Search results for: visualizing network internals
2416 Improve of Power Quality in Electrical Network Using STATCOM
Authors: A. R. Alesaadi
Abstract:
Flexible AC transmission system (FACTS) devices have an important rule on expended electrical transmission networks. These devices can provide control of one or more AC transmission system parameters to enhance controllability and increase power transfer capability. In this paper the effect of these devices on reliability of electrical networks is studied and it is shown that using of FACTS devices can improve the reliability of power networks and power quality in electrical networks, significantly.Keywords: FACTS devices, power networks, power quality, STATCOM
Procedia PDF Downloads 6722415 A Unified Approach for Digital Forensics Analysis
Authors: Ali Alshumrani, Nathan Clarke, Bogdan Ghite, Stavros Shiaeles
Abstract:
Digital forensics has become an essential tool in the investigation of cyber and computer-assisted crime. Arguably, given the prevalence of technology and the subsequent digital footprints that exist, it could have a significant role across almost all crimes. However, the variety of technology platforms (such as computers, mobiles, Closed-Circuit Television (CCTV), Internet of Things (IoT), databases, drones, cloud computing services), heterogeneity and volume of data, forensic tool capability, and the investigative cost make investigations both technically challenging and prohibitively expensive. Forensic tools also tend to be siloed into specific technologies, e.g., File System Forensic Analysis Tools (FS-FAT) and Network Forensic Analysis Tools (N-FAT), and a good deal of data sources has little to no specialist forensic tools. Increasingly it also becomes essential to compare and correlate evidence across data sources and to do so in an efficient and effective manner enabling an investigator to answer high-level questions of the data in a timely manner without having to trawl through data and perform the correlation manually. This paper proposes a Unified Forensic Analysis Tool (U-FAT), which aims to establish a common language for electronic information and permit multi-source forensic analysis. Core to this approach is the identification and development of forensic analyses that automate complex data correlations, enabling investigators to investigate cases more efficiently. The paper presents a systematic analysis of major crime categories and identifies what forensic analyses could be used. For example, in a child abduction, an investigation team might have evidence from a range of sources including computing devices (mobile phone, PC), CCTV (potentially a large number), ISP records, and mobile network cell tower data, in addition to third party databases such as the National Sex Offender registry and tax records, with the desire to auto-correlate and across sources and visualize in a cognitively effective manner. U-FAT provides a holistic, flexible, and extensible approach to providing digital forensics in technology, application, and data-agnostic manner, providing powerful and automated forensic analysis.Keywords: digital forensics, evidence correlation, heterogeneous data, forensics tool
Procedia PDF Downloads 2012414 Cluster-Based Multi-Path Routing Algorithm in Wireless Sensor Networks
Authors: Si-Gwan Kim
Abstract:
Small-size and low-power sensors with sensing, signal processing and wireless communication capabilities is suitable for the wireless sensor networks. Due to the limited resources and battery constraints, complex routing algorithms used for the ad-hoc networks cannot be employed in sensor networks. In this paper, we propose node-disjoint multi-path hexagon-based routing algorithms in wireless sensor networks. We suggest the details of the algorithm and compare it with other works. Simulation results show that the proposed scheme achieves better performance in terms of efficiency and message delivery ratio.Keywords: clustering, multi-path, routing protocol, sensor network
Procedia PDF Downloads 4062413 Big Data: Concepts, Technologies and Applications in the Public Sector
Authors: A. Alexandru, C. A. Alexandru, D. Coardos, E. Tudora
Abstract:
Big Data (BD) is associated with a new generation of technologies and architectures which can harness the value of extremely large volumes of very varied data through real time processing and analysis. It involves changes in (1) data types, (2) accumulation speed, and (3) data volume. This paper presents the main concepts related to the BD paradigm, and introduces architectures and technologies for BD and BD sets. The integration of BD with the Hadoop Framework is also underlined. BD has attracted a lot of attention in the public sector due to the newly emerging technologies that allow the availability of network access. The volume of different types of data has exponentially increased. Some applications of BD in the public sector in Romania are briefly presented.Keywords: big data, big data analytics, Hadoop, cloud
Procedia PDF Downloads 3142412 The Intersection of Artificial Intelligence and Mathematics
Authors: Mitat Uysal, Aynur Uysal
Abstract:
Artificial Intelligence (AI) is fundamentally driven by mathematics, with many of its core algorithms rooted in mathematical principles such as linear algebra, probability theory, calculus, and optimization techniques. This paper explores the deep connection between AI and mathematics, highlighting the role of mathematical concepts in key AI techniques like machine learning, neural networks, and optimization. To demonstrate this connection, a case study involving the implementation of a neural network using Python is presented. This practical example illustrates the essential role that mathematics plays in training a model and solving real-world problems.Keywords: AI, mathematics, machine learning, optimization techniques, image processing
Procedia PDF Downloads 222411 On the Combination of Patient-Generated Data with Data from a Secure Clinical Network Environment: A Practical Example
Authors: Jeroen S. de Bruin, Karin Schindler, Christian Schuh
Abstract:
With increasingly more mobile health applications appearing due to the popularity of smartphones, the possibility arises that these data can be used to improve the medical diagnostic process, as well as the overall quality of healthcare, while at the same time lowering costs. However, as of yet there have been no reports of a successful combination of patient-generated data from smartphones with data from clinical routine. In this paper, we describe how these two types of data can be combined in a secure way without modification to hospital information systems, and how they can together be used in a medical expert system for automatic nutritional classification and triage.Keywords: mobile health, data integration, expert systems, disease-related malnutrition
Procedia PDF Downloads 4792410 International Relations and the Transformation of Political Regimes in Post-Soviet States
Authors: Sergey Chirun
Abstract:
Using of a combination of institutional analysis and network access has allowed the author to identify the characteristics of the informal institutions of regional political power and political regimes. According to the author, ‘field’ of activity of post-Soviet regimes, formed under the influence of informal institutions, often contradicts democratic institutional regional changes which are aimed at creating of a legal-rational type of political domination and balanced model of separation of powers. This leads to the gap between the formal structure of institutions and the real nature of power, predetermining the specific character of the existing political regimes.Keywords: authoritarianism, institutions, political regime, social networks, transformation
Procedia PDF Downloads 4952409 All at Sea: Why OT / IT Infrastructure Is So Complex and the Challenges of Securing These on a Cruise Ship
Authors: Ken Munro
Abstract:
Cruise ships are possibly the most complex collection of systems it is possible to find in one physical, moving location. Propulsion, navigation, power generation and more, combined with a hotel, restaurant, casino, theatre etc, with safety and fire control systems to boot. That complexity creates huge challenges with keeping OT and IT systems apart. Ships engines are often remotely managed, network segregation is often defeated through troubleshooting when at sea. This session will refer to multiple entertaining and informative tales of taking control of ships, including accessing a ships Azipods via a game simulator for passengers. Fortunately, genuine attacks against vessels are very rare, but the effects and impacts to world trade are becoming increasingly obvious.Keywords: maritime security, cybersecurity, OT, IT, networks
Procedia PDF Downloads 382408 Modeling the Impact of Aquaculture in Wetland Ecosystems Using an Integrated Ecosystem Approach: Case Study of Setiu Wetlands, Malaysia
Authors: Roseliza Mat Alipiah, David Raffaelli, J. C. R. Smart
Abstract:
This research is a new approach as it integrates information from both environmental and social sciences to inform effective management of the wetlands. A three-stage research framework was developed for modelling the drivers and pressures imposed on the wetlands and their impacts to the ecosystem and the local communities. Firstly, a Bayesian Belief Network (BBN) was used to predict the probability of anthropogenic activities affecting the delivery of different key wetland ecosystem services under different management scenarios. Secondly, Choice Experiments (CEs) were used to quantify the relative preferences which key wetland stakeholder group (aquaculturists) held for delivery of different levels of these key ecosystem services. Thirdly, a Multi-Criteria Decision Analysis (MCDA) was applied to produce an ordinal ranking of the alternative management scenarios accounting for their impacts upon ecosystem service delivery as perceived through the preferences of the aquaculturists. This integrated ecosystem management approach was applied to a wetland ecosystem in Setiu, Terengganu, Malaysia which currently supports a significant level of aquaculture activities. This research has produced clear guidelines to inform policy makers considering alternative wetland management scenarios: Intensive Aquaculture, Conservation or Ecotourism, in addition to the Status Quo. The findings of this research are as follows: The BBN revealed that current aquaculture activity is likely to have significant impacts on water column nutrient enrichment, but trivial impacts on caged fish biomass, especially under the Intensive Aquaculture scenario. Secondly, the best fitting CE models identified several stakeholder sub-groups for aquaculturists, each with distinct sets of preferences for the delivery of key ecosystem services. Thirdly, the MCDA identified Conservation as the most desirable scenario overall based on ordinal ranking in the eyes of most of the stakeholder sub-groups. Ecotourism and Status Quo scenarios were the next most preferred and Intensive Aquaculture was the least desirable scenario. The methodologies developed through this research provide an opportunity for improving planning and decision making processes that aim to deliver sustainable management of wetland ecosystems in Malaysia.Keywords: Bayesian belief network (BBN), choice experiments (CE), multi-criteria decision analysis (MCDA), aquaculture
Procedia PDF Downloads 2972407 Urban Flood Resilience Comprehensive Assessment of "720" Rainstorm in Zhengzhou Based on Multiple Factors
Authors: Meiyan Gao, Zongmin Wang, Haibo Yang, Qiuhua Liang
Abstract:
Under the background of global climate change and rapid development of modern urbanization, the frequency of climate disasters such as extreme precipitation in cities around the world is gradually increasing. In this paper, Hi-PIMS model is used to simulate the "720" flood in Zhengzhou, and the continuous stages of flood resilience are determined with the urban flood stages are divided. The flood resilience curve under the influence of multiple factors were determined and the urban flood toughness was evaluated by combining the results of resilience curves. The flood resilience of urban unit grid was evaluated based on economy, population, road network, hospital distribution and land use type. Firstly, the rainfall data of meteorological stations near Zhengzhou and the remote sensing rainfall data from July 17 to 22, 2021 were collected. The Kriging interpolation method was used to expand the rainfall data of Zhengzhou. According to the rainfall data, the flood process generated by four rainfall events in Zhengzhou was reproduced. Based on the results of the inundation range and inundation depth in different areas, the flood process was divided into four stages: absorption, resistance, overload and recovery based on the once in 50 years rainfall standard. At the same time, based on the levels of slope, GDP, population, hospital affected area, land use type, road network density and other aspects, the resilience curve was applied to evaluate the urban flood resilience of different regional units, and the difference of flood process of different precipitation in "720" rainstorm in Zhengzhou was analyzed. Faced with more than 1,000 years of rainstorm, most areas are quickly entering the stage of overload. The influence levels of factors in different areas are different, some areas with ramps or higher terrain have better resilience, and restore normal social order faster, that is, the recovery stage needs shorter time. Some low-lying areas or special terrain, such as tunnels, will enter the overload stage faster in the case of heavy rainfall. As a result, high levels of flood protection, water level warning systems and faster emergency response are needed in areas with low resilience and high risk. The building density of built-up area, population of densely populated area and road network density all have a certain negative impact on urban flood resistance, and the positive impact of slope on flood resilience is also very obvious. While hospitals can have positive effects on medical treatment, they also have negative effects such as population density and asset density when they encounter floods. The result of a separate comparison of the unit grid of hospitals shows that the resilience of hospitals in the distribution range is low when they encounter floods. Therefore, in addition to improving the flood resistance capacity of cities, through reasonable planning can also increase the flood response capacity of cities. Changes in these influencing factors can further improve urban flood resilience, such as raise design standards and the temporary water storage area when floods occur, train the response speed of emergency personnel and adjust emergency support equipment.Keywords: urban flood resilience, resilience assessment, hydrodynamic model, resilience curve
Procedia PDF Downloads 442406 A Radiofrequency Based Navigation Method for Cooperative Robotic Communities in Surface Exploration Missions
Authors: Francisco J. García-de-Quirós, Gianmarco Radice
Abstract:
When considering small robots working in a cooperative community for Moon surface exploration, navigation and inter-nodes communication aspects become a critical issue for the mission success. For this approach to succeed, it is necessary however to deploy the required infrastructure for the robotic community to achieve efficient self-localization as well as relative positioning and communications between nodes. In this paper, an exploration mission concept in which two cooperative robotic systems co-exist is presented. This paradigm hinges on a community of reference agents that provide support in terms of communication and navigation to a second agent community tasked with exploration goals. The work focuses on the role of the agent community in charge of the overall support and, more specifically, will focus on the positioning and navigation methods implemented in RF microwave bands, which are combined with the communication services. An analysis of the different methods for range and position calculation are presented, as well as the main limiting factors for precision and resolution, such as phase and frequency noise in RF reference carriers and drift mechanisms such as thermal drift and random walk. The effects of carrier frequency instability due to phase noise are categorized in different contributing bands, and the impact of these spectrum regions are considered both in terms of the absolute position and the relative speed. A mission scenario is finally proposed, and key metrics in terms of mass and power consumption for the required payload hardware are also assessed. For this purpose, an application case involving an RF communication network in UHF Band is described, in coexistence with a communications network used for the single agents to communicate within the both the exploring agents as well as the community and with the mission support agents. The proposed approach implements a substantial improvement in planetary navigation since it provides self-localization capabilities for robotic agents characterized by very low mass, volume and power budgets, thus enabling precise navigation capabilities to agents of reduced dimensions. Furthermore, a common and shared localization radiofrequency infrastructure enables new interaction mechanisms such as spatial arrangement of agents over the area of interest for distributed sensing.Keywords: cooperative robotics, localization, robot navigation, surface exploration
Procedia PDF Downloads 2962405 Transmission Performance Analysis for Live Broadcasting over IPTV Service in Telemedicine Applications
Authors: Jenny K. Ubaque, Edward P. Guillen, Juan S. Solórzano, Leonardo J. Ramírez
Abstract:
The health care must be a right for people around the world, but in order to guarantee the access to all, it is necessary to overcome geographical barriers. Telemedicine take advantage of Information Communication Technologies to deploy health care services around the world. To achieve those goals, it is necessary to use existing last mile solution to create access for home users, which is why is necessary to establish the channel characteristics for those kinds of services. This paper presents an analysis of network performance of last mile solution for the use of IPTV broadcasting with the application of streaming for telemedicine apps.Keywords: telemedicine, IPTV, GPON, ADSL2+, coaxial, jumbogram
Procedia PDF Downloads 3732404 PatchMix: Learning Transferable Semi-Supervised Representation by Predicting Patches
Authors: Arpit Rai
Abstract:
In this work, we propose PatchMix, a semi-supervised method for pre-training visual representations. PatchMix mixes patches of two images and then solves an auxiliary task of predicting the label of each patch in the mixed image. Our experiments on the CIFAR-10, 100 and the SVHN dataset show that the representations learned by this method encodes useful information for transfer to new tasks and outperform the baseline Residual Network encoders by on CIFAR 10 by 12% on ResNet 101 and 2% on ResNet-56, by 4% on CIFAR-100 on ResNet101 and by 6% on SVHN dataset on the ResNet-101 baseline model.Keywords: self-supervised learning, representation learning, computer vision, generalization
Procedia PDF Downloads 932403 A Survey on Concurrency Control Methods in Distributed Database
Authors: Seyed Mohsen Jameii
Abstract:
In the last years, remarkable improvements have been made in the ability of distributed database systems performance. A distributed database is composed of some sites which are connected to each other through network connections. In this system, if good harmonization is not made between different transactions, it may result in database incoherence. Nowadays, because of the complexity of many sites and their connection methods, it is difficult to extend different models in distributed database serially. The principle goal of concurrency control in distributed database is to ensure not interfering in accessibility of common database by different sites. Different concurrency control algorithms have been suggested to use in distributed database systems. In this paper, some available methods have been introduced and compared for concurrency control in distributed database.Keywords: distributed database, two phase locking protocol, transaction, concurrency
Procedia PDF Downloads 3562402 Influence of Error Correction Codes on the Quality of Optical Broadband Connections
Authors: Mouna Hemdi, Jamel bel Hadj Tahar
Abstract:
The increasing development of multimedia applications requiring the simultaneous transport of several different services contributes to the evolution of the need for very high-speed network. In this paper, we propose an effective solution to achieve the very high speed while retaining elements of the optical transmission channel. So our study focuses on error correcting codes that aim for quality improvement on duty. We present a comparison of the quality of service for single channels and integrating the code BCH, RS and LDPC in order to find the best code in the different conditions of the transmission.Keywords: code error correction, high speed broadband, optical transmission, information systems security
Procedia PDF Downloads 3962401 Diplomacy in Times of Disaster: Management through Reputational Capital
Authors: Liza Ireni-Saban
Abstract:
The 6.6 magnitude quake event that occurred in 2003 (Bam, Iran) made it impossible for the Iranian government to handle disaster relief efforts domestically. In this extreme event, the Iranian government reached out to the international community, and this created a momentum that had to be carried out by trust-building efforts on all sides, often termed ‘Disaster Diplomacy’. Indeed, the circumstances were even more critical when one considers the increasing political and economic isolation of Iran within the international community. The potential for transformative political space to be opened by disaster has been recognized by dominant international political actors. Despite the fact that Bam 2003 post-disaster relief efforts did not catalyze any diplomatic activities on all sides, it is suggested that few international aid agencies have successfully used disaster recovery to enhance their popular legitimacy and reputation among the international community. In terms of disaster diplomacy, an actor’s reputational capital may affect his ability to build coalitions and alliances to achieve international political ends, to negotiate and build understanding and trust with foreign publics. This study suggests that the post-disaster setting may benefit from using the ecology of games framework to evaluate the role of bridging actors and mediators in facilitating collaborative governance networks. Recent developments in network theory and analysis provide means of structural embeddedness to explore how reputational capital can be built through brokerage roles of actors engaged in a disaster management network. This paper then aims to structure the relations among actors that participated in the post-disaster relief efforts in the 2003 Bam earthquake (Iran) in order to assess under which conditions actors may be strategically utilized to serve as mediating organizations for future disaster events experienced by isolated nations or nations in conflict. The results indicate the strategic use of reputational capital by the Iranian Ministry of Foreign Affairs as key broker to build a successful coordinative system for reducing disaster vulnerabilities. International aid agencies rarely played brokerage roles to coordinate peripheral actors. U.S. foreign assistance (USAID), despite coordination capacities, was prevented from serving brokerage roles in the system.Keywords: coordination, disaster diplomacy, international aid organizations, Iran
Procedia PDF Downloads 1562400 Evaluating the Ability to Cycle in Cities Using Geographic Information Systems Tools: The Case Study of Greek Modern Cities
Authors: Christos Karolemeas, Avgi Vassi, Georgia Christodoulopoulou
Abstract:
Although the past decades, planning a cycle network became an inseparable part of all transportation plans, there is still a lot of room for improvement in the way planning is made, in order to create safe and direct cycling networks that gather the parameters that positively influence one's decision to cycle. The aim of this article is to study, evaluate and visualize the bikeability of cities. This term is often used as the 'the ability of a person to bike' but this study, however, adopts the term in the sense of bikeability as 'the ability of the urban landscape to be biked'. The methodology used included assessing cities' accessibility by cycling, based on international literature and corresponding walkability methods and the creation of a 'bikeability index'. Initially, a literature review was made to identify the factors that positively affect the use of bicycle infrastructure. Those factors were used in order to create the spatial index and quantitatively compare the city network. Finally, the bikeability index was applied in two case studies: two Greek municipalities that, although, they have similarities in terms of land uses, population density and traffic congestion, they are totally different in terms of geomorphology. The factors suggested by international literature were (a) safety, (b) directness, (c) comfort and (d) the quality of the urban environment. Those factors were quantified through the following parameters: slope, junction density, traffic density, traffic speed, natural environment, built environment, activities coverage, centrality and accessibility to public transport stations. Each road section was graded for the above-mentioned parameters, and the overall grade shows the level of bicycle accessibility (low, medium, high). Each parameter, as well as the overall accessibility levels, were analyzed and visualized through Geographic Information Systems. This paper presents the bikeability index, its' results, the problems that have arisen and the conclusions from its' implementation through Strengths-Weaknesses-Opportunities-Threats analysis. The purpose of this index is to make it easy for researchers, practitioners, politicians, and stakeholders to quantify, visualize and understand which parts of the urban fabric are suitable for cycling.Keywords: accessibility, cycling, green spaces, spatial data, urban environment
Procedia PDF Downloads 1132399 Underwater Image Enhancement and Reconstruction Using CNN and the MultiUNet Model
Authors: Snehal G. Teli, R. J. Shelke
Abstract:
CNN and MultiUNet models are the framework for the proposed method for enhancing and reconstructing underwater images. Multiscale merging of features and regeneration are both performed by the MultiUNet. CNN collects relevant features. Extensive tests on benchmark datasets show that the proposed strategy performs better than the latest methods. As a result of this work, underwater images can be represented and interpreted in a number of underwater applications with greater clarity. This strategy will advance underwater exploration and marine research by enhancing real-time underwater image processing systems, underwater robotic vision, and underwater surveillance.Keywords: convolutional neural network, image enhancement, machine learning, multiunet, underwater images
Procedia PDF Downloads 842398 SiC Merged PiN and Schottky (MPS) Power Diodes Electrothermal Modeling in SPICE
Abstract:
This paper sets out a behavioral macro-model of a Merged PiN and Schottky (MPS) diode based on silicon carbide (SiC). This model holds good for both static and dynamic electrothermal simulations for industrial applications. Its parameters have been worked out from datasheets curves by drawing on the optimization method: Simulated Annealing (SA) for the SiC MPS diodes made available in the industry. The model also adopts the Analog Behavioral Model (ABM) of PSPICE in which it has been implemented. The thermal behavior of the devices was also taken into consideration by making use of Foster’ canonical network as figured out from electro-thermal measurement provided by the manufacturer of the device.Keywords: SiC MPS diode, electro-thermal, SPICE model, behavioral macro-model
Procedia PDF Downloads 4082397 Implementation of Invisible Digital Watermarking
Authors: V. Monisha, D. Sindhuja, M. Sowmiya
Abstract:
Over the decade, the applications about multimedia have been developed rapidly. The advancement in the communication field at the faster pace, it is necessary to protect the data during transmission. Thus, security of multimedia contents becomes a vital issue, and it is a need for protecting the digital content against malfunctions. Digital watermarking becomes the solution for the copyright protection and authentication of data in the network. In multimedia applications, embedded watermarks should be robust, and imperceptible. For improving robustness, the discrete wavelet transform is used. Both encoding and extraction algorithm can be done using MATLAB R2012a. In this Discrete wavelet transform (DWT) domain of digital image, watermarking algorithm is used, and hardware implementation can be done on Xilinx based FPGA.Keywords: digital watermarking, DWT, robustness, FPGA
Procedia PDF Downloads 4162396 Accurate Mass Segmentation Using U-Net Deep Learning Architecture for Improved Cancer Detection
Authors: Ali Hamza
Abstract:
Accurate segmentation of breast ultrasound images is of paramount importance in enhancing the diagnostic capabilities of breast cancer detection. This study presents an approach utilizing the U-Net architecture for segmenting breast ultrasound images aimed at improving the accuracy and reliability of mass identification within the breast tissue. The proposed method encompasses a multi-stage process. Initially, preprocessing techniques are employed to refine image quality and diminish noise interference. Subsequently, the U-Net architecture, a deep learning convolutional neural network (CNN), is employed for pixel-wise segmentation of regions of interest corresponding to potential breast masses. The U-Net's distinctive architecture, characterized by a contracting and expansive pathway, enables accurate boundary delineation and detailed feature extraction. To evaluate the effectiveness of the proposed approach, an extensive dataset of breast ultrasound images is employed, encompassing diverse cases. Quantitative performance metrics such as the Dice coefficient, Jaccard index, sensitivity, specificity, and Hausdorff distance are employed to comprehensively assess the segmentation accuracy. Comparative analyses against traditional segmentation methods showcase the superiority of the U-Net architecture in capturing intricate details and accurately segmenting breast masses. The outcomes of this study emphasize the potential of the U-Net-based segmentation approach in bolstering breast ultrasound image analysis. The method's ability to reliably pinpoint mass boundaries holds promise for aiding radiologists in precise diagnosis and treatment planning. However, further validation and integration within clinical workflows are necessary to ascertain their practical clinical utility and facilitate seamless adoption by healthcare professionals. In conclusion, leveraging the U-Net architecture for breast ultrasound image segmentation showcases a robust framework that can significantly enhance diagnostic accuracy and advance the field of breast cancer detection. This approach represents a pivotal step towards empowering medical professionals with a more potent tool for early and accurate breast cancer diagnosis.Keywords: mage segmentation, U-Net, deep learning, breast cancer detection, diagnostic accuracy, mass identification, convolutional neural network
Procedia PDF Downloads 872395 Hybrid Materials Obtained via Sol-Gel Way, by the Action of Teraethylorthosilicate with 1, 3, 4-Thiadiazole 2,5-Bifunctional Compounds
Authors: Afifa Hafidh, Fathi Touati, Ahmed Hichem Hamzaoui, Sayda Somrani
Abstract:
The objective of the present study has been to synthesize and to characterize silica hybrid materials using sol-gel technic and to investigate their properties. Silica materials were successfully fabricated using various bi-functional 1,3,4-thiadiazoles and tetraethoxysilane (TEOS) as co-precursors via a facile one-pot sol-gel pathway. TEOS was introduced at room temperature with 1,3,4-thiadiazole 2,5-difunctiunal adducts, in ethanol as solvent and using HCl acid as catalyst. The sol-gel process lead to the formation of monolithic, coloured and transparent gels. TEOS was used as a principal network forming agent. The incorporation of 1,3,4-thiadiazole molecules was realized by attachment of these later onto a silica matrix. This allowed covalent linkage between organic and inorganic phases and lead to the formation of Si-N and Si-S bonds. The prepared hybrid materials were characterized by Fourier transform infrared, NMR ²⁹Si and ¹³C, scanning electron microscopy and nitrogen absorption-desorption measurements. The optic and magnetic properties of hybrids are studied respectively by ultra violet-visible spectroscopy and electron paramagnetic resonance. It was shown in this work, that heterocyclic moieties were successfully attached in the hybrid skeleton. The formation of the Si-network composed of cyclic units (Q3 structures) connected by oxygen bridges (Q4 structures) was proved by ²⁹Si NMR spectroscopy. The Brunauer-Elmet-Teller nitrogen adsorption-desorption method shows that all the prepared xerogels have isotherms type IV and are mesoporous solids. The specific surface area and pore volume of these materials are important. The obtained results show that all materials are paramagnetic semiconductors. The data obtained by Nuclear magnetic resonance ²⁹Si and Fourier transform infrared spectroscopy, show that Si-OH and Si-NH groups existing in silica hybrids can participate in adsorption interactions. The obtained materials containing reactive centers could exhibit adsorption properties of metal ions due to the presence of OH and NH functionality in the mesoporous frame work. Our design of a simple method to prepare hybrid materials may give interest of the development of mesoporous hybrid systems and their use within the domain of environment in the future.Keywords: hybrid materials, sol-gel process, 1, 3, 4-thiadaizole, TEOS
Procedia PDF Downloads 1862394 The Impact of Artificial Intelligence on Agricultural Machines and Plant Nutrition
Authors: Kirolos Gerges Yakoub Gerges
Abstract:
Self-sustaining agricultural machines act in stochastic surroundings and therefore, should be capable of perceive the surroundings in real time. This notion can be done using image sensors blended with superior device learning, mainly Deep mastering. Deep convolutional neural networks excel in labeling and perceiving colour pix and since the fee of RGB-cameras is low, the hardware cost of accurate notion relies upon heavily on memory and computation power. This paper investigates the opportunity of designing lightweight convolutional neural networks for semantic segmentation (pixel clever class) with reduced hardware requirements, to allow for embedded usage in self-reliant agricultural machines. The usage of compression techniques, a lightweight convolutional neural community is designed to carry out actual-time semantic segmentation on an embedded platform. The community is skilled on two big datasets, ImageNet and Pascal Context, to apprehend as much as four hundred man or woman instructions. The 400 training are remapped into agricultural superclasses (e.g. human, animal, sky, road, area, shelterbelt and impediment) and the capacity to provide correct actual-time perception of agricultural environment is studied. The network is carried out to the case of self-sufficient grass mowing the usage of the NVIDIA Tegra X1 embedded platform. Feeding case-unique pics to the community consequences in a fully segmented map of the superclasses within the picture. As the network remains being designed and optimized, handiest a qualitative analysis of the technique is entire on the abstract submission deadline. intending this cut-off date, the finalized layout is quantitatively evaluated on 20 annotated grass mowing pictures. Light-weight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show aggressive performance on the subject of accuracy and speed. It’s miles viable to offer value-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.Keywords: centrifuge pump, hydraulic energy, agricultural applications, irrigationaxial flux machines, axial flux applications, coreless machines, PM machinesautonomous agricultural machines, deep learning, safety, visual perception
Procedia PDF Downloads 332393 Throughput of Point Coordination Function (PCF)
Authors: Faisel Eltuhami Alzaalik, Omar Imhemed Alramli, Ahmed Mohamed Elaieb
Abstract:
The IEEE 802.11 defines two modes of MAC, distributed coordination function (DCF) and point coordination function (PCF) mode. The first sub-layer of the MAC is the distributed coordination function (DCF). A contention algorithm is used via DCF to provide access to all traffic. The point coordination function (PCF) is the second sub-layer used to provide contention-free service. PCF is upper DCF and it uses features of DCF to establish guarantee access of its users. Some papers and researches that have been published in this technology were reviewed in this paper, as well as talking briefly about the distributed coordination function (DCF) technology. The simulation of the PCF function have been applied by using a simulation program called network simulator (NS2) and have been found out the throughput of a transmitter system by using this function.Keywords: DCF, PCF, throughput, NS2
Procedia PDF Downloads 5812392 Blockchain Security in MANETs
Authors: Nada Mouchfiq, Ahmed Habbani, Chaimae Benjbara
Abstract:
The security aspect of the IoT occupies a place of great importance especially after the evolution that has known this field lastly because it must take into account the transformations and the new applications .Blockchain is a new technology dedicated to the data sharing. However, this does not work the same way in the different systems with different operating principles. This article will discuss network security using the Blockchain to facilitate the sending of messages and information, enabling the use of new processes and enabling autonomous coordination of devices. To do this, we will discuss proposed solutions to ensure a high level of security in these networks in the work of other researchers. Finally, our article will propose a method of security more adapted to our needs as a team working in the ad hoc networks, this method is based on the principle of the Blockchain and that we named ”MPR Blockchain”.Keywords: Ad hocs networks, blockchain, MPR, security
Procedia PDF Downloads 1872391 Reverse Logistics Information Management Using Ontological Approach
Authors: F. Lhafiane, A. Elbyed, M. Bouchoum
Abstract:
Reverse Logistics (RL) Process is considered as complex and dynamic network that involves many stakeholders such as: suppliers, manufactures, warehouse, retails, and costumers, this complexity is inherent in such process due to lack of perfect knowledge or conflicting information. Ontologies, on the other hand, can be considered as an approach to overcome the problem of sharing knowledge and communication among the various reverse logistics partners. In this paper, we propose a semantic representation based on hybrid architecture for building the Ontologies in an ascendant way, this method facilitates the semantic reconciliation between the heterogeneous information systems (ICT) that support reverse logistics Processes and product data.Keywords: Reverse Logistics, information management, heterogeneity, ontologies, semantic web
Procedia PDF Downloads 4942390 Arc Interruption Design for DC High Current/Low SC Fuses via Simulation
Authors: Ali Kadivar, Kaveh Niayesh
Abstract:
This report summarizes a simulation-based approach to estimate the current interruption behavior of a fuse element utilized in a DC network protecting battery banks under different stresses. Due to internal resistance of the battries, the short circuit current in very close to the nominal current, and it makes the fuse designation tricky. The base configuration considered in this report consists of five fuse units in parallel. The simulations are performed using a multi-physics software package, COMSOL® 5.6, and the necessary material parameters have been calculated using two other software packages.The first phase of the simulation starts with the heating of the fuse elements resulted from the current flow through the fusing element. In this phase, the heat transfer between the metallic strip and the adjacent materials results in melting and evaporation of the filler and housing before the aluminum strip is evaporated and the current flow in the evaporated strip is cut-off, or an arc is eventually initiated. The initiated arc starts to expand, so the entire metallic strip is ablated, and a long arc of around 20 mm is created within the first 3 milliseconds after arc initiation (v_elongation = 6.6 m/s. The final stage of the simulation is related to the arc simulation and its interaction with the external circuitry. Because of the strong ablation of the filler material and venting of the arc caused by the melting and evaporation of the filler and housing before an arc initiates, the arc is assumed to burn in almost pure ablated material. To be able to precisely model this arc, one more step related to the derivation of the transport coefficients of the plasma in ablated urethane was necessary. The results indicate that an arc current interruption, in this case, will not be achieved within the first tens of milliseconds. In a further study, considering two series elements, the arc was interrupted within few milliseconds. A very important aspect in this context is the potential impact of many broken strips parallel to the one where the arc occurs. The generated arcing voltage is also applied to the other broken strips connected in parallel with arcing path. As the gap between the other strips is very small, a large voltage of a few hundred volts generated during the current interruption may eventually lead to a breakdown of another gap. As two arcs in parallel are not stable, one of the arcs will extinguish, and the total current will be carried by one single arc again. This process may be repeated several times if the generated voltage is very large. The ultimate result would be that the current interruption may be delayed.Keywords: DC network, high current / low SC fuses, FEM simulation, paralle fuses
Procedia PDF Downloads 702389 Mobile Cloud Computing: How to Improve
Authors: Abdullah Aljumah, Tariq Ahamad
Abstract:
The simplest possible human-computer interaction is mobile cloud computing as it emerges and makes the use of all modern-day human-oriented technology. The main aim of this idea is the QoS (quality of service) by using user-friendly and reliable software over the global network in order to make it economical by reducing cost, reliable, and increase the main storage. Since we studied and went through almost all the existing related work in this area and we came up with some challenges that will rise or might be rising for some basic areas in mobile cloud computing and mostly stogie and security area. In this research article, we suggest some recommendation for mobile cloud computing and for its security that will help in building more powerful tools to handle all this pressure.Keywords: Cloud Computing, MCC, SAAS, computer interaction
Procedia PDF Downloads 3842388 Storm-Runoff Simulation Approaches for External Natural Catchments of Urban Sewer Systems
Authors: Joachim F. Sartor
Abstract:
According to German guidelines, external natural catchments are greater sub-catchments without significant portions of impervious areas, which possess a surface drainage system and empty in a sewer network. Basically, such catchments should be disconnected from sewer networks, particularly from combined systems. If this is not possible due to local conditions, their flow hydrographs have to be considered at the design of sewer systems, because the impact may be significant. Since there is a lack of sufficient measurements of storm-runoff events for such catchments and hence verified simulation methods to analyze their design flows, German standards give only general advices and demands special considerations in such cases. Compared to urban sub-catchments, external natural catchments exhibit greatly different flow characteristics. With increasing area size their hydrological behavior approximates that of rural catchments, e.g. sub-surface flow may prevail and lag times are comparable long. There are few observed peak flow values and simple (mostly empirical) approaches that are offered by literature for Central Europe. Most of them are at least helpful to crosscheck results that are achieved by simulation lacking calibration. Using storm-runoff data from five monitored rural watersheds in the west of Germany with catchment areas between 0.33 and 1.07 km2 , the author investigated by multiple event simulation three different approaches to determine the rainfall excess. These are the modified SCS variable run-off coefficient methods by Lutz and Zaiß as well as the soil moisture model by Ostrowski. Selection criteria for storm events from continuous precipitation data were taken from recommendations of M 165 and the runoff concentration method (parallel cascades of linear reservoirs) from a DWA working report to which the author had contributed. In general, the two run-off coefficient methods showed results that are of sufficient accuracy for most practical purposes. The soil moisture model showed no significant better results, at least not to such a degree that it would justify the additional data collection that its parameter determination requires. Particularly typical convective summer events after long dry periods, that are often decisive for sewer networks (not so much for rivers), showed discrepancies between simulated and measured flow hydrographs.Keywords: external natural catchments, sewer network design, storm-runoff modelling, urban drainage
Procedia PDF Downloads 1552387 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation
Authors: Jonathan Gong
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning
Procedia PDF Downloads 133