Search results for: soil moisture content retrieval
8938 Numerical Modeling of Timber Structures under Varying Humidity Conditions
Authors: Sabina Huč, Staffan Svensson, Tomaž Hozjan
Abstract:
Timber structures may be exposed to various environmental conditions during their service life. Often, the structures have to resist extreme changes in the relative humidity of surrounding air, with simultaneously carrying the loads. Wood material response for this load case is seen as increasing deformation of the timber structure. Relative humidity variations cause moisture changes in timber and consequently shrinkage and swelling of the material. Moisture changes and loads acting together result in mechano-sorptive creep, while sustained load gives viscoelastic creep. In some cases, magnitude of the mechano-sorptive strain can be about five times the elastic strain already at low stress levels. Therefore, analyzing mechano-sorptive creep and its influence on timber structures’ long-term behavior is of high importance. Relatively many one-dimensional rheological models for rheological behavior of wood can be found in literature, while a number of models coupling creep response in each material direction is limited. In this study, mathematical formulation of a coupled two-dimensional mechano-sorptive model and its application to the experimental results are presented. The mechano-sorptive model constitutes of a moisture transport model and a mechanical model. Variation of the moisture content in wood is modelled by multi-Fickian moisture transport model. The model accounts for processes of the bound-water and water-vapor diffusion in wood, that are coupled through sorption hysteresis. Sorption defines a nonlinear relation between moisture content and relative humidity. Multi-Fickian moisture transport model is able to accurately predict unique, non-uniform moisture content field within the timber member over time. Calculated moisture content in timber members is used as an input to the mechanical analysis. In the mechanical analysis, the total strain is assumed to be a sum of the elastic strain, viscoelastic strain, mechano-sorptive strain, and strain due to shrinkage and swelling. Mechano-sorptive response is modelled by so-called spring-dashpot type of a model, that proved to be suitable for describing creep of wood. Mechano-sorptive strain is dependent on change of moisture content. The model includes mechano-sorptive material parameters that have to be calibrated to the experimental results. The calibration is made to the experiments carried out on wooden blocks subjected to uniaxial compressive loaded in tangential direction and varying humidity conditions. The moisture and the mechanical model are implemented in a finite element software. The calibration procedure gives the required, distinctive set of mechano-sorptive material parameters. The analysis shows that mechano-sorptive strain in transverse direction is present, though its magnitude and variation are substantially lower than the mechano-sorptive strain in the direction of loading. The presented mechano-sorptive model enables observing real temporal and spatial distribution of the moisture-induced strains and stresses in timber members. Since the model’s suitability for predicting mechano-sorptive strains is shown and the required material parameters are obtained, a comprehensive advanced analysis of the stress-strain state in timber structures, including connections subjected to constant load and varying humidity is possible.Keywords: mechanical analysis, mechano-sorptive creep, moisture transport model, timber
Procedia PDF Downloads 2468937 Using GIS and Map Data for the Analysis of the Relationship between Soil and Groundwater Quality at Saline Soil Area of Kham Sakaesaeng District, Nakhon Ratchasima, Thailand
Authors: W. Thongwat, B. Terakulsatit
Abstract:
The study area is Kham Sakaesaeng District in Nakhon Ratchasima Province, the south section of Northeastern Thailand, located in the Lower Khorat-Ubol Basin. This region is the one of saline soil area, located in a dry plateau and regularly experience standing with periods of floods and alternating with periods of drought. Especially, the drought in the summer season causes the major saline soil and saline water problems of this region. The general cause of dry land salting resulted from salting on irrigated land, and an excess of water leading to the rising water table in the aquifer. The purpose of this study is to determine the relationship of physical and chemical properties between the soil and groundwater. The soil and groundwater samples were collected in both rainy and summer seasons. The content of pH, electrical conductivity (EC), total dissolved solids (TDS), chloride and salinity were investigated. The experimental result of soil and groundwater samples show the slightly pH less than 7, EC (186 to 8,156 us/cm and 960 to 10,712 us/cm), TDS (93 to 3,940 ppm and 480 to 5,356 ppm), chloride content (45.58 to 4,177,015 mg/l and 227.90 to 9,216,736 mg/l), and salinity (0.07 to 4.82 ppt and 0.24 to 14.46 ppt) in the rainy and summer seasons, respectively. The distribution of chloride content and salinity content were interpolated and displayed as a map by using ArcMap 10.3 program, according to the season. The result of saline soil and brined groundwater in the study area were related to the low-lying topography, drought area, and salt-source exposure. Especially, the Rock Salt Member of Maha Sarakham Formation was exposed or lies near the ground surface in this study area. During the rainy season, salt was eroded or weathered from the salt-source rock formation and transported by surface flow or leached into the groundwater. In the dry season, the ground surface is dry enough resulting salt precipitates from the brined surface water or rises from the brined groundwater influencing the increasing content of chloride and salinity in the ground surface and groundwater.Keywords: environmental geology, soil salinity, geochemistry, groundwater hydrology
Procedia PDF Downloads 1208936 Impact of Organic Farming on Soil Fertility and Microbial Activity
Authors: Menuka Maharjan
Abstract:
In the name of food security, agriculture intensification through conventional farming is being implemented in Nepal. Government focus on increasing agriculture production completely ignores soil as well human health. This leads to create serious soil degradation, i.e., reduction of soil fertility and microbial activity and health hazard in the country. On this note, organic farming is sustainable agriculture approach which can address challenge of sustaining food security while protecting the environment. This creates a win-win situation both for people and the environment. However, people have limited knowledge on significance of organic farming for environment conservation and food security especially developing countries like Nepal. Thus, the objective of the study was to assess the impacts of organic farming on soil fertility and microbial activity compared to conventional farming and forest in Chitwan, Nepal. Total soil organic carbon (C) was highest in organic farming (24 mg C g⁻¹ soil) followed by conventional farming (15 mg C g⁻¹ soil) and forest (9 mg C g⁻¹ soil) in the topsoil layer (0-10 cm depth). A similar trend was found for total nitrogen (N) content in all three land uses with organic farming soil possessing the highest total N content in both 0-10 cm and 10-20 cm depth. Microbial biomass C and N were also highest under organic farming, especially in the topsoil layer (350 and 46 mg g⁻¹ soil, respectively). Similarly, microbial biomass phosphorus (P) was higher (3.6 and 1.0 mg P kg⁻¹ at 0-10 and 10-20 cm depth, respectively) in organic farming compared to conventional farming and forest at both depths. However, conventional farming and forest soils had similar microbial biomass (C, N, and P) content. After conversion of forest, the P stock significantly increased by 373% and 170% in soil under organic farming at 0-10 and 10-20 cm depth, respectively. In conventional farming, the P stock increased by 64% and 36% at 0-10 cm and 10-20 cm depth, respectively, compared to forest. Overall, organic farming practices, i.e., crop rotation, residue input and farmyard manure application, significantly alters soil fertility and microbial activity. Organic farming system is emerging as a sustainable land use system which can address the issues of food security and environment conservation by increasing sustainable agriculture production and carbon sequestration, respectively, supporting to achieve goals of sustainable development.Keywords: organic farming, soil fertility, micobial biomas, food security
Procedia PDF Downloads 1768935 Unsupervised Domain Adaptive Text Retrieval with Query Generation
Authors: Rui Yin, Haojie Wang, Xun Li
Abstract:
Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.Keywords: dense retrieval, query generation, unsupervised training, text retrieval
Procedia PDF Downloads 738934 Effect of Bacillus Pumilus Strains on Heavy Metal Accumulation in Lettuce Grown on Contaminated Soil
Authors: Sabeen Alam, Mehboob Alam
Abstract:
The research work entitled “Effect of Bacillus pumilus strains on heavy metal accumulation in lettuce grown on contaminated soil” focused on functional role of Bacillus pumilus strains inoculated with lettuce seed in mitigating heavy metal in chromite mining soil. In this experiment, factor A was three Bacillus pumilus strains (sequence C-2PMW-8, C-1 SSK-8 and C-1 PWK-7) while soil used for this experiment was collected from Prang Ghar mining site and lettuce seeds were grown in three levels of chromite mining soil (2.27, 4.65 and 7.14 %). For mining soil minimum days to germinate noted in lettuce grown on garden soil inoculated with sequence. Maximum germination percentage noted was for C-1 SSK-8 grown on garden soil, maximum lettuce height for sequence C-2 PWM-8, fresh leaf weight for C-1 PWK-7 inoculated lettuce, dry weight of lettuce leaf for lettuce inoculated with C-1 SSK-8 and C-1 PWK-7 strains, number of leaves per plant for lettuce inoculated with C-1 SSK-8, leaf area for C-2 PMW-8 inoculated lettuce, survival percentage for C-1 SSK-8 treated lettuce and chlorophyll content for C-2 PMW-8. Results related to heavy metals accumulation showed that minimum chromium was in lettuce and in soil for all three sequences, cadmium (Cd) in lettuce and in soil for all three sequences, manganese (Mn) in lettuce and in soil for three sequences, lead (Pb) in lettuce and in soil for three sequences. It can be concluded that chromite mining soil significantly reduced the growth and survival of lettuce, but when lettuce was inoculated with Bacillus.pumilus strains, it enhances growth and survival. Similarly, minimum heavy metal accumulation in plant and soil, regardless of type of Bacillus pumilus used, all three sequences has same mitigating effect on heavy metal in both soil and lettuce. All the three Bacillus pumilus strains ensured reduction in heavy metals content (Mn, Cd, Cr) in lettuce, below the maximum permissible limits of WHO 2011.Keywords: bacillus pumilus, heavy metals, permissible limits, lettuce, chromite mining soil, mitigating effect
Procedia PDF Downloads 608933 Drying Kinetics of Vacuum Dried Beef Meat Slices
Authors: Elif Aykin Dincer, Mustafa Erbas
Abstract:
The vacuum drying behavior of beef slices (10 x 4 x 0.2 cm3) was experimentally investigated at the temperature of 60, 70, and 80°C under 25 mbar ultimate vacuum pressure and the mathematical models (Lewis, Page, Midilli, Two-term, Wangh and Singh and Modified Henderson and Pabis) were used to fit the vacuum drying of beef slices. The increase in drying air temperature resulted in a decrease in drying time. It took approximately 206, 180 and 157 min to dry beef slices from an initial moisture content to a final moisture content of 0.05 kg water/kg dry matter at 60, 70 and 80 °C of vacuum drying, respectively. It is also observed that the drying rate increased with increasing drying temperature. The coefficients (R2), the reduced chi-square (x²) and root mean square error (RMSE) values were obtained by application of six models to the experimental drying data. The best model with the highest R2 and, the lowest x² and RMSE values was selected to describe the drying characteristics of beef slices. The Page model has shown a better fit to the experimental drying data as compared to other models. In addition, the effective moisture diffusivities of beef slices in the vacuum drying at 60 - 80 °C varied in the range of 1.05 – 1.09 x 10-10 m2/s. Consequently, this results can be used to simulate vacuum drying process of beef slices and improve efficiency of the drying process.Keywords: beef slice, drying models, effective diffusivity, vacuum
Procedia PDF Downloads 2888932 Effect of Bamboo Chips in Cemented Sand Soil on Permeability and Mechanical Properties in Triaxial Compression
Authors: Sito Ismanti, Noriyuki Yasufuku
Abstract:
Cement utilization to improve the properties of soil is a well-known method applied in field. However, its addition in large quantity must be controlled. This study presents utilization of natural and environmental-friendly material mixed with small amount of cement content in soil improvement, i.e. bamboo chips. Absorbability, elongation, and flatness ratio of bamboo chips were examined to investigate and understand the influence of its characteristics in the mixture. Improvement of dilation behavior as a problem of loose and poorly graded sand soil is discussed. Bamboo chips are able to improve the permeability value that affects the dilation behavior of cemented sand soil. It is proved by the stress path as the result of triaxial compression test in the undrained condition. The effect of size and content variation of bamboo chips, as well as the curing time variation are presented and discussed.Keywords: bamboo chips, permeability, mechanical properties, triaxial compression
Procedia PDF Downloads 3338931 Investigating the Properties of Nylon Fiber Reinforced Asphalt Concrete
Authors: Hasan Taherkhani
Abstract:
The performance of asphalt pavements is highly dependent on the mechanical properties of asphaltic layers. Improving the mechanical properties of asphaltic mixtures by fiber reinforcement is a common method. Randomly distribution of fibers in the bituminous mixtures and placing between the particles develop reinforcing property in all directions in the mixture and improve their engineering properties. In this research, the effects of the nylon fiber length and content on some engineering properties of a typical binder course asphalt concrete have been investigated. The fibers at different contents of 0.3, 0.4 and 0.5% (by the weight of total mixture), each at three different lengths of 10, 25 and 40 mm have been used, and the properties of the mixtures, such as, volumetric properties, Marshall stability, flow, Marshall quotient, indirect tensile strength and moisture damage have been studied. It is found that the highest Marshall quotient is obtained by using 0.4% of 25mm long nylon fibers. The results also show that the indirect tensile strength and tensile strength ratio, which is an indication of moisture damage of asphalt concrete, decreases with increasing the length of fibers and fiber content.Keywords: asphalt concrete, moisture damage, nylon fiber, tensile strength,
Procedia PDF Downloads 4088930 IoT Based Agriculture Monitoring Framework for Sustainable Rice Production
Authors: Armanul Hoque Shaon, Md Baizid Mahmud, Askander Nobi, Md. Raju Ahmed, Md. Jiabul Hoque
Abstract:
In the Internet of Things (IoT), devices are linked to the internet through a wireless network, allowing them to collect and transmit data without the need for a human operator. Agriculture relies heavily on wireless sensors, which are a vital component of the Internet of Things (IoT). This kind of wireless sensor network monitors physical or environmental variables like temperatures, sound, vibration, pressure, or motion without relying on a central location or sink and collaboratively passes its data across the network to be analyzed. As the primary source of plant nutrients, the soil is critical to the agricultural industry's continued growth. We're excited about the prospect of developing an Internet of Things (IoT) solution. To arrange the network, the sink node collects groundwater levels and sends them to the Gateway, which centralizes the data and forwards it to the sensor nodes. The sink node gathers soil moisture data, transmits the mean to the Gateways, and then forwards it to the website for dissemination. The web server is in charge of storing and presenting the moisture in the soil data to the web application's users. Soil characteristics may be collected using a networked method that we developed to improve rice production. Paddy land is running out as the population of our nation grows. The success of this project will be dependent on the appropriate use of the existing land base.Keywords: IoT based agriculture monitoring, intelligent irrigation, communicating network, rice production
Procedia PDF Downloads 1548929 Eucalyptus camendulensis and Its Drying Effect on Water and Essential Oil Content
Authors: Mehani Mouna, Segni Ladjel
Abstract:
Medicinal and aromatic plants are promising and are characterized by the biosynthesis of odorous molecules that make up the so-called essential oils (EO), which have long been known for their antiseptic and therapeutic activity in folk medicine. The objective of this study was to evaluate the influence of drying in the shade on the water content and on the content of essential oils extracted from leaves of Eucalyptus camendulensis for better quality control of medicinal and aromatic plants. The water content of the Eucalyptus camendulensis plant material decreases during the drying process. It increased from 100 % to 0.006 % for the drying in the shade after ten days. The moisture content is practically constant at the end of the drying period. The drying in the shade increases the concentration of essential oils of Eucalyptus camendulensis. When the leaves of Eucalyptus camendulensis plant are in the shade, the maximum of the essential oil content was obtained on the eighth days; the recorded value was 1.43% ± 0.01%. Beyond these periods, the content continuously drops in before stabilizing. The optimum drying time is between 6 and 9 days.Keywords: Eucalyptus camendulensis, drying, essential oils, water, content
Procedia PDF Downloads 3578928 Ultraviolet Visible Spectroscopy Analysis on Transformer Oil by Correlating It with Various Oil Parameters
Authors: Rajnish Shrivastava, Y. R. Sood, Priti Pundir, Rahul Srivastava
Abstract:
Power transformer is one of the most important devices that are used in power station. Due to several fault impending upon it or due to ageing, etc its life gets lowered. So, it becomes necessary to have diagnosis of oil for fault analysis. Due to the chemical, electrical, thermal and mechanical stress the insulating material in the power transformer degraded. It is important to regularly assess the condition of oil and the remaining life of the power transformer. In this paper UV-VIS absorption graph area is correlated with moisture content, Flash point, IFT and Density of Transformer oil. Since UV-VIS absorption graph area varies accordingly with the variation in different transformer parameters. So by obtaining the correlation among different oil parameters for oil with respect to UV-VIS absorption area, decay contents of transformer oil can be predictedKeywords: breakdown voltage (BDV), interfacial Tension (IFT), moisture content, ultra violet-visible rays spectroscopy (UV-VIS)
Procedia PDF Downloads 6428927 A Similar Image Retrieval System for Auroral All-Sky Images Based on Local Features and Color Filtering
Authors: Takanori Tanaka, Daisuke Kitao, Daisuke Ikeda
Abstract:
The aurora is an attractive phenomenon but it is difficult to understand the whole mechanism of it. An approach of data-intensive science might be an effective approach to elucidate such a difficult phenomenon. To do that we need labeled data, which shows when and what types of auroras, have appeared. In this paper, we propose an image retrieval system for auroral all-sky images, some of which include discrete and diffuse aurora, and the other do not any aurora. The proposed system retrieves images which are similar to the query image by using a popular image recognition method. Using 300 all-sky images obtained at Tromso Norway, we evaluate two methods of image recognition methods with or without our original color filtering method. The best performance is achieved when SIFT with the color filtering is used and its accuracy is 81.7% for discrete auroras and 86.7% for diffuse auroras.Keywords: data-intensive science, image classification, content-based image retrieval, aurora
Procedia PDF Downloads 4498926 Role of Natural Language Processing in Information Retrieval; Challenges and Opportunities
Authors: Khaled M. Alhawiti
Abstract:
This paper aims to analyze the role of natural language processing (NLP). The paper will discuss the role in the context of automated data retrieval, automated question answer, and text structuring. NLP techniques are gaining wider acceptance in real life applications and industrial concerns. There are various complexities involved in processing the text of natural language that could satisfy the need of decision makers. This paper begins with the description of the qualities of NLP practices. The paper then focuses on the challenges in natural language processing. The paper also discusses major techniques of NLP. The last section describes opportunities and challenges for future research.Keywords: data retrieval, information retrieval, natural language processing, text structuring
Procedia PDF Downloads 3408925 Soil/Phytofisionomy Relationship in Southeast of Chapada Diamantina, Bahia, Brazil
Authors: Marcelo Araujo da Nóbrega, Ariel Moura Vilas Boas
Abstract:
This study aims to characterize the physicochemical aspects of the soils of southeastern Chapada Diamantina - Bahia related to the phytophysiognomies of this area, rupestrian field, small savanna (savanna fields), small dense savanna (savanna fields), savanna (Cerrado), dry thorny forest (Caatinga), dry thorny forest/savanna, scrub (Carrasco - ecotone), forest island (seasonal semi-deciduous forest - Capão) and seasonal semi-deciduous forest. To achieve the research objective, soil samples were collected in each plant formation and analyzed in the soil laboratory of ESALQ - USP in order to identify soil fertility through the determination of pH, organic matter, phosphorus, potassium, calcium, magnesium, potential acidity, sum of bases, cation exchange capacity and base saturation. The composition of soil particles was also checked; that is, the texture, step made in the terrestrial ecosystems laboratory of the Department of Ecology of USP and in the soil laboratory of ESALQ. Another important factor also studied was to show the variations in the vegetation cover in the region as a function of soil moisture in the different existing physiographic environments. Another study carried out was a comparison between the average soil moisture data with precipitation data from three locations with very different phytophysiognomies. The soils found in this part of Bahia can be classified into 5 classes, with a predominance of oxisols. All of these classes have a great diversity of physical and chemical properties, as can be seen in photographs and in particle size and fertility analyzes. The deepest soils are located in the Central Pediplano of Chapada Diamantina where the dirty field, the clean field, the executioner and the semideciduous seasonal forest (Capão) are located, and the shallower soils were found in the rupestrian field, dry thorny forest, and savanna fields, the latter located on a hillside. As for the variations in water in the region's soil, the data indicate that there were large spatial variations in humidity in both the rainy and dry periods.Keywords: Bahia, Brazil, chapada diamantina, phytophysiognomies, soils
Procedia PDF Downloads 1448924 An Improved Visible Range Absorption Spectroscopy on Soil Macronutrient
Authors: Suhaila Isaak, Yusmeeraz Yusof, Khairunnisa Mohd Yusof, Ahmad Safuan Abdul Rashid
Abstract:
Soil fertility is commonly evaluated by soil macronutrients such as nitrate, potassium, and phosphorus contents. Optical spectroscopy is an emerging technology which is rapid and simple has been widely used in agriculture to measure soil fertility. For visible and near infrared absorption spectroscopy, the absorbed light level in is useful for soil macro-nutrient measurement. This is because the absorption of light in a soil sample influences sensitivity of the measurement. This paper reports the performance of visible and near infrared absorption spectroscopy in the 400–1400 nm wavelength range using light-emitting diode as the excitation light source to predict the soil macronutrient content of nitrate, potassium, and phosphorus. The experimental results show an improved linear regression analysis of various soil specimens based on the Beer–Lambert law to determine sensitivity of soil spectroscopy by evaluating the absorption of characteristic peaks emitted from a light-emitting diode and detected by high sensitivity optical spectrometer. This would denote in developing a simple and low-cost soil spectroscopy with light-emitting diode for future implementation.Keywords: macronutrients absorption, optical spectroscopy, soil, absorption
Procedia PDF Downloads 2938923 Determination of Selected Engineering Properties of Giant Palm Seeds (Borassus Aethiopum) in Relation to Its Oil Potential
Authors: Rasheed Amao Busari, Ahmed Ibrahim
Abstract:
The engineering properties of giant palms are crucial for the reasonable design of the processing and handling systems. The research was conducted to investigate some engineering properties of giant palm seeds in relation to their oil potential. The ripe giant palm fruit was sourced from some parts of Zaria in Kaduna State and Ado Ekiti in Ekiti State, Nigeria. The mesocarps of the fruits collected were removed to obtain the nuts, while the collected nuts were dried under ambient conditions for several days. The actual moisture content of the nuts at the time of the experiment was determined using KT100S Moisture Meter, with moisture content ranged 17.9% to 19.15%. The physical properties determined are axial dimension, geometric mean diameter, arithmetic mean diameter, sphericity, true and bulk densities, porosity, angles of repose, and coefficients of friction. The nuts were measured using a vernier caliper for physical assessment of their sizes. The axial dimensions of 100 nuts were taken and the result shows that the size ranges from 7.30 to 9.32cm for major diameter, 7.2 to 8.9 cm for intermediate diameter, and 4.2 to 6.33 for minor diameter. The mechanical properties determined were compressive force, compressive stress, and deformation both at peak and break using Instron hydraulic universal tensile testing machine. The work also revealed that giant palm seed can be classified as an oil-bearing seed. The seed gave 18% using the solvent extraction method. The results obtained from the study will help in solving the problem of equipment design, handling, and further processing of the seeds.Keywords: giant palm seeds, engineering properties, oil potential, moisture content, and giant palm fruit
Procedia PDF Downloads 788922 Merging of Results in Distributed Information Retrieval Systems
Authors: Larbi Guezouli, Imane Azzouz
Abstract:
This work is located in the domain of distributed information retrieval ‘DIR’. A simplified view of the DIR requires a multi-search in a set of collections, which forces the system to analyze results found in these collections, and merge results back before sending them to the user in a single list. Our work is to find a fusion method based on the relevance score of each result received from collections and the relevance of the local search engine of each collection.Keywords: information retrieval, distributed IR systems, merging results, datamining
Procedia PDF Downloads 3368921 A Review of Soil Stabilization Techniques
Authors: Amin Chegenizadeh, Mahdi Keramatikerman
Abstract:
Soil stabilization is a crucial issue that helps to remove of risks associated with the soil failure. As soil has applications in different industries such as construction, pavement and railways, the means of stabilizing soil are varied. This paper will focus on the techniques of stabilizing soils. It will do so by gathering useful information on the state of the art in the field of soil stabilization, investigating both traditional and advanced methods. To inquire into the current knowledge, the existing literature will be divided into categories addressing the different techniques.Keywords: review, soil, stabilization, techniques
Procedia PDF Downloads 5458920 Effect of Temperature on the Water Retention Capacity of Liner Materials
Authors: Ahmed M. Al-Mahbashi, Mosleh A. Al-Shamrani, Muawia Dafalla
Abstract:
Mixtures of sand and clay are frequently used to serve for specific purposes in several engineering practices. In environmental engineering, liner layers and cover layers are common for controlling waste disposal facilities. These layers are exposed to moisture and temperature fluctuation specially when existing in unsaturated condition. The relationship between soil suction and water content for these materials is essential for understanding their unsaturated behavior and properties such as retention capacity and unsaturated follow (hydraulic conductivity). This study is aimed at investigating retention capacity for two sand-natural expansive clay mixtures (15% (C15) and 30% (C30) expansive clay) at two ambient temperatures within the range of 5 -50 °C. Soil water retention curves (SWRC) for these materials were determined at these two ambient temperatures using different salt solutions for a wide range of suction (up to 200MPa). The results indicate that retention capacity of C15 mixture underwent significant changes due to temperature variations. This effect tends to be less visible when the clay fraction is doubled (C30). In addition, the overall volume change is marginally affected by high temperature within the range considered in this study.Keywords: soil water retention curve, sand-expansive clay liner, suction, temperature
Procedia PDF Downloads 1398919 The Influence of Moisture Conditioning on Hamburg Wheel Tracking Test Results
Authors: Hussain Al-Baghli
Abstract:
The Hamburg Wheel Tracking Test (HWTT) was conducted to evaluate the resistance to moisture damage of two asphalt mixtures: an optimized rubberized asphalt mixture and an HMA mix with anti-stripping additives. The mixtures were subjected to varying numbers of moisture conditioning cycles and then tested for rutting depth. The results showed that the optimized rubberized asphalt mixture met the requirements for medium to heavy traffic in accordance with Kuwait's Ministry of Public Works specification. The number of moisture conditioning cycles did not significantly impact rutting development for the rubberized asphalt. The HMA asphalt samples showed a significant reduction in strength and did not satisfy the HWTT criteria after the moisture conditioning cycles.Keywords: rubberized asphalt, Hamburg wheel tracking, antistripping, moisture conditioning
Procedia PDF Downloads 788918 Numerical Solution to Coupled Heat and Moisture Diffusion in Bio-Sourced Composite Materials
Authors: Mnasri Faiza, El Ganaoui Mohammed, Khelifa Mourad, Gabsi Slimane
Abstract:
The main objective of this paper is to describe the hydrothermal behavior through porous material of construction due to temperature gradient. The construction proposed a bi-layer structure which composed of two different materials. The first is a bio-sourced panel named IBS-AKU (inertia system building), the second is the Neopor material. This system (IBS-AKU Neopor) is developed by a Belgium company (Isohabitat). The study suggests a multi-layer structure of the IBS-AKU panel in one dimension. A numerical method was proposed afterwards, by using the finite element method and a refined mesh area to strong gradients. The evolution of temperature fields and the moisture content has been processed.Keywords: heat transfer, moisture diffusion, porous media, composite IBS-AKU, simulation
Procedia PDF Downloads 5068917 Evaluation of Eco Cement as a Stabilizer of Clayey Sand
Authors: Jeeja Menon, M. S. Ravikumar
Abstract:
With the advent of green technology and the concept of zero energy buildings, there is an emerging trend in the utilization of indigenous materials like soil as a construction material. However, fine soils like clays and sand have undesirable properties and stabilization of these soils is essential before it is used to develop a building unit. Eco cement or Ground Granulated Blast Furnace Slag (GGBS), a waste byproduct formed during the manufacture of iron has cementitious properties and has the potential of replacing cement which is the most common stabilizer used for improving the geotechnical properties of soil. This paper highlights the salient observations obtained by the investigations into the effect of GGBS as a stabilizer for clayey sand. The index and engineering properties of the soil on the addition of different percentages (0%, 2%, 4%, 5% & 6% of the dry weight of the soil) of GGBS are tested to arrive at the optimum binder content. The criteria chosen for evaluation are the unconfined compressive strength values of different soil- binder composition. The test results indicate that there are significant strength improvements by the addition of GGBS in the soil, and the optimum GGBS content was determined as 5%. Moreover, utilizing waste binders for developing an ecofriendly, less energy induced building units as well as for stabilizing soil will also contribute to the solid waste management, which is the current environmental crisis of the world.Keywords: eco cement, GGBS, index properties, stabilization, unconfined compressive strength
Procedia PDF Downloads 1388916 Effects of the Tomato Pomace Oil Extract on Physical and Antioxidant Properties of Gelatin Films
Authors: N. Jirukkakul, J. Sodtipinta
Abstract:
Tomatoes are widely consumed as fresh and processed products through the manufacturing industry. Therefore, tomato pomace is generated as a by-product accounting for about 5-13% of the whole tomato. Antioxidants still remain in tomato pomace and extraction of tomato oil may useful in edible film production. The edible film solution was prepared by mixing gelatin (2, 4 and 6%) with the distilled water and heating at 40oC for 30 min. Effect of tomato pomace oil was evaluated at 0, 0.5 and 1%. Film solution was poured in plate and dried overnight at 40oC before determining the physical properties, which are tensile strength, moisture content, color, solubility, and swelling power. The results showed that an increase gelatin concentration caused increasing of tensile strength, moisture content, solubility and swelling power. The edible film with tomato pomace oil extract appeared as the rough film with oil droplet dispersion. The addition of tomato pomace oil extract caused an increase in lightness, redness and yellowness, while tensile strength, moisture content, and solubility were decreased. Film with tomato pomace oil extract at 0.5 and 1% exhibited antioxidant properties but those properties were not significantly different (p<0.05) between film incorporated with tomato pomace oil extract 0.5 and 1%. The suitable condition for film production in this study, 4% of gelatin and 0.5% of tomato pomace oil extract, was selected for protecting oxidation of palm oil. At 15 days of the storage period, the palm oil which covered by gelatin film with tomato pomace oil extract had 22.45 milliequivalents/kg of peroxide value (PV), while, the palm oil which covered by polypropylene film and control had 24.79 and 26.67 milliequivalents/kg, respectively. Therefore, incorporation of tomato pomace oil extract in gelatin film was able to protect the oxidation of food products with high fat content.Keywords: antioxidant, gelatin films, physical properties, tomato oil extract
Procedia PDF Downloads 2808915 The Threshold Values of Soil Water Index for Landslides on Country Road No.89
Authors: Ji-Yuan Lin, Yu-Ming Liou, Yi-Ting Chen, Chen-Syuan Lin
Abstract:
Soil water index obtained by tank model is now commonly used in soil and sand disaster alarm system in Japan. Comparing with the rainfall trigging index in Taiwan, the tank model is easy to predict the slope water content on large-scale landslide. Therefore, this study aims to estimate the threshold value of large-scale landslide using the soil water index Sixteen typhoons and heavy rainfall events, were selected to establish the, to relationship between landslide event and soil water index. Finally, the proposed threshold values for landslides on country road No.89 are suggested in this study. The study results show that 95% landslide cases occurred in soil water index more than 125mm, and 30% of the more serious slope failure occurred in the soil water index is greater than 250mm. Beside, this study speculates when soil water index more than 250mm and the difference value between second tank and third tank less than -25mm, it leads to large-scale landslide more probably.Keywords: soil water index, tank model, landslide, threshold values
Procedia PDF Downloads 3878914 Numerical Investigation of Gas Leakage in RCSW-Soil Combinations
Authors: Mahmoud Y. M. Ahmed, Ahmed Konsowa, Mostafa Sami, Ayman Mosallam
Abstract:
Fukushima nuclear accident (Japan 2011) has drawn attention to the issue of gas leakage from hazardous facilities through building boundaries. The rapidly increasing investments in nuclear stations have made the ability to predict, and prevent, gas leakage a rather crucial issue both environmentally and economically. Leakage monitoring for underground facilities is rather complicated due to the combination of Reinforced Concrete Shear Wall (RCSW) and soil. In the framework of a recent research conducted by the authors, the gas insulation capabilities of RCSW-soil combination have been investigated via a lab-scale experimental work. Despite their accuracy, experimental investigations are expensive, time-consuming, hazardous, and lack for flexibility. Numerically simulating the gas leakage as a fluid flow problem based on Computational Fluid Dynamics (CFD) modeling approach can provide a potential alternative. This novel implementation of CFD approach is the topic of the present paper. The paper discusses the aspects of modeling the gas flow through porous media that resemble the RCSW both isolated and combined with the normal soil. A commercial CFD package is utilized in simulating this fluid flow problem. A fixed RCSW layer thickness is proposed, air is taken as the leaking gas, whereas the soil layer is represented as clean sand with variable properties. The variable sand properties include sand layer thickness, fine fraction ratio, and moisture content. The CFD simulation results almost demonstrate what has been found experimentally. A soil layer attached next to a cracked reinforced concrete section plays a significant role in reducing the gas leakage from that cracked section. This role is found to be strongly dependent on the soil specifications.Keywords: RCSW, gas leakage, Pressure Decay Method, hazardous underground facilities, CFD
Procedia PDF Downloads 4188913 Comparison of Soil Test Extractants for Determination of Available Soil Phosphorus
Authors: Violina Angelova, Stefan Krustev
Abstract:
The aim of this work was to evaluate the effectiveness of different soil test extractants for the determination of available soil phosphorus in five internationally certified standard soils, sludge and clay (NCS DC 85104, NCS DC 85106, ISE 859, ISE 952, ISE 998). The certified samples were extracted with the following methods/extractants: CaCl₂, CaCl₂ and DTPA (CAT), double lactate (DL), ammonium lactate (AL), calcium acetate lactate (CAL), Olsen, Mehlich 3, Bray and Kurtz I, and Morgan, which are commonly used in soil testing laboratories. The phosphorus in soil extracts was measured colorimetrically using Spectroquant Pharo 100 spectrometer. The methods used in the study were evaluated according to the recovery of available phosphorus, facility of application and rapidity of performance. The relationships between methods are examined statistically. A good agreement of the results from different soil test was established for all certified samples. In general, the P values extracted by the nine extraction methods significantly correlated with each other. When grouping the soils according to pH, organic carbon content and clay content, weaker extraction methods showed analogous trends; also among the stronger extraction methods, common tendencies were found. Other factors influencing the extraction force of the different methods include soil: solution ratio, as well as the duration and power of shaking the samples. The mean extractable P in certified samples was found to be in the order of CaCl₂ < CAT < Morgan < Bray and Kurtz I < Olsen < CAL < DL < Mehlich 3 < AL. Although the nine methods extracted different amounts of P from the certified samples, values of P extracted by the different methods were strongly correlated among themselves. Acknowledgment: The financial support by the Bulgarian National Science Fund Projects DFNI Н04/9 and DFNI Н06/21 are greatly appreciated.Keywords: available soil phosphorus, certified samples, determination, soil test extractants
Procedia PDF Downloads 1518912 The Mechanical Behavior of a Chemically Stabilized Soil
Authors: I Lamri, L Arabet, M. Hidjeb
Abstract:
The direct shear test was used to determine the shear strength parameters C and Ø of a series of samples with different cement content. Samples stabilized with a certain percentage of cement showed a substantial gain in compressive strength and a significant increase in shear strength parameters. C and Ø. The laboratory equipment used in UCS tests consisted of a conventional 102mm diameter sample triaxial loading machine. Beyond 4% cement content a very important increase in shear strength was observed. It can be deduced from a comparative study of shear strength of soil samples with 4%, 7%, and 10% cement with sample containing 2 %, that the sample with a 4% cement content showed 90% increase in shear strength while those with 7% and 10% showed an increase of around 13 and 21 fold.Keywords: cement, compression strength, shear stress, cohesion, angle of internal friction
Procedia PDF Downloads 4888911 Chemical Characteristics of Soils Based on Toposequence Under Wet Tropical Area Bukit Sarasah Padang
Authors: Y. Yulnafatmawita, H. Hermansah
Abstract:
Topography is a factor affecting soil characteristics. Chemical characteristics of a soil is a factor determining the productivity of the land. A research was conducted in Bukit Sarasah Padang, an area receiving > 5000 mm rainfall annually. The purpose of this research was to determine the chemical characteristics of soils at sequence topography in hill-slope of Bukit Sarasah. Soils were sampled at 3 different altitudes in the research area from 315 m – 515 m asl with 100 m interval. At each location, soil samples were taken from two depths (0-20 cm and 30-50 cm) for soil chemical characteristics (pH, CEC, organic-C, N-total, C/N, Ca-, Mg-, K-, Na-, Al-, and H-exchangeable). Based on the data resulted, it was found that there was a tendency of decreasing soil organic matter (SOC) content by increasing location from 315 to 515 m asl as well as from the top 0-20 cm to 30-50 cm soil depth. The same tendency was also found for the CEC, pH, N-total, and C/N ratio of the soil. On the other hand, exchangeable-Al and -H tended to increase by increasing elevation in Bukit Sarasah. There was no significant difference found for the concentration of exchangeable cations among the elevations and between the depths. The soil chemical characteristics on the top 20 cm were generally better than those on 30-50 cm soil depth, however, different elevation did not gave significant difference of the concentration.Keywords: soil chemical characteristics, soil depths, topo-sequence, wet tropical area
Procedia PDF Downloads 4868910 Mathematical Modeling of a Sub-Wet Bulb Temperature Evaporative Cooling Using Porous Ceramic Materials
Authors: Meryem Kanzari, Rabah Boukhanouf, Hatem G. Ibrahim
Abstract:
Indirect Evaporative Cooling process has the advantage of supplying cool air at constant moisture content. However, such system can only supply air at temperatures above wet bulb temperature. This paper presents a mathematical model for a sub-wet bulb temperature indirect evaporative cooling arrangement that can overcome this limitation and supply cool air at temperatures approaching dew point and without increasing its moisture content. In addition, the use of porous ceramics as wet media materials offers the advantage of integration into building elements. Results of the computer show that the proposed design is capable of cooling air to temperatures lower than the ambient wet bulb temperature and achieving wet bulb effectiveness of about 1.17.Keywords: indirect evaporative cooling, porous ceramic, sub-wet bulb temperature, mathematical modeling
Procedia PDF Downloads 2958909 Determination of Suction of Arid Region Soil Using Filter Paper Method
Authors: Bhavita S. Dave, Chandresh H. Solanki, Atul K. Desai
Abstract:
Soils of Greater Himalayas mostly pertain to Leh & Ladakh, Lahaul & Sppiti, & high reaches to Uttarakhand. The moisture regime is aridic. The arid zone starts from Baralacha pass in Lahaul and covers the entire Spiti valley in the district of Lahaul & Spiti, Himachal Pradesh of India. Here, the present study is an attempt to determine the suction value of soil collected from the arid zone of Spiti valley for different freezing-thawing cycles considering the climate ranges of Spiti valley. Suction is the basic and most important parameter which influences the behavior of unsaturated soil. It is essential to determine the suction value of unsaturated soil before other tests like shear test, and permeability. Basically, it is the negative pore water pressure in partially saturated soil measured in terms of the height of the water column. The filter paper method has been used for the study as an economical approach to evaluate suction. It is the only method from which both contact and non-contact suction can be deduced. In this study, soil specimens were subjected to 0, 1, 3, & 5 freezing-thawing (F-T) cycles for different degrees of saturation to have a wide range of suction, and soil freezing characteristic curves (SFCC) were formulated for all F-T cycles. The result data collected from the experiments have shown best-fitted values using Fredlund & Xing model for each SFCC.Keywords: suction, arid region soil, soil freezing characteristic curve, freezing-thawing cycle
Procedia PDF Downloads 228