Search results for: Current Park’s Vector Modulus (CPVM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11476

Search results for: Current Park’s Vector Modulus (CPVM)

9106 Quantification of Dowel-Concrete Interaction in Jointed Plain Concrete Pavements Using 3D Numerical Simulation

Authors: Lakshmana Ravi Raj Gali, K. Sridhar Reddy, M. Amaranatha Reddy

Abstract:

Load transfer between adjacent slabs of the jointed plain concrete pavement (JPCP) system is inevitable for long-lasting performance. Dowel bars are generally used to ensure sufficient degree of load transfer, in addition to the load transferred by aggregate interlock mechanism at the joints. Joint efficiency is the measure of joint quality, a major concern and therefore the dowel bar system should be designed and constructed well. The interaction between dowel bars and concrete that includes various parameters of dowel bar and concrete will explain the degree of joint efficiency. The present study focuses on the methodology of selecting contact stiffness, which quantifies dowel-concrete interaction. In addition, a parametric study which focuses on the effect of dowel diameter, dowel shape, the spacing between dowel bars, joint opening, the thickness of the slab, the elastic modulus of concrete, and concrete cover on contact stiffness was also performed. The results indicated that the thickness of the slab is most critical among various parameters to explain the joint efficiency. Further displacement equivalency method was proposed to find out the contact stiffness. The proposed methodology was validated with the available field surface deflection data collected by falling weight deflectometer (FWD).

Keywords: contact stiffness, displacement equivalency method, Dowel-concrete interaction, joint behavior, 3D numerical simulation

Procedia PDF Downloads 154
9105 Modeling Electrical Properties of Hetero-Junction-Graphene/Pentacene and Gold/Pentacene

Authors: V. K. Lamba, Abhinandan Bharti

Abstract:

We investigate the electronic transport properties across the graphene/ pentacene and gold/pentacene interface. Further, we studied the effect of ripples/bends in pentacene using NEGF-DFT approach. Current transport across the pentacene/graphene interface is found to be remarkably different from transport across pentacene/Gold interfaces. We found that current across these interfaces could be accurately modeled by a combination of thermionic and Poole–Frenkel emission. Further, the degree of bend or degrees of the curve formed during ripple formation strongly change the optimized geometric structures, charge distributions, energy bands, and DOS. The misorientation and hybridization of carbon orbitals are associated with a variation in bond lengths and carrier densities, and are the causes of the dramatic changes in the electronic structure during ripple formation. The electrical conductivity decreases with increase in curvature during ripple formation or due to bending of pentacene molecule and a decrease in conductivity is directly proportional to the increase in curvature angle and given by quadratic relation.

Keywords: hetero-junction, grapheme, NEGF-DFT, pentacene, gold/pentacene

Procedia PDF Downloads 233
9104 Food Security of Migrants in a Regional Area of Australia: A Qualitative Study

Authors: Joanne Sin Wei Yeoh, Quynh Lê, Rosa McManamey

Abstract:

Food security indicates the ability of individuals, households and communities to acquire food that is healthy, sustainable, affordable, appropriate and accessible. Despite Australia’s current ability to produce enough food to feed a population larger than its current population, there has been substantial evidence over the last decades to demonstrate many Australians struggle to feed themselves, including those from a cultural and linguistically diverse (CALD) background. The study aimed to investigate migrants’ perceptions and experiences on food security in Tasmania. Semi-structured interviews were conducted with 33 migrants residing in North, South and North West Tasmania, who were recruited through purposive sampling. Thematic analysis was employed to analyse the interview data. Four main themes were identified from the interview data: (1) Understanding of food security; (2) Experiences with the food security in Tasmania; (3) Factors that influence migrants’ food security in Tasmania; and (4) Acculturation strategies. Various sub-themes have emerged under each of these four major themes. Though the findings indicate participants are satisfied with their current food security in Tasmania, they still encounter some challenges in food availability, accessibility, and affordability in Tasmania. Factors that influence migrants’ food security were educational background, language barrier, socioeconomic status, geographical isolation, and cultural background. By using different acculturation strategies, migrants managed to adapt to the new food culture. In addition, social and cultural capitals were also treated as vital roles in improving migrants’ food security. The findings indicate migrants residing in Tasmania face different challenges on food security. They use different strategies for food security while acculturating into a new environment. The findings may provide useful information for migrants in Australia and various private organisations or relevant government departments that address food security for migrants.

Keywords: experiences, food security, migrants, perceptions

Procedia PDF Downloads 426
9103 Syndrome of Irreversible Lithium-Effectuated Neurotoxicity: Case Report and Review of Literature

Authors: David J. Thomson, Joshua C. J. Chew

Abstract:

Background: Syndrome of Irreversible Lithium-Effectuated Neurotoxicity (SILENT) is a rare complication of lithium toxicity that typically causes irreversible cerebellar dysfunction. These patients may require hemodialysis and extensive supports in the intensive care. Methods: A review was performed on the available literature of SILENT with a focus on current pathophysiological hypotheses and advances in treatment. Articles were restricted to the English language. Results: Although the exact mechanism is unclear, CNS demyelination, especially in the cerebellum, was seen on the brain biopsies of a proportion of patients. There is no definitive management of SILENT but instead current management is focused on primary and tertiary prevention – detection of those at risk, and rehabilitation post onset of neurological deficits. Conclusions: This review draws conclusions from a limited amount of available literature, most of which are isolated case reports. Greater awareness of SILENT and further investigation into the risk factors and pathogenesis are required so this serious and irreversible syndrome may be avoided.

Keywords: lithium toxicity, pathogenesis, SILENT, syndrome of irreversible lithium-effectuated neurotoxicity

Procedia PDF Downloads 500
9102 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.

Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset

Procedia PDF Downloads 357
9101 Feature Extraction Based on Contourlet Transform and Log Gabor Filter for Detection of Ulcers in Wireless Capsule Endoscopy

Authors: Nimisha Elsa Koshy, Varun P. Gopi, V. I. Thajudin Ahamed

Abstract:

The entire visualization of GastroIntestinal (GI) tract is not possible with conventional endoscopic exams. Wireless Capsule Endoscopy (WCE) is a low risk, painless, noninvasive procedure for diagnosing diseases such as bleeding, polyps, ulcers, and Crohns disease within the human digestive tract, especially the small intestine that was unreachable using the traditional endoscopic methods. However, analysis of massive images of WCE detection is tedious and time consuming to physicians. Hence, researchers have developed software methods to detect these diseases automatically. Thus, the effectiveness of WCE can be improved. In this paper, a novel textural feature extraction method is proposed based on Contourlet transform and Log Gabor filter to distinguish ulcer regions from normal regions. The results show that the proposed method performs well with a high accuracy rate of 94.16% using Support Vector Machine (SVM) classifier in HSV colour space.

Keywords: contourlet transform, log gabor filter, ulcer, wireless capsule endoscopy

Procedia PDF Downloads 541
9100 Smart Technology Work Practices to Minimize Job Pressure

Authors: Babar Rasheed

Abstract:

The organizations are in continuous effort to increase their yield and to retain their associates, employees. Technology is considered an integral part of attaining apposite work practices, work environment, and employee engagement. Unconsciously, these advanced practices like work from home, personalized intra-network are disturbing employee work-life balance which ultimately increases psychological pressure on employees. The smart work practice is to develop business models and organizational practices with enhanced employee engagement, minimum trouncing of organization resources with persistent revenue and positive addition in global societies. Need of smart work practices comes from increasing employee turnover rate, global economic recession, unnecessary job pressure, increasing contingent workforce and advancement in technologies. Current practices are not enough elastic to tackle global changing work environment and organizational competitions. Current practices are causing many reciprocal problems among employee and organization mechanically. There is conscious understanding among business sectors smart work practices that will deal with new century challenges with addressing the concerns of relevant issues. It is aimed in this paper to endorse customized and smart work practice tools along knowledge framework to manage the growing concerns of employee engagement, use of technology, orgaization concerns and challenges for the business. This includes a Smart Management Information System to address necessary concerns of employees and combine with a framework to extract the best possible ways to allocate companies resources and re-align only required efforts to adopt the best possible strategy for controlling potential risks.

Keywords: employees engagement, management information system, psychological pressure, current and future HR practices

Procedia PDF Downloads 186
9099 Transformer Life Enhancement Using Dynamic Switching of Second Harmonic Feature in IEDs

Authors: K. N. Dinesh Babu, P. K. Gargava

Abstract:

Energization of a transformer results in sudden flow of current which is an effect of core magnetization. This current will be dominated by the presence of second harmonic, which in turn is used to segregate fault and inrush current, thus guaranteeing proper operation of the relay. This additional security in the relay sometimes obstructs or delays differential protection in a specific scenario, when the 2nd harmonic content was present during a genuine fault. This kind of scenario can result in isolation of the transformer by Buchholz and pressure release valve (PRV) protection, which is acted when fault creates more damage in transformer. Such delays involve a huge impact on the insulation failure, and chances of repairing or rectifying fault of problem at site become very dismal. Sometimes this delay can cause fire in the transformer, and this situation becomes havoc for a sub-station. Such occurrences have been observed in field also when differential relay operation was delayed by 10-15 ms by second harmonic blocking in some specific conditions. These incidences have led to the need for an alternative solution to eradicate such unwarranted delay in operation in future. Modern numerical relay, called as intelligent electronic device (IED), is embedded with advanced protection features which permit higher flexibility and better provisions for tuning of protection logic and settings. Such flexibility in transformer protection IEDs, enables incorporation of alternative methods such as dynamic switching of second harmonic feature for blocking the differential protection with additional security. The analysis and precautionary measures carried out in this case, have been simulated and discussed in this paper to ensure that similar solutions can be adopted to inhibit analogous issues in future.

Keywords: differential protection, intelligent electronic device (IED), 2nd harmonic inhibit, inrush inhibit

Procedia PDF Downloads 303
9098 The Role of Food System in Promoting Environmental Planning

Authors: Rayeheh Khatami, Toktam Hanaei, Mohammad Reza Mansouri Daneshvar

Abstract:

Today, many local and national governments are developing urban agriculture as an effective tool in responding to challenges such as food security, poverty and environmental problems. In fact, urban agriculture plays an important role in food system, which can provide citizens' income and become one of the components of economic, social and environmental systems. The purpose of this paper is to analyze the urban agriculture and urban food systems in order to understand the impact of urban foods production on environmental planning in non-western city region context. To achieve such objective, we carry out a case study in Mashhad city of Iran by using qualitative approaches. A survey on documentary studies and planning tools integrate with face to face interview with experts which explain the role of food system in environmental planning process. The paper extends the use of food in the environmental planning, specifically to examine this role to create agricultural garden as a mean to improve agricultural system in non-western country. The paper is concluded with a set of recommendations for researchers and policymakers who seek to create spaces in order to implement urban agriculture in cities for food justice.

Keywords: urban agriculture , agricultural park, city region food system, Mashhad

Procedia PDF Downloads 130
9097 The Prospect of Income Contingent Loan in Malaysia Higher Education Financing Using Deterministic and Stochastic Methods in Modelling Income

Authors: Syaza Isma, Timothy Higgins

Abstract:

In Malaysia, increased take-up rates of tertiary student borrowing, and reliance on retirement savings to fund children's education show the importance of public higher education financing schemes (PTPTN). PTPTN has been operating for 2 decades now; however, there are some critical issues and challenges that include low loan recovery and loan default that suggest a detailed consideration of student loan/financing scheme alternatives is crucial. In addition, the decline in funding level per student following introduction of the new PTPTN full and partial loan scheme has raised ongoing concerns over the sustainability of the scheme to provide continuous financial assistance to students in tertiary education. This research seeks to assess these issues that put greater efficiency in an effort to ensure equitable access to student funding for current and future generations. We explore the extent of repayment hardship under the current loan arrangements that presumably led to low recovery from the borrowers, particularly low-income graduates. The concept of manageable debt exists in the design of income-contingent repayment schemes, as practiced in Australia, New Zealand, UK, Hungary, USA (in limited form), the Netherlands, and South Korea. Can Income Contingent Loans (ICL) offer the best practice for an education financing scheme, and address the issue of repayment hardship and concurrently, can a properly designed ICL scheme provide a solution to the current issues and challenges facing Malaysia student financing? We examine the different potential ICL models using deterministic and stochastic approach to simulate income of graduates.

Keywords: deterministic, income contingent loan, repayment burden, simulation, stochastic

Procedia PDF Downloads 231
9096 Development of an Improved Paradigm for the Tourism Sector in the Department of Huila, Colombia: A Theoretical and Empirical Approach

Authors: Laura N. Bolivar T.

Abstract:

The tourism importance for regional development is mainly highlighted by the collaborative, cooperating and competitive relationships of the involved agents. The fostering of associativity processes, in particular, the cluster approach emphasizes the beneficial outcomes from the concentration of enterprises, where innovation and entrepreneurship flourish and shape the dynamics for tourism empowerment. Considering the department of Huila, it is located in the south-west of Colombia and holds the biggest coffee production in the country, although it barely contributes to the national GDP. Hence, its economic development strategy is looking for more dynamism and Huila could be consolidated as a leading destination for cultural, ecological and heritage tourism, if at least the public policy making processes for the tourism management of La Tatacoa Desert, San Agustin Park and Bambuco’s National Festival, were implemented in a more efficient manner. In this order of ideas, this study attempts to address the potential restrictions and beneficial factors for the consolidation of the tourism sector of Huila-Colombia as a cluster and how could it impact its regional development. Therefore, a set of theoretical frameworks such as the Tourism Routes Approach, the Tourism Breeding Environment, the Community-based Tourism Method, among others, but also a collection of international experiences describing tourism clustering processes and most outstanding problematics, is analyzed to draw up learning points, structure of proceedings and success-driven factors to be contrasted with the local characteristics in Huila, as the region under study. This characterization involves primary and secondary information collection methods and comprises the South American and Colombian context together with the identification of involved actors and their roles, main interactions among them, major tourism products and their infrastructure, the visitors’ perspective on the situation and a recap of the related needs and benefits regarding the host community. Considering the umbrella concepts, the theoretical and the empirical approaches, and their comparison with the local specificities of the tourism sector in Huila, an array of shortcomings is analytically constructed and a series of guidelines are proposed as a way to overcome them and simultaneously, raise economic development and positively impact Huila’s well-being. This non-exhaustive bundle of guidelines is focused on fostering cooperating linkages in the actors’ network, dealing with Information and Communication Technologies’ innovations, reinforcing the supporting infrastructure, promoting the destinations considering the less known places as well, designing an information system enabling the tourism network to assess the situation based on reliable data, increasing competitiveness, developing participative public policy-making processes and empowering the host community about the touristic richness. According to this, cluster dynamics would drive the tourism sector to meet articulation and joint effort, then involved agents and local particularities would be adequately assisted to cope with the current changing environment of globalization and competition.

Keywords: innovative strategy, local development, network of tourism actors, tourism cluster

Procedia PDF Downloads 142
9095 Defying the Walls of Autocracy: The Role of the Catholic Church in the Resistance against Dictatorships in South Korea and the Philippines during the Early 1960s and Late 1980s

Authors: Marvin R. Tenecio

Abstract:

The analysis of "religious resistance" has been prevalent in Asian and Philippine studies. Discussions on religious resistance from a variety of perspectives are deemed as crucial turning points in the concept's ongoing development and expansion. By broadening the backdrop of religious protest between the early 1960s and the late 1980s, the researchers contend that a study examining the role carried by the Catholic Church in the upheavals against dictatorships in South Korea and the Philippines would be beneficial to the body of knowledge. This study examines a variety of historical writings about the activities occurring at that time. The researchers also compare and contrast the Catholic Church's contributions to the Korean and Philippine resistance against Park Chung-Hee and Ferdinand Marcos Sr., respectively, during the early 1960s until the late 1980s, using the lens of history from below, particularly the Pasyon and Revolution. The Catholic Church stood out against human rights abuses, promoted social justice, and mobilized the public for political reform in response to the dictatorships in South Korea and the Philippines. Even though the specific circumstances and personalities may have changed, the Church's position in both countries was vital in opposing authoritarian governments and supporting democratic movements.

Keywords: resistance, movements, catholic, church, dictatorship

Procedia PDF Downloads 81
9094 Damage Localization of Deterministic-Stochastic Systems

Authors: Yen-Po Wang, Ming-Chih Huang, Ming-Lian Chang

Abstract:

A scheme integrated with deterministic–stochastic subspace system identification and the method of damage localization vector is proposed in this study for damage detection of structures based on seismic response data. A series of shaking table tests using a five-storey steel frame has been conducted in National Center for Research on Earthquake Engineering (NCREE), Taiwan. Damage condition is simulated by reducing the cross-sectional area of some of the columns at the bottom. Both single and combinations of multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged (ill-conditioned) counterpart has also been studied. The proposed scheme proves to be effective.

Keywords: damage locating vectors, deterministic-stochastic subspace system, shaking table tests, system identification

Procedia PDF Downloads 329
9093 Effects of COVID-19 Confinement on Physical Activity and Screen Time in Spanish Children

Authors: Maria Medrano, Cristina Cadenas-Sanchez, Maddi Oses, Lide Arenaza, Maria Amasene, Idoia Labayen

Abstract:

The COVID-19 outbreak began in December 2019 in China and was rapidly expanded globally. Emergency measures, such as social distance or home confinement, were adopted by many country governments to prevent its transmission. In Spain, one of the most affected countries, the schools were closed, and one of the most severe mandatory home confinement was established for children from 14th March to 26th April 2020. The hypothesis of this study was that the measures adopted during the COVID-19 pandemic may have negatively affected physical activity and screen time of children. However, few studies have examined the effects of COVID-19 pandemic on lifestyle behaviours. Thus, the aim of the current work was to analyse the effects of the COVID-19 confinement on physical activity and screen time in Spanish children. For the current purpose, a total of 113 children and adolescents (12.0 ± 2.6 yr., 51.3% boys, 24.0% with overweight/obesity according to the World Obesity Federation) of the MUGI project were included in the analyses. Physical activity and screen time were longitudinally assessed by 'The Youth Activity Profile' questionnaire (YAP). Differences in physical activity and screen time before and during the confinement were assessed by dependent t-test. Before the confinement, 60% did not meet physical activity recommendations ( ≥ 60/min/day of moderate to vigorous physical activity), and 61% used screens ≥ 2 h/day. During the COVID-19 confinement, children decreased their physical activity levels (-91 ± 55 min/day, p < 0.001) and increased screen time ( ± 2.6 h/day, p < 0.001). The prevalence of children that worsened physical activity and screen time during the COVID-19 confinement were 95.2% and 69.8%, respectively. The current study evidence the negative effects of the COVID-19 confinement on physical activity and screen time in Spanish children. These findings should be taken into account to develop and implement future public health strategies for preserving children's lifestyle behaviours and health during and after the COVID-19 pandemic.

Keywords: COVID-19, lifestyle changes, paediatric, physical activity, screen time

Procedia PDF Downloads 135
9092 Mn3O4-NiFe Layered Double Hydroxides(LDH)/Carbon Composite Cathode for Rechargeable Zinc-Air Battery

Authors: L. K. Nivedha, V. Maruthapandian, R. Kothandaraman

Abstract:

Rechargeable zinc-air batteries (ZAB) are gaining significant research attention owing to their high energy density and copious zinc resources worldwide. However, the unsolved obstacles such as dendrites, passivation, depth of discharge and the lack of an efficient cathode catalyst restrict their practical application1. By and large, non-noble transition metal-based catalysts are well-reputed materials for catalysing oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with greater stability in alkaline medium2. Herein, we report the synthesis and application of Mn₃O4-NiFeLDH/Carbon composite as a cathode catalyst for rechargeable ZAB. The synergetic effects of the mixed transition metals (Mn/Ni/Fe) have aided in catalysing ORR and OER in alkaline electrolyte with a shallow potential gap of 0.7 V. The composite, by its distinctive physicochemical characteristics, shows an excellent OER activity with a current density of 1.5 mA cm⁻² at a potential of 1.6 V and a superior ORR activity with an onset potential of 0.8 V when compared with their counterparts. Nevertheless, the catalyst prefers a two-electron pathway for the electrochemical reduction of oxygen which results in a limiting current density of 2.5 mA cm⁻². The bifunctional activity of the Mn₃O₄-NiFeLDH/Carbon composite was utilized in developing rechargeable ZAB. The fully fabricated ZAB delivers an open circuit voltage of 1.4 V, a peak power density of 70 mW cm⁻², and a specific capacity of 800 mAh g⁻¹ at a current density of 20 mA cm⁻² with an average discharge voltage of 1 V and the cell is operable upto 50 mA cm-2. Rechargeable ZAB demonstrated over 110 h at 10 mA cm⁻². Further, the cause for the diminished charge-discharge performance experienced beyond the 100th cycle was investigated, and carbon corrosion was testified using Infrared spectroscopy.

Keywords: rechargeable zinc-air battery, oxygen evolution reaction, bifunctional catalyst, alkaline medium

Procedia PDF Downloads 84
9091 Using the Yield-SAFE Model to Assess the Impacts of Climate Change on Yield of Coffee (Coffea arabica L.) Under Agroforestry and Monoculture Systems

Authors: Tesfay Gidey Bezabeh, Tânia Sofia Oliveira, Josep Crous-Duran, João H. N. Palma

Abstract:

Ethiopia's economy depends strongly on Coffea arabica production. Coffee, like many other crops, is sensitive to climate change. An urgent development and application of strategies against the negative impacts of climate change on coffee production is important. Agroforestry-based system is one of the strategies that may ensure sustainable coffee production amidst the likelihood of future impacts of climate change. This system involves the combination of trees in buffer extremes, thereby modifying microclimate conditions. This paper assessed coffee production under 1) coffee monoculture and 2) coffee grown using an agroforestry system, under a) current climate and b) two different future climate change scenarios. The study focused on two representative coffee-growing regions of Ethiopia under different soil, climate, and elevation conditions. A process-based growth model (Yield-SAFE) was used to simulate coffee production for a time horizon of 40 years. Climate change scenarios considered were representative concentration pathways (RCP) 4.5 and 8.5. The results revealed that in monoculture systems, the current coffee yields are between 1200-1250 kg ha⁻¹ yr⁻¹, with an expected decrease between 4-38% and 20-60% in scenarios RCP 4.5 and 8.5, respectively. However, in agroforestry systems, the current yields are between 1600-2200 kg ha⁻¹ yr⁻¹; the decrease was lower, ranging between 4-13% and 16-25% in RCP 4.5 and 8.5 scenarios, respectively. From the results, it can be concluded that coffee production under agroforestry systems has a higher level of resilience when facing future climate change and reinforces the idea of using this type of management in the near future for adapting climate change's negative impacts on coffee production.

Keywords: Albizia gummifera, CORDEX, Ethiopia, HADCM3 model, process-based model

Procedia PDF Downloads 121
9090 Finite Element Modeling of Global Ti-6Al-4V Mechanical Behavior in Relationship with Microstructural Parameters

Authors: Fatna Benmessaoud, Mohammed Cheikh, Vencent Velay, Vanessa Vedal, Farhad Rezai-Aria, Christine Boher

Abstract:

The global mechanical behavior of materials is strongly linked to their microstructure, especially their crystallographic texture and their grains morphology. These material aspects determine the mechanical fields character (heterogeneous or homogeneous), thus, they give to the global behavior a degree of anisotropy according the initial microstructure. For these reasons, the prediction of global behavior of materials in relationship with the microstructure must be performed with a multi-scale approach. Therefore, multi-scale modeling in the context of crystal plasticity is widely used. In this present contribution, a phenomenological elasto-viscoplastic model developed in the crystal plasticity context and finite element method are used to investigate the effects of crystallographic texture and grains sizes on global behavior of a polycrystalline equiaxed Ti-6Al-4V alloy. The constitutive equations of this model are written on local scale for each slip system within each grain while the strain and stress mechanical fields are investigated at the global scale via finite element scale transition. The beta phase of Ti-6Al-4V alloy modeled is negligible; its percent is less than 10%. Three families of slip systems of alpha phase are considered: basal and prismatic families with a burgers vector and pyramidal family with a burgers vector. The twinning mechanism of plastic strain is not observed in Ti-6Al-4V, therefore, it is not considered in the present modeling. Nine representative elementary volumes (REV) are generated with Voronoi tessellations. For each individual equiaxed grain, the own crystallographic orientation vis-à-vis the loading is taken into account. The meshing strategy is optimized in a way to eliminate the meshing effects and at the same time to allow calculating the individual grain size. The stress and strain fields are determined in each Gauss point of the mesh element. A post-treatment is used to calculate the local behavior (in each grain) and then by appropriate homogenization, the macroscopic behavior is calculated. The developed model is validated by comparing the numerical simulation results with an experimental data reported in the literature. It is observed that the present model is able to predict the global mechanical behavior of Ti-6Al-4V alloy and investigate the microstructural parameters' effects. According to the simulations performed on the generated volumes (REV), the macroscopic mechanical behavior of Ti-6Al-4V is strongly linked to the active slip systems family (prismatic, basal or pyramidal). The crystallographic texture determines which family of slip systems can be activated; therefore it gives to the plastic strain a heterogeneous character thus an anisotropic macroscopic mechanical behavior. The average grains size influences also the Ti-6Al-4V mechanical proprieties, especially the yield stress; by decreasing of the average grains size, the yield strength increases according to Hall-Petch relationship. The grains sizes' distribution gives to the strain fields considerable heterogeneity. By increasing grain sizes, the scattering in the localization of plastic strain is observed, thus, in certain areas the stress concentrations are stronger than other regions.

Keywords: microstructural parameters, multi-scale modeling, crystal plasticity, Ti-6Al-4V alloy

Procedia PDF Downloads 127
9089 Development of Computational Approach for Calculation of Hydrogen Solubility in Hydrocarbons for Treatment of Petroleum

Authors: Abdulrahman Sumayli, Saad M. AlShahrani

Abstract:

For the hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of the process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models are optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with an RMSE of 1.38 × 10− 2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions is estimated in different ranges of temperatures and pressures of 150 ◦C–350 ◦C and 1.2 MPa–10.8 MPa, respectively

Keywords: temperature, pressure variations, machine learning, oil treatment

Procedia PDF Downloads 72
9088 Inverterless Grid Compatible Micro Turbine Generator

Authors: S. Ozeri, D. Shmilovitz

Abstract:

Micro‐Turbine Generators (MTG) are small size power plants that consist of a high speed, gas turbine driving an electrical generator. MTGs may be fueled by either natural gas or kerosene and may also use sustainable and recycled green fuels such as biomass, landfill or digester gas. The typical ratings of MTGs start from 20 kW up to 200 kW. The primary use of MTGs is for backup for sensitive load sites such as hospitals, and they are also considered a feasible power source for Distributed Generation (DG) providing on-site generation in proximity to remote loads. The MTGs have the compressor, the turbine, and the electrical generator mounted on a single shaft. For this reason, the electrical energy is generated at high frequency and is incompatible with the power grid. Therefore, MTGs must contain, in addition, a power conditioning unit to generate an AC voltage at the grid frequency. Presently, this power conditioning unit consists of a rectifier followed by a DC/AC inverter, both rated at the full MTG’s power. The losses of the power conditioning unit account to some 3-5%. Moreover, the full-power processing stage is a bulky and costly piece of equipment that also lowers the overall system reliability. In this study, we propose a new type of power conditioning stage in which only a small fraction of the power is processed. A low power converter is used only to program the rotor current (i.e. the excitation current which is substantially lower). Thus, the MTG's output voltage is shaped to the desired amplitude and frequency by proper programming of the excitation current. The control is realized by causing the rotor current to track the electrical frequency (which is related to the shaft frequency) with a difference that is exactly equal to the line frequency. Since the phasor of the rotation speed and the phasor of the rotor magnetic field are multiplied, the spectrum of the MTG generator voltage contains the sum and the difference components. The desired difference component is at the line frequency (50/60 Hz), whereas the unwanted sum component is at about twice the electrical frequency of the stator. The unwanted high frequency component can be filtered out by a low-pass filter leaving only the low-frequency output. This approach allows elimination of the large power conditioning unit incorporated in conventional MTGs. Instead, a much smaller and cheaper fractional power stage can be used. The proposed technology is also applicable to other high rotation generator sets such as aircraft power units.

Keywords: gas turbine, inverter, power multiplier, distributed generation

Procedia PDF Downloads 241
9087 Assessment of the Remains in Historic Urban Area Based on Spatial Prototype: Case Study on Jingmen City, China

Authors: Guangtong Xu, Yi He

Abstract:

Like most historic and cultural cities in China, the historic urban area of Jingmen city is facing a typical spatial problem of fragmentation and fuzzification. This study focuses on exploring a method for evaluating the existing values of historic urban area based on spatial prototype, a concept introduced into urban morphology from 'Archetype' in architectural typology. As the spatial elements and built-up relationship of historic city, spatial prototype has habitual structural characteristics and formal modulus. It is the inherent logic and order rules behind the scattered historic environment, providing a clue to understand the spatial characteristics and a basis for guiding the construction and conservation in historic urban areas. Three criteria, the resolution of historical elements, the completeness of historical structure and the renewal potential of associated land, were selected to construct the integrated assessment system. These three dimensions are linked to the spatial prototype and its constituent elements, as well as the transformation relationship in ancient and present day. The results showed that historic urban areas have changed from a holistic city to different existing types dominated by their historic structure elements. It is necessary to improve the pertinence of planning strategies and develop diversified management measures in the conservation scope of historic urban area. Moreover, a constructive-conservation strategy should be put forward to enhance the integrity of historic urban area based on the trace of spatial prototype and evaluation results.

Keywords: constructive conservation, existing value, historic urban area, spatial prototype

Procedia PDF Downloads 170
9086 Parkinson's Disease Gene Identification Using Physicochemical Properties of Amino Acids

Authors: Priya Arora, Ashutosh Mishra

Abstract:

Gene identification, towards the pursuit of mutated genes, leading to Parkinson’s disease, puts forward a challenge towards proactive cure of the disorder itself. Computational analysis is an effective technique for exploring genes in the form of protein sequences, as the theoretical and manual analysis is infeasible. The limitations and effectiveness of a particular computational method are entirely dependent on the previous data that is available for disease identification. The article presents a sequence-based classification method for the identification of genes responsible for Parkinson’s disease. During the initiation phase, the physicochemical properties of amino acids transform protein sequences into a feature vector. The second phase of the method employs Jaccard distances to select negative genes from the candidate population. The third phase involves artificial neural networks for making final predictions. The proposed approach is compared with the state of art methods on the basis of F-measure. The results confirm and estimate the efficiency of the method.

Keywords: disease gene identification, Parkinson’s disease, physicochemical properties of amino acid, protein sequences

Procedia PDF Downloads 142
9085 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 96
9084 In-Vitro Evaluation of the Long-Term Stability of PEDOT:PSS Coated Microelectrodes for Chronic Recording and Electrical Stimulation

Authors: A. Schander, T. Tessmann, H. Stemmann, S. Strokov, A. Kreiter, W. Lang

Abstract:

For the chronic application of neural prostheses and other brain-computer interfaces, long-term stable microelectrodes for electrical stimulation are essential. In recent years many developments were done to investigate different appropriate materials for these electrodes. One of these materials is the electrical conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT), which has lower impedance and higher charge injection capacity compared to noble metals like gold and platinum. However the long-term stability of this polymer is still unclear. Thus this paper reports on the in-vitro evaluation of the long-term stability of PEDOT coated gold microelectrodes. For this purpose a highly flexible electrocorticography (ECoG) electrode array, based on the polymer polyimide, is used. This array consists of circular gold electrodes with a diameter of 560 µm (0.25 mm2). In total 25 electrodes of this array were coated simultaneously with the polymer PEDOT:PSS in a cleanroom environment using a galvanostatic electropolymerization process. After the coating the array is additionally sterilized using a steam sterilization process (121°C, 1 bar, 20.5 min) to simulate autoclaving prior to the implantation of such an electrode array. The long-term measurements were performed in phosphate-buffered saline solution (PBS, pH 7.4) at the constant body temperature of 37°C. For the in-vitro electrical stimulation a one channel bipolar current stimulator is used. The stimulation protocol consists of a bipolar current amplitude of 5 mA (cathodal phase first), a pulse duration of 100 µs per phase, a pulse pause of 50 µs and a frequency of 1 kHz. A PEDOT:PSS coated gold electrode with an area of 1 cm2 serves as the counter electrode. The electrical stimulation is performed continuously with a total amount of 86.4 million bipolar current pulses per day. The condition of the PEDOT coated electrodes is monitored in between with electrical impedance spectroscopy measurements. The results of this study demonstrate that the PEDOT coated electrodes are stable for more than 3.6 billion bipolar current pulses. Also the unstimulated electrodes show currently no degradation after the time period of 5 months. These results indicate an appropriate long-term stability of this electrode coating for chronic recording and electrical stimulation. The long-term measurements are still continuing to investigate the life limit of this electrode coating.

Keywords: chronic recording, electrical stimulation, long-term stability, microelectrodes, PEDOT

Procedia PDF Downloads 590
9083 Effects of a Nursing Intervention Program Using a Rehabilitation Self-Management Workbook on Depression, Motivation and Self-Efficacy of Rehabilitation Inpatients

Authors: Young Ae Song, So Yun Kim, Nan Ji Kim, So Young Jang, Yun Mee Park, Mi Jin Lee, Ji Yeon Lee

Abstract:

Background & Purpose: Many patients have psychological problems such as depression and anxiety during the rehabilitation period. Such psychological instability affects the prognosis of the patient in the long term. We develop a nursing intervention program for rehabilitation inpatients using a rehabilitation self –management note and evaluate the effects of the program on depression, motivation, and self-efficacy. Methods: The study was conducted using a nonequivalent control group non-synchronized design. Participants were rehabilitation inpatients, 27 patients in the control group and 20 in the experimental group. Questionnaires were completed three times (pretest, 5 days, 10 days) Final data for 40 patients were analyzed, 23 patients in the control group and 17 in the experimental group. Data were analyzed using x2-test, t-test, and repeated measure ANOVA. Results: Depression in the experimental group decreased compared to the control group, but it was not significant. The motivation for the experimental group changed significantly (F=3.90, p=.029) and self-efficacy increased, but not significantly (F=0.59, p=.559) Conclusion: Results of this study indicate that nursing intervention programs for rehabilitation inpatients could be useful to decrease depression and to improve motivation and self-efficacy.

Keywords: depression, motivation, self-efficacy, rehabilitation inpatient, self-management workbook

Procedia PDF Downloads 148
9082 Analysis of CO₂ Capture Products from Carbon Capture and Utilization Plant

Authors: Bongjae Lee, Beom Goo Hwang, Hye Mi Park

Abstract:

CO₂ capture products manufactured through Carbon Capture and Utilization (CCU) Plant that collect CO₂ directly from power plants require accurate measurements of the amount of CO₂ captured. For this purpose, two tests were carried out on the weight loss test. And one was analyzed using a carbon dioxide quantification device. First, the ignition loss analysis was performed by measuring the weight of the sample at 550°C after the first conversation and then confirming the loss when ignited at 950°C. Second, in the thermogravimetric analysis, the sample was divided into two sections of 40 to 500°C and 500 to 800°C to confirm the reduction. The results of thermal weight loss analysis and thermogravimetric analysis were confirmed to be almost similar. However, the temperature of the ignition loss analysis method was 950°C, which was 150°C higher than that of the thermogravimetric method at a temperature of 800°C, so that the difference in the amount of weight loss was 3 to 4% higher by the heat loss analysis method. In addition, the tendency that the CO₂ content increases as the reaction time become longer is similarly confirmed. Third, the results of the wet titration method through the carbon dioxide quantification device were found to be significantly lower than the weight loss method. Therefore, based on the results obtained through the above three analysis methods, we will establish a method to analyze the accurate amount of CO₂. Acknowledgements: This work was supported by the Korea Institute of Energy Technology Evaluation and planning (No. 20152010201850).

Keywords: carbon capture and utilization, CCU, CO2, CO2 capture products, analysis method

Procedia PDF Downloads 219
9081 An Investigation on Material Removal Rate of EDM Process: A Response Surface Methodology Approach

Authors: Azhar Equbal, Anoop Kumar Sood, M. Asif Equbal, M. Israr Equbal

Abstract:

In the present work response surface methodology (RSM) based central composite design (CCD) is used for analyzing the electrical discharge machining (EDM) process. For experimentation, mild steel is selected as work piece and copper is used as electrode. Three machining parameters namely current (I), spark on time (Ton) and spark off time (Toff) are selected as the input variables. The output or response chosen is material removal rate (MRR) which is to be maximized. To reduce the number of runs face centered central composite design (FCCCD) was used. ANOVA was used to determine the significance of parameter and interactions. The suitability of model is tested using Anderson darling (AD) plot. The results conclude that different parameters considered i.e. current, pulse on and pulse off time; all have dominant effect on the MRR. At last, the optimized parameter setting for maximizing MRR is found through main effect plot analysis.

Keywords: EDM, electrode, MRR, RSM, ANOVA

Procedia PDF Downloads 307
9080 The Accuracy of Parkinson's Disease Diagnosis Using [123I]-FP-CIT Brain SPECT Data with Machine Learning Techniques: A Survey

Authors: Lavanya Madhuri Bollipo, K. V. Kadambari

Abstract:

Objective: To discuss key issues in the diagnosis of Parkinson disease (PD), To discuss features influencing PD progression, To discuss importance of brain SPECT data in PD diagnosis, and To discuss the essentiality of machine learning techniques in early diagnosis of PD. An accurate and early diagnosis of PD is nowadays a challenge as clinical symptoms in PD arise only when there is more than 60% loss of dopaminergic neurons. So far there are no laboratory tests for the diagnosis of PD, causing a high rate of misdiagnosis especially when the disease is in the early stages. Recent neuroimaging studies with brain SPECT using 123I-Ioflupane (DaTSCAN) as radiotracer shown to be widely used to assist the diagnosis of PD even in its early stages. Machine learning techniques can be used in combination with image analysis procedures to develop computer-aided diagnosis (CAD) systems for PD. This paper addressed recent studies involving diagnosis of PD in its early stages using brain SPECT data with Machine Learning Techniques.

Keywords: Parkinson disease (PD), dopamine transporter, single-photon emission computed tomography (SPECT), support vector machine (SVM)

Procedia PDF Downloads 400
9079 A Predictive Model of Supply and Demand in the State of Jalisco, Mexico

Authors: M. Gil, R. Montalvo

Abstract:

Business Intelligence (BI) has become a major source of competitive advantages for firms around the world. BI has been defined as the process of data visualization and reporting for understanding what happened and what is happening. Moreover, BI has been studied for its predictive capabilities in the context of trade and financial transactions. The current literature has identified that BI permits managers to identify market trends, understand customer relations, and predict demand for their products and services. This last capability of BI has been of special concern to academics. Specifically, due to its power to build predictive models adaptable to specific time horizons and geographical regions. However, the current literature of BI focuses on predicting specific markets and industries because the impact of such predictive models was relevant to specific industries or organizations. Currently, the existing literature has not developed a predictive model of BI that takes into consideration the whole economy of a geographical area. This paper seeks to create a predictive model of BI that would show the bigger picture of a geographical area. This paper uses a data set from the Secretary of Economic Development of the state of Jalisco, Mexico. Such data set includes data from all the commercial transactions that occurred in the state in the last years. By analyzing such data set, it will be possible to generate a BI model that predicts supply and demand from specific industries around the state of Jalisco. This research has at least three contributions. Firstly, a methodological contribution to the BI literature by generating the predictive supply and demand model. Secondly, a theoretical contribution to BI current understanding. The model presented in this paper incorporates the whole picture of the economic field instead of focusing on a specific industry. Lastly, a practical contribution might be relevant to local governments that seek to improve their economic performance by implementing BI in their policy planning.

Keywords: business intelligence, predictive model, supply and demand, Mexico

Procedia PDF Downloads 124
9078 Microstructure and Excess Conductivity of Bulk, Ag-Added FeSe Superconductors

Authors: Michael Koblischka, Yassine Slimani, Thomas Karwoth, Anjela Koblischka-Veneva, Essia Hannachi

Abstract:

On bulk FeSe superconductors containing different additions of Ag, a thorough investigation of the microstructures was performed using optical microscopy, SEM and TEM. The electrical resistivity was measured using four-point measurements in the temperature range 2 K ≤ T ≤ 150 K. The data obtained are analyzed in the framework of the excess conductivity approach using the Aslamazov-Larkin (AL) model. The investigated samples comprised of five distinct fluctuation regimes, namely short-wave (SWF), onedimensional (1D), two-dimensional (2D), three-dimensional (3D), and critical (CR) fluctuation regimes. The coherence length along the c-axis at zero-temperature (ξc(0)), the lower and upper critical magnetic fields (Bc1 and Bc2), the critical current density (Jc) and numerous other superconducting parameters were estimated with respect to the Ag content in the samples. The data reveal a reduction of the resistivity and a strong decrease of ξc(0) when doping the 11-samples with silver. The optimum content of the Ag-addition is found at 4 wt.-% Ag, yielding the highest critical current density.

Keywords: iron-based superconductors, FeSe, Ag-addition, excess conductivity, microstructure

Procedia PDF Downloads 147
9077 Harmonic Pollution Caused by Non-Linear Load: Analysis and Identification

Authors: K. Khlifi, A. Haddouk, M. Hlaili, H. Mechergui

Abstract:

The present paper provides a detailed analysis of prior methods and approaches for non-linear load identification in residential buildings. The main goal of this analysis is to decipher the distorted signals and to estimate the harmonics influence on power systems. We have performed an analytical study of non-linear loads behavior in the residential environment. Simulations have been performed in order to evaluate the distorted rate of the current and follow his behavior. To complete this work, an instrumental platform has been realized to carry out practical tests on single-phase non-linear loads which illustrate the current consumption of some domestic appliances supplied with single-phase sinusoidal voltage. These non-linear loads have been processed and tracked in order to limit their influence on the power grid and to reduce the Joule effect losses. As a result, the study has allowed to identify responsible circuits of harmonic pollution.

Keywords: distortion rate, harmonic analysis, harmonic pollution, non-linear load, power factor

Procedia PDF Downloads 146