Search results for: real-time spatial big data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26703

Search results for: real-time spatial big data

24273 Feature Selection Approach for the Classification of Hydraulic Leakages in Hydraulic Final Inspection using Machine Learning

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Manufacturing companies are facing global competition and enormous cost pressure. The use of machine learning applications can help reduce production costs and create added value. Predictive quality enables the securing of product quality through data-supported predictions using machine learning models as a basis for decisions on test results. Furthermore, machine learning methods are able to process large amounts of data, deal with unfavourable row-column ratios and detect dependencies between the covariates and the given target as well as assess the multidimensional influence of all input variables on the target. Real production data are often subject to highly fluctuating boundary conditions and unbalanced data sets. Changes in production data manifest themselves in trends, systematic shifts, and seasonal effects. Thus, Machine learning applications require intensive pre-processing and feature selection. Data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets. Within the used real data set of Bosch hydraulic valves, the comparability of the same production conditions in the production of hydraulic valves within certain time periods can be identified by applying the concept drift method. Furthermore, a classification model is developed to evaluate the feature importance in different subsets within the identified time periods. By selecting comparable and stable features, the number of features used can be significantly reduced without a strong decrease in predictive power. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. In this research, the ada boosting classifier is used to predict the leakage of hydraulic valves based on geometric gauge blocks from machining, mating data from the assembly, and hydraulic measurement data from end-of-line testing. In addition, the most suitable methods are selected and accurate quality predictions are achieved.

Keywords: classification, achine learning, predictive quality, feature selection

Procedia PDF Downloads 166
24272 Examining the Relational Approach Elements in City Development Strategy of Qazvin 2031

Authors: Majid Etaati, Hamid Majedi

Abstract:

Relational planning approach proposed by Patsy Healey goes beyond the physical proximity and emphasizes social proximity. This approach stresses the importance of nodes and flows between nodes. Current plans in European cities have incrementally incorporated this approach, but urban plans in Iran have still stayed very detailed and rigid. In response to the weak evaluation results of the comprehensive planning approach in Qazvin, the local authorities applied the City Development Strategy (CDS) to cope with new urban challenges. The paper begins with an explanation of relational planning and suggests that Healey gives urban planners about spatial strategies and then it surveys relational factors in CDS of Qazvin. This study analyzes the extent which CDS of Qazvin have highlighted nodes, flows, and dynamics. In the end, the study concludes that there is a relational understanding of urban dynamics in the plan, but it is weak.

Keywords: relational, dynamics, city development strategy, urban planning, Qazvin

Procedia PDF Downloads 143
24271 Secure Data Sharing of Electronic Health Records With Blockchain

Authors: Kenneth Harper

Abstract:

The secure sharing of Electronic Health Records (EHRs) is a critical challenge in modern healthcare, demanding solutions to enhance interoperability, privacy, and data integrity. Traditional standards like Health Information Exchange (HIE) and HL7 have made significant strides in facilitating data exchange between healthcare entities. However, these approaches rely on centralized architectures that are often vulnerable to data breaches, lack sufficient privacy measures, and have scalability issues. This paper proposes a framework for secure, decentralized sharing of EHRs using blockchain technology, cryptographic tokens, and Non-Fungible Tokens (NFTs). The blockchain's immutable ledger, decentralized control, and inherent security mechanisms are leveraged to improve transparency, accountability, and auditability in healthcare data exchanges. Furthermore, we introduce the concept of tokenizing patient data through NFTs, creating unique digital identifiers for each record, which allows for granular data access controls and proof of data ownership. These NFTs can also be employed to grant access to authorized parties, establishing a secure and transparent data sharing model that empowers both healthcare providers and patients. The proposed approach addresses common privacy concerns by employing privacy-preserving techniques such as zero-knowledge proofs (ZKPs) and homomorphic encryption to ensure that sensitive patient information can be shared without exposing the actual content of the data. This ensures compliance with regulations like HIPAA and GDPR. Additionally, the integration of Fast Healthcare Interoperability Resources (FHIR) with blockchain technology allows for enhanced interoperability, enabling healthcare organizations to exchange data seamlessly and securely across various systems while maintaining data governance and regulatory compliance. Through real-world case studies and simulations, this paper demonstrates how blockchain-based EHR sharing can reduce operational costs, improve patient outcomes, and enhance the security and privacy of healthcare data. This decentralized framework holds great potential for revolutionizing healthcare information exchange, providing a transparent, scalable, and secure method for managing patient data in a highly regulated environment.

Keywords: blockchain, electronic health records (ehrs), fast healthcare interoperability resources (fhir), health information exchange (hie), hl7, interoperability, non-fungible tokens (nfts), privacy-preserving techniques, tokens, secure data sharing,

Procedia PDF Downloads 27
24270 Effect of Forests and Forest Cover Change on Rainfall in the Central Rift Valley of Ethiopia

Authors: Alemayehu Muluneh, Saskia Keesstra, Leo Stroosnijder, Woldeamlak Bewket, Ashenafi Burka

Abstract:

There are some scientific evidences and a belief by many that forests attract rain and deforestation contributes to a decline of rainfall. However, there is still a lack of concrete scientific evidence on the role of forests in rainfall amount. In this paper, we investigate the forest-rainfall relationships in the environmentally hot spot area of the Central Rift Valley (CRV) of Ethiopia. Specifically, we evaluate long term (1970-2009) rainfall variability and its relationship with historical forest cover and the relationship between existing forest cover and topographical variables and rainfall distribution. The study used 16 long term and 15 short term rainfall stations. The Mann-Kendall test, bi variate and multiple regression models were used. The results show forest and wood land cover continuously declined over the 40 years period (1970-2009), but annual rainfall in the rift valley floor increased by 6.42 mm/year. But, on the escarpment and highlands, annual rainfall decreased by 2.48 mm/year. The increase in annual rainfall in the rift valley floor is partly attributable to the increase in evaporation as a result of increasing temperatures from the 4 existing lakes in the rift valley floor. Though, annual rainfall is decreasing on the escarpment and highlands, there was no significant correlation between this rainfall decrease and forest and wood land decline and also rainfall variability in the region was not explained by forest cover. Hence, the decrease in annual rainfall on the escarpment and highlands is likely related to the global warming of the atmosphere and the surface waters of the Indian Ocean. Spatial variability of number of rainy days from systematically observed two-year’s rainfall data (2012-2013) was significantly (R2=-0.63) explained by forest cover (distance from forest). But, forest cover was not a significant variable (R2=-0.40) in explaining annual rainfall amount. Generally, past deforestation and existing forest cover showed very little effect on long term and short term rainfall distribution, but a significant effect on number of rainy days in the CRV of Ethiopia.

Keywords: elevation, forest cover, rainfall, slope

Procedia PDF Downloads 557
24269 An Extended Inverse Pareto Distribution, with Applications

Authors: Abdel Hadi Ebraheim

Abstract:

This paper introduces a new extension of the Inverse Pareto distribution in the framework of Marshal-Olkin (1997) family of distributions. This model is capable of modeling various shapes of aging and failure data. The statistical properties of the new model are discussed. Several methods are used to estimate the parameters involved. Explicit expressions are derived for different types of moments of value in reliability analysis are obtained. Besides, the order statistics of samples from the new proposed model have been studied. Finally, the usefulness of the new model for modeling reliability data is illustrated using two real data sets with simulation study.

Keywords: pareto distribution, marshal-Olkin, reliability, hazard functions, moments, estimation

Procedia PDF Downloads 86
24268 Potential Determinants of Research Output: Comparing Economics and Business

Authors: Osiris Jorge Parcero, Néstor Gandelman, Flavia Roldán, Josef Montag

Abstract:

This paper uses cross-country unbalanced panel data of up to 146 countries over the period 1996 to 2015 to be the first study to identify potential determinants of a country’s relative research output in Economics versus Business. More generally, it is also one of the first studies comparing Economics and Business. The results show that better policy-related data availability, higher income inequality, and lower ethnic fractionalization relatively favor economics. The findings are robust to two alternative fixed effects specifications, three alternative definitions of economics and business, two alternative measures of research output (publications and citations), and the inclusion of meaningful control variables. To the best of our knowledge, our paper is also the first to demonstrate the importance of policy-related data as drivers of economic research. Our regressions show that the availability of this type of data is the single most important factor associated with the prevalence of economics over business as a research domain. Thus, our work has policy implications, as the availability of policy-related data is partially under policy control. Moreover, it has implications for students, professionals, universities, university departments, and research-funding agencies that face choices between profiles oriented toward economics and those oriented toward business. Finally, the conclusions show potential lines for further research.

Keywords: research output, publication performance, bibliometrics, economics, business, policy-related data

Procedia PDF Downloads 138
24267 Assessment of Routine Health Information System (RHIS) Quality Assurance Practices in Tarkwa Sub-Municipal Health Directorate, Ghana

Authors: Richard Okyere Boadu, Judith Obiri-Yeboah, Kwame Adu Okyere Boadu, Nathan Kumasenu Mensah, Grace Amoh-Agyei

Abstract:

Routine health information system (RHIS) quality assurance has become an important issue, not only because of its significance in promoting a high standard of patient care but also because of its impact on government budgets for the maintenance of health services. A routine health information system comprises healthcare data collection, compilation, storage, analysis, report generation, and dissemination on a routine basis in various healthcare settings. The data from RHIS give a representation of health status, health services, and health resources. The sources of RHIS data are normally individual health records, records of services delivered, and records of health resources. Using reliable information from routine health information systems is fundamental in the healthcare delivery system. Quality assurance practices are measures that are put in place to ensure the health data that are collected meet required quality standards. Routine health information system quality assurance practices ensure that data that are generated from the system are fit for use. This study considered quality assurance practices in the RHIS processes. Methods: A cross-sectional study was conducted in eight health facilities in Tarkwa Sub-Municipal Health Service in the western region of Ghana. The study involved routine quality assurance practices among the 90 health staff and management selected from facilities in Tarkwa Sub-Municipal who collected or used data routinely from 24th December 2019 to 20th January 2020. Results: Generally, Tarkwa Sub-Municipal health service appears to practice quality assurance during data collection, compilation, storage, analysis and dissemination. The results show some achievement in quality control performance in report dissemination (77.6%), data analysis (68.0%), data compilation (67.4%), report compilation (66.3%), data storage (66.3%) and collection (61.1%). Conclusions: Even though the Tarkwa Sub-Municipal Health Directorate engages in some control measures to ensure data quality, there is a need to strengthen the process to achieve the targeted percentage of performance (90.0%). There was a significant shortfall in quality assurance practices performance, especially during data collection, with respect to the expected performance.

Keywords: quality assurance practices, assessment of routine health information system quality, routine health information system, data quality

Procedia PDF Downloads 86
24266 Heart Failure Identification and Progression by Classifying Cardiac Patients

Authors: Muhammad Saqlain, Nazar Abbas Saqib, Muazzam A. Khan

Abstract:

Heart Failure (HF) has become the major health problem in our society. The prevalence of HF has increased as the patient’s ages and it is the major cause of the high mortality rate in adults. A successful identification and progression of HF can be helpful to reduce the individual and social burden from this syndrome. In this study, we use a real data set of cardiac patients to propose a classification model for the identification and progression of HF. The data set has divided into three age groups, namely young, adult, and old and then each age group have further classified into four classes according to patient’s current physical condition. Contemporary Data Mining classification algorithms have been applied to each individual class of every age group to identify the HF. Decision Tree (DT) gives the highest accuracy of 90% and outperform all other algorithms. Our model accurately diagnoses different stages of HF for each age group and it can be very useful for the early prediction of HF.

Keywords: decision tree, heart failure, data mining, classification model

Procedia PDF Downloads 405
24265 Critically Analyzing the Application of Big Data for Smart Transportation: A Case Study of Mumbai

Authors: Tanuj Joshi

Abstract:

Smart transportation is fast emerging as a solution to modern cities’ approach mobility issues, delayed emergency response rate and high congestion on streets. Present day scenario with Google Maps, Waze, Yelp etc. demonstrates how information and communications technologies controls the intelligent transportation system. This intangible and invisible infrastructure is largely guided by the big data analytics. On the other side, the exponential increase in Indian urban population has intensified the demand for better services and infrastructure to satisfy the transportation needs of its citizens. No doubt, India’s huge internet usage is looked as an important resource to guide to achieve this. However, with a projected number of over 40 billion objects connected to the Internet by 2025, the need for systems to handle massive volume of data (big data) also arises. This research paper attempts to identify the ways of exploiting the big data variables which will aid commuters on Indian tracks. This study explores real life inputs by conducting survey and interviews to identify which gaps need to be targeted to better satisfy the customers. Several experts at Mumbai Metropolitan Region Development Authority (MMRDA), Mumbai Metro and Brihanmumbai Electric Supply and Transport (BEST) were interviewed regarding the Information Technology (IT) systems currently in use. The interviews give relevant insights and requirements into the workings of public transportation systems whereas the survey investigates the macro situation.

Keywords: smart transportation, mobility issue, Mumbai transportation, big data, data analysis

Procedia PDF Downloads 181
24264 Scientific Linux Cluster for BIG-DATA Analysis (SLBD): A Case of Fayoum University

Authors: Hassan S. Hussein, Rania A. Abul Seoud, Amr M. Refaat

Abstract:

Scientific researchers face in the analysis of very large data sets that is increasing noticeable rate in today’s and tomorrow’s technologies. Hadoop and Spark are types of software that developed frameworks. Hadoop framework is suitable for many Different hardware platforms. In this research, a scientific Linux cluster for Big Data analysis (SLBD) is presented. SLBD runs open source software with large computational capacity and high performance cluster infrastructure. SLBD composed of one cluster contains identical, commodity-grade computers interconnected via a small LAN. SLBD consists of a fast switch and Gigabit-Ethernet card which connect four (nodes). Cloudera Manager is used to configure and manage an Apache Hadoop stack. Hadoop is a framework allows storing and processing big data across the cluster by using MapReduce algorithm. MapReduce algorithm divides the task into smaller tasks which to be assigned to the network nodes. Algorithm then collects the results and form the final result dataset. SLBD clustering system allows fast and efficient processing of large amount of data resulting from different applications. SLBD also provides high performance, high throughput, high availability, expandability and cluster scalability.

Keywords: big data platforms, cloudera manager, Hadoop, MapReduce

Procedia PDF Downloads 363
24263 Investigating the Effects of Data Transformations on a Bi-Dimensional Chi-Square Test

Authors: Alexandru George Vaduva, Adriana Vlad, Bogdan Badea

Abstract:

In this research, we conduct a Monte Carlo analysis on a two-dimensional χ2 test, which is used to determine the minimum distance required for independent sampling in the context of chaotic signals. We investigate the impact of transforming initial data sets from any probability distribution to new signals with a uniform distribution using the Spearman rank correlation on the χ2 test. This transformation removes the randomness of the data pairs, and as a result, the observed distribution of χ2 test values differs from the expected distribution. We propose a solution to this problem and evaluate it using another chaotic signal.

Keywords: chaotic signals, logistic map, Pearson’s test, Chi Square test, bivariate distribution, statistical independence

Procedia PDF Downloads 102
24262 Real Time Data Communication with FlightGear Using Simulink Over a UDP Protocol

Authors: Adil Loya, Ali Haider, Arslan A. Ghaffor, Abubaker Siddique

Abstract:

Simulation and modelling of Unmanned Aero Vehicle (UAV) has gained wide popularity in front of aerospace community. The demand of designing and modelling optimized control system for UAV has increased ten folds since last decade. The reason is next generation warfare is dependent on unmanned technologies. Therefore, this research focuses on the simulation of nonlinear UAV dynamics on Simulink and its integration with Flightgear. There has been lots of research on implementation of optimizing control using Simulink, however, there are fewer known techniques to simulate these dynamics over Flightgear and a tedious technique of acquiring data has been tackled in this research horizon. Sending data to Flightgear is easy but receiving it from Simulink is not that straight forward, i.e. we can only receive control data on the output. However, in this research we have managed to get the data out from the Flightgear by implementation of level 2 s-function block within Simulink. Moreover, the results captured from Flightgear over a Universal Datagram Protocol (UDP) communication are then compared with the attitude signal that were sent previously. This provide useful information regarding the difference in outputs attained from Simulink to Flightgear. It was found that values received on Simulink were in high agreement with that of the Flightgear output. And complete study has been conducted in a discrete way.

Keywords: aerospace, flight control, flightgear, communication, Simulink

Procedia PDF Downloads 291
24261 Contamination of the Groundwater by the Flow of the Discharge in Khouribga City (Morocco) and the Danger It Presents to the Health of the Surrounding Population.

Authors: Najih Amina

Abstract:

Our study focuses on monitoring the spatial evolution of a number of physico-chemical parameters of wells waters located at different distances from the discharge of the city of Khouribga (S0 upstream station, S1, S2 et S3 are respectively located at 5.5, 7.5, 11 Km away from solid waste discharge of the city). The absence of a source of drinking water in this region involves the population to feeding on its groundwater wells. Through the results, we note that most of the analyzed parameters exceed the potable water standards from S1. At this source of water, we find that the conductivity (1290 μmScm-1; Standard 1000 μmScm-1), Total Hardness TH (67.2°F/ Standard 50° F), Ca2 + (146 mg l-1 standard 60 mg l-1), Cl- (369 mg l-1 standard 150 mg l-1), NaCl (609 mgl-1), Methyl orange alakanity “M. alk” (280 mg l-1) greatly exceed the drinking water standards. By following these parameters, it is obvious that some values have decreased in the downstream stations, while others become important. We find that the conductivity is always higher than 950 μmScm-1; the TH registers 72°F in S3; Ca 2+ is in the range of 153 mg l-1 in S3, Cl- and NaCl- reached 426 mg l-1 and 702 mg l-1 respectively in S2, M alk becomes higher and reaches 430 to 350 in S3. At the wells S2, we found that the nitrites are well beyond the standard 1.05 mg l-1. Whereas, at the control station S0, the values are lower or at the limit of drinking water standards: conductivity (452 μmScm-1), TH (34 F°), Ca2+ (68 mg l-1), Cl- (157 mg l-1), NaCl- (258 mg l-1), M alk (220 mg l-1). Thus, the diagnosis reveals the presence of a high pollution caused by the leachates of the household waste discharge and by the effluents of the sewage waste water plant (SWWP). The phenomenon of the water hardness could, also, be generated by the processes of erosion, leaching and soil infiltration in the region (phosphate layers, intercalated layers of marl and limestone), phenomenons also caused by the acidity due to this surrounding pollution. The source S1 is the nearest surrounding site of the discharge and the most affected by the phenomenon of pollution, especially, it is near to a superficial water source S’1 polluted by the effluents coming from the sewage waste water plant of the city. In the light of these data, we can deduce that the consumption of this water from S1 does not conform the standards of drinking waters, and could affect the human health.

Keywords: physico-chemical parameters, ground water wells, infiltration, leaching, pollution, leachate discharge effluent SWWP, human health.

Procedia PDF Downloads 410
24260 Streamlines: Paths of Fluid Flow through Sandstone Samples Based on Computed Microtomography

Authors: Ł. Kaczmarek, T. Wejrzanowski, M. Maksimczuk

Abstract:

The study presents the use of the numerical calculations based on high-resolution computed microtomography in analysis of fluid flow through Miocene sandstones. Therefore, the permeability studies of rocks were performed. Miocene samples were taken from well S-3, located in the eastern part of the Carpathian Foredeep. For aforementioned analysis, two series of X-ray irradiation were performed. The first set of samples was selected to obtain the spatial distribution of grains and pores. At this stage of the study length of voxel side amounted 27 microns. The next set of X-ray irradation enabled recognition of microstructural components as well as petrophysical features. The length of voxel side in this stage was up to 2 µm. Based on this study, the samples were broken down into two distinct groups. The first one represents conventional reservoir deposits, in opposite to second one - unconventional type. Appropriate identification of petrophysical parameters such as porosity and permeability of the formation is a key element for optimization of the reservoir development.

Keywords: grains, permeability, pores, pressure distribution

Procedia PDF Downloads 255
24259 Open Source, Open Hardware Ground Truth for Visual Odometry and Simultaneous Localization and Mapping Applications

Authors: Janusz Bedkowski, Grzegorz Kisala, Michal Wlasiuk, Piotr Pokorski

Abstract:

Ground-truth data is essential for VO (Visual Odometry) and SLAM (Simultaneous Localization and Mapping) quantitative evaluation using e.g. ATE (Absolute Trajectory Error) and RPE (Relative Pose Error). Many open-access data sets provide raw and ground-truth data for benchmark purposes. The issue appears when one would like to validate Visual Odometry and/or SLAM approaches on data captured using the device for which the algorithm is targeted for example mobile phone and disseminate data for other researchers. For this reason, we propose an open source, open hardware groundtruth system that provides an accurate and precise trajectory with a 3D point cloud. It is based on LiDAR Livox Mid-360 with a non-repetitive scanning pattern, on-board Raspberry Pi 4B computer, battery and software for off-line calculations (camera to LiDAR calibration, LiDAR odometry, SLAM, georeferencing). We show how this system can be used for the evaluation of various the state of the art algorithms (Stella SLAM, ORB SLAM3, DSO) in typical indoor monocular VO/SLAM.

Keywords: SLAM, ground truth, navigation, LiDAR, visual odometry, mapping

Procedia PDF Downloads 82
24258 Stream Channel Changes in Balingara River, Sulawesi Tengah

Authors: Muhardiyan Erawan, Zaenal Mutaqin

Abstract:

Balingara River is one of the rivers with the type Gravel-Bed in Indonesia. Gravel-Bed Rivers easily deformed in a relatively short time due to several variables, that are climate (rainfall), river discharge, topography, rock types, and land cover. To determine stream channel changes in Balingara River used Landsat 7 and 8 and analyzed planimetric or two dimensions. Parameters to determine changes in the stream channel are sinuosity ratio, Brice Index, the extent of erosion and deposition. Changes in stream channel associated with changes in land cover then analyze with a descriptive analysis of spatial and temporal. The location of a stream channel has a low gradient in the upstream, and middle watershed with the type of rock in the form of gravel is more easily changed than other locations. Changes in the area of erosion and deposition influence the land cover changes.

Keywords: Brice Index, erosion, deposition, gravel-bed, land cover change, sinuosity ratio, stream channel change

Procedia PDF Downloads 332
24257 Data Science/Artificial Intelligence: A Possible Panacea for Refugee Crisis

Authors: Avi Shrivastava

Abstract:

In 2021, two heart-wrenching scenes, shown live on television screens across countries, painted a grim picture of refugees. One of them was of people clinging onto an airplane's wings in their desperate attempt to flee war-torn Afghanistan. They ultimately fell to their death. The other scene was the U.S. government authorities separating children from their parents or guardians to deter migrants/refugees from coming to the U.S. These events show the desperation refugees feel when they are trying to leave their homes in disaster zones. However, data paints a grave picture of the current refugee situation. It also indicates that a bleak future lies ahead for the refugees across the globe. Data and information are the two threads that intertwine to weave the shimmery fabric of modern society. Data and information are often used interchangeably, but they differ considerably. For example, information analysis reveals rationale, and logic, while data analysis, on the other hand, reveals a pattern. Moreover, patterns revealed by data can enable us to create the necessary tools to combat huge problems on our hands. Data analysis paints a clear picture so that the decision-making process becomes simple. Geopolitical and economic data can be used to predict future refugee hotspots. Accurately predicting the next refugee hotspots will allow governments and relief agencies to prepare better for future refugee crises. The refugee crisis does not have binary answers. Given the emotionally wrenching nature of the ground realities, experts often shy away from realistically stating things as they are. This hesitancy can cost lives. When decisions are based solely on data, emotions can be removed from the decision-making process. Data also presents irrefutable evidence and tells whether there is a solution or not. Moreover, it also responds to a nonbinary crisis with a binary answer. Because of all that, it becomes easier to tackle a problem. Data science and A.I. can predict future refugee crises. With the recent explosion of data due to the rise of social media platforms, data and insight into data has solved many social and political problems. Data science can also help solve many issues refugees face while staying in refugee camps or adopted countries. This paper looks into various ways data science can help solve refugee problems. A.I.-based chatbots can help refugees seek legal help to find asylum in the country they want to settle in. These chatbots can help them find a marketplace where they can find help from the people willing to help. Data science and technology can also help solve refugees' many problems, including food, shelter, employment, security, and assimilation. The refugee problem seems to be one of the most challenging for social and political reasons. Data science and machine learning can help prevent the refugee crisis and solve or alleviate some of the problems that refugees face in their journey to a better life. With the explosion of data in the last decade, data science has made it possible to solve many geopolitical and social issues.

Keywords: refugee crisis, artificial intelligence, data science, refugee camps, Afghanistan, Ukraine

Procedia PDF Downloads 75
24256 The Micro-Activated Organic Regeneration in Rural Construction: A Case Study of Yangdun Village in Deqing County, Zhejiang Province

Authors: Chengyuan Zhu, Zhu Wang

Abstract:

With the strategy of Rural Rejuvenation proposed in China, the rural has become the focus of all works today. In addition to the support of industry and policy, the rural planning and construction which is the space dependence of Rural Rejuvenation are also very crucial. Based on an analysis of the case of Yangdun Village in Deqing County, this paper summarizes village existing resources and construction status quo. It tries to illuminate the micro-activated organic renewal strategies and methods, based on ecological landscape, history context, industry development and living life requirements. It takes advantage of industrial linkage and then asks for the coordination of both spatial and industrial planning, the revival and remodeling of the rural image can be achieved through shaping the of architectural and landscape nodes as well as the activation of street space.

Keywords: rural construction, rural human settlements, micro-activation, organic renewal

Procedia PDF Downloads 235
24255 The Measurement of the Multi-Period Efficiency of the Turkish Health Care Sector

Authors: Erhan Berk

Abstract:

The purpose of this study is to examine the efficiency and productivity of the health care sector in Turkey based on four years of health care cross-sectional data. Efficiency measures are calculated by a nonparametric approach known as Data Envelopment Analysis (DEA). Productivity is measured by the Malmquist index. The research shows how DEA-based Malmquist productivity index can be operated to appraise the technology and productivity changes resulted in the Turkish hospitals which are located all across the country.

Keywords: data envelopment analysis, efficiency, health care, Malmquist Index

Procedia PDF Downloads 338
24254 Land Use Change Modeling Using Cellular Automata, Case Study: Karawang City, West Java Province, Indonesia

Authors: Bagus Indrawan Hardi

Abstract:

Cellular Automata are widely used in land use modeling, it has been proven powerful to simulate land use change for small scale in many large cities in the world. In this paper, we try to implement CA for land use modeling in unique city in Indonesia, Karawang. Instead the complex numerical implementation, CA are simple, and it is accurate and also highly dependable on the on the rules (rule based). The most important to do in CA is how we form and calculate the neighborhood effect. The neighborhood effect represents the environment and relationship situation between the occupied cell and others. We adopted 196 cells of circular neighborhood with 8 cells of radius. For the results, CA works well in this study, we exhibit several analyzed and proceed of zoomed part in Karawang region. The rule set can handle the complexity in land use modeling. However, we cannot strictly believe of the result, many non-technical parameters, such as politics, natural disaster activities, etc. may change the results dramatically.

Keywords: cellular automata (CA), land use change, spatial dynamics, urban sprawl

Procedia PDF Downloads 245
24253 A Comparative Evaluation of Finite Difference Methods for the Extended Boussinesq Equations and Application to Tsunamis Modelling

Authors: Aurore Cauquis, Philippe Heinrich, Mario Ricchiuto, Audrey Gailler

Abstract:

In this talk, we look for an accurate time scheme to model the propagation of waves. Several numerical schemes have been developed to solve the extended weakly nonlinear weakly dispersive Boussinesq Equations. The temporal schemes used are two Lax-Wendroff schemes, second or third order accurate, two Runge-Kutta schemes of second and third order and a simplified third order accurate Lax-Wendroff scheme. Spatial derivatives are evaluated with fourth order accuracy. The numerical model is applied to two monodimensional benchmarks on a flat bottom. It is also applied to the simulation of the Algerian tsunami generated by a Mw=6 seism on the 18th March 2021. The tsunami propagation was highly dispersive and propagated across the Mediterranean Sea. We study here the effects of the order of temporal discretization on the accuracy of the results and on the time of computation.

Keywords: numerical analysis, tsunami propagation, water wave, boussinesq equations

Procedia PDF Downloads 247
24252 Sustainable Living Environments Shaped by Low-Carbon Blocks

Authors: Qu Ming

Abstract:

In the new era of actively promoting ecological civilization construction and achieving carbon peak and carbon neutrality goals in China, urban low-carbon construction has become the focus for achieving sustainable development of the living environment. Neighborhoods are the main places for residents' daily life and travel and are the basic units of urban spatial structure. As the link between residents and the city, the lifestyle of citizens in the neighborhood is closely related to the level of green and low-carbon development of the city. Shaping low-carbon neighborhoods is the foundation for cities to achieve low-carbon construction. Regulatory detailed planning, as the most direct means of urban construction management, focuses on the scale of neighborhoods, and building a reasonable low-carbon neighborhood regulatory system is of great significance for promoting low-carbon construction in cities in China and promoting the sustainable development of the living environment.

Keywords: neighborhoods, urban low-carbon, living environment, sustainable development, low-carbon regulatory planning

Procedia PDF Downloads 8
24251 Comparison Of Data Mining Models To Predict Future Bridge Conditions

Authors: Pablo Martinez, Emad Mohamed, Osama Mohsen, Yasser Mohamed

Abstract:

Highway and bridge agencies, such as the Ministry of Transportation in Ontario, use the Bridge Condition Index (BCI) which is defined as the weighted condition of all bridge elements to determine the rehabilitation priorities for its bridges. Therefore, accurate forecasting of BCI is essential for bridge rehabilitation budgeting planning. The large amount of data available in regard to bridge conditions for several years dictate utilizing traditional mathematical models as infeasible analysis methods. This research study focuses on investigating different classification models that are developed to predict the bridge condition index in the province of Ontario, Canada based on the publicly available data for 2800 bridges over a period of more than 10 years. The data preparation is a key factor to develop acceptable classification models even with the simplest one, the k-NN model. All the models were tested, compared and statistically validated via cross validation and t-test. A simple k-NN model showed reasonable results (within 0.5% relative error) when predicting the bridge condition in an incoming year.

Keywords: asset management, bridge condition index, data mining, forecasting, infrastructure, knowledge discovery in databases, maintenance, predictive models

Procedia PDF Downloads 195
24250 Piql Preservation Services - A Holistic Approach to Digital Long-Term Preservation

Authors: Alexander Rych

Abstract:

Piql Preservation Services (“Piql”) is a turnkey solution designed for secure, migration-free long- term preservation of digital data. Piql sets an open standard for long- term preservation for the future. It consists of equipment and processes needed for writing and retrieving digital data. Exponentially growing amounts of data demand for logistically effective and cost effective processes. Digital storage media (hard disks, magnetic tape) exhibit limited lifetime. Repetitive data migration to overcome rapid obsolescence of hardware and software bears accelerated risk of data loss, data corruption or even manipulation and adds significant repetitive costs for hardware and software investments. Piql stores any kind of data in its digital as well as analog form securely for 500 years. The medium that provides this is a film reel. Using photosensitive film polyester base, a very stable material that is known for its immutability over hundreds of years, secure and cost-effective long- term preservation can be provided. The film reel itself is stored in a packaging capable of protecting the optical storage medium. These components have undergone extensive testing to ensure longevity of up to 500 years. In addition to its durability, film is a true WORM (write once- read many) medium. It therefore is resistant to editing or manipulation. Being able to store any form of data onto the film makes Piql a superior solution for long-term preservation. Paper documents, images, video or audio sequences – all of those file formats and documents can be preserved in its native file structure. In order to restore the encoded digital data, only a film scanner, a digital camera or any appropriate optical reading device will be needed in the future. Every film reel includes an index section describing the data saved on the film. It also contains a content section carrying meta-data, enabling users in the future to rebuild software in order to read and decode the digital information.

Keywords: digital data, long-term preservation, migration-free, photosensitive film

Procedia PDF Downloads 395
24249 Statistical Correlation between Logging-While-Drilling Measurements and Wireline Caliper Logs

Authors: Rima T. Alfaraj, Murtadha J. Al Tammar, Khaqan Khan, Khalid M. Alruwaili

Abstract:

OBJECTIVE/SCOPE (25-75): Caliper logging data provides critical information about wellbore shape and deformations, such as stress-induced borehole breakouts or washouts. Multiarm mechanical caliper logs are often run using wireline, which can be time-consuming, costly, and/or challenging to run in certain formations. To minimize rig time and improve operational safety, it is valuable to develop analytical solutions that can estimate caliper logs using available Logging-While-Drilling (LWD) data without the need to run wireline caliper logs. As a first step, the objective of this paper is to perform statistical analysis using an extensive datasetto identify important physical parameters that should be considered in developing such analytical solutions. METHODS, PROCEDURES, PROCESS (75-100): Caliper logs and LWD data of eleven wells, with a total of more than 80,000 data points, were obtained and imported into a data analytics software for analysis. Several parameters were selected to test the relationship of the parameters with the measured maximum and minimum caliper logs. These parameters includegamma ray, porosity, shear, and compressional sonic velocities, bulk densities, and azimuthal density. The data of the eleven wells were first visualized and cleaned.Using the analytics software, several analyses were then preformed, including the computation of Pearson’s correlation coefficients to show the statistical relationship between the selected parameters and the caliper logs. RESULTS, OBSERVATIONS, CONCLUSIONS (100-200): The results of this statistical analysis showed that some parameters show good correlation to the caliper log data. For instance, the bulk density and azimuthal directional densities showedPearson’s correlation coefficients in the range of 0.39 and 0.57, which wererelatively high when comparedto the correlation coefficients of caliper data with other parameters. Other parameters such as porosity exhibited extremely low correlation coefficients to the caliper data. Various crossplots and visualizations of the data were also demonstrated to gain further insights from the field data. NOVEL/ADDITIVE INFORMATION (25-75): This study offers a unique and novel look into the relative importance and correlation between different LWD measurements and wireline caliper logs via an extensive dataset. The results pave the way for a more informed development of new analytical solutions for estimating the size and shape of the wellbore in real-time while drilling using LWD data.

Keywords: LWD measurements, caliper log, correlations, analysis

Procedia PDF Downloads 126
24248 Inversion of Gravity Data for Density Reconstruction

Authors: Arka Roy, Chandra Prakash Dubey

Abstract:

Inverse problem generally used for recovering hidden information from outside available data. Vertical component of gravity field we will be going to use for underneath density structure calculation. Ill-posing nature is main obstacle for any inverse problem. Linear regularization using Tikhonov formulation are used for appropriate choice of SVD and GSVD components. For real time data handle, signal to noise ratios should have to be less for reliable solution. In our study, 2D and 3D synthetic model with rectangular grid are used for gravity field calculation and its corresponding inversion for density reconstruction. Fine grid also we have considered to hold any irregular structure. Keeping in mind of algebraic ambiguity factor number of observation point should be more than that of number of data point. Picard plot is represented here for choosing appropriate or main controlling Eigenvalues for a regularized solution. Another important study is depth resolution plot (DRP). DRP are generally used for studying how the inversion is influenced by regularizing or discretizing. Our further study involves real time gravity data inversion of Vredeforte Dome South Africa. We apply our method to this data. The results include density structure is in good agreement with known formation in that region, which puts an additional support of our method.

Keywords: depth resolution plot, gravity inversion, Picard plot, SVD, Tikhonov formulation

Procedia PDF Downloads 216
24247 Emotional Characteristics of Preschoolers Due to Parameters of Family Interaction

Authors: Nadezda Sergunicheva, Victoria Vasilenko

Abstract:

The emotional sphere is one of the most important aspects of the child's development and significant factor in his psychological well-being. Present research aims to identify the relationships between emotional characteristics of preschoolers and parameters of family interaction: emotional interaction, parental styles, family adaptation, and cohesion. The study involved 40 people from Saint-Petersburg: 20 children (10 boys and 10 girls) from 5 to 6 years, Mage = 5 years 4 months and 20 mothers. Methods used were: Test 'Emotional identification' by E.Izotova, Empathy test by T. Gavrilova, Children's fears test by A. Zakharov, M. Panfilova, 'Parent-child emotional interaction questionnaire' by E. Zakharova, 'Analysis of family relationships questionnaire by E. Eidemiller and V. Yustitskis, Family Adaptation and Cohesion Scales (FACES III) by D. X. Olson, J. Portner, I. Lavi. Сorrelation analysis revealed that the higher index of underdevelopment of parental feelings, the lower the child’s ability to identify emotions (p < 0,05), but at the same time, the higher ability to understand emotional states (p < 0,01), as in the case of hypoprotection (p < 0,05). Two last correlations can be explained by compensatory mechanism. This is also confirmed by negative correlations between maternal educational uncertainty and child’s ability to understand emotional states and between indulgence and child’s ability to perceive emotional states (p < 0,05). The more pronounced the phobia of a child's loss, the higher egocentric nature of child’s empathy (p < 0,05). The child’s fears have the greatest number of relationships with the characteristics of family interaction. The more pronounced mother’s positive feelings in interaction, emotional support, acceptance of himself as a parent, desire for physical contact with child and the more adaptive the family system, the less the total number of child’s fears (p < 0,05). The more the mother's ability to perceive the child's state, positive feelings in interaction, emotional support (p < 0,01), unconditional acceptance of the child, acceptance of himself as a parent and the desire for physical contact (p < 0,05), the less the amount child’s spatial fears. Socially-mediated fears are associated with less pronounced mother's positive feelings in interaction, less emotional support and deficiency of demands, obligations (p < 0,05). Fears of animals and fairy-tale characters positively correlated with the excessive demands, obligations and excessive sanctions (p < 0,05). The more emotional support (p < 0,01), mother's ability to perceive the child's state, positive feelings in interaction, unconditional acceptance of the child, acceptance of himself as a parent (p < 0,05), the less the amount child’s fears of nightmares. This kind of fears is positively correlated with excessive demands, prohibitions (p < 0,05). The more adaptive the family system (p < 0,01), the higher family cohesion, mother's acceptance of himself as a parent and preference to childish traits (p < 0,05), the less fear of death. Thus, the children's fears have the closest relationships with the characteristics of family interaction. The severity of fears, especially spatial, is connected, first of all, with the emotional side of the mother-parent interaction. Fears of animals and fairy-tale characters are associated with some characteristics of the parental styles, connected with the rigor of mothers. Correlations of the emotional identification are contradictory and require further clarification. Research is supported by RFBR №18-013-00990.

Keywords: emotional characteristics, family interaction, fears, parental styles, preschoolers

Procedia PDF Downloads 277
24246 Analysis on the Feasibility of Landsat 8 Imagery for Water Quality Parameters Assessment in an Oligotrophic Mediterranean Lake

Authors: V. Markogianni, D. Kalivas, G. Petropoulos, E. Dimitriou

Abstract:

Lake water quality monitoring in combination with the use of earth observation products constitutes a major component in many water quality monitoring programs. Landsat 8 images of Trichonis Lake (Greece) acquired on 30/10/2013 and 30/08/2014 were used in order to explore the possibility of Landsat 8 to estimate water quality parameters and particularly CDOM absorption at specific wavelengths, chlorophyll-a and nutrient concentrations in this oligotrophic freshwater body, characterized by inexistent quantitative, temporal and spatial variability. Water samples have been collected at 22 different stations, on late August of 2014 and the satellite image of the same date was used to statistically correlate the in-situ measurements with various combinations of Landsat 8 bands in order to develop algorithms that best describe those relationships and calculate accurately the aforementioned water quality components. Optimal models were applied to the image of late October of 2013 and the validation of the results was conducted through their comparison with the respective available in-situ data of 2013. Initial results indicated the limited ability of the Landsat 8 sensor to accurately estimate water quality components in an oligotrophic waterbody. As resulted by the validation process, ammonium concentrations were proved to be the most accurately estimated component (R = 0.7), followed by chl-a concentration (R = 0.5) and the CDOM absorption at 420 nm (R = 0.3). In-situ nitrate, nitrite, phosphate and total nitrogen concentrations of 2014 were measured as lower than the detection limit of the instrument used, hence no statistical elaboration was conducted. On the other hand, multiple linear regression among reflectance measures and total phosphorus concentrations resulted in low and statistical insignificant correlations. Our results were concurrent with other studies in international literature, indicating that estimations for eutrophic and mesotrophic lakes are more accurate than oligotrophic, owing to the lack of suspended particles that are detectable by satellite sensors. Nevertheless, although those predictive models, developed and applied to Trichonis oligotrophic lake are less accurate, may still be useful indicators of its water quality deterioration.

Keywords: landsat 8, oligotrophic lake, remote sensing, water quality

Procedia PDF Downloads 400
24245 Multiple Approaches for Ultrasonic Cavitation Monitoring of Oxygen-Loaded Nanodroplets

Authors: Simone Galati, Adriano Troia

Abstract:

Ultrasound (US) is widely used in medical field for a variety diagnostic techniques but, in recent years, it has also been creating great interest for therapeutic aims. Regarding drug delivery, the use of US as an activation source provides better spatial delivery confinement and limits the undesired side effects. However, at present there is no complete characterization at a fundamental level of the different signals produced by sono-activated nanocarriers. Therefore, the aim of this study is to obtain a metrological characterization of the cavitation phenomena induced by US through three parallel investigation approaches. US was focused into a channel of a customized phantom in which a solution with oxygen-loaded nanodroplets (OLNDs) was led to flow and the cavitation activity was monitored. Both quantitative and qualitative real-time analysis were performed giving information about the dynamics of bubble formation, oscillation and final implosion with respect to the working acoustic pressure and the type of nanodroplets, compared with pure water. From this analysis a possible interpretation of the observed results is proposed.

Keywords: cavitation, drug delivery, nanodroplets, ultra-sound

Procedia PDF Downloads 115
24244 DeepOmics: Deep Learning for Understanding Genome Functioning and the Underlying Genetic Causes of Disease

Authors: Vishnu Pratap Singh Kirar, Madhuri Saxena

Abstract:

Advancement in sequence data generation technologies is churning out voluminous omics data and posing a massive challenge to annotate the biological functional features. With so much data available, the use of machine learning methods and tools to make novel inferences has become obvious. Machine learning methods have been successfully applied to a lot of disciplines, including computational biology and bioinformatics. Researchers in computational biology are interested to develop novel machine learning frameworks to classify the huge amounts of biological data. In this proposal, it plan to employ novel machine learning approaches to aid the understanding of how apparently innocuous mutations (in intergenic DNA and at synonymous sites) cause diseases. We are also interested in discovering novel functional sites in the genome and mutations in which can affect a phenotype of interest.

Keywords: genome wide association studies (GWAS), next generation sequencing (NGS), deep learning, omics

Procedia PDF Downloads 102