS (Reynolds-Averaged Navier–Stokes) equations combined with the Eddy Dissipation Concept to model the combustion and closed by the k-epsilon model are solved. A mesh sensitivity analysis is performed to assess the independence of the solution on the mesh. In the first part, the results given by the two software are compared and confronted with experimental data as a mean to assess the numerical modelling. Flame temperatures and chemical composition are used as reference fields to perform this validation. Results show a fair agreement between experimental and numerical data. In the last part, OpenFOAM is employed to simulate several operating conditions, and an Emission Characteristic Map of the combustion system is generated. The sources of high NOₓ production inside the OTSG are pointed and correlated to the physics of the flow. CFD is, therefore, a useful tool for providing an insight into the NOₓ emission phenomena in OTSG. Sources of high NOₓ production can be identified, and operating conditions can be adjusted accordingly. With the help of RANS simulations, an Emission Characteristics Map can be produced and then be used as a guide for a field tune-up.Keywords: combustion, computational fluid dynamics, nitrous oxides emission, once-through-steam-generators
Procedia PDF Downloads 11382 Persistent Organic Pollutant Level in Challawa River Basin of Kano State, Nigeria
Authors: Abdulkadir Sarauta
Abstract:
Almost every type of industrial process involves the release of trace quantity of toxic organic and inorganic compound that up in receiving water bodies, this study was aimed at assessing the Persistent Organic Pollutant Level in Challawa River Basin of Kano State, Nigeria. And the research formed the basis of identifying the presence of PCBs and PAHs in receiving water bodies in the study area, assessing the PCBs and PAHs concentration in receiving water body of Challawa system, evaluate the concentration level of PCBs and PAHs in fishes in the study area, determine the concentration level of PCBs and PAHs in crops irrigated in the study area as well as compare the concentration of PCBs and PAHs with the acceptable limit set by Nigerian, EU, U.S and WHO standard. Data were collected using reconnaissance survey, site inspection, field survey, laboratory experiment as well as secondary data source. A total of 78 samples were collected through stratified systematic random sampling (i.e., 26 samples for each of water, crops and fish) three sampling points were chosen and designated A, B and C along the stretch of the river (i.e. up, middle, and downstream) from Yan Danko Bridge to Tambirawa bridge. The result shows that the Polychlorinated biphenyls (PCBs) was not detected while, polycyclic aromatic hydrocarbons (PAHs) was detected in the whole samples analysed at the trench of Challawa River basin in order to assess the contribution of human activities to global environmental pollution. The total concentrations of ΣPAH and ΣPCB ranges between 0.001 to 0.087mg/l and 0.00 to 0.00mg/l of water samples While, crops samples ranges between 2.0ppb to 8.1ppb and fish samples ranges from 2.0 to 6.7ppb.The whole samples are polluted because most of the parameters analyzed exceed the threshold limits set by WHO, Nigerian, U.S and EU standard. The analytical results revealed that some chemicals are present in water, crops and fishes are significantly very high at Zamawa village which is very close to Challawa industrial estate and also is main effluent discharge point and drinking water around study area is not potable for consumption. Analysis of Variance was obtained by Bartlett’s test performance. There is only significant difference in water because the P < 0.05 level of significant, But there is no difference in crops concentration they have the same performance, likes wise in the fishes. It is said to be of concern to health hazard which will increase incidence of tumor related diseases such as skin, lungs, bladder, gastrointestinal cancer, this show there is high failure of pollution abatement measures in the area. In conclusion, it can be said that industrial activities and effluent has impact on Challawa River basin and its environs especially those that are living in the immediate surroundings. Arising from the findings of this research some recommendations were made the industries should treat their liquid properly by installing modern treatment plants.Keywords: Challawa River Basin, organic, persistent, pollutant
Procedia PDF Downloads 57581 In vitro Antioxidant Activity and Total Phenolic Content of Dillenia indica and Garcinia penducalata, Commonly Used Fruits in Assamese Cuisine
Authors: M. Das, B. P. Sarma, G. Ahmed
Abstract:
Human diet can be a major source of antioxidants. Poly¬phenols, which are organic compounds present in the regular human diet, have good antioxidant property. Most of the diseases are detected too late and that cause irre¬versible damage to the body. Therefore food that forms the natural source of antioxidants can prevent free radi¬cals from damaging our body tissues. Dillenia indica and Garcinia penducalata are two major fruits, easily available in Assam, North eastern Indian state. In the present study, the in vitro antioxi¬dant properties of the fruits of these plants are compared as the decoction of these fruits form a major part of Assamese cuisine. DPPH free radical scavenging activity of the methanol, petroleum ether and water extracts of G. penducalata and D. indica fruits were carried out by the methods of Cotelle A et al. (1996). Different concentrations ranging from 10–110 ug/ml of the extracts were added to 100 uM of DPPH (2,2, Diphenyl-2-picryl hydrazyl) and the absor¬bance was read at 517 nm after incubation. Ascorbic acid was used as the standard. Different concentrations of the methanol, petroleum ether and water extracts of G. penducalata and D. indica fruits were mixed with sodium nitroprusside and incubated. Griess reagent was added to the mixtures and their optical density was read at 546 nm following the method of Marcocci et al. (1994). Ascorbic acid was used as the standard. In order to find the scavenging activity of the extracts against hydroxyl radicals, the method of Kunchandy & Ohkawa (1990) was followed.The superoxide scavenging activity of the methanol, petroleum ether and water extracts of the fruits was deter¬mined by the method of Robak & Gryglewski (1998).Six replicates were maintained in each of the experiments and their SEM was evaluated based on which, non linear regres¬sion (curve fit), exponential growth were derived to calculate the IC50 values of the SAWE and standard compounds. All the statistical analyses were done by using paired t test. The hydroxyl radical scavenging activity of the various extracts of D. indica exhibited IC50 values < 110 ug/ml concentration, the scavenging activity of the extracts of G. penducalata was surprisingly>110 ug/ml.Similarly the oxygen free radical scavenging activity of the different extracts of D. indica exhibited an IC50 value of <110 ug/ml but the methanolic extract of the same exhib¬ited a better free radical scavenging activity compared to that of vitamin C. The methanolic extract of D. indica exhibited an IC50 value better than that of vitamin C. The DPPH scavenging activities of the various extracts of D. indica and G. penducalata were <110 ug/ml but the methanolic extract of D. indica exhibited an IC50 value bet¬ter than that of vitaminc C.The higher amounts of phenolic content in the methanolic extract of D. indica might be one of the major causes for its enhanced in vitro antioxidant activity.The present study concludes that Dillenia indica and Garcinia penducalata both possesses anti oxidant activi¬ties. The anti oxidant activity of Dillenia indica is superior to that of Garcinia penducalata due to its higher phenolic contentKeywords: antioxidants, free radicals, phenolic, scavenging
Procedia PDF Downloads 59580 Radish Sprout Growth Dependency on LED Color in Plant Factory Experiment
Authors: Tatsuya Kasuga, Hidehisa Shimada, Kimio Oguchi
Abstract:
Recent rapid progress in ICT (Information and Communication Technology) has advanced the penetration of sensor networks (SNs) and their attractive applications. Agriculture is one of the fields well able to benefit from ICT. Plant factories control several parameters related to plant growth in closed areas such as air temperature, humidity, water, culture medium concentration, and artificial lighting by using computers and AI (Artificial Intelligence) is being researched in order to obtain stable and safe production of vegetables and medicinal plants all year anywhere, and attain self-sufficiency in food. By providing isolation from the natural environment, a plant factory can achieve higher productivity and safe products. However, the biggest issue with plant factories is the return on investment. Profits are tenuous because of the large initial investments and running costs, i.e. electric power, incurred. At present, LED (Light Emitting Diode) lights are being adopted because they are more energy-efficient and encourage photosynthesis better than the fluorescent lamps used in the past. However, further cost reduction is essential. This paper introduces experiments that reveal which color of LED lighting best enhances the growth of cultured radish sprouts. Radish sprouts were cultivated in the experimental environment formed by a hydroponics kit with three cultivation shelves (28 samples per shelf) each with an artificial lighting rack. Seven LED arrays of different color (white, blue, yellow green, green, yellow, orange, and red) were compared with a fluorescent lamp as the control. Lighting duration was set to 12 hours a day. Normal water with no fertilizer was circulated. Seven days after germination, the length, weight and area of leaf of each sample were measured. Electrical power consumption for all lighting arrangements was also measured. Results and discussions: As to average sample length, no clear difference was observed in terms of color. As regards weight, orange LED was less effective and the difference was significant (p < 0.05). As to leaf area, blue, yellow and orange LEDs were significantly less effective. However, all LEDs offered higher productivity per W consumed than the fluorescent lamp. Of the LEDs, the blue LED array attained the best results in terms of length, weight and area of leaf per W consumed. Conclusion and future works: An experiment on radish sprout cultivation under 7 different color LED arrays showed no clear difference in terms of sample size. However, if electrical power consumption is considered, LEDs offered about twice the growth rate of the fluorescent lamp. Among them, blue LEDs showed the best performance. Further cost reduction e.g. low power lighting remains a big issue for actual system deployment. An automatic plant monitoring system with sensors is another study target.Keywords: electric power consumption, LED color, LED lighting, plant factory
Procedia PDF Downloads 18879 Thermal Properties and Water Vapor Permeability for Cellulose-Based Materials
Authors: Stanislavs Gendelis, Maris Sinka, Andris Jakovics
Abstract:
Insulation materials made from natural sources have become more popular for the ecologisation of buildings, meaning wide use of such renewable materials. Such natural materials replace synthetic products which consume a large quantity of energy. The most common and the cheapest natural materials in Latvia are cellulose-based (wood and agricultural plants). The ecological aspects of such materials are well known, but experimental data about physical properties remains lacking. In this study, six different samples of wood wool panels and a mixture of hemp shives and lime (hempcrete) are analysed. Thermal conductivity and heat capacity measurements were carried out for wood wool and cement panels using the calibrated hot plate device. Water vapor permeability was tested for hempcrete material by using the gravimetric dry cup method. Studied wood wool panels are eco-friendly and harmless material, which is widely used in the interior design of public and residential buildings, where noise absorption and sound insulation is of importance. They are also suitable for high humidity facilities (e.g., swimming pools). The difference in panels was the width of used wood wool, which is linked to their density. The results of measured thermal conductivity are in a wide range, showing the worsening of properties with the increasing of the wool width (for the least dense 0.066, for the densest 0.091 W/(m·K)). Comparison with mineral insulation materials shows that thermal conductivity for such materials are 2-3 times higher and are comparable to plywood and fibreboard. Measured heat capacity was in a narrower range; here, the dependence on the wool width was not so strong due to the fact that heat capacity value is related to mass, not volume. The resulting heat capacity is a combination of two main components. A comparison of results for different panels allows to select the most suitable sample for a specific application because the dependencies of the thermal insulation and heat capacity properties on the wool width are not the same. Hempcrete is a much denser material compared to conventional thermal insulating materials. Therefore, its use helps to reinforce the structural capacity of the constructional framework, at the same time, it is lightweight. By altering the proportions of the ingredients, hempcrete can be produced as a structural, thermal, or moisture absorbent component. The water absorption and water vapor permeability are the most important properties of these materials. Information about absorption can be found in the literature, but there are no data about water vapor transmission properties. Water vapor permeability was tested for a sample of locally made hempcrete using different air humidity values to evaluate the possible difference. The results show only the slight influence of the air humidity on the water vapor permeability value. The absolute ‘sd value’ measured is similar to mineral wool and wood fiberboard, meaning that due to very low resistance, water vapor passes easily through the material. At the same time, other properties – structural and thermal of the hempcrete is totally different. As a result, an experimentally-based knowledge of thermal and water vapor transmission properties for cellulose-based materials was significantly improved.Keywords: heat capacity, hemp concrete, thermal conductivity, water vapor transmission, wood wool
Procedia PDF Downloads 22178 Impact of Wastewater Irrigation on Soil Quality and Productivity of Tuberose (Polianthes tuberosa L. cv. Prajwal)
Authors: D. S. Gurjar, R. Kaur, K. P. Singh, R. Singh
Abstract:
A greater volume of wastewater generate from urban areas in India. Due to the adequate availability, less energy requirement and nutrient richness, farmers of urban and peri-urban areas are deliberately using wastewater to grow high value vegetable crops. Wastewater contains pathogens and toxic pollutants, which can enter in the food chain system while using wastewater for irrigating vegetable crops. Hence, wastewater can use for growing commercial flower crops that may avoid food chain contamination. Tuberose (Polianthes tuberosa L.) is one of the most important commercially grown, cultivated over 30, 000 ha area, flower crop in India. Its popularity is mainly due to the sweet fragrance as well as the long keeping quality of the flower spikes. The flower spikes of tuberose has high market price and usually blooms during summer and rainy seasons when there is meager supply of other flowers in the market. It has high irrigation water requirement and fresh water supply is inadequate in tuberose growing areas of India. Therefore, wastewater may fulfill the water and nutrients requirements and may enhance the productivity of tuberose. Keeping in view, the present study was carried out at WTC farm of ICAR-Indian Agricultural Research Institute, New Delhi in 2014-15. Prajwal was the variety of test crop. The seven treatments were taken as T-1. Wastewater irrigation at 0.6 ID/CPE, T-2: Wastewater irrigation at 0.8 ID/CPE, T-3: Wastewater irrigation at 1.0 ID/CPE, T-4: Wastewater irrigation at 1.2 ID/CPE, T-5: Wastewater irrigation at 1.4 ID/CPE, T-6: Conjunctive use of Groundwater and Wastewater irrigation at 1.0 ID/CPE in cyclic mode, T-7: Control (Groundwater irrigation at 1.0 ID/CPE) in randomized block design with three replication. Wastewater and groundwater samples were collected on monthly basis (April 2014 to March 2015) and analyzed for different parameters of irrigation quality (pH, EC, SAR, RSC), pollution hazard (BOD, toxic heavy metals and Faecal coliforms) and nutrients potential (N, P, K, Cu, Fe, Mn, Zn) as per standard methods. After harvest of tuberose crop, soil samples were also collected and analyzed for different parameters of soil quality as per standard methods. The vegetative growth and flower parameters were recorded at flowering stage of tuberose plants. Results indicated that wastewater samples had higher nutrient potential, pollution hazard as compared to groundwater used in experimental crop. Soil quality parameters such as pH EC, available phosphorous & potassium and heavy metals (Cu, Fe, Mn, Zn, Cd. Pb, Ni, Cr, Co, As) were not significantly changed whereas organic carbon and available nitrogen were significant higher in the treatments where wastewater irrigations were given at 1.2 and 1.4 ID/CPE as compared to groundwater irrigations. Significantly higher plant height (68.47 cm), leaves per plant (78.35), spike length (99.93 cm), rachis length (37.40 cm), numbers of florets per spike (56.53), cut spike yield (0.93 lakh/ha) and loose flower yield (8.5 t/ha) were observed in the treatment of Wastewater irrigation at 1.2 ID/CPE. Study concluded that given quality of wastewater improves the productivity of tuberose without an adverse impact on soil quality/health. However, its long term impacts need to be further evaluated.Keywords: conjunctive use, irrigation, tuberose, wastewater
Procedia PDF Downloads 33177 Anticancer Potentials of Aqueous Tinospora cordifolia and Its Bioactive Polysaccharide, Arabinogalactan on Benzo(a)Pyrene Induced Pulmonary Tumorigenesis: A Study with Relevance to Blood Based Biomarkers
Authors: Vandana Mohan, Ashwani Koul
Abstract:
Aim: To evaluate the potential of Aqueous Tinospora cordifolia stem extract (Aq.Tc) and Arabinogalactan (AG) on pulmonary carcinogenesis and associated tumor markers. Background: Lung cancer is one of the most frequent malignancy with high mortality rate due to limitation of early detection resulting in low cure rates. Current research effort focuses on identifying some blood-based biomarkers like CEA, ctDNA and LDH which may have potential to detect cancer at an early stage, evaluation of therapeutic response and its recurrence. Medicinal plants and their active components have been widely investigated for their anticancer potentials. Aqueous preparation of T. Cordifolia extract is enriched in the polysaccharide fraction i.e., AG when compared with other types of extract. Moreover, reports are available of polysaccharide fraction of T. Cordifolia in in vitro lung cancer models which showed profound anti-metastatic activity against these cell lines. However, not much has been explored about its effect in in vivo lung cancer models and the underlying mechanism involved. Experimental Design: Mice were randomly segregated into six groups. Group I animals served as control. Group II animals were administered with Aq. Tc extract (200 mg/kg b.w.) p.o.on the alternate days. Group III animals were fed with AG (7.5 mg/kg b.w.) p.o. on the alternate days (thrice a week). Group IV animals were installed with Benzo(a)pyrene (50 mg/kg b.w.), i.p. twice within an interval of two weeks. Group V animals received Aq. Tc extract as in group II along with it B(a)P was installed after two weeks of Aq. Tc administration following the same protocol as for group IV. Group VI animals received AG as in group III along with it B(a)P was installed after two weeks of AG administration. Results: Administration of B(a)P to mice resulted in increased tumor incidence, multiplicity and pulmonary somatic index with concomitant increase in serum/plasma markers like CEA, ctDNA, LDH and TNF-α.Aq.Tc and AG supplementation significantly attenuated these alterations at different stages of tumorigenesis thereby showing potent anti-cancer effect in lung cancer. A pronounced decrease in serum/plasma markers were observed in animals treated with Aq.Tc as compared to those fed with AG. Also, extensive hyperproliferation of alveolar epithelium was prominent in B(a)P induced lung tumors. However, treatment of Aq.Tc and AG to lung tumor bearing mice exhibited reduced alveolar damage evident from decreased number of hyperchromatic irregular nuclei. A direct correlation between the concentration of tumor markers and the intensity of lung cancer was observed in animals bearing cancer co-treated with Aq.Tc and AG. Conclusion: These findings substantiate the chemopreventive potential of Aq.Tc and AG against lung tumorigenesis. Interestingly, Aq.Tc was found to be more effective in modulating the cancer as reflected by various observations which may be attributed to the synergism offered by various components of Aq.Tc. Further studies are in progress to understand the underlined mechanism in inhibiting lung tumorigenesis by Aq.Tc and AG.Keywords: Arabinogalactan, Benzo(a)pyrene B(a)P, carcinoembryonic antigen (CEA), circulating tumor DNA (ctDNA), lactate dehydrogenase (LDH), Tinospora cordifolia
Procedia PDF Downloads 18576 Assessment of On-Site Solar and Wind Energy at a Manufacturing Facility in Ireland
Authors: A. Sgobba, C. Meskell
Abstract:
The feasibility of on-site electricity production from solar and wind and the resulting load management for a specific manufacturing plant in Ireland are assessed. The industry sector accounts directly and indirectly for a high percentage of electricity consumption and global greenhouse gas emissions; therefore, it will play a key role in emission reduction and control. Manufacturing plants, in particular, are often located in non-residential areas since they require open spaces for production machinery, parking facilities for the employees, appropriate routes for supply and delivery, special connections to the national grid and other environmental impacts. Since they have larger spaces compared to commercial sites in urban areas, they represent an appropriate case study for evaluating the technical and economic viability of energy system integration with low power density technologies, such as solar and wind, for on-site electricity generation. The available open space surrounding the analysed manufacturing plant can be efficiently used to produce a discrete quantity of energy, instantaneously and locally consumed. Therefore, transmission and distribution losses can be reduced. The usage of storage is not required due to the high and almost constant electricity consumption profile. The energy load of the plant is identified through the analysis of gas and electricity consumption, both internally monitored and reported on the bills. These data are not often recorded and available to third parties since manufacturing companies usually keep track only of the overall energy expenditures. The solar potential is modelled for a period of 21 years based on global horizontal irradiation data; the hourly direct and diffuse radiation and the energy produced by the system at the optimum pitch angle are calculated. The model is validated using PVWatts and SAM tools. Wind speed data are available for the same period within one-hour step at a height of 10m. Since the hub of a typical wind turbine reaches a higher altitude, complementary data for a different location at 50m have been compared, and a model for the estimate of wind speed at the required height in the right location is defined. Weibull Statistical Distribution is used to evaluate the wind energy potential of the site. The results show that solar and wind energy are, as expected, generally decoupled. Based on the real case study, the percentage of load covered every hour by on-site generation (Level of Autonomy LA) and the resulting electricity bought from the grid (Expected Energy Not Supplied EENS) are calculated. The economic viability of the project is assessed through Net Present Value, and the influence the main technical and economic parameters have on NPV is presented. Since the results show that the analysed renewable sources can not provide enough electricity, the integration with a cogeneration technology is studied. Finally, the benefit to energy system integration of wind, solar and a cogeneration technology is evaluated and discussed.Keywords: demand, energy system integration, load, manufacturing, national grid, renewable energy sources
Procedia PDF Downloads 12975 Fly-Ash/Borosilicate Glass Based Geopolymers: A Mechanical and Microstructural Investigation
Authors: Gianmarco Taveri, Ivo Dlouhy
Abstract:
Geopolymers are well-suited materials to abate CO2 emission coming from the Portland cement production, and then replace them, in the near future, in building and other applications. The cost of production of geopolymers may be seen the only weakness, but the use of wastes as raw materials could provide a valid solution to this problem, as demonstrated by the successful incorporation of fly-ash, a by-product of thermal power plants, and waste glasses. Recycled glass in waste-derived geopolymers was lately employed as a further silica source. In this work we present, for the first time, the introduction of recycled borosilicate glass (BSG). BSG is actually a waste glass, since it derives from dismantled pharmaceutical vials and cannot be reused in the manufacturing of the original articles. Owing to the specific chemical composition (BSG is an ‘alumino-boro-silicate’), it was conceived to provide the key components of zeolitic networks, such as amorphous silica and alumina, as well as boria (B2O3), which may replace Al2O3 and contribute to the polycondensation process. The solid–state MAS NMR spectroscopy was used to assess the extent of boron oxide incorporation in the structure of geopolymers, and to define the degree of networking. FTIR spectroscopy was utilized to define the degree of polymerization and to detect boron bond vibration into the structure. Mechanical performance was tested by means of 3 point bending (flexural strength), chevron notch test (fracture toughness), compression test (compressive strength), micro-indentation test (Vicker’s hardness). Spectroscopy (SEM and Confocal spectroscopy) was performed on the specimens conducted to failure. FTIR showed a characteristic absorption band attributed to the stretching modes of tetrahedral boron ions, whose tetrahedral configuration is compatible to the reaction product of geopolymerization. 27Al NMR and 29Si NMR spectra were instrumental in understanding the extent of the reaction. 11B NMR spectroscopies evidenced a change of the trigonal boron (BO3) inside the BSG in favor of a quasi-total tetrahedral boron configuration (BO4). Thanks to these results, it was inferred that boron is part of the geopolymeric structure, replacing the Si in the network, similarly to the aluminum, and therefore improving the quality of the microstructure, in favor of a more cross-linked network. As expected, the material gained as much as 25% in compressive strength (45 MPa) compared to the literature, whereas no improvements were detected in flexural strength (~ 5 MPa) and superficial hardness (~ 78 HV). The material also exhibited a low fracture toughness (0.35 MPa*m1/2), with a tangible brittleness. SEM micrographies corroborated this behavior, showing a ragged surface, along with several cracks, due to the high presence of porosity and impurities, acting as preferential points for crack initiation. The 3D pattern of the surface fracture, following the confocal spectroscopy, evidenced an irregular crack propagation, whose proclivity was mainly, but not always, to follow the porosity. Hence, the crack initiation and propagation are largely unpredictable.Keywords: borosilicate glass, characterization, fly-ash, geopolymerization
Procedia PDF Downloads 20874 Screening of Freezing Tolerance in Eucalyptus Genotypes (Eucalyptus spp.) Using Chlorophyll Fluorescence, Ionic Leakage, Proline Accumulation and Stomatal Density
Authors: S. Lahijanian, M. Mobli, B. Baninasab, N. Etemadi
Abstract:
Low temperature extremes are amongst the major stresses that adversely affect the plant growth and productivity. Cold stress causes oxidative stress, physiological, morphological and biochemical changes in plant cells. Generally, low temperatures similar to salinity and drought exert their negative effects mainly by disrupting the ionic and osmotic equilibrium of the plant cells. Changes in climatic condition leading to more frequent extreme conditions will require adapted crop species on a larger scale in order to sustain agricultural production. Eucalyptus is a diverse genus of flowering trees (and a few shrubs) in the myrtle family, Myrtaceae. Members of this genus dominate the tree flora of Australia. The eucalyptus genus contains more than 580 species and large number of cultivars, which are native to Australia. Large distribution and diversity of compatible eucalyptus cultivars reflect the fact of ecological flexibility of eucalyptus. Some eucalyptus cultivars can sustain hard environmental conditions like high and low temperature, salinity, high level of PH, drought, chilling and freezing which are intensively effective on crops with tropical and subtropical origin. In this study, we tried to evaluate freezing tolerance of 12 eucalyptus genotypes by means of four different morphological and physiological methods: Chlorophyll fluorescence, electrolyte leakage, proline and stomatal density. The studied cultivars include Eucalyptus camaldulensis, E. coccifera, E. darlympleana, E. erythrocorys, E. glaucescens, E. globulus, E. gunnii, E. macrocorpa, E. microtheca, E. rubida, E. tereticornis, and E. urnigera. Except for stomatal density recording, in other methods, plants were exposed to five gradual temperature drops: zero, -5, -10, -15 and -20 degree of centigrade and they remained in these temperatures for at least one hour. Experiment for measuring chlorophyll fluorescence showed that genotypes E. erythrocorys and E. camaldulensis were the most resistant genotypes and E. gunnii and E.coccifera were more sensitive than other genotypes to freezing stress effects. In electrolyte leakage experiment with regard to significant interaction between cultivar and temperature, genotypes E. erythrocorys and E.macrocorpa were shown to be the most tolerant genotypes and E. gunnii, E. urnigera, E. microtheca and E. tereticornis with the more ionic leakage percentage showed to be more sensitive to low temperatures. Results of Proline experiment approved that the most resistant genotype to freezing stress is E. erythrocorys. In the stomatal density experiment, the numbers of stomata under microscopic field were totally counted and the results showed that the E. erythrocorys and E. macrocorpa genotypes had the maximum and E. coccifera and E. darlympleana genotypes had minimum number of stomata under microscopic field (0.0605 mm2). In conclusion, E. erythrocorys identified as the most tolerant genotype; meanwhile E. gunnii classified as the most freezing susceptible genotype in this investigation. Further, remarkable correlation was not obtained between the stomatal density and other cold stress measures.Keywords: chlorophyll fluorescence, cold stress, ionic leakage, proline, stomatal density
Procedia PDF Downloads 26573 Determination of Gross Alpha and Gross Beta Activity in Water Samples by iSolo Alpha/Beta Counting System
Authors: Thiwanka Weerakkody, Lakmali Handagiripathira, Poshitha Dabare, Thisari Guruge
Abstract:
The determination of gross alpha and beta activity in water is important in a wide array of environmental studies and these parameters are considered in international legislations on the quality of water. This technique is commonly applied as screening method in radioecology, environmental monitoring, industrial applications, etc. Measuring of Gross Alpha and Beta emitters by using iSolo alpha beta counting system is an adequate nuclear technique to assess radioactivity levels in natural and waste water samples due to its simplicity and low cost compared with the other methods. Twelve water samples (Six samples of commercially available bottled drinking water and six samples of industrial waste water) were measured by standard method EPA 900.0 consisting of the gas-less, firm wear based, single sample, manual iSolo alpha beta counter (Model: SOLO300G) with solid state silicon PIPS detector. Am-241 and Sr90/ Y90 calibration standards were used to calibrate the detector. The minimum detectable activities are 2.32mBq/L and 406mBq/L, for alpha and beta activity, respectively. Each of the 2L water samples was evaporated (at low heat) to a small volume and transferred into 50mm stainless steel counting planchet evenly (for homogenization) and heated by IR lamp and the constant weighted residue was obtained. Then the samples were counted for gross alpha and beta. Sample density on the planchet area was maintained below 5mg/cm. Large quantities of solid wastes sludges and waste water are generated every year due to various industries. This water can be reused for different applications. Therefore implementation of water treatment plants and measuring water quality parameters in industrial waste water discharge is very important before releasing them into the environment. This waste may contain different types of pollutants, including radioactive substances. All these measured waste water samples having gross alpha and beta activities, lower than the maximum tolerance limits for industrial waste water discharge of industrial waste in to inland surface water, that is 10-9µCi/mL and 10-8µCi/mL for gross alpha and beta respectively (National Environmental Act, No. 47 of 1980). This is according to extraordinary gazette of the democratic socialist republic of Sri Lanka in February 2008. The measured water samples were below the recommended radioactivity levels and do not pose any radiological hazard when releasing the environment. Drinking water is an essential requirement of life. All the drinking water samples were below the permissible levels of 0.5Bq/L for gross alpha activity and 1Bq/L for gross beta activity. The values have been proposed by World Health Organization in 2011; therefore the water is acceptable for consumption of humans without any further clarification with respect to their radioactivity. As these screening levels are very low, the individual dose criterion (IDC) would usually not be exceeded (0.1mSv y⁻¹). IDC is a criterion for evaluating health risks from long term exposure to radionuclides in drinking water. Recommended level of 0.1mSv/y expressed a very low level of health risk. This monitoring work will be continued further for environmental protection purposes.Keywords: drinking water, gross alpha, gross beta, waste water
Procedia PDF Downloads 19872 Evaluation of Herbal Extracts for Their Potential Application as Skin Prebiotics
Authors: Anja I. Petrov, Milica B. Veljković, Marija M. Ćorović, Ana D. Milivojević, Milica B. Simović, Katarina M. Banjanac, Dejan I. Bezbradica
Abstract:
One of the fundamental requirements for overall human well-being is a stable and balanced microbiome. Aside from the microorganisms that reside within the body, a large number of microorganisms, especially bacteria, swarming the human skin is in homeostasis with the host and represents a skin microbiota. Even though the immune system of the skin is capable of distinguishing between commensal and potentially harmful transient bacteria, the cutaneous microbial balance can be disrupted under certain circumstances. In that case, a reduction in the skin microbiota diversity, as well as changes in metabolic activity, results in dermal infections and inflammation. Probiotics and prebiotics have the potential to play a significant role in the treatment of these skin disorders. The most common resident bacteria found on the skin, Staphylococcus epidermidis, can act as a potential skin probiotic, contributing to the protection of healthy skin from pathogen colonization, such as Staphylococcus aureus, which is related to atopic dermatitis exacerbation. However, as it is difficult to meet regulations in cosmetic products, another therapy approach could be topical prebiotic supplementation of the skin microbiota. In recent research, polyphenols are attracting scientists' interest as biomolecules with possible prebiotic effects on the skin microbiota. This research aimed to determine how herbal extracts rich in different polyphenolic compounds (lemon balm, St. John's wort, coltsfoot, pine needle, and yarrow) affected the growth of S. epidermidis and S. aureus. The first part of the study involved screening plants to determine if they could be regarded as probable candidates to be skin prebiotics. The effect of each plant on bacterial growth was examined by supplementing the nutrient medium with their extracts and comparing it with control samples (without extract). The results obtained after 24 h of incubation showed that all tested extracts influenced the growth of the examined bacteria to some extent. Since lemon balm and St. John's wort extracts displayed bactericidal activity against S. epidermidis, whereas coltsfoot inhibited both bacteria equally, they were not explored further. On the other hand, pine needles and yarrow extract led to an increase in S. epidermidis/S. aureus ratio, making them prospective candidates to be used as skin prebiotics. By examining the prebiotic effect of two extracts at different concentrations, it was revealed that, in the case of yarrow, 0.1% of extract dry matter in the fermentation medium was optimal, while for the pine needle extract, a concentration of 0.05% was preferred, since it selectively stimulated S. epidermidis growth and inhibited S. aureus proliferation. Additionally, the total polyphenols and flavonoid content of the two extracts were determined, revealing different concentrations and polyphenol profiles. Since yarrow and pine extracts affected the growth of skin bacteria in a dose-dependent manner, by carefully selecting the quantities of these extracts, and thus polyphenols content, it is possible to achieve desirable alterations of skin microbiota composition, which may be suitable for the treatment of atopic dermatitis.Keywords: herbal extracts, polyphenols, skin microbiota, skin prebiotics
Procedia PDF Downloads 17571 Antiinflammatory and Wound Healing Activity of Sedum Essential Oils Growing in Kazakhstan
Authors: Dmitriy Yu. Korulkin, Raissa A. Muzychkina
Abstract:
The last decade the growth of severe and disseminated forms of inflammatory diseases is observed in Kazakhstan, in particular, septic shock, which progresses on 3-15% of patients with infectious complications of postnatal period. In terms of the rate of occurrence septic shock takes third place after hemorrhagic and cardiovascular shock, in terms of lethality it takes first place. The structure of obstetric sepsis has significantly changed. Currently the first place is taken by postabortive sepsis (40%) that is connected with usage of imperfect methods of artificial termination of pregnancy in late periods (intraamnial injection of sodium chloride, glucose). The second place is taken by postnatal sepsis (32%); the last place is taken by septic complications of caesarean section (28%). In this connection, search for and assessment of effectiveness of new medicines for treatment of postoperative infectious complications, having biostimulating effect and speeding up regeneration processes, is very promising and topical. Essential oil was obtained by the method hydrodistillation air-dry aerial part of Sedum L. plants using Clevenger apparatus. Pilot batch of plant medicinal product based on Sedum essential oils was produced by Chimpharm JSC, Santo Member of Polpharma Group (Kazakhstan). During clinical test of the plant medicinal product based on Sedum L. essential oils 37 female patients at the age from 35 to 57 with clinical signs of complicated postoperative processes and 12 new mothers with clinical signs of inflammatory process on sutures on anterior abdominal wall after caesarean section and partial disruption of surgical suture line on perineum were examined. Medicine usage methods - surgical wound treatment 2 times a day, treatment with other medicines of local action was not performed. Before and after treatment general clinical test, determination of immune status, bacterioscopic test of wound fluid was performed to all women, medical history data was taken into account, wound cleansing and healing time, full granulations, side effects and complications, satisfaction with the used medicine was assessed. On female patients with inflammatory infiltration and partial disruption of surgical suture line anesthetic wound healing effect of plant medicinal product based on Sedum L. essential oils was observed as early as on the second day after beginning of using it, wound cleansing took place, as a rule, within the first row days. Hyperemia in the area of suture line also was not observed for 2-3-d day of usage of medicine, good constant course was observed. The absence of clinical effect on this group of patients was not registered. The represented data give evidence of that clinical effect was accompanied with normalization of changed laboratory findings. No allergic responses or side effects were observed during usage of the plant medicinal products based on Sedum L. essential oils.Keywords: antiinflammatory, bioactive substances, essential oils, isolation, sedum L., wound healing
Procedia PDF Downloads 26870 Supercritical Water Gasification of Organic Wastes for Hydrogen Production and Waste Valorization
Authors: Laura Alvarez-Alonso, Francisco Garcia-Carro, Jorge Loredo
Abstract:
Population growth and industrial development imply an increase in the energy demands and the problems caused by emissions of greenhouse effect gases, which has inspired the search for clean sources of energy. Hydrogen (H₂) is expected to play a key role in the world’s energy future by replacing fossil fuels. The properties of H₂ make it a green fuel that does not generate pollutants and supplies sufficient energy for power generation, transportation, and other applications. Supercritical Water Gasification (SCWG) represents an attractive alternative for the recovery of energy from wastes. SCWG allows conversion of a wide range of raw materials into a fuel gas with a high content of hydrogen and light hydrocarbons through their treatment at conditions higher than those that define the critical point of water (temperature of 374°C and pressure of 221 bar). Methane used as a transport fuel is another important gasification product. The number of different uses of gas and energy forms that can be produced depending on the kind of material gasified and type of technology used to process it, shows the flexibility of SCWG. This feature allows it to be integrated with several industrial processes, as well as power generation systems or waste-to-energy production systems. The final aim of this work is to study which conditions and equipment are the most efficient and advantageous to explore the possibilities to obtain streams rich in H₂ from oily wastes, which represent a major problem both for the environment and human health throughout the world. In this paper, the relative complexity of technology needed for feasible gasification process cycles is discussed with particular reference to the different feedstocks that can be used as raw material, different reactors, and energy recovery systems. For this purpose, a review of the current status of SCWG technologies has been carried out, by means of different classifications based on key features as the feed treated or the type of reactor and other apparatus. This analysis allows to improve the technology efficiency through the study of model calculations and its comparison with experimental data, the establishment of kinetics for chemical reactions, the analysis of how the main reaction parameters affect the yield and composition of products, or the determination of the most common problems and risks that can occur. The results of this work show that SCWG is a promising method for the production of both hydrogen and methane. The most significant choices of design are the reactor type and process cycle, which can be conveniently adopted according to waste characteristics. Regarding the future of the technology, the design of SCWG plants is still to be optimized to include energy recovery systems in order to reduce costs of equipment and operation derived from the high temperature and pressure conditions that are necessary to convert water to the SC state, as well as to find solutions to remove corrosion and clogging of components of the reactor.Keywords: hydrogen production, organic wastes, supercritical water gasification, system integration, waste-to-energy
Procedia PDF Downloads 14769 Sensor Network Structural Integration for Shape Reconstruction of Morphing Trailing Edge
Authors: M. Ciminello, I. Dimino, S. Ameduri, A. Concilio
Abstract:
Improving aircraft's efficiency is one of the key elements of Aeronautics. Modern aircraft possess many advanced functions, such as good transportation capability, high Mach number, high flight altitude, and increasing rate of climb. However, no aircraft has a possibility to reach all of this optimized performance in a single airframe configuration. The aircraft aerodynamic efficiency varies considerably depending on the specific mission and on environmental conditions within which the aircraft must operate. Structures that morph their shape in response to their surroundings may at first seem like the stuff of science fiction, but take a look at nature and lots of examples of plants and animals that adapt to their environment would arise. In order to ensure both the controllable and the static robustness of such complex structural systems, a monitoring network is aimed at verifying the effectiveness of the given control commands together with the elastic response. In order to achieve this kind of information, the use of FBG sensors network is, in this project, proposed. The sensor network is able to measure morphing structures shape which may show large, global displacements due to non-standard architectures and materials adopted. Chord -wise variations may allow setting and chasing the best layout as a function of the particular and transforming reference state, always targeting best aerodynamic performance. The reason why an optical sensor solution has been selected is that while keeping a few of the contraindication of the classical systems (like cabling, continuous deployment, and so on), fibre optic sensors may lead to a dramatic reduction of the wires mass and weight thanks to an extreme multiplexing capability. Furthermore, the use of the ‘light’ as ‘information carrier’, permits dealing with nimbler, non-shielded wires, and avoids any kind of interference with the on-board instrumentation. The FBG-based transducers, herein presented, aim at monitoring the actual shape of adaptive trailing edge. Compared to conventional systems, these transducers allow more fail-safe measurements, by taking advantage of a supporting structure, hosting FBG, whose properties may be tailored depending on the architectural requirements and structural constraints, acting as strain modulator. The direct strain may, in fact, be difficult because of the large deformations occurring in morphing elements. A modulation transducer is then necessary to keep the measured strain inside the allowed range. In this application, chord-wise transducer device is a cantilevered beam sliding trough the spars and copying the camber line of the ATE ribs. FBG sensors array position are dimensioned and integrated along the path. A theoretical model describing the system behavior is implemented. To validate the design, experiments are then carried out with the purpose of estimating the functions between rib rotation and measured strain.Keywords: fiber optic sensor, morphing structures, strain sensor, shape reconstruction
Procedia PDF Downloads 32968 The Cadence of Proximity: Indigenous Resilience as Caring for Country-in-the-City
Authors: Jo Anne Rey
Abstract:
Caring for Country (Ngurrain Dharug language) is core to Aboriginal identity, Law/Lore, practice, and resilience within the continent called ‘Australia’. It is the basis of thousands of years of sustainability. However, when Ngurra is a city known as Sydney, due to 235 years of colonial impact, caring for the Country is limited, being controlled by the State and private ownership of the land title. Recent research indicates that localised Indigenous activism is most successful when community members are geographically proximate to the presences and places of connection, caring, and belonging. This article frames these findings through the cadence that proximity provides. This presentation is centred on the proximate agency that is being exercised by Dharug community through three significant sites within the Sydney basin. Those sites include, firstly, Shaw’s Creek Aboriginal Place, at the foot of the Blue Mountains in far western Sydney. Second inclusion is the site of Blacktown Native Institution, that was the part of the authoritarian colonial governance of British Governor Lachlan Macquarie (after who Macquarie University is named), which saw the beginnings of the removal of children from their families and culture to ‘civilize’ them. The third site is that of the so-called Brown’s Waterhole in the State government administered Lane Cove National Park. Each of these sites is being activated through Dharug and, more broadly, Aboriginalways of knowing, doing, and being. These ways involvethe land, water, wind, and star-based ecologies interwoven with traditional transgenerational storying of the presences (Ancestral and spiritual) creating them. Activations include, but are not limited to, the return of cultural fire for reviving plants, soils, animals, and birds. These fire practices have traditionally been at the basis of sustainable, regenerative biodiversity. These practices involve the literacy of reading Ngurra and the seasonal interactions across the ecologies. Together, they both care for the Country and support humanity, and have done so across thousands of years. However, when the cost of real-estate and rental accommodation prevents community members from being able to live on Dharug Ngurra when bureaucratic governance restricts and/or excludes traditional custodial relationships, and when private treaty land title destroys the presences and places while disconnecting people from their Ancestral practices, it becomes clear that caring for Country is only possible when the community can afford to live nearby. Recognising the cadence of proximityas the agency that underpinscaring for Country-in-the-city, sustainable change opportunities don’t have to only focus on regional and remote areas. Urban-based Aboriginal relationality offers an alternative to the unsustainable practices that underpin human-centric disconnection. Weaving Indigenous cadence offers opportunities for sustainable futures even when facing the extremes of climate changing catastrophes.Keywords: australian aboriginal, biocultural knowledges, climate change, dharug ngurra, sustainability, resilience
Procedia PDF Downloads 8967 Development and application of Humidity-Responsive Controlled Release Active Packaging Based on Electrospinning Nanofibers and In Situ Growth Polymeric Film in Food preservation
Authors: Jin Yue
Abstract:
Fresh produces especially fruits, vegetables, meats and aquatic products have limited shelf life and are highly susceptible to deterioration. Essential oils (EOs) extracted from plants have excellent antioxidant and broad-spectrum antibacterial activities, and they can play as natural food preservatives. But EOs are volatile, water insoluble, pungent, and easily decomposing under light and heat. Many approaches have been developed to improve the solubility and stability of EOs such as polymeric film, coating, nanoparticles, nano-emulsions and nanofibers. Construction of active packaging film which can incorporate EOs with high loading efficiency and controlled release of EOs has received great attention. It is still difficult to achieve accurate release of antibacterial compounds at specific target locations in active packaging. In this research, a relative humidity-responsive packaging material was designed, employing the electrospinning technique to fabricate a nanofibrous film loaded with a 4-terpineol/β-cyclodextrin inclusion complexes (4-TA/β-CD ICs). Functioning as an innovative food packaging material, the film demonstrated commendable attributes including pleasing appearance, thermal stability, mechanical properties, and effective barrier properties. The incorporation of inclusion complexes greatly enhanced the antioxidant and antibacterial activity of the film, particularly against Shewanella putrefaciens, with an inhibitory efficiency of up to 65%. Crucially, the film realized controlled release of 4-TA under 98% high relative humidity conditions by inducing the plasticization of polymers caused by water molecules, swelling of polymer chains, and destruction of hydrogen bonds within the cyclodextrin inclusion complex. This film with a long-term antimicrobial effect successfully extended the shelf life of Litopenaeus vannamei shrimp to 7 days at 4 °C. To further improve the loading efficiency and long-acting release of EOs, we synthesized the γ-cyclodextrin-metal organic frameworks (γ-CD-MOFs), and then efficiently anchored γ-CD-MOFs on chitosan-cellulose (CS-CEL) composite film by in situ growth method for controlled releasing of carvacrol (CAR). We found that the growth efficiency of γ-CD-MOFs was the highest when the concentration of CEL dispersion was 5%. The anchoring of γ-CD-MOFs on CS-CEL film significantly improved the surface area of CS-CEL film from 1.0294 m2/g to 43.3458 m2/g. The molecular docking and 1H NMR spectra indicated that γ-CD-MOF has better complexing and stabilizing ability for CAR molecules than γ-CD. In addition, the release of CAR reached 99.71±0.22% on the 10th day, while under 22% RH, the release pattern of CAR was a plateau with 14.71 ± 4.46%. The inhibition rate of this film against E. coli, S. aureus and B. cinerea was more than 99%, and extended the shelf life of strawberries to 7 days. By incorporating the merits of natural biopolymers and MOFs, this active packaging offers great potential as a substitute for traditional packaging materials.Keywords: active packaging, antibacterial activity, controlled release, essential oils, food quality control
Procedia PDF Downloads 6466 Changes in Physicochemical Characteristics of a Serpentine Soil and in Root Architecture of a Hyperaccumulating Plant Cropped with a Legume
Authors: Ramez F. Saad, Ahmad Kobaissi, Bernard Amiaud, Julien Ruelle, Emile Benizri
Abstract:
Agromining is a new technology that establishes agricultural systems on ultramafic soils in order to produce valuable metal compounds such as nickel (Ni), with the final aim of restoring a soil's agricultural functions. But ultramafic soils are characterized by low fertility levels and this can limit yields of hyperaccumulators and metal phytoextraction. The objectives of the present work were to test if the association of a hyperaccumulating plant (Alyssum murale) and a Fabaceae (Vicia sativa var. Prontivesa) could induce changes in physicochemical characteristics of a serpentine soil and in root architecture of a hyperaccumulating plant then lead to efficient agromining practices through soil quality improvement. Based on standard agricultural systems, consisting in the association of legumes and another crop such as wheat or rape, a three-month rhizobox experiment was carried out to study the effect of the co-cropping (Co) or rotation (Ro) of a hyperaccumulating plant (Alyssum murale) with a legume (Vicia sativa) and incorporating legume biomass to soil, in comparison with mineral fertilization (FMo), on the structure and physicochemical properties of an ultramafic soil and on root architecture. All parameters measured (biomass, C and N contents, and taken-up Ni) on Alyssum murale conducted in co-cropping system showed the highest values followed by the mineral fertilization and rotation (Co > FMo > Ro), except for root nickel yield for which rotation was better than the mineral fertilization (Ro > FMo). The rhizosphere soil of Alyssum murale in co-cropping had larger soil particles size and better aggregates stability than other treatments. Using geostatistics, co-cropped Alyssum murale showed a greater root surface area spatial distribution. Moreover, co-cropping and rotation-induced lower soil DTPA-extractable nickel concentrations than other treatments, but higher pH values. Alyssum murale co-cropped with a legume showed a higher biomass production, improved soil physical characteristics and enhanced nickel phytoextraction. This study showed that the introduction of a legume into Ni agromining systems could improve yields of dry biomass of the hyperaccumulating plant used and consequently, the yields of Ni. Our strategy can decrease the need to apply fertilizers and thus minimizes the risk of nitrogen leaching and underground water pollution. Co-cropping of Alyssum murale with the legume showed a clear tendency to increase nickel phytoextraction and plant biomass in comparison to rotation treatment and fertilized mono-culture. In addition, co-cropping improved soil physical characteristics and soil structure through larger and more stabilized aggregates. It is, therefore, reasonable to conclude that the use of legumes in Ni-agromining systems could be a good strategy to reduce chemical inputs and to restore soil agricultural functions. Improving the agromining system by the replacement of inorganic fertilizers could simultaneously be a safe way of rehabilitating degraded soils and a method to restore soil quality and functions leading to the recovery of ecosystem services.Keywords: plant association, legumes, hyperaccumulating plants, ultramafic soil physicochemical properties
Procedia PDF Downloads 16665 European Electromagnetic Compatibility Directive Applied to Astronomical Observatories
Authors: Oibar Martinez, Clara Oliver
Abstract:
The Cherenkov Telescope Array Project (CTA) aims to build two different observatories of Cherenkov Telescopes, located in Cerro del Paranal, Chile, and La Palma, Spain. These facilities are used in this paper as a case study to investigate how to apply standard Directives on Electromagnetic Compatibility to astronomical observatories. Cherenkov Telescopes are able to provide valuable information from both Galactic and Extragalactic sources by measuring Cherenkov radiation, which is produced by particles which travel faster than light in the atmosphere. The construction requirements demand compliance with the European Electromagnetic Compatibility Directive. The largest telescopes of these observatories, called Large Scale Telescopes (LSTs), are high precision instruments with advanced photomultipliers able to detect the faint sub-nanosecond blue light pulses produced by Cherenkov Radiation. They have a 23-meter parabolic reflective surface. This surface focuses the radiation on a camera composed of an array of high-speed photosensors which are highly sensitive to the radio spectrum pollution. The camera has a field of view of about 4.5 degrees and has been designed for maximum compactness and lowest weight, cost and power consumption. Each pixel incorporates a photo-sensor able to discriminate single photons and the corresponding readout electronics. The first LST is already commissioned and intends to be operated as a service to Scientific Community. Because of this, it must comply with a series of reliability and functional requirements and must have a Conformité Européen (CE) marking. This demands compliance with Directive 2014/30/EU on electromagnetic compatibility. The main difficulty of accomplishing this goal resides on the fact that Conformité Européen marking setups and procedures were implemented for industrial products, whereas no clear protocols have been defined for scientific installations. In this paper, we aim to give an answer to the question on how the directive should be applied to our installation to guarantee the fulfillment of all the requirements and the proper functioning of the telescope itself. Experts in Optics and Electromagnetism were both needed to make these kinds of decisions and match tests which were designed to be made over the equipment of limited dimensions on large scientific plants. An analysis of the elements and configurations most likely to be affected by external interferences and those that are most likely to cause the maximum disturbances was also performed. Obtaining the Conformité Européen mark requires knowing what the harmonized standards are and how the elaboration of the specific requirement is defined. For this type of large installations, one needs to adapt and develop the tests to be carried out. In addition, throughout this process, certification entities and notified bodies play a key role in preparing and agreeing the required technical documentation. We have focused our attention mostly on the technical aspects of each point. We believe that this contribution will be of interest for other scientists involved in applying industrial quality assurance standards to large scientific plant.Keywords: CE marking, electromagnetic compatibility, european directive, scientific installations
Procedia PDF Downloads 11064 Traditional Practices of Conserving Biodiversity: A Case Study around Jim Corbett National Park, Uttarakhand, India
Authors: Rana Parween, Rob Marchant
Abstract:
With the continued loss of global biodiversity despite the application of modern conservation techniques, it has become crucial to investigate non-conventional methods. Accelerated destruction of ecosystems due to altered land use, climate change, cultural and social change, necessitates the exploration of society-biodiversity attitudes and links. While the loss of species and their extinction is a well-known and well-documented process that attracts much-needed attention from researchers, academics, government and non-governmental organizations, the loss of traditional ecological knowledge and practices is more insidious and goes unnoticed. The growing availability of 'indirect experiences' such as the internet and media are leading to a disaffection towards nature and the 'Extinction of Experience'. Exacerbated by the lack of documentation of traditional practices and skills, there is the possibility for the 'extinction' of traditional practices and skills before they are fully recognized and captured. India, as a mega-biodiverse country, is also known for its historical conservation strategies entwined in traditional beliefs. Indigenous communities hold skillsets, knowledge, and traditions that have accumulated over multiple generations and may play an important role in conserving biodiversity today. This study explores the differences in knowledge and attitudes towards conserving biodiversity, of three different stakeholder groups living around Jim Corbett National Park, based on their age, traditions, and association with the protected area. A triangulation designed multi-strategy investigation collected qualitative and quantitative data through a questionnaire survey of village elders, the general public, and forest officers. Following an inductive approach to analyzing qualitative data, the thematic content analysis was followed. All coding and analysis were completed using NVivo 11. Although the village elders and some general public had vast amounts of traditional knowledge, most of it was related to animal husbandry and the medicinal value of plants. Village elders were unfamiliar with the concept of the term ‘biodiversity’ albeit their way of life and attitudes ensured that they care for the ecosystem without having the scientific basis underpinning biodiversity conservation. Inherently, village elders were keen to conserve nature; the superimposition of governmental policies without any tangible benefit or consultation was seen as detrimental. Alienating villagers and consequently the village elders who are the reservoirs of traditional knowledge would not only be damaging to the social network of the area but would also disdain years of tried and tested techniques held by the elders. Forest officers advocated for biodiversity and conservation education for women and children. Women, across all groups, when questioned about nature conservation, showed more interest in learning and participation. Biodiversity not only has an ethical and cultural value, but also plays a role in ecosystem function and, thus, provides ecosystem services and supports livelihoods. Therefore, underpinning and using traditional knowledge and incorporating them into programs of biodiversity conservation should be explored with a sense of urgency.Keywords: biological diversity, mega-biodiverse countries, traditional ecological knowledge, society-biodiversity links
Procedia PDF Downloads 10563 Arthropods Diversity of the Late Carboniferous Souss Basin, Morocco: Paleoecology and Taphonomy
Authors: Abouchouaib Belahmira, Joerg W. Schneider, Hafid Saber
Abstract:
Continental sediments of the uppermost Carboniferous (late Pennsylvanian) El Menizla and Oued Issene formations of the Souss basin, Southwestern High Atlas Mountains, Morocco have yielded abundant well-preserved arthropods. The latter comprise freshwater and terrestrial elements, were found associated with plants, freshwater jellyfish and pelecypods. Arthropods are ubiquitous and typically restricted to the dominated lacustrine black shale taphofacies. The lithofacies interpretation and its correlation with the taphofacies led to the determination of the original depositional environment that was reconstructed as a fluvial-dominated with braided wide channel system and floodplain lakes to peat local backswamps sub-environments. The late Carboniferous fossiliferous strata have been correlated biostratigraphically with many other Pennsylvanian (Kasimovian/Gzhelian) deposits of North America and Europe on the basis of entomological studies. The faunal elements of the lentic biocoenosis of the Souss basin are depauperate, with the vagile forms slightly diverse than sessile ones. The prevailing groups are small shelly fauna, other habitat guild such as apterygotan Monura insect dasyleptids. The fossils recorded from the Souss basin includes crustaceans, of various sizes (µm- to mm) and morphologies, preservation state ranging from poorly preserved to rarely well-preserved specimens. Their remains sporadically found clustered and preserved as internal or external shell molds or steinkerns often disarticulated specimens. Ostracods as more likely Carbonita, their shells are preserved three-dimensionally. The clam shrimps conchostracans record of the Souss basin are often determined as pseudestherids and the Spinicaudatan leaiids. The moldic preservation is somewhat similar to pelecypods, they are known from internal casts or impressions. Monura insects are characterized by their low diversity, thus, only two species are known Dasyleptus lucasi Brongniart and Dasyleptus noli Rasnitsyn. The terrestrial component consists of pterygotan insects. They are diverse, significantly more frequent throughout the Souss basin fossil localities, numerically dominated by the members of Blattodea (cockroaches). The fossil record includes Blattodea, Protorthoptera, Diaphanopterodea, Ephemeroptera (mayfly) , Calneurodea, Grylloblattodea, Miomoptera and Palaeodictyoptera. Additionally, the composition of the preserved insect is mostly represented by completely isolated forewings, rare membranous hindwings, parts of the body or exceptionally preserved specimens, which may reflect a wide spectrum of taphonomic pathways. The steady increase in taxonomic diversity of fossil sites in the Souss basin, together with the taphonomic interpretation of arthropods assemblages, have contributed to provide a novel insight into the complex terrestrial ecosystem that thrived in this paleotropical key region during the late Pennsylvanian and additionally to understand climate-driven paleobiogeography and paleoecology of late Paleozoic non-marine arthropods.Keywords: Souss, carboniferous, arthropods, taphonomy, paleoecology.
Procedia PDF Downloads 3362 Use of Sewage Sludge Ash as Partial Cement Replacement in the Production of Mortars
Authors: Domagoj Nakic, Drazen Vouk, Nina Stirmer, Mario Siljeg, Ana Baricevic
Abstract:
Wastewater treatment processes generate significant quantities of sewage sludge that need to be adequately treated and disposed. In many EU countries, the problem of adequate disposal of sewage sludge has not been solved, nor is determined by the unique rules, instructions or guidelines. Disposal of sewage sludge is important not only in terms of satisfying the regulations, but the aspect of choosing the optimal wastewater and sludge treatment technology. Among the solutions that seem reasonable, recycling of sewage sludge and its byproducts reaches the top recommendation. Within the framework of sustainable development, recycling of sludge almost completely closes the cycle of wastewater treatment in which only negligible amounts of waste that requires landfilling are being generated. In many EU countries, significant amounts of sewage sludge are incinerated, resulting in a new byproduct in the form of ash. Sewage sludge ash is three to five times less in volume compared to stabilized and dehydrated sludge, but it also requires further management. The combustion process also destroys hazardous organic components in the sludge and minimizes unpleasant odors. The basic objective of the presented research is to explore the possibilities of recycling of the sewage sludge ash as a supplementary cementitious material. This is because of the main oxides present in the sewage sludge ash (SiO2, Al2O3 and Cao, which is similar to cement), so it can be considered as latent hydraulic and pozzolanic material. Physical and chemical characteristics of ashes, generated by sludge collected from different wastewater treatment plants, and incinerated in laboratory conditions at different temperatures, are investigated since it is a prerequisite of its subsequent recycling and the eventual use in other industries. Research was carried out by replacing up to 20% of cement by mass in cement mortar mixes with different obtained ashes and examining characteristics of created mixes in fresh and hardened condition. The mixtures with the highest ash content (20%) showed an average drop in workability of about 15% which is attributed to the increased water requirements when ash was used. Although some mixes containing added ash showed compressive and flexural strengths equivalent to those of reference mixes, generally slight decrease in strength was observed. However, it is important to point out that the compressive strengths always remained above 85% compared to the reference mix, while flexural strengths remained above 75%. Ecological impact of innovative construction products containing sewage sludge ash was determined by analyzing leaching concentrations of heavy metals. Results demonstrate that sewage sludge ash can satisfy technical and environmental criteria for use in cementitious materials which represents a new recycling application for an increasingly important waste material that is normally landfilled. Particular emphasis is placed on linking the composition of generated ashes depending on its origin and applied treatment processes (stage of wastewater treatment, sludge treatment technology, incineration temperature) with the characteristics of the final products. Acknowledgement: This work has been fully supported by Croatian Science Foundation under the project '7927 - Reuse of sewage sludge in concrete industry – from infrastructure to innovative construction products'.Keywords: cement mortar, recycling, sewage sludge ash, sludge disposal
Procedia PDF Downloads 247