Search results for: mean carbon dioxide pressure
4626 Application of Multiwall Carbon Nanotubes with Anionic Surfactant to Cement Paste
Authors: Maciej Szelag
Abstract:
The discovery of the carbon nanotubes (CNT), has led to a breakthrough in the material engineering. The CNT is characterized by very large surface area, very high Young's modulus (about 2 TPa), unmatched durability, high tensile strength (about 50 GPa) and bending strength. Their diameter usually oscillates in the range from 1 to 100 nm, and the length from 10 nm to 10-2 m. The relatively new approach is the CNT’s application in the concrete technology. The biggest problem in the use of the CNT to cement composites is their uneven dispersion and low adhesion to the cement paste. Putting the nanotubes alone into the cement matrix does not produce any effect because they tend to agglomerate, due to their large surface area. Most often, the CNT is used as an aqueous suspension in the presence of a surfactant that has previously been sonicated. The paper presents the results of investigations of the basic physical properties (apparent density, shrinkage) and mechanical properties (compression and tensile strength) of cement paste with the addition of the multiwall carbon nanotubes (MWCNT). The studies were carried out on four series of specimens (made of two different Portland Cement). Within each series, samples were made with three w/c ratios – 0.4, 0.5, 0.6 (water/cement). Two series were an unmodified cement matrix. In the remaining two series, the MWCNT was added in amount of 0.1% by cement’s weight. The MWCNT was used as an aqueous dispersion in the presence of a surfactant – SDS – sodium dodecyl sulfate (C₁₂H₂₅OSO₂ONa). So prepared aqueous solution was sonicated for 30 minutes. Then the MWCNT aqueous dispersion and cement were mixed using a mechanical stirrer. The parameters were tested after 28 days of maturation. Additionally, the change of these parameters was determined after samples temperature loading at 250°C for 4 hours (thermal shock). Measurement of the apparent density indicated that cement paste with the MWCNT addition was about 30% lighter than conventional cement matrix. This is due to the fact that the use of the MWCNT water dispersion in the presence of surfactant in the form of SDS resulted in the formation of air pores, which were trapped in the volume of the material. SDS as an anionic surfactant exhibits characteristics specific to blowing agents – gaseous and foaming substances. Because of the increased porosity of the cement paste with the MWCNT, they have obtained lower compressive and tensile strengths compared to the cement paste without additive. It has been observed, however, that the smallest decreases in the compressive and tensile strength after exposure to the elevated temperature achieved samples with the MWCNT. The MWCNT (well dispersed in the cement matrix) can form bridges between hydrates in a nanoscale of the material’s structure. Thus, this may result in an increase in the coherent cohesion of the cement material subjected to a thermal shock. The obtained material could be used for the production of an aerated concrete or using lightweight aggregates for the production of a lightweight concrete.Keywords: cement paste, elevated temperature, mechanical parameters, multiwall carbon nanotubes, physical parameters, SDS
Procedia PDF Downloads 3564625 Design of Experiment for Optimizing Immunoassay Microarray Printing
Authors: Alex J. Summers, Jasmine P. Devadhasan, Douglas Montgomery, Brittany Fischer, Jian Gu, Frederic Zenhausern
Abstract:
Immunoassays have been utilized for several applications, including the detection of pathogens. Our laboratory is in the development of a tier 1 biothreat panel utilizing Vertical Flow Assay (VFA) technology for simultaneous detection of pathogens and toxins. One method of manufacturing VFA membranes is with non-contact piezoelectric dispensing, which provides advantages, such as low-volume and rapid dispensing without compromising the structural integrity of antibody or substrate. Challenges of this processinclude premature discontinuation of dispensing and misaligned spotting. Preliminary data revealed the Yp 11C7 mAb (11C7)reagent to exhibit a large angle of failure during printing which may have contributed to variable printing outputs. A Design of Experiment (DOE) was executed using this reagent to investigate the effects of hydrostatic pressure and reagent concentration on microarray printing outputs. A Nano-plotter 2.1 (GeSIM, Germany) was used for printing antibody reagents ontonitrocellulose membrane sheets in a clean room environment. A spotting plan was executed using Spot-Front-End software to dispense volumes of 11C7 reagent (20-50 droplets; 1.5-5 mg/mL) in a 6-test spot array at 50 target membrane locations. Hydrostatic pressure was controlled by raising the Pressure Compensation Vessel (PCV) above or lowering it below our current working level. It was hypothesized that raising or lowering the PCV 6 inches would be sufficient to cause either liquid accumulation at the tip or discontinue droplet formation. After aspirating 11C7 reagent, we tested this hypothesis under stroboscope.75% of the effective raised PCV height and of our hypothesized lowered PCV height were used. Humidity (55%) was maintained using an Airwin BO-CT1 humidifier. The number and quality of membranes was assessed after staining printed membranes with dye. The droplet angle of failure was recorded before and after printing to determine a “stroboscope score” for each run. The DOE set was analyzed using JMP software. Hydrostatic pressure and reagent concentration had a significant effect on the number of membranes output. As hydrostatic pressure was increased by raising the PCV 3.75 inches or decreased by lowering the PCV -4.5 inches, membrane output decreased. However, with the hydrostatic pressure closest to equilibrium, our current working level, membrane output, reached the 50-membrane target. As the reagent concentration increased from 1.5 to 5 mg/mL, the membrane output also increased. Reagent concentration likely effected the number of membrane output due to the associated dispensing volume needed to saturate the membranes. However, only hydrostatic pressure had a significant effect on stroboscope score, which could be due to discontinuation of dispensing, and thus the stroboscope check could not find a droplet to record. Our JMP predictive model had a high degree of agreement with our observed results. The JMP model predicted that dispensing the highest concentration of 11C7 at our current PCV working level would yield the highest number of quality membranes, which correlated with our results. Acknowledgements: This work was supported by the Chemical Biological Technologies Directorate (Contract # HDTRA1-16-C-0026) and the Advanced Technology International (Contract # MCDC-18-04-09-002) from the Department of Defense Chemical and Biological Defense program through the Defense Threat Reduction Agency (DTRA).Keywords: immunoassay, microarray, design of experiment, piezoelectric dispensing
Procedia PDF Downloads 1824624 Elastic Behaviour of Graphene Nanoplatelets Reinforced Epoxy Resin Composites
Authors: V. K. Srivastava
Abstract:
Graphene has recently attracted an increasing attention in nanocomposites applications because it has 200 times greater strength than steel, making it the strongest material ever tested. Graphene, as the fundamental two-dimensional (2D) carbon structure with exceptionally high crystal and electronic quality, has emerged as a rapidly rising star in the field of material science. Graphene, as defined, as a 2D crystal, is composed of monolayers of carbon atoms arranged in a honeycombed network with six-membered rings, which is the interest of both theoretical and experimental researchers worldwide. The name comes from graphite and alkene. Graphite itself consists of many graphite-sheets stacked together by weak van der Waals forces. This is attributed to the monolayer of carbon atoms densely packed into honeycomb structure. Due to superior inherent properties of graphene nanoplatelets (GnP) over other nanofillers, GnP particles were added in epoxy resin with the variation of weight percentage. It is indicated that the DMA results of storage modulus, loss modulus and tan δ, defined as the ratio of elastic modulus and imaginary (loss) modulus versus temperature were affected with addition of GnP in the epoxy resin. In epoxy resin, damping (tan δ) is usually caused by movement of the molecular chain. The tan δ of the graphene nanoplatelets/epoxy resin composite is much lower than that of epoxy resin alone. This finding suggests that addition of graphene nanoplatelets effectively impedes movement of the molecular chain. The decrease in storage modulus can be interpreted by an increasing susceptibility to agglomeration, leading to less energy dissipation in the system under viscoelastic deformation. The results indicates the tan δ increased with the increase of temperature, which confirms that tan δ is associated with magnetic field strength. Also, the results show that the nanohardness increases with increase of elastic modulus marginally. GnP filled epoxy resin gives higher value than the epoxy resin, because GnP improves the mechanical properties of epoxy resin. Debonding of GnP is clearly observed in the micrograph having agglomeration of fillers and inhomogeneous distribution. Therefore, DMA and nanohardness studies indiacte that the elastic modulus of epoxy resin is increased with the addition of GnP fillers.Keywords: agglomeration, elastic modulus, epoxy resin, graphene nanoplatelet, loss modulus, nanohardness, storage modulus
Procedia PDF Downloads 2644623 Reconstruction of a Genome-Scale Metabolic Model to Simulate Uncoupled Growth of Zymomonas mobilis
Authors: Maryam Saeidi, Ehsan Motamedian, Seyed Abbas Shojaosadati
Abstract:
Zymomonas mobilis is known as an example of the uncoupled growth phenomenon. This microorganism also has a unique metabolism that degrades glucose by the Entner–Doudoroff (ED) pathway. In this paper, a genome-scale metabolic model including 434 genes, 757 reactions and 691 metabolites was reconstructed to simulate uncoupled growth and study its effect on flux distribution in the central metabolism. The model properly predicted that ATPase was activated in experimental growth yields of Z. mobilis. Flux distribution obtained from model indicates that the major carbon flux passed through ED pathway that resulted in the production of ethanol. Small amounts of carbon source were entered into pentose phosphate pathway and TCA cycle to produce biomass precursors. Predicted flux distribution was in good agreement with experimental data. The model results also indicated that Z. mobilis metabolism is able to produce biomass with maximum growth yield of 123.7 g (mol glucose)-1 if ATP synthase is coupled with growth and produces 82 mmol ATP gDCW-1h-1. Coupling the growth and energy reduced ethanol secretion and changed the flux distribution to produce biomass precursors.Keywords: genome-scale metabolic model, Zymomonas mobilis, uncoupled growth, flux distribution, ATP dissipation
Procedia PDF Downloads 4864622 Ordered Mesoporous Carbons of Different Morphology for Loading and Controlled Release of Active Pharmaceutical Ingredients
Authors: Aleksander Ejsmont, Aleksandra Galarda, Joanna Goscianska
Abstract:
Smart porous carriers with defined structure and physicochemical properties are required for releasing the therapeutic drug with precise control of delivery time and location in the body. Due to their non-toxicity, ordered structure, chemical, and thermal stability, mesoporous carbons can be considered as modern carriers for active pharmaceutical ingredients (APIs) whose effectiveness needs frequent dosing algorithms. Such an API-carrier system, if programmed precisely, may stabilize the pharmaceutical and increase its dissolution leading to enhanced bioavailability. The substance conjugated with the material, through its prior adsorption, can later be successfully applied internally to the organism, as well as externally if the API release is feasible under these conditions. In the present study, ordered mesoporous carbons of different morphologies and structures, prepared by hard template method, were applied as carriers in the adsorption and controlled release of active pharmaceutical ingredients. In the first stage, the carbon materials were synthesized and functionalized with carboxylic groups by chemical oxidation using ammonium persulfate solution and then with amine groups. Materials obtained were thoroughly characterized with respect to morphology (scanning electron microscopy), structure (X-ray diffraction, transmission electron microscopy), characteristic functional groups (FT-IR spectroscopy), acid-base nature of surface groups (Boehm titration), parameters of the porous structure (low-temperature nitrogen adsorption) and thermal stability (TG analysis). This was followed by a series of tests of adsorption and release of paracetamol, benzocaine, and losartan potassium. Drug release experiments were performed in the simulated gastric fluid of pH 1.2 and phosphate buffer of pH 7.2 or 6.8 at 37.0 °C. The XRD patterns in the small-angle range and TEM images revealed that functionalization of mesoporous carbons with carboxylic or amine groups leads to the decreased ordering of their structure. Moreover, the modification caused a considerable reduction of the carbon-specific surface area and pore volume, but it simultaneously resulted in changing their acid-base properties. Mesoporous carbon materials exhibit different morphologies, which affect the host-guest interactions during the adsorption process of active pharmaceutical ingredients. All mesoporous carbons show high adsorption capacity towards drugs. The sorption capacity of materials is mainly affected by BET surface area and the structure/size matching between adsorbent and adsorbate. Selected APIs are linked to the surface of carbon materials mainly by hydrogen bonds, van der Waals forces, and electrostatic interactions. The release behavior of API is highly dependent on the physicochemical properties of mesoporous carbons. The release rate of APIs could be regulated by the introduction of functional groups and by changing the pH of the receptor medium. Acknowledgments—This research was supported by the National Science Centre, Poland (project SONATA-12 no: 2016/23/D/NZ7/01347).Keywords: ordered mesoporous carbons, sorption capacity, drug delivery, carbon nanocarriers
Procedia PDF Downloads 1764621 Composition Dependence of Ni 2p Core Level Shift in Fe1-xNix Alloys
Authors: Shakti S. Acharya, V. R. R. Medicherla, Rajeev Rawat, Komal Bapna, Deepnarayan Biswas, Khadija Ali, K. Maiti
Abstract:
The discovery of invar effect in 35% Ni concentration Fe1-xNix alloy has stimulated enormous experimental and theoretical research. Elemental Fe and low Ni concentration Fe1-xNix alloys which possess body centred cubic (bcc) crystal structure at ambient temperature and pressure transform to hexagonally close packed (hcp) phase at around 13 GPa. Magnetic order was found to be absent at 11K for Fe92Ni8 alloy when subjected to a high pressure of 26 GPa. The density functional theoretical calculations predicted substantial hyperfine magnetic fields, but were not observed in Mossbaur spectroscopy. The bulk modulus of fcc Fe1-xNix alloys with Ni concentration more than 35%, is found to be independent of pressure. The magnetic moment of Fe is also found be almost same in these alloys from 4 to 10 GPa pressure. Fe1-xNix alloys exhibit a complex microstructure which is formed by a series of complex phase transformations like martensitic transformation, spinodal decomposition, ordering, mono-tectoid reaction, eutectoid reaction at temperatures below 400°C. Despite the existence of several theoretical models the field is still in its infancy lacking full knowledge about the anomalous properties exhibited by these alloys. Fe1-xNix alloys have been prepared by arc melting the high purity constituent metals in argon ambient. These alloys have annealed at around 3000C in vacuum sealed quartz tube for two days to make the samples homogeneous. These alloys have been structurally characterized by x-ray diffraction and were found to exhibit a transition from bcc to fcc for x > 0.3. Ni 2p core levels of the alloys have been measured using high resolution (0.45 eV) x-ray photoelectron spectroscopy. Ni 2p core level shifts to lower binding energy with respect to that of pure Ni metal giving rise to negative core level shifts (CLSs). Measured CLSs exhibit a linear dependence in fcc region (x > 0.3) and were found to deviate slightly in bcc region (x < 0.3). ESCA potential model fails correlate CLSs with site potentials or charges in metallic alloys. CLSs in these alloys occur mainly due to shift in valence bands with composition due to intra atomic charge redistribution.Keywords: arc melting, core level shift, ESCA potential model, valence band
Procedia PDF Downloads 3804620 Preliminary Geotechnical Properties of Uncemented Sandstone Kati Formation
Authors: Nursyafiqah Abdul Kahar, Niraku Rosmawati Ahmad, Hisham Mohamad, Siti Nuruljannah Mohd Marzuki
Abstract:
Assessment of geotechnical properties of the subsoil is necessary for generating relevant input for the design and construction of a foundation. It is significant for the future development in the area. The focus of this research is to investigate the preliminary geotechnical properties of the uncemented sandstone from Kati formation at Puncak Iskandar, Seri Iskandar. A series of basic soil tests, oedometer and direct shear box tests were carried out to obtain the soil parameters. The uncemented sandstone of Kati Formation was found to have well-graded and poorly graded sand distribution, depending on the location where the samples were obtained. The sand grains distribution was in a range of 82%-100% while, the specific gravity of the uncemented sandstone is in the range 2.65-2.86. The preconsolidation pressure for USB3 was 990 kPa indicating that the sandstone at USB3 sample had undergone 990 kPa of overburden pressure. The angle of friction for uncemented sandstone was ranging between 23.34°-32.92°.Keywords: geotechnical properties, Kati formation, uncemented sandstone, oedometer test; shear box test
Procedia PDF Downloads 1554619 Anticorrosive Performances of “Methyl Ester Sulfonates” Biodegradable Anionic Synthetized Surfactants on Carbon Steel X 70 in Oilfields
Authors: Asselah Amel, Affif Chaouche M'yassa, Toudji Amira, Tazerouti Amel
Abstract:
This study covers two aspects ; the biodegradability and the performances in corrosion inhibition of a series of synthetized surfactants namely Φ- sodium methyl ester sulfonates (Φ-MES: C₁₂-MES, C₁₄-MES and C₁₆-MES. The biodegradability of these organic compounds was studied using the respirometric method, ‘the standard ISO 9408’. Degradation was followed by analysis of dissolved oxygen using the dissolved oxygen meter over 28 days and the results were compared with that of sodium dodecyl sulphate (SDS). The inoculum used consists of activated sludge taken from the aeration basin of the biological wastewater treatment plant in the city of Boumerdes-Algeria. In addition, the anticorrosive performances of Φ-MES surfactants on a carbon steel "X70" were evaluated in an injection water from a well of Hassi R'mel region- Algeria, known as Baremian water, and are compared to sodium dodecyl sulphate. Two technics, the weight loss and the linear polarization resistance corrosion rate (LPR) are used allowing to investigate the relationships between the concentrations of these synthetized surfactants and their surface properties, surface coverage and inhibition efficiency. Various adsorption isotherm models were used to characterize the nature of adsorption and explain their mechanism. The results show that the MES anionic surfactants was readily biodegradable, degrading faster than SDS, about 88% for C₁₂-MES compared to 66% for the SDS. The length of their carbon chain affects their biodegradability; the longer the chain, the lower the biodegradability. The inhibition efficiency of these surfactants is around 78.4% for C₁₂-MES, 76.60% for C₁₄-MES and 98.19% for C₁₆-MES and increases with their concentration and reaches a maximum value around their critical micelle concentrations ( CMCs). Scanning electron microscopy coupled to energy dispersive X-ray spectroscopy allowed to the visualization of a good adhesion of the protective film formed by the surfactants to the surface of the steel. The studied surfactants show the Langmuirian behavior from which the thermodynamic parameters as adsorption constant (Kads), standard free energy of adsorption (〖∆G〗_ads^0 ) are determined. Interaction of the surfactants with steel surface have involved physisorptions.Keywords: corrosion, surfactants, adsorption, adsorption isotherems
Procedia PDF Downloads 974618 Influence of the 3D Printing Parameters on the Dynamic Characteristics of Composite Structures
Authors: Ali Raza, Rūta Rimašauskienė
Abstract:
In the current work, the fused deposition modelling (FDM) technique is used to manufacture PLA reinforced with carbon fibre composite structures with two unique layer patterns, 0°\0° and 0°\90°. The purpose of the study is to investigate the dynamic characteristics of each fabricated composite structure. The Macro Fiber Composite (MFC) is embedded with 0°/0° and 0°/90° structures to investigate the effect of an MFC (M8507-P2 type) patch on vibration amplitude suppression under dynamic loading circumstances. First, modal analysis testing was performed using a Polytec 3D laser vibrometer to identify bending mode shapes, natural frequencies, and vibration amplitudes at the corresponding natural frequencies. To determine the stiffness of each structure, several loads were applied at the free end of the structure, and the deformation was recorded using a laser displacement sensor. The findings confirm that a structure with 0°\0° layers pattern was found to have more stiffness compared to a 0°\90° structure. The maximum amplitude suppression in each structure was measured using a laser displacement sensor at the first resonant frequency when the control voltage signal with optimal phase was applied to the MFC. The results confirm that the 0°/0° pattern's structure exhibits a higher displacement reduction than the 0°/90° pattern. Moreover, stiffer structures have been found to perform amplitude suppression more effectively.Keywords: carbon fibre composite, MFC, modal analysis stiffness, stiffness
Procedia PDF Downloads 634617 Formation of the Water Assisted Supramolecular Assembly in the Transition Structure of Organocatalytic Asymmetric Aldol Reaction: A DFT Study
Authors: Kuheli Chakrabarty, Animesh Ghosh, Atanu Roy, Gourab Kanti Das
Abstract:
Aldol reaction is an important class of carbon-carbon bond forming reactions. One of the popular ways to impose asymmetry in aldol reaction is the introduction of chiral auxiliary that binds the approaching reactants and create dissymmetry in the reaction environment, which finally evolves to enantiomeric excess in the aldol products. The last decade witnesses the usage of natural amino acids as chiral auxiliary to control the stereoselectivity in various carbon-carbon bond forming processes. In this context, L-proline was found to be an effective organocatalyst in asymmetric aldol additions. In last few decades the use of water as solvent or co-solvent in asymmetric organocatalytic reaction is increased sharply. Simple amino acids like L-proline does not catalyze asymmetric aldol reaction in aqueous medium not only that, In organic solvent medium high catalytic loading (~30 mol%) is required to achieve moderate to high asymmetric induction. In this context, huge efforts have been made to modify L-proline and 4-hydroxy-L-proline to prepare organocatalyst for aqueous medium asymmetric aldol reaction. Here, we report the result of our DFT calculations on asymmetric aldol reaction of benzaldehyde, p-NO2 benzaldehyde and t-butyraldehyde with a number of ketones using L-proline hydrazide as organocatalyst in wet solvent free condition. Gaussian 09 program package and Gauss View program were used for the present work. Geometry optimizations were performed using B3LYP hybrid functional and 6-31G(d,p) basis set. Transition structures were confirmed by hessian calculation and IRC calculation. As the reactions were carried out in solvent free condition, No solvent effect were studied theoretically. Present study has revealed for the first time, the direct involvement of two water molecules in the aldol transition structures. In the TS, the enamine and the aldehyde is connected through hydrogen bonding by the assistance of two intervening water molecules forming a supramolecular network. Formation of this type of supramolecular assembly is possible due to the presence of protonated -NH2 group in the L-proline hydrazide moiety, which is responsible for the favorable entropy contribution to the aldol reaction. It is also revealed from the present study that, water assisted TS is energetically more favorable than the TS without involving any water molecule. It can be concluded from this study that, insertion of polar group capable of hydrogen bond formation in the L-proline skeleton can lead to a favorable aldol reaction with significantly high enantiomeric excess in wet solvent free condition by reducing the activation barrier of this reaction.Keywords: aldol reaction, DFT, organocatalysis, transition structure
Procedia PDF Downloads 4354616 Behavior of Printing Inks on Historical Documents Subjected to Cold RF Plasma Discharges
Authors: Dorina Rusu, Emil Ghiocel Ioanid, Marta Ursescu, Ana Maria Vlad, Mihaela Popescu
Abstract:
During the last decades the cold plasma discharges made the subject of numerous studies concerning the applications in the cultural heritage field, especially concentrated on ecological and non-invasive aspect of these conservation procedures. The conservation treatment using cold plasma is based, on the one hand, on the well-known property of plasma discharges to inactivate the contaminant biological species and, on the other hand, on the surface cleaning effect. Moreover the plasma discharge produces the functionalization of the treated surface, allowing subsequent deposition of protective layers. The paper presents the behavior of printing inks on historical documents treated in cold RF plasma. Two types of printing inks were studied, namely red and black ink, used on a religious book published in 19 century. SEM-EDX analysis results in the identification of the two inks as carbon black ink (C presence in the EDX spectrum) and cinnabar based red ink (Hg and S lines in the spectrum), result confirmed by XRF analysis. The experiments have been performed on paper samples written with laboratory- made inks, of similar composition with the inks identified on historical documents. The samples were subjected to RF plasma discharge, operating in nitrogen gaseous medium, at 1.2 MHz frequency and low-pressure (0.5 mbar), performed in a self-designed equipment for the application of conservation treatments on naturally aged paper supports. The impact of plasma discharge on the inks has been evaluated by SEM, XRD and color analysis. The color analysis revealed a slight discoloration of cinnabar ink on the historical document. SEM and XRD analyses have been carried out in an attempt to elucidate the process responsable for color modification.Keywords: RF plasma, printing inks, historical documents, surface cleaning effect
Procedia PDF Downloads 4394615 Assessment of Amphibian Diversity and Status of Their Habitats through Physico-Chemical Parameters in Sindh, Pakistan
Authors: Kalsoom Shaikh, Ghulam Sarwar Gachal, Saima Memon
Abstract:
Our study aimed to assess diversity and habitats of amphibian fauna in Sindh province as amphibians are among most vulnerable animals and the risk of their extinction is increasing in many parts of world mainly due to habitat degradation. Present study consisted of field surveys and laboratory analytical work; field surveys were carried out to confirm amphibian diversity and collection of water samples from their habitats, whereas laboratory work was conducted for identification of species and analysis of water quality of habitats through physico-chemical parameters. For identification of amphibian species, morphology was thoroughly examined using taxonomic key, whereas water quality was assessed via physico-chemical parameters including pH, electric conductivity (EC), total dissolved solids (TDS), total hardness (T. Hard), total alkalinity (T. Alk), chloride (Cl), carbon dioxide (CO₂), sulfate (SO₄), phosphate (PO₄), nitrite (NO₂) and nitrate (NO₃) using material and methods of analytical grade. pH value was analyzed using pH meter, whereas levels of EC and TDS were recorded using conductivity meter and TDS meter, respectively. Other parameters with exception of non-metallic parameters (SO₄, PO₄, NO₂, and NO₃) were analyzed through distinct titration methods. Concentration of non-metallic parameters was evaluated using ultra-violet spectrophotometer. This study revealed existence of four amphibian species including Hoplobatrachus tigerinus, Euphlyctis cyanophlyctis, Allopa hazarensis belonging to Family Ranidae and Bufo stomaticus (Family Bufonidae) randomly distributed in district Ghotki, Jamshoro, Kashmor, Larkana, Matiari and Shikarpur in Sindh. Assessment of aquatic habitats in different areas found value of parameters as followed: Habitats in district Ghoki (pH: 7.8 ± 0.3, EC: 2165.3 ± 712.6, TDS: 1507.0 ± 413.1, T-Hard: 416.4 ± 67.5, T. Alk: 393.4 ± 78.4, Cl: 362.4 ± 70.1, CO₂: 21.1 ± 3.5, SO₄: 429.3 ± 100.1, PO₄: 487.5 ± 122.5, NO₂: 13.7 ± 1.0, NO₃: 14.7 ± 2.5), district Jamshoro habitats (pH: 8.1 ± 0.4, EC: 2403.8 ± 55.4, TDS: 1697.2 ± 77.0, T. Hard: 548.7 ± 43.2, T. Alk: 294.4 ± 29.0, Cl: 454.7 ± 50.8 CO₂: 16.9 ± 2.4, SO₄: 713.0 ± 49.3, PO₄: 826.2 ± 53.0, NO₂: 15.2 ± 3.4, NO₃: 21.6 ± 3.7), habitats in Kashmor district (pH: 8.0 ± 0.5, EC: 2450.3 ± 610.9, TDS: 1745.3 ± 440.9, T. Hard: 624.6 ± 305.8, T. Alk: 445.7 ± 120.5, Cl: 448.9 ± 128.8, CO₂: 18.9 ± 4.5, SO₄: 619.8 ± 205.8, PO₄: 474.1 ± 94.2, NO₂: 15.2 ± 3.1, NO₃ 14.3 ± 2.6), district Larkana habitats (pH: 8.4 ± 0.4, EC: 2555.8 ± 70.3, TDS: 1784.4 ± 36.9, T. Hard: 623.0 ± 42.5, T. Alk: 329.6 ± 36.7, Cl: 614.3 ± 89.5, CO₂: 17.6 ± 1.2, SO₄: 845.1 ± 67.6, PO₄: 895.0 ± 61.4, NO₂: 13.6 ± 3.8, NO₃: 23.1 ± 2.8), district Matiari habitats (pH: 8.0 ± 0.4 EC: 2492.3 ± 928.1, TDS: 430.0 ± 161.3, T. Hard: 396.7 ± 183.3, T. Alk: 388.1 ± 97.4, Cl: 551.6 ± 73.4, CO₂: 15.8 ± 2.9, SO₄: 576.5 ± 200.0, PO₄: 434.7 ± 100.6, NO₂: 15.8 ± 2.9, NO₃: 15.2 ± 3.0) and habitats in Shikarpur district (pH: 8.1 ± 0.6, EC: 2191.7 ± 765.1, TDS: 1764.9 ± 409.2, T. Hard: 431.9 ± 68.4,T. Alk: 350.3 ± 44.3, Cl: 381.5 ± 29.5, CO₂: 18.0 ± 4.0, SO₄: 518.8 ± 97.9, PO₄: 493.6 ± 64.6, NO₂: 14.0 ± 0.8, NO₃: 16.1 ± 2.8). Values of physico-chemical parameters were found higher than permissible level of Environmental Protectiona Agency (EPA). Monthly variation in concentration of physico-chemical parameters was also prominently recorded at all the study locals. This study discovered poor diversity of amphibian fauna and condition of their habitats was also observed as pitiable. This study established base line information that may be used in execution of an effective management plan and future monitoring of amphibian diversity and their habitats in Sindh.Keywords: amphibians, diversity, habitats, Pakistan, Sindh
Procedia PDF Downloads 1644614 Biotransformation of Glycerine Pitch as Renewable Carbon Resource into P(3HB-co-4HB) Biopolymer
Authors: Amirul Al-Ashraf Abdullah, Hema Ramachandran, Iszatty Ismail
Abstract:
Oleochemical industry in Malaysia has been diversifying significantly due to the abundant supply of both palm and kernel oils as raw materials as well as the high demand for downstream products such as fatty acids, fatty alcohols and glycerine. However, environmental awareness is growing rapidly in Malaysia because oleochemical industry is one of the palm-oil based industries that possess risk to the environment. Glycerine pitch is one of the scheduled wastes generated from the fatty acid plants in Malaysia and its discharge may cause a serious environmental problem. Therefore, it is imperative to find alternative applications for this waste glycerine. Consequently, the aim of this research is to explore the application of glycerine pitch as direct fermentation substrate in the biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer, aiming to contribute toward the sustainable production of biopolymer in the world. Utilization of glycerine pitch (10 g/l) together with 1,4-butanediol (5 g/l) had resulted in the achievement of 40 mol% 4HB monomer with the highest PHA concentration of 2.91 g/l. Synthesis of yellow pigment which exhibited antimicrobial properties occurred simultaneously with the production of P(3HB-co-4HB) through the use of glycerine pitch as renewable carbon resource. Utilization of glycerine pitch in the biosynthesis of P(3HB-co-4HB) will not only contribute to reducing society’s dependence on non-renewable resources but also will promote the development of cost efficiency microbial fermentation towards biosustainability and green technology.Keywords: biopolymer, glycerine pitch, natural pigment, P(3HB-co-4HB)
Procedia PDF Downloads 4694613 Nongovernmental Organisations’ Sustainable Strategic Planning and Its Impact on Donors’ Loyalty
Authors: Farah Mahmoud Attallah
Abstract:
The nonprofit sector has been heavily rising with the rise of sustainable development in developed and developing countries. Most economies are putting high pressure on this sector, believing that nongovernmental organizations (NGOs) are one of the main rescues during crises worldwide. Talking about the Egyptian NGOs, the number of those organizations has reached an average of 50,278 organizations which is the highest number Egypt has faced through the past decade. However, with the rising number of those NGOs comes their incapability of sustaining their performance and fundraising. Additionally, donors who are considered the key partners for those organizations have become knowledgeable about this sector which made them more demanding, putting high pressure on those organizations to believe that there must be a valuable return for the economy in order to donate. This research study aims to study the impact of a sustainable strategic planning model on raising loyal donors; the proposed model of this research presents several independent variables determining their impact on donors' intention to become loyal.Keywords: nonprofit sector, non-governmental organizations, strategic planning, sustainable business model, CRM, RM
Procedia PDF Downloads 734612 Estimation of Respiratory Parameters in Pressure Controlled Ventilation System with Double Lungs on Secretion Clearance
Authors: Qian Zhang, Dongkai Shen, Yan Shi
Abstract:
A new mechanical ventilator with automatic secretion clearance function can improve the secretion clearance safely and efficiently. However, in recent modeling studies on various mechanical ventilators, it was considered that human had one lung, and the coupling effect of double lungs was never illustrated. In this paper, to expound the coupling effect of double lungs, a mathematical model of a ventilation system of a bi-level positive airway pressure (BiPAP) controlled ventilator with secretion clearance was set up. Moreover, an experimental study about the mechanical ventilation system of double lungs on BiPAP ventilator was conducted to verify the mathematical model. Finally, the coupling effect of double lungs of the mathematical ventilation was studied by simulation and orthogonal experimental design. This paper adds to previous studies and can be referred to optimization methods in medical researches.Keywords: double lungs, coupling effect, secretion clearance, orthogonal experimental design
Procedia PDF Downloads 6084611 Gap Formation into Bulk InSb Crystals Grown by the VDS Technique Revealing Enhancement in the Transport Properties
Authors: Dattatray Gadkari, Dilip Maske, Manisha Joshi, Rashmi Choudhari, Brij Mohan Arora
Abstract:
The vertical directional solidification (VDS) technique has been applied to the growth of bulk InSb crystals. The concept of practical stability is applied to the case of detached bulk crystal growth on earth in a simplified design. By optimization of the set up and growth parameters, 32 ingots of 65-75 mm in length and 10-22 mm in diameter have been grown. The results indicate that the wetting angle of the melt on the ampoule wall and the pressure difference across the interface are the crucial factors effecting the meniscus shape and stability. Taking into account both heat transfer and capillarity, it is demonstrated that the process is stable in case of convex menisci (seen from melt), provided that pressure fluctuations remain in a stable range. During the crystal growth process, it is necessary to keep a relationship between the rate of the difference pressure controls and the solidification to maintain the width of gas gap. It is concluded that practical stability gives valuable knowledge of the dynamics and could be usefully applied to other crystal growth processes, especially those involving capillary shaping. Optoelectronic properties were investigated in relation to the type of solidification attached and detached ingots growth. These samples, room temperature physical properties such as Hall mobility, FTIR, Raman spectroscopy and microhardness achieved for antimonide samples grown by VDS technique have shown the highest values gained till at this time. These results reveal that these crystals can be used to produce InSb with high mobility for device applications.Keywords: alloys, electronic materials, semiconductors, crystal growth, solidification, etching, optical microscopy, crystal structure, defects, Hall effect
Procedia PDF Downloads 4184610 Numerical Study of Fluid Flow and Heat Transfer in the Spongy-Porous Media
Authors: Zeinab Sayed Abdel Rehim, M. A. Ziada, H. Salwa El-Deeb
Abstract:
Numerical study of fluid flow, heat transfer and thermal energy storing or released in/from spongy-porous media to predict the thermal performance and characteristics of the porous media as packed bed system is presented in this work. This system is cylindrical channel filled with porous media (carbon foam). The system consists of working fluid (air) and spongy-porous medium; they act as the heat exchanger (heating or cooling modes) where thermal interaction occurs between the working fluid and the porous medium. The spongy-porous media are defined by the different type of porous medium employed in the storing or cooling modes. Two different porous media are considered in this study: Carbon foam, and Silicon rubber. The flow of the working fluid (air) is one dimensional in the axial direction from the top to downward and steady state conditions. The numerical results of transient temperature distribution for both working fluid and the spongy-porous medium phases and the amount of stored/realized heat inside/from the porous medium for each case with respect to the operating parameters and the spongy-porous media characteristics are illustrated.Keywords: fluid flow, heat transfer, numerical analysis, spongy-porous media, thermal performance, transient conditions
Procedia PDF Downloads 5474609 Experimental and Numerical Study on the Effects of Oxygen Methane Flames with Water Dilution for Different Pressures
Authors: J. P. Chica Cano, G. Cabot, S. de Persis, F. Foucher
Abstract:
Among all possibilities to combat global warming, CO2 capture and sequestration (CCS) is presented as a great alternative to reduce greenhouse gas (GHG) emission. Several strategies for CCS from industrial and power plants are being considered. The concept of combined oxy-fuel combustion has been the most alternative solution. Nevertheless, due to the high cost of pure O2 production, additional ways recently emerged. In this paper, an innovative combustion process for a gas turbine cycle was studied: it was composed of methane combustion with oxygen enhanced air (OEA), exhaust gas recirculation (EGR) and H2O issuing from STIG (Steam Injection Gas Turbine), and the CO2 capture was realized by membrane separator. The effect on this combustion process was emphasized, and it was shown that a study of the influence of H2O dilution on the combustion parameters by experimental and numerical approaches had to be carried out. As a consequence, the laminar burning velocities measurements were performed in a stainless steel spherical combustion from atmospheric pressure to high pressure (up to 0.5 MPa), at 473 K for an equivalence ratio at 1. These experimental results were satisfactorily compared with Chemical Workbench v.4.1 package in conjunction with GRIMech 3.0 reaction mechanism. The good correlations so obtained between experimental and calculated flame speed velocities showed the validity of the GRIMech 3.0 mechanism in this domain of combustion: high H2O dilution, low N2, medium pressure. Finally, good estimations of flame speed and pollutant emissions were determined in other conditions compatible with real gas turbine. In particular, mixtures (composed of CH4/O2/N2/H2O/ or CO2) leading to the same adiabatic temperature were investigated. Influences of oxygen enrichment and H2O dilution (compared to CO2) were disused.Keywords: CO₂ capture, oxygen enrichment, water dilution, laminar burning velocity, pollutants emissions
Procedia PDF Downloads 1664608 Mechanical Environment of the Aortic Valve and Mechanobiology
Authors: Rania Abdulkareem Aboubakr Mahdaly Ammar
Abstract:
The aortic valve (AV) is a complex mechanical environment that includes flexure, tension, pressure and shear stress forces to blood flow during cardiac cycle. This mechanical environment regulates AV tissue structure by constantly renewing and remodeling the phenotype. In vitro, ex vivo and in vivo studies have explained that pathological states such as hypertension and congenital defects like bicuspid AV ( BAV ) can potentially alter the AV’s mechanical environment, triggering a cascade of remodeling, inflammation and calcification activities in AV tissue. Changes in mechanical environments are first sent by the endothelium that induces changes in the extracellular matrix, and triggers cell differentiation and activation. However, the molecular mechanism of this process is not very well understood. Understanding these mechanisms is critical for the development of effective medical based therapies. Recently, there have been some interesting studies on characterizing the hemodynamics associated with AV, especially in pathologies like BAV, using different experimental and numerical methods. Here, we review the current knowledge of the local AV mechanical environment and its effect on valve biology, focusing on in vitro and ex vivo approaches.Keywords: aortic valve mechanobiology, bicuspid calcification, pressure stretch, shear stress
Procedia PDF Downloads 3654607 Three-Dimensional Fluid-Structure-Thermal Coupling Dynamics Simulation Model of a Gas-Filled Fluid-Resistance Damper and Experimental Verification
Authors: Wenxue Xu
Abstract:
Fluid resistance damper is an important damping element to attenuate vehicle vibration. It converts vibration energy into thermal energy dissipation through oil throttling. It is a typical fluid-solid-heat coupling problem. A complete three-dimensional flow-structure-thermal coupling dynamics simulation model of a gas-filled fluid-resistance damper was established. The flow-condition-based interpolation (FCBI) method and direct coupling calculation method, the unit's FCBI-C fluid numerical analysis method and iterative coupling calculation method are used to achieve the damper dynamic response of the piston rod under sinusoidal excitation; the air chamber inflation pressure, spring compression characteristics, constant flow passage cross-sectional area and oil parameters, etc. The system parameters, excitation frequency, and amplitude and other excitation parameters are analyzed and compared in detail for the effects of differential pressure characteristics, velocity characteristics, flow characteristics and dynamic response of valve opening, floating piston response and piston rod output force characteristics. Experiments were carried out on some simulation analysis conditions. The results show that the node-based FCBI (flow-condition-based interpolation) fluid numerical analysis method and direct coupling calculation method can better guarantee the conservation of flow field calculation, and the calculation step is larger, but the memory is also larger; if the chamber inflation pressure is too low, the damper will become cavitation. The inflation pressure will cause the speed characteristic hysteresis to increase, and the sealing requirements are too strict. The spring compression characteristics have a great influence on the damping characteristics of the damper, and reasonable damping characteristic needs to properly design the spring compression characteristics; the larger the cross-sectional area of the constant flow channel, the smaller the maximum output force, but the more stable when the valve plate is opening.Keywords: damper, fluid-structure-thermal coupling, heat generation, heat transfer
Procedia PDF Downloads 1444606 Fabrication of ZnO Nanorods Based Biosensor via Hydrothermal Method
Authors: Muhammad Tariq, Jafar Khan Kasi, Samiullah, Ajab Khan Kasi
Abstract:
Biosensors are playing vital role in industrial, clinical, and chemical analysis applications. Among other techniques, ZnO based biosensor is an easy approach due to its exceptional chemical and electrical properties. ZnO nanorods have positively charged isoelectric point which helps immobilize the negative charge glucose oxides (GOx). Here, we report ZnO nanorods based biosensors for the immobilization of GOx. The ZnO nanorods were grown by hydrothermal method on indium tin oxide substrate (ITO). The fabrication of biosensors was carried through batch processing using conventional photolithography. The buffer solutions of GOx were prepared in phosphate with a pH value of around 7.3. The biosensors effectively immobilized the GOx and result was analyzed by calculation of voltage and current on nanostructures.Keywords: hydrothermal growth, sol-gel, zinc dioxide, biosensors
Procedia PDF Downloads 3014605 Intracranial Hypertension without CVST in Apla Syndrome: An Unique Association
Authors: Camelia Porey, Binaya Kumar Jaiswal
Abstract:
BACKGROUND: Antiphospholipid antibody (APLA) syndrome is an autoimmune disorder predisposing to thrombotic complications affecting CNS either by arterial vasooclusion or venous thrombosis. Cerebral venous sinus thrombosis (CVST) secondarily causes raised intracranial pressure (ICP). However, intracranial hypertension without evidence of CVST is a rare entity. Here we present two cases of elevated ICP with absence of identifiable CVST. CASE SUMMARY: Case 1, 28-year female had a 2 months history of holocranial headache followed by bilateral painless vision loss reaching lack of light perception over 20 days. CSF opening pressure was elevated. Fundoscopy showed bilateral grade 4 papilledema. MRI revealed a partially empty sella with bilateral optic nerve tortuosity. Idiopathic intracranial hypertension (IIH) was diagnosed. With acetazolamide, there was complete resolution of the clinical and radiological abnormalities. 5 months later she presented with acute onset right-sided hemiparesis. MRI was suggestive of acute left MCA infarct.MR venogram was normal. APLA came positive with high titres of Anticardiolipin and Beta 2 glycoprotein both IgG and IgM. Case 2, 23-year female, presented with headache and diplopia of 2 months duration. CSF pressure was elevated and Grade 3 papilledema was seen. MRI showed bilateral optic nerve hyperintensities with nerve head protrusion with normal MRV. APLA profile showed elevated beta 2 glycoprotein IgG and IgA. CONCLUSION: This is an important non thrombotic complication of APLA syndrome and requires further large-scale study for insight into the pathogenesis and early recognition to avoid future complications.Keywords: APLA syndrome, idiopathic intracranial hypertension, MR venogram, papilledema
Procedia PDF Downloads 1774604 Investigation of the Effects of Biodiesel Blend on Particulate-Phase Exhaust Emissions from a Light Duty Diesel Vehicle
Authors: B. Wang, W. H. Or, S.C. Lee, Y.C. Leung, B. Organ
Abstract:
This study presents an investigation of diesel vehicle particulate-phase emissions with neat ultralow sulphur diesel (B0, ULSD) and 5% waste cooking oil-based biodiesel blend (B5) in Hong Kong. A Euro VI light duty diesel vehicle was tested under transient (New European Driving Cycle (NEDC)), steady-state and idling on a chassis dynamometer. Chemical analyses including organic carbon (OC), elemental carbon (EC), as well as 30 polycyclic aromatic hydrocarbons (PAHs) and 10 oxygenated PAHs (oxy-PAHs) were conducted. The OC fuel-based emission factors (EFs) for B0 ranged from 2.86 ± 0.33 to 7.19 ± 1.51 mg/kg, and those for B5 ranged from 4.31 ± 0.64 to 15.36 ± 3.77 mg/kg, respectively. The EFs of EC were low for both fuel blends (0.25 mg/kg or below). With B5, the EFs of total PAHs were decreased as compared to B0. Specifically, B5 reduced total PAH emissions by 50.2%, 30.7%, and 15.2% over NEDC, steady-state and idling, respectively. It was found that when B5 was used, PAHs and oxy-PAHs with lower molecular weight (2 to 3 rings) were reduced whereas PAHs/oxy-PAHs with medium or high molecular weight (4 to 7 rings) were increased. Our study suggests the necessity of taking atmospheric and health factors into account for biodiesel application as an alternative motor fuel.Keywords: biodiesel, OC/EC, PAHs, vehicular emission
Procedia PDF Downloads 1714603 In vitro Evaluation of the Anti-Methanogenic Properties of Australian Native and Some Exotic Plants with a View of Their Potential Role in Management of Ruminant Livestock Emissions
Authors: Philip Vercoe, Ali Hardan
Abstract:
Samples of 29 Australian wild natives and exotic plants were tested in vitro batch rumen culture system for their methanogenic characteristics and potential usage as feed or antimicrobial to enhance sustainable livestock ruminant production system. The plants were tested for their in vitro rumen fermentation end products properties which include: methane production, total gas pressure, concentrations of total volatile fatty acids, ammonia, and acetate to propionate ratio. All of the plants were produced less methane than the positive control (i.e., oaten chaff) in vitro. Nearly 50 % of plants inhibiting methane by over 50% in comparison to the control. Eremophila granitica had the strongest inhibitory effect about 92 % on methane production comparing with oaten chaff. The exotic weed Arctotheca calendula (Capeweed) had the highest concentration of volatile fatty acids production as well as the highest in total gas pressure among all plants and the control. Some of the acacia species have the lowest production of total gas pressure. The majority of the plants produced more ammonia than the oaten chaff control. The plant species that produced the most ammonia was Codonocarpus cotinifolius, producing over 3 times as much methane as oaten chaff control while the lowest was Eremophila galeata. There was strong positive correlation between methane production and total gas production as well as between total gas production and the concentration of VFA produced with R² = 0.74, R² = 0.84, respectively. While there was weak positive correlation between methane production and the acetate to propionate ratio as well as between the concentration of VFA produced and methane production with R² = 0.41, R² = 0.52, respectively.Keywords: in vitro Rumen Fermentation, methane, wild Australian native plants, forages
Procedia PDF Downloads 3464602 Photocatalytic Glucose Electrooxidation Applications of Titanium Dioxide Supported CD and CdTe Catalysts
Authors: Hilal Kivrak, Aykut ÇağLar, Nahit Aktaş, Ali Osman Solak
Abstract:
At present, Cd/TiO₂ and CdTe/TiO₂ catalysts are prepared via sodium borohydride (NaBH4) reduction method. These catalysts are characterized by fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). These Cd/TiO₂ and CdTe/TiO₂ are employed as catalysts for the photocatalytic oxidation of glucose. Cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) measurements are used to investigate their glucose electrooxidation activities of catalysts at long and under UV illumination (ʎ=354 nm). CdTe/TiO₂ catalyst is showed the best photocatalytic glucose electrooxidation activity compared to Cd/TiO₂ catalyst.Keywords: cadmium, NaBH4 reduction method, photocatalytic glucose electrooxidation, Tellerium, TiO2
Procedia PDF Downloads 2764601 Numerical Investigation of Entropy Signatures in Fluid Turbulence: Poisson Equation for Pressure Transformation from Navier-Stokes Equation
Authors: Samuel Ahamefula Mba
Abstract:
Fluid turbulence is a complex and nonlinear phenomenon that occurs in various natural and industrial processes. Understanding turbulence remains a challenging task due to its intricate nature. One approach to gain insights into turbulence is through the study of entropy, which quantifies the disorder or randomness of a system. This research presents a numerical investigation of entropy signatures in fluid turbulence. The work is to develop a numerical framework to describe and analyse fluid turbulence in terms of entropy. This decomposes the turbulent flow field into different scales, ranging from large energy-containing eddies to small dissipative structures, thus establishing a correlation between entropy and other turbulence statistics. This entropy-based framework provides a powerful tool for understanding the underlying mechanisms driving turbulence and its impact on various phenomena. This work necessitates the derivation of the Poisson equation for pressure transformation of Navier-Stokes equation and using Chebyshev-Finite Difference techniques to effectively resolve it. To carry out the mathematical analysis, consider bounded domains with smooth solutions and non-periodic boundary conditions. To address this, a hybrid computational approach combining direct numerical simulation (DNS) and Large Eddy Simulation with Wall Models (LES-WM) is utilized to perform extensive simulations of turbulent flows. The potential impact ranges from industrial process optimization and improved prediction of weather patterns.Keywords: turbulence, Navier-Stokes equation, Poisson pressure equation, numerical investigation, Chebyshev-finite difference, hybrid computational approach, large Eddy simulation with wall models, direct numerical simulation
Procedia PDF Downloads 944600 Improving Carbon Fiber Structural Battery Performance with Polymer Interface
Authors: Kathleen Moyer, Nora Ait Boucherbil, Murtaza Zohair, Janna Eaves-Rathert, Cary Pint
Abstract:
This study demonstrates the significance of interface engineering in the field of structural energy by being the first case where the performance of the system with the structural battery is greater than the performance of the same system with a battery separate from the system. The benefits of improving the interface in the structural battery were tested by creating carbon fiber composite batteries (and independent graphite electrodes and lithium iron phosphate electrodes) with and without an improved interface. Mechanical data on the structural batteries were collected using tensile tests and electrochemical data was collected using scanning electron microscopy equipment. The full-cell lithium-ion structural batteries had capacity retention of over 80% exceeding 100 cycles with an average energy density of 52 W h kg−1 and a maximum energy density of 58 W h kg−1. Most scientific developments in the field of structural energy have been done with supercapacitors. Most scientific developments with structural batteries have been done where batteries are simply incorporated into the structural element. That method has limited advantages and can create mechanical disadvantages. This study aims to show that a large improvement in structure energy research can be made by improving the interface between the structural device and the battery.Keywords: composite materials, electrochemical performance, mechanical properties, polymer interface, structural batteries
Procedia PDF Downloads 1094599 Effect of Fluidized Granular Activated Carbon for the Mitigation of Membrane Fouling in Wastewater Treatment
Authors: Jingwei Wang, Anthony G. Fane, Jia Wei Chew
Abstract:
The use of fluidized Granular Activated Carbon (GAC) as a means of mitigation membrane fouling in membrane bioreactors (MBRs) has received much attention in recent years, especially in anaerobic fluidized bed membrane bioreactors (AFMBRs). It has been affirmed that the unsteady-state tangential shear conferred by GAC fluidization on membrane surface suppressed the extent of membrane fouling with energy consumption much lower than that of bubbling (i.e., air sparging). In a previous work, the hydrodynamics of the fluidized GAC particles were correlated with membrane fouling mitigation effectiveness. Results verified that the momentum transfer from particle to membrane held a key in fouling mitigation. The goal of the current work is to understand the effect of fluidized GAC on membrane critical flux. Membrane critical flux values were measured by a vertical Direct Observation Through the Membrane (DOTM) setup. The polystyrene particles (known as latex particles) with the particle size of 5 µm were used as model foulant thus to give the number of the foulant on the membrane surface. Our results shed light on the positive effect of fluidized GAC enhancing the critical membrane flux by an order-of-magnitude as compared to that of liquid shear alone. Membrane fouling mitigation was benefitted by the increasing of power input.Keywords: membrane fouling mitigation, liquid-solid fluidization, critical flux, energy input
Procedia PDF Downloads 4074598 Effects of the Gap on the Cooling Performance of Microchannels Heat Sink
Authors: Mohammed W. Sulaiman, Chi-Chuan Wang
Abstract:
Due to the improved performance of electronic systems, the demand for electronic cooling devices with high heat dissipation has increased. This research evaluates plain microchannel cold plates with a gap above the microchannels. The present study examines the effect of the gap above straight fin microchannels in the cold plate using the dielectric Novec 7000 as a working fluid. The experiments compared two transparency cover with the same geometry and dimension for the test section. One has a gap above the microchannels (GAM) 1/3 of fin height, and another one with no gap above the microchannels (NGAM); the mass flux ranges from 25 to 260 kg/m2s, while the heat flux spans from 50 to 150 W/cm2. The results show quite an improvement in performance with this space gap above the microchannels. The test results showed that the design of the GAM shows a superior heat transfer coefficient (HTC), up 90% than that of NCBM. The GAM design has a much lower pressure drop by about 7~24% compared to the NGAM design at different mass flux and heat flux at the fully liquid inlet. The proposed space gap of 0.33% of fin height above the microchannels enables the surface temperature to decrease by around 3~7 °C compared to no gap above the microchannels, especially at high heat fluxes.Keywords: microchannels, pressure drop, enhanced performance, electronic cooling, gap
Procedia PDF Downloads 774597 Assessment of Pollutant Concentrations and Respiratory Tract Depositions of PM from Traffic Emissions: A Case Study of a Highway Toll Plaza in India
Authors: Nazneen, Aditya Kumar Patra
Abstract:
The aim of this study was to investigate the personal exposures of toll plaza workers on a busy national highway in India during the winter season to PM₂.₅, PM₁₀, BC (black carbon), and UFP (ultrafine particles). The results showed that toll workers inside the toll collection booths (ITC) were exposed to higher concentrations of air pollutants than those working outside the booths (OTC), except for UFP. Specifically, the concentrations of PM₂.₅ were 20₄.₇ µg m⁻³ (ITC) and 100.4 µg m⁻³ (OTC), while PM₁₀ concentrations were 326.1 µg m⁻³ (ITC) and 24₄.₇ µg m⁻³ (OTC), and BC concentrations were 30.7 µg m⁻³ (ITC) and 17.2 µg m⁻³ (OTC). In contrast, UFP concentrations were higher at OTC (11312.8 pt cm⁻³) than at IOC (7431.6 pt cm⁻³). The diurnal variation of pollutants showed higher concentrations in the evening due to increased traffic and less atmospheric dispersion. The respiratory deposition dose (RDD) of pollutants was higher inside the toll booths, especially during the evening. The study also revealed that PM particles consisted of soot, mineral and fly ash, which are proxies of fresh exhaust emissions, re-suspended road dust, and industrial emissions, respectively. The presence of Si, Al, Ca and Pb, as confirmed by EDX (Energy Dispersive X-ray analysis) analyses, indicated the sources of pollutants to be re-suspended road dust, brake/tire wear, and construction dust. The findings emphasize the need for policies to regulate air pollutant concentrations, particularly in workplaces situated near busy roads.Keywords: air pollution, PM₂.₅, black carbon, traffic emissions
Procedia PDF Downloads 87