Search results for: search algorithms
1396 Design and Optimization of a Mini High Altitude Long Endurance (HALE) Multi-Role Unmanned Aerial Vehicle
Authors: Vishaal Subramanian, Annuatha Vinod Kumar, Santosh Kumar Budankayala, M. Senthil Kumar
Abstract:
This paper discusses the aerodynamic and structural design, simulation and optimization of a mini-High Altitude Long Endurance (HALE) UAV. The applications of this mini HALE UAV vary from aerial topological surveys, quick first aid supply, emergency medical blood transport, search and relief activates to border patrol, surveillance and estimation of forest fire progression. Although classified as a mini UAV according to UVS International, our design is an amalgamation of the features of ‘mini’ and ‘HALE’ categories, combining the light weight of the ‘mini’ and the high altitude ceiling and endurance of the HALE. Designed with the idea of implementation in India, it is in strict compliance with the UAS rules proposed by the office of the Director General of Civil Aviation. The plane can be completely automated or have partial override control and is equipped with an Infra-Red camera and a multi coloured camera with on-board storage or live telemetry, GPS system with Geo Fencing and fail safe measures. An additional of 1.5 kg payload can be attached to three major hard points on the aircraft and can comprise of delicate equipment or releasable payloads. The paper details the design, optimization process and the simulations performed using various software such as Design Foil, XFLR5, Solidworks and Ansys.Keywords: aircraft, endurance, HALE, high altitude, long range, UAV, unmanned aerial vehicle
Procedia PDF Downloads 3971395 Optimal 3D Deployment and Path Planning of Multiple Uavs for Maximum Coverage and Autonomy
Authors: Indu Chandran, Shubham Sharma, Rohan Mehta, Vipin Kizheppatt
Abstract:
Unmanned aerial vehicles are increasingly being explored as the most promising solution to disaster monitoring, assessment, and recovery. Current relief operations heavily rely on intelligent robot swarms to capture the damage caused, provide timely rescue, and create road maps for the victims. To perform these time-critical missions, efficient path planning that ensures quick coverage of the area is vital. This study aims to develop a technically balanced approach to provide maximum coverage of the affected area in a minimum time using the optimal number of UAVs. A coverage trajectory is designed through area decomposition and task assignment. To perform efficient and autonomous coverage mission, solution to a TSP-based optimization problem using meta-heuristic approaches is designed to allocate waypoints to the UAVs of different flight capacities. The study exploits multi-agent simulations like PX4-SITL and QGroundcontrol through the ROS framework and visualizes the dynamics of UAV deployment to different search paths in a 3D Gazebo environment. Through detailed theoretical analysis and simulation tests, we illustrate the optimality and efficiency of the proposed methodologies.Keywords: area coverage, coverage path planning, heuristic algorithm, mission monitoring, optimization, task assignment, unmanned aerial vehicles
Procedia PDF Downloads 2151394 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment
Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang
Abstract:
2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.Keywords: artificial intelligence, machine learning, deep learning, convolutional neural networks
Procedia PDF Downloads 2111393 Decoding Gender Disparities in AI: An Experimental Exploration Within the Realm of AI and Trust Building
Authors: Alexander Scott English, Yilin Ma, Xiaoying Liu
Abstract:
The widespread use of artificial intelligence in everyday life has triggered a fervent discussion covering a wide range of areas. However, to date, research on the influence of gender in various segments and factors from a social science perspective is still limited. This study aims to explore whether there are gender differences in human trust in AI for its application in basic everyday life and correlates with human perceived similarity, perceived emotions (including competence and warmth), and attractiveness. We conducted a study involving 321 participants using a two-subject experimental design with a two-factor (masculinized vs. feminized voice of the AI) multiplied by a two-factor (pitch level of the AI's voice) between-subject experimental design. Four contexts were created for the study and randomly assigned. The results of the study showed significant gender differences in perceived similarity, trust, and perceived emotion of the AIs, with females rating them significantly higher than males. Trust was higher in relation to AIs presenting the same gender (e.g., human female to female AI, human male to male AI). Mediation modeling tests indicated that emotion perception and similarity played a sufficiently mediating role in trust. Notably, although trust in AIs was strongly correlated with human gender, there was no significant effect on the gender of the AI. In addition, the study discusses the effects of subjects' age, job search experience, and job type on the findings.Keywords: artificial intelligence, gender differences, human-robot trust, mediation modeling
Procedia PDF Downloads 451392 Anti Staphylococcus aureus and Methicillin Resistant Staphylococcus aureus Action of Thermophilic Fungi Acrophialophora levis IBSD19 and Determination of Its Mode of Action Using Electron Microscopy
Authors: Shivankar Agrawal, Indira Sarangthem
Abstract:
Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA) remains one of the major causes of healthcare-associated and community-onset infections worldwide. Hence the search for non-toxic natural compounds having antibacterial activity has intensified for future drug development. The exploration of less studied niches of Earth can highly increase the possibility to discover novel bioactive compounds. Therefore, in this study, the cultivable fraction of fungi from the sediments of natural hot springs has been studied to mine potential fungal candidates with antibacterial activity against the human pathogen Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. We isolated diverse strains of thermophilic fungi from a collection of samples from sediment. Following a standard method, we isolated a promising thermophilic fungus strain IBSD19, identified as Acrophialophora levis, possessing the potential to produce an anti-Staphylococcus aureus agent. The growth conditions were optimized and scaled to fermentation, and its produced extract was subjected to chemical extraction. The ethyl acetate fraction was found to display significant activity against Staphylococcus aureus and MRSA with a minimum inhibitory concentration (MIC) of 0.5 mg/ml and 4 mg/ml, respectively. The cell membrane integrity assay and SEM suggested that the fungal metabolites cause bacteria clustering and further lysis of the cell.Keywords: antibacterial activity, antioxidant, fungi, Staphylococcus aureus, MRSA, thermophiles
Procedia PDF Downloads 1341391 The Algorithm to Solve the Extend General Malfatti’s Problem in a Convex Circular Triangle
Authors: Ching-Shoei Chiang
Abstract:
The Malfatti’s Problem solves the problem of fitting 3 circles into a right triangle such that these 3 circles are tangent to each other, and each circle is also tangent to a pair of the triangle’s sides. This problem has been extended to any triangle (called general Malfatti’s Problem). Furthermore, the problem has been extended to have 1+2+…+n circles inside the triangle with special tangency properties among circles and triangle sides; we call it extended general Malfatti’s problem. In the extended general Malfatti’s problem, call it Tri(Tn), where Tn is the triangle number, there are closed-form solutions for Tri(T₁) (inscribed circle) problem and Tri(T₂) (3 Malfatti’s circles) problem. These problems become more complex when n is greater than 2. In solving Tri(Tn) problem, n>2, algorithms have been proposed to solve these problems numerically. With a similar idea, this paper proposed an algorithm to find the radii of circles with the same tangency properties. Instead of the boundary of the triangle being a straight line, we use a convex circular arc as the boundary and try to find Tn circles inside this convex circular triangle with the same tangency properties among circles and boundary Carc. We call these problems the Carc(Tn) problems. The CPU time it takes for Carc(T16) problem, which finds 136 circles inside a convex circular triangle with specified tangency properties, is less than one second.Keywords: circle packing, computer-aided geometric design, geometric constraint solver, Malfatti’s problem
Procedia PDF Downloads 1101390 Time Optimal Control Mode Switching between Detumbling and Pointing in the Early Orbit Phase
Authors: W. M. Ng, O. B. Iskender, L. Simonini, J. M. Gonzalez
Abstract:
A multitude of factors, including mechanical imperfections of the deployment system and separation instance of satellites from launchers, oftentimes results in highly uncontrolled initial tumbling motion immediately after deployment. In particular, small satellites which are characteristically launched as a piggyback to a large rocket, are generally allocated a large time window to complete detumbling within the early orbit phase. Because of the saturation risk of the actuators, current algorithms are conservative to avoid draining excessive power in the detumbling phase. This work aims to enable time-optimal switching of control modes during the early phase, reducing the time required to transit from launch to sun-pointing mode for power budget conscious satellites. This assumes the usage of B-dot controller for detumbling and PD controller for pointing. Nonlinear Euler's rotation equations are used to represent the attitude dynamics of satellites and Commercial-off-the-shelf (COTS) reaction wheels and magnetorquers are used to perform the manoeuver. Simulation results will be based on a spacecraft attitude simulator and the use case will be for multiple orbits of launch deployment general to Low Earth Orbit (LEO) satellites.Keywords: attitude control, detumbling, small satellites, spacecraft autonomy, time optimal control
Procedia PDF Downloads 1171389 In vitro Comparison Study of Biologically Synthesized Cupper-Disulfiram Nanoparticles with Its Free Corresponding Complex as Therapeutic Approach for Breast and Liver Cancer
Authors: Marwa M. Abu-Serie, Marwa M. Eltarahony
Abstract:
The search for reliable, effective, and safe nanoparticles (NPs) as a treatment for cancer is a pressing priority. In this study, Cu-NPs were fabricated by Streptomyces cyaneofuscatus through simultaneous bioreduction strategy of copper nitrate salt. The as-prepared Cu-NPs subjected to structural analysis; energy-dispersive X-ray spectroscopy, elemental mapping, X-ray diffraction, transmission electron microscopy, and ζ-potential. These biological synthesized Cu-NPs were mixed with disulfiram (DS), forming a nanocomplex of Cu-DS with a size of ~135 nm. The prepared nanocomplex (nanoCu-DS) exhibited higher anticancer activity than that of free complex of DS-Cu, Cu-NPs, and DS alone. This was illustrated by the lowest IC50 of nanoCu-DS (< 4 µM) against human breast and liver cancer cell lines comparing with DS-Cu, Cu-NPs, and DS (~8, 22.98-33.51 and 11.95-14.86, respectively). Moreover, flow cytometric analysis confirmed that higher apoptosis percentage range of nanoCu-DS-treated in MDA-MB 231, MCF-7, Huh-7, and HepG-2 cells (51.24-65.28%) than free complex of Cu-DS ( < 4.5%). Regarding inhibition potency of liver and breast cancer cell migration, no significant difference was recorded between free and nanocomplex. Furthermore, nanoCu-DS suppressed gene expression of β-catenine, Akt, and NF-κB and upregulated p53 expression (> 3, >15, > 5 and ≥ 3 folds, respectively) more efficiently than free complex (all ~ 1 fold) in MDA-MB 231 and Huh-7 cells. Our finding proved this prepared nano complex has a powerful anticancer activity relative to free complex, thereby offering a promising cancer treatment.Keywords: biologically prepared Cu-NPs, breast cancer cell lines, liver cancer cell lines, nanoCu- disulfiram
Procedia PDF Downloads 1891388 Intelligent Decision Support for Wind Park Operation: Machine-Learning Based Detection and Diagnosis of Anomalous Operating States
Authors: Angela Meyer
Abstract:
The operation and maintenance cost for wind parks make up a major fraction of the park’s overall lifetime cost. To minimize the cost and risk involved, an optimal operation and maintenance strategy requires continuous monitoring and analysis. In order to facilitate this, we present a decision support system that automatically scans the stream of telemetry sensor data generated from the turbines. By learning decision boundaries and normal reference operating states using machine learning algorithms, the decision support system can detect anomalous operating behavior in individual wind turbines and diagnose the involved turbine sub-systems. Operating personal can be alerted if a normal operating state boundary is exceeded. The presented decision support system and method are applicable for any turbine type and manufacturer providing telemetry data of the turbine operating state. We demonstrate the successful detection and diagnosis of anomalous operating states in a case study at a German onshore wind park comprised of Vestas V112 turbines.Keywords: anomaly detection, decision support, machine learning, monitoring, performance optimization, wind turbines
Procedia PDF Downloads 1671387 Quantitative Method of Measurement for the Rights and Obligations of Contracting Parties in Standard Forms of Contract in Malaysia: A Case Study
Authors: Sim Nee Ting, Lan Eng Ng
Abstract:
Standard forms of contract in Malaysia are pre-written, printed contractual documents drafted by recognised authoritative bodies in order to describe the rights and obligations of the contracting parties in all construction projects in Malaysia. Studies and form revisions are usually conducted in a relatively random and qualitative manner, but the search of contractual documents idealization remains. It is not clear how these qualitative findings could be helpful for contractual documents improvements and re-drafting. This study aims to quantitatively and systematically analyse and evaluate the rights and obligations of the contracting parties as stated in the standard forms of contract. The Institution of Engineers Malaysia (IEM) published a new standard form of contract in 2012 with a total of 63 classes but the improvements and changes in the newly revised form that are yet to be analysed. IEM form will be used as the case study for this study. Every clause in this said form were interpreted and analysed according to the involved parties including contractor, engineer and employer. Modified from Matrix Method and Likert Scale, the result analysis were conducted based on a scale from 0 to 1 with five ratings namely “Very Unbalance”, “Unbalance”, “Balance”, “Good Balance” and “Very Good Balance”. It is hoped that quantitative method of form study can be used for future form revisions and any new forms drafting so to reduce on any subjectivity in standard forms of contract studies.Keywords: contracting parties, Malaysia, obligations, quantitative measurement, rights, standard form of contract
Procedia PDF Downloads 2651386 Use of Machine Learning in Data Quality Assessment
Authors: Bruno Pinto Vieira, Marco Antonio Calijorne Soares, Armando Sérgio de Aguiar Filho
Abstract:
Nowadays, a massive amount of information has been produced by different data sources, including mobile devices and transactional systems. In this scenario, concerns arise on how to maintain or establish data quality, which is now treated as a product to be defined, measured, analyzed, and improved to meet consumers' needs, which is the one who uses these data in decision making and companies strategies. Information that reaches low levels of quality can lead to issues that can consume time and money, such as missed business opportunities, inadequate decisions, and bad risk management actions. The step of selecting, identifying, evaluating, and selecting data sources with significant quality according to the need has become a costly task for users since the sources do not provide information about their quality. Traditional data quality control methods are based on user experience or business rules limiting performance and slowing down the process with less than desirable accuracy. Using advanced machine learning algorithms, it is possible to take advantage of computational resources to overcome challenges and add value to companies and users. In this study, machine learning is applied to data quality analysis on different datasets, seeking to compare the performance of the techniques according to the dimensions of quality assessment. As a result, we could create a ranking of approaches used, besides a system that is able to carry out automatically, data quality assessment.Keywords: machine learning, data quality, quality dimension, quality assessment
Procedia PDF Downloads 1481385 The Optimum Mel-Frequency Cepstral Coefficients (MFCCs) Contribution to Iranian Traditional Music Genre Classification by Instrumental Features
Authors: M. Abbasi Layegh, S. Haghipour, K. Athari, R. Khosravi, M. Tafkikialamdari
Abstract:
An approach to find the optimum mel-frequency cepstral coefficients (MFCCs) for the Radif of Mirzâ Ábdollâh, which is the principal emblem and the heart of Persian music, performed by most famous Iranian masters on two Iranian stringed instruments ‘Tar’ and ‘Setar’ is proposed. While investigating the variance of MFCC for each record in themusic database of 1500 gushe of the repertoire belonging to 12 modal systems (dastgâh and âvâz), we have applied the Fuzzy C-Mean clustering algorithm on each of the 12 coefficient and different combinations of those coefficients. We have applied the same experiment while increasing the number of coefficients but the clustering accuracy remained the same. Therefore, we can conclude that the first 7 MFCCs (V-7MFCC) are enough for classification of The Radif of Mirzâ Ábdollâh. Classical machine learning algorithms such as MLP neural networks, K-Nearest Neighbors (KNN), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machine (SVM) have been employed. Finally, it can be realized that SVM shows a better performance in this study.Keywords: radif of Mirzâ Ábdollâh, Gushe, mel frequency cepstral coefficients, fuzzy c-mean clustering algorithm, k-nearest neighbors (KNN), gaussian mixture model (GMM), hidden markov model (HMM), support vector machine (SVM)
Procedia PDF Downloads 4461384 Exploring Data Leakage in EEG Based Brain-Computer Interfaces: Overfitting Challenges
Authors: Khalida Douibi, Rodrigo Balp, Solène Le Bars
Abstract:
In the medical field, applications related to human experiments are frequently linked to reduced samples size, which makes the training of machine learning models quite sensitive and therefore not very robust nor generalizable. This is notably the case in Brain-Computer Interface (BCI) studies, where the sample size rarely exceeds 20 subjects or a few number of trials. To address this problem, several resampling approaches are often used during the data preparation phase, which is an overly critical step in a data science analysis process. One of the naive approaches that is usually applied by data scientists consists in the transformation of the entire database before the resampling phase. However, this can cause model’ s performance to be incorrectly estimated when making predictions on unseen data. In this paper, we explored the effect of data leakage observed during our BCI experiments for device control through the real-time classification of SSVEPs (Steady State Visually Evoked Potentials). We also studied potential ways to ensure optimal validation of the classifiers during the calibration phase to avoid overfitting. The results show that the scaling step is crucial for some algorithms, and it should be applied after the resampling phase to avoid data leackage and improve results.Keywords: data leackage, data science, machine learning, SSVEP, BCI, overfitting
Procedia PDF Downloads 1531383 Blockchain-Resilient Framework for Cloud-Based Network Devices within the Architecture of Self-Driving Cars
Authors: Mirza Mujtaba Baig
Abstract:
Artificial Intelligence (AI) is evolving rapidly, and one of the areas in which this field has influenced is automation. The automobile, healthcare, education, and robotic industries deploy AI technologies constantly, and the automation of tasks is beneficial to allow time for knowledge-based tasks and also introduce convenience to everyday human endeavors. The paper reviews the challenges faced with the current implementations of autonomous self-driving cars by exploring the machine learning, robotics, and artificial intelligence techniques employed for the development of this innovation. The controversy surrounding the development and deployment of autonomous machines, e.g., vehicles, begs the need for the exploration of the configuration of the programming modules. This paper seeks to add to the body of knowledge of research assisting researchers in decreasing the inconsistencies in current programming modules. Blockchain is a technology of which applications are mostly found within the domains of financial, pharmaceutical, manufacturing, and artificial intelligence. The registering of events in a secured manner as well as applying external algorithms required for the data analytics are especially helpful for integrating, adapting, maintaining, and extending to new domains, especially predictive analytics applications.Keywords: artificial intelligence, automation, big data, self-driving cars, machine learning, neural networking algorithm, blockchain, business intelligence
Procedia PDF Downloads 1191382 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing
Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor
Abstract:
This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.Keywords: intelligent transportation system, object detection, vehicle couting, vehicle classification, video processing
Procedia PDF Downloads 3221381 Identifying Psychosocial, Autonomic, and Pain Sensitivity Risk Factors of Chronic Temporomandibular Disorder by Using Ridge Logistic Regression and Bootstrapping
Authors: Haolin Li, Eric Bair, Jane Monaco, Quefeng Li
Abstract:
The temporomandibular disorder (TMD) is a series of musculoskeletal disorders ranging from jaw pain to chronic debilitating pain, and the risk factors for the onset and maintenance of TMD are still unclear. Prior researches have shown that the potential risk factors for chronic TMD are related to psychosocial factors, autonomic functions, and pain sensitivity. Using data from the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study’s baseline case-control study, we examine whether the risk factors identified by prior researches are still statistically significant after taking all of the risk measures into account in one single model, and we also compare the relative influences of the risk factors in three different perspectives (psychosocial factors, autonomic functions, and pain sensitivity) on the chronic TMD. The statistical analysis is conducted by using ridge logistic regression and bootstrapping, in which the performance of the algorithms has been assessed using extensive simulation studies. The results support most of the findings of prior researches that there are many psychosocial and pain sensitivity measures that have significant associations with chronic TMD. However, it is surprising that most of the risk factors of autonomic functions have not presented significant associations with chronic TMD, as described by a prior research.Keywords: autonomic function, OPPERA study, pain sensitivity, psychosocial measures, temporomandibular disorder
Procedia PDF Downloads 1881380 Determination of Verapamil Hydrochloride in Tablets and Injection Solutions With the Verapamil-Selective Electrode and Possibilities of Application in Pharmaceutical Analysis
Authors: Faisal A. Salih
Abstract:
Verapamil hydrochloride (Ver) is a drug used in medicine for arrythmia, angina and hypertension as a calcium channel blocker. For the quantitative determination of Ver in dosage forms, the HPLC method is most often used. A convenient alternative to the chromatographic method is potentiometry using a Verselective electrode, which does not require expensive equipment, can be used without separation from the matrix components, which significantly reduces the analysis time, and does not use toxic organic solvents, being a "green", "environmentally friendly" technique. It has been established in this study that the rational choice of the membrane plasticizer and the preconditioning and measurement algorithms, which prevent nonexchangeable extraction of Ver into the membrane phase, makes it possible to achieve excellent analytical characteristics of Ver-selective electrodes based on commercially available components. In particular, an electrode with the following membrane composition: PVC (32.8 wt %), ortho-nitrophenyloctyl ether (66.6 wt %), and tetrakis-4-chlorophenylborate (0.6 wt % or 0.01 M) have the lower detection limit 4 × 10−8 M and potential reproducibility 0.15–0.22 mV. Both direct potentiometry (DP) and potentiometric titration (PT) methods can be used for the determination of Ver in tablets and injection solutions. Masses of Ver per average tablet weight determined by the methods of DP and PT for the same set of 10 tablets were (80.4±0.2 and80.7±0.2) mg, respectively. The masses of Ver in solutions for injection, determined by DP for two ampoules from one set, were (5.00±0.015 and 5.004±0.006) mg. In all cases, good reproducibility and excellent correspondence with the declared quantities were observed.Keywords: verapamil, potentiometry, ion-selective electrode, pharmaceutical analysis
Procedia PDF Downloads 881379 Speed Control of DC Motor Using Optimization Techniques Based PID Controller
Authors: Santosh Kumar Suman, Vinod Kumar Giri
Abstract:
The goal of this paper is to outline a speed controller of a DC motor by choice of a PID parameters utilizing genetic algorithms (GAs), the DC motor is extensively utilized as a part of numerous applications such as steel plants, electric trains, cranes and a great deal more. DC motor could be represented by a nonlinear model when nonlinearities such as attractive dissemination are considered. To provide effective control, nonlinearities and uncertainties in the model must be taken into account in the control design. The DC motor is considered as third order system. Objective of this paper three type of tuning techniques for PID parameter. In this paper, an independently energized DC motor utilizing MATLAB displaying, has been outlined whose velocity might be examined utilizing the Proportional, Integral, Derivative (KP, KI , KD) addition of the PID controller. Since, established controllers PID are neglecting to control the drive when weight parameters be likewise changed. The principle point of this paper is to dissect the execution of optimization techniques viz. The Genetic Algorithm (GA) for improve PID controllers parameters for velocity control of DC motor and list their points of interest over the traditional tuning strategies. The outcomes got from GA calculations were contrasted and that got from traditional technique. It was found that the optimization techniques beat customary tuning practices of ordinary PID controllers.Keywords: DC motor, PID controller, optimization techniques, genetic algorithm (GA), objective function, IAE
Procedia PDF Downloads 4201378 Comparative Study on Manet Using Soft Computing Techniques
Authors: Amarjit Singh, Tripatdeep Singh Dua, Vikas Attri
Abstract:
Mobile Ad-hoc Network is a combination of several nodes that create dynamically a specific network without using any base infrastructure. In this study all the mobile nodes can depended upon each other to send any data. Mobile host can pick up data and forwarding to their destination path. Basically MANET depend upon their Quality of Service which is highly constraints to the user. To give better services we need to improve the QOS. In these days MANET QOS requirement to use soft computing techniques. These techniques depend upon their specific requirement and which exists using MANET concepts. Using a soft computing techniques various protocol and algorithms may be considered. In this paper, we provide comparative study review of existing work done in MANET using various kind of soft computing techniques. Our review research is based on their specific protocol or algorithm which provide concern solution of QOS need. We discuss about various protocol through which routing in MANET. In Second section we clear the concepts of Soft Computing and their types. In third section we review the MANET using different kind of soft computing techniques work done before. In forth section we need to understand the concept of QoS requirement which exists in MANET and we done comparative study on different protocol used before and last we conclude the purpose of using MANET with soft computing techniques metrics.Keywords: mobile ad-hoc network, fuzzy improved genetic approach, neural network, routing protocol, wireless mesh network
Procedia PDF Downloads 3491377 Control Strategy for Two-Mode Hybrid Electric Vehicle by Using Fuzzy Controller
Authors: Jia-Shiun Chen, Hsiu-Ying Hwang
Abstract:
Hybrid electric vehicles can reduce pollution and improve fuel economy. Power-split hybrid electric vehicles (HEVs) provide two power paths between the internal combustion engine (ICE) and energy storage system (ESS) through the gears of an electrically variable transmission (EVT). EVT allows ICE to operate independently from vehicle speed all the time. Therefore, the ICE can operate in the efficient region of its characteristic brake specific fuel consumption (BSFC) map. The two-mode powertrain can operate in input-split or compound-split EVT modes and in four different fixed gear configurations. Power-split architecture is advantageous because it combines conventional series and parallel power paths. This research focuses on input-split and compound-split modes in the two-mode power-split powertrain. Fuzzy Logic Control (FLC) for an internal combustion engine (ICE) and PI control for electric machines (EMs) are derived for the urban driving cycle simulation. These control algorithms reduce vehicle fuel consumption and improve ICE efficiency while maintaining the state of charge (SOC) of the energy storage system in an efficient range.Keywords: hybrid electric vehicle, fuel economy, two-mode hybrid, fuzzy control
Procedia PDF Downloads 3841376 Varietal Behavior of Some Chickpea Genotypes to Wilt Disease Induced by Fusarium oxysporum f.sp. ciceris
Authors: Rouag N., Khalifa M. W., Bencheikh A., Abed H.
Abstract:
The behavior study of forty-two varieties and genotypes of chickpeas regarding root wilt disease induced by Fusarium oxysporum under the natural conditions of infection was conducted at the ITGC experimental station in Sétif. The infected plants of the different chickpea genotypes have shown multiple symptoms in the field caused by the local strain of Fusarium oxysporum f.sp.cecris belonging to race II of the pathogen. These symptoms ranged from lateral or partial wilting of some ramifications to total desiccation of the plant, sometimes combined with the very slow growth of symptomatic plants. The results of the search for sources of resistance to Fusarium wilt of chickpeas in the 42 genotypes tested revealed that in terms of infection rate, the presence of 7 groups and no genotype showed absolute resistance. While in terms of severity, the results revealed the presence of three homogeneous groups. The first group formed by the most resistant genotypes, in this case, Flip10-368C; Flip11-77C; Flip11-186C; Flip11-124C; Flip11-142C, Flip11-152C; Flip11-69C; Ghab 05; Flip11-159C; Flip11-90C; Flip10-357C and Flip11-37C while the second group is the FLIP genotype 10-382C which was found to be the most sensitive for the natural infection test. Thus, the genotypes of Cicer arietinum L., which have shown significant levels of resistance to Fusarium wilt, can be integrated into breeding and improvement programs.Keywords: chickpea, Cicer arietinum, Fusarium oxysporum, genotype resistance
Procedia PDF Downloads 861375 The Influence of Audio on Perceived Quality of Segmentation
Authors: Silvio Ricardo Rodrigues Sanches, Bianca Cogo Barbosa, Beatriz Regina Brum, Cléber Gimenez Corrêa
Abstract:
To evaluate the quality of a segmentation algorithm, the authors use subjective or objective metrics. Although subjective metrics are more accurate than objective ones, objective metrics do not require user feedback to test an algorithm. Objective metrics require subjective experiments only during their development. Subjective experiments typically display to users some videos (generated from frames with segmentation errors) that simulate the environment of an application domain. This user feedback is crucial information for metric definition. In the subjective experiments applied to develop some state-of-the-art metrics used to test segmentation algorithms, the videos displayed during the experiments did not contain audio. Audio is an essential component in applications such as videoconference and augmented reality. If the audio influences the user’s perception, using only videos without audio in subjective experiments can compromise the efficiency of an objective metric generated using data from these experiments. This work aims to identify if the audio influences the user’s perception of segmentation quality in background substitution applications with audio. The proposed approach used a subjective method based on formal video quality assessment methods. The results showed that audio influences the quality of segmentation perceived by a user.Keywords: background substitution, influence of audio, segmentation evaluation, segmentation quality
Procedia PDF Downloads 1171374 New Active Dioxin Response Element Sites in Regulatory Region of Human and Viral Genes
Authors: Ilya B. Tsyrlov, Dmitry Y. Oshchepkov
Abstract:
A computational search for dioxin response elements (DREs) in genes of proteins comprising the Ah receptor (AhR) cytosolic core complex was performed by highly efficient tool SITECON. Eventually, the following number of new DREs in 5’flanking region was detected by SITECON: one in AHR gene, five in XAP2, eight in HSP90AA1, and three in HSP90AB1 genes. Numerous DREs found in genes of AhR and AhR cytosolic complex members would shed a light on potential mechanisms of expression, the stoichiometry of unliganded AhR core complex, and its degradation vs biosynthesis dynamics resulted from treatment of target cells with the AhR most potent ligand, 2,3,7,8-TCDD. With human viruses, reduced susceptibility to TCDD of geneencoding HIV-1 P247 was justified by the only potential DRE determined in gag gene encoding HIV-1 P24 protein, whereas the regulatory region of CMV genes encoding IE gp/UL37 has five potent DRE, 1.65 kb/UL36 – six DRE, pp65 and pp71 – each has seven DRE, and pp150 – ten DRE. Also, from six to eight DRE were determined with SITECON in the regulatory region of HSV-1 IE genes encoding tegument proteins, UL36 and UL37, and of UL19 gene encoding bindingglycoprotein C (gC). So, TCDD in the low picomolar range may activate in human cells AhR: Arnt transcription pathway that triggers CMV and HSV-1 reactivation by binding to numerous promoter DRE within immediate-early (IE) genes UL37 and UL36, thus committing virus to the lytic cycle.Keywords: dioxin response elements, Ah receptor, AhR: Arnt transcription pathway, human and viral genes
Procedia PDF Downloads 1041373 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits
Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.
Abstract:
With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme
Procedia PDF Downloads 1341372 Multi Object Tracking for Predictive Collision Avoidance
Authors: Bruk Gebregziabher
Abstract:
The safe and efficient operation of Autonomous Mobile Robots (AMRs) in complex environments, such as manufacturing, logistics, and agriculture, necessitates accurate multiobject tracking and predictive collision avoidance. This paper presents algorithms and techniques for addressing these challenges using Lidar sensor data, emphasizing ensemble Kalman filter. The developed predictive collision avoidance algorithm employs the data provided by lidar sensors to track multiple objects and predict their velocities and future positions, enabling the AMR to navigate safely and effectively. A modification to the dynamic windowing approach is introduced to enhance the performance of the collision avoidance system. The overall system architecture encompasses object detection, multi-object tracking, and predictive collision avoidance control. The experimental results, obtained from both simulation and real-world data, demonstrate the effectiveness of the proposed methods in various scenarios, which lays the foundation for future research on global planners, other controllers, and the integration of additional sensors. This thesis contributes to the ongoing development of safe and efficient autonomous systems in complex and dynamic environments.Keywords: autonomous mobile robots, multi-object tracking, predictive collision avoidance, ensemble Kalman filter, lidar sensors
Procedia PDF Downloads 841371 Parents' View of Children's Preschool Education in Slovakia
Authors: Sona Lorencova
Abstract:
The practice of kindergartens shows that the communication and cooperation of teachers and directors of kindergartens with parents, who come with different expectations and ideas about preschool education, is becoming an increasing problem, which leads to many misunderstandings in their mutual functioning. In practice, little attention is paid to communication and cooperation between kindergartens and families, whether in the professional development of educators, in professional articles and publications, or in the field of research. The approach of teachers to parents whose children attend kindergarten requires more and more skills on the part of educators, which is also related to the introduction of the institute of compulsory preschool education. Thus, the discrepancy in mutual expectations and requirements for children's preschool education on the part of the kindergarten and the family is increasing. The aim of the research was to look into the world of parents and learn about their subjective experience with preschool education of children in kindergarten. The findings could be useful in the search for appropriate strategies for mutual communication and cooperation between kindergartens and families in order to achieve more effective progress for children in education. The data were collected through the method of a constellation with figures, semi-structured interviews, and the use of a research diary. Through an interpretive phenomenological analysis, it was found that the parents' view of preschool education in kindergarten is connected to 6 basic topics - parenting with a preschooler, adaptation to kindergarten, professionalism of teachers, cooperation with kindergarten, and parents' satisfaction with preschool education. The conducted research also revealed that the determinants at the level of microsystem, mesosystem, exosystem, macrosystem, and chronosystem influenced parents' view of children's preschool education in kindergarten.Keywords: preschool education, parents, kindergarten, interpretive phenomenological analysis, subjective experience
Procedia PDF Downloads 1021370 A Machine Learning Pipeline for Real-Time Activity Detection on Low Computational Power Devices for Metaverse Applications
Authors: Amit Kumar, Amanpreet Chander, Ashish Sahani
Abstract:
This paper presents our recent work on real-time human activity detection based on the media pipe pipeline and machine learning algorithms. The proposed system can detect human activities, including running, jumping, squatting, bending to the left or right, and standing still. This is a robust solution for developing a yoga, dance, metaverse, and fitness application that checks for the correction of the pose without having any additional monitor like a personal trainer. MediaPipe solution offers an open-source cross-platform which utilizes a two-step detector-tracker ML pipeline for live detection of key landmarks on our body which can be used for motion data collection. The prediction of real-time poses uses a variety of machine learning techniques and different types of analysis. Without primarily relying on powerful desktop environments for inference, our method achieves real-time performance on the majority of contemporary mobile phones, desktops/laptops, Python, or even the web. Experimental results show that our method outperforms the existing method in terms of accuracy and real-time capability, achieving an accuracy of 99.92% on testing datasets.Keywords: human activity detection, media pipe, machine learning, metaverse applications
Procedia PDF Downloads 1791369 Conservative Treatment Versus Percutaneous Wire Fixation in treatment of Distal Radial Fracture in Elderly
Authors: Abdelfatah Elsenosy, Mahmoud Ebrahim
Abstract:
Background: Distal radius fractures are commonly encountered in orthopedic practice, especially in elderly patients. A number of clinical papers have supported the idea that anatomic restoration of the distal end of the radius is essential to gain superior results. Aim and objectives: The aim of the study is to systematically review the literature for the management of distal end radius in elderly persons (conservative treatment versus percutaneous wire fixation) as regards radiological and functional outcomes. Subjects and methods: Studies were identified from the Medline, Cochrane, EMBASE, and Google Scholar databases were searched until 2019 using combinations of the following search terms: distal radius fracture, conservative treatment, non-operative treatment, and nonsurgical treatment, surgical treatment, operative, elderly, and older. Reference lists of relevant studies were manually searched. Results: There was no statistical significance difference between CI and PKF groups’ frequency of complication in all of the selected studies. Based on the results, we recommend more analysis regarding every parameter of the radiographic and functional results and specific complications related to each fixation need to be accomplished, which requires more Randomized controlled trials (RCTs) with high quality. Conclusion: Surgical treatment seems to be more effective distal radius fracture compared with conservative treatment when the radiographic outcomes were analyzed, and no significant differences were detected in the functional outcomes and complication rate.Keywords: radius, fracture, surgical, RCTs, conservative, radiographic, outcomes, orthopedic
Procedia PDF Downloads 1461368 The Effect of Naringenin on the Apoptosis in T47D Cell Line of Breast Cancer
Authors: AliAkbar Hafezi, Jahanbakhsh Asadi, Majid Shahbazi, Alijan Tabarraei, Nader Mansour Samaei, Hamed Sheibak, Roghaye Gharaei
Abstract:
Background: Breast cancer is the most common cancer in women. In most cancer cells, apoptosis is blocked. As for the importance of apoptosis in cancer cell death and the role of different genes in its induction or inhibition, the search for compounds that can begin the process of apoptosis in tumor cells is discussed as a new strategy in anticancer drug discovery. The aim of this study was to investigate the effect of Naringenin (NGEN) on the apoptosis in the T47D cell line of breast cancer. Materials and Methods: In this experimental study in vitro, the T47D cell line of breast cancer was selected as a sample. The cells at 24, 48, and 72 hours were treated with doses of 20, 200, and 1000 µm of Naringenin. Then, the transcription levels of the genes involved in apoptosis, including Bcl-2, Bax, Caspase 3, Caspase 8, Caspase 9, P53, PARP-1, and FAS, were assessed using Real Time-PCR. The collected data were analyzed using IBM SPSS Statistics 24.0. Results: The results showed that Naringenin at doses of 20, 200, and 1000 µm in all three times of 24, 48, and 72 hours increased the expression of Caspase 3, P53, PARP-1 and FAS and reduced the expression of Bcl-2 and increased the Bax/Bcl-2 ratio, nevertheless in none of the studied doses and times, had not a significant effect on the expression of Bax, Caspase 8 and Caspase 9. Conclusion: This study indicates that Naringenin can reduce the growth of some cancer cells and cause their deaths through increased apoptosis and decreased anti-apoptotic Bcl-2 gene expression and, resulting in the induction of apoptosis via both internal and external pathways.Keywords: apoptosis, breast cancer, naringenin, T47D cell line
Procedia PDF Downloads 531367 Emerging Cyber Threats and Cognitive Vulnerabilities: Cyberterrorism
Authors: Oludare Isaac Abiodun, Esther Omolara Abiodun
Abstract:
The purpose of this paper is to demonstrate that cyberterrorism is existing and poses a threat to computer security and national security. Nowadays, people have become excitedly dependent upon computers, phones, the Internet, and the Internet of things systems to share information, communicate, conduct a search, etc. However, these network systems are at risk from a different source that is known and unknown. These network systems risk being caused by some malicious individuals, groups, organizations, or governments, they take advantage of vulnerabilities in the computer system to hawk sensitive information from people, organizations, or governments. In doing so, they are engaging themselves in computer threats, crime, and terrorism, thereby making the use of computers insecure for others. The threat of cyberterrorism is of various forms and ranges from one country to another country. These threats include disrupting communications and information, stealing data, destroying data, leaking, and breaching data, interfering with messages and networks, and in some cases, demanding financial rewards for stolen data. Hence, this study identifies many ways that cyberterrorists utilize the Internet as a tool to advance their malicious mission, which negatively affects computer security and safety. One could identify causes for disparate anomaly behaviors and the theoretical, ideological, and current forms of the likelihood of cyberterrorism. Therefore, for a countermeasure, this paper proposes the use of previous and current computer security models as found in the literature to help in countering cyberterrorismKeywords: cyberterrorism, computer security, information, internet, terrorism, threat, digital forensic solution
Procedia PDF Downloads 96