Search results for: taphonomy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: taphonomy

2 Taphonomy and Paleoecology of Cenomanian Oysters (Mollusca: Bivalvia) from Egypt

Authors: Ahmed El-Sabbagh, Heba Mansour, Magdy El-Hedeny

Abstract:

This study provided a taphonomic alteration and paleoecology of Cenomanian oysters from the Musabaa Salama area, south western Sinai, Egypt. Three oyster zones can be recognized in the studied area, a lower one of Amphidonte (Ceratostreon) flabellatum (lower-middle Cenomanian), a middle zone of Ilymatogyra (Afrogyra) africana (upper Cenomanian) and an upper one of Exogyra (Costagyra) olisiponensis (upper Cenomanian). Taphonomic features including disarticulation, fragmentation, encrustation and bioerosion were subjected to multivariate statistical analyses. The analyses showed that the distributions of the identified ichnospecies were greatly similar within the identified oyster zones in the Musabaa Salama section. With rare exceptions, Entobia cretacea, Gastrochaenolites torpedo and Maeandropolydora decipiens are considered as common to abundant ichnospecies within the three recorded oyster zones. In contrast, and with some exceptions, E. ovula, E. retiformis and Rogerella pattei are considered as frequent to common ichnospecies within the identified oyster zones. Other ichnospecies, including Caulostrepsis cretacea, G. orbicularis, Trypanites solitarius, E. geometrica and C. taeniola, are mostly recorded in rare to frequent occurrences. Careful investigation of these host shells and the preserved encrusters and/or bioerosion sculptures provided data concerning: 1) the substrate characteristics, 2) time of encrustation and bioerosion, 3) rate of sedimentation, 4) the planktonic productivity level, and 5) the general bathymetry and the rate of transgression across the substrate.

Keywords: oysters, Cenomanian, taphonomy, palaeoecology, Sinai, Egypt

Procedia PDF Downloads 278
1 Effect of Tissue Preservation Chemicals on Decomposition in Different Soil Types

Authors: Onyekachi Ogbonnaya Iroanya, Taiye Abdullahi Gegele, Frank Tochukwu Egwuatu

Abstract:

Introduction: Forensic taphonomy is a multifaceted area that incorporates decomposition, chemical and biological cadaver exposure in post-mortem event chronology and reconstruction to predict the Post Mortem Interval (PMI). The aim of this study was to evaluate the integrity of DNA extracted from the remains of embalmed decomposed Sus domesticus tissues buried in different soil types. Method: A total of 12 limbs of Sus domesticus weighing between 0.7-1.4 kg were used. Each of the samples across the groups was treated with 10% formaldehyde, absolute methanol and 50% Pine oil for 24 hours before burial except the control samples, which were buried immediately. All samples were buried in shallow simulated Clay, Sandy and Loamy soil graves for 12 months. The DNA for each sample was extracted and quantified with Nanodrop Spectrophotometer (6305 JENWAY spectrometers). The rate of decomposition was examined through the modified qualitative decomposition analysis. Extracted DNA was amplified through PCR and bands visualized via gel electrophoresis. A biochemical enzyme assay was done for each burial grave soil. Result: The limbs in all burial groups had lost weight over the burial period. There was a significant increase in the soil urease level in the samples preserved in formaldehyde across the 3 soil type groups (p≤0.01). Also, the control grave soils recorded significantly higher alkaline phosphatase, dehydrogenase and calcium carbonate values compared to experimental grave soils (p≤0.01). The experimental samples showed a significant decrease in DNA concentration and purity when compared to the control groups (p≤0.01). Obtained findings of the soil biochemical analysis showed the embalming treatment altered the relationship between organic matter decomposition and soil biochemical properties as observed in the fluctuations that were recorded in the soil biochemical parameters. The PCR amplified DNA showed no bands on the gel electrophoresis plates. Conclusion: In criminal investigations, factors such as burial grave soil, grave soil biochemical properties, antemortem exposure to embalming chemicals should be considered in post-mortem interval (PMI) determination.

Keywords: forensic taphonomy, post-mortem interval (PMI), embalmment, decomposition, grave soil

Procedia PDF Downloads 134