Search results for: real estate prediction
7058 A Study for Area-level Mosquito Abundance Prediction by Using Supervised Machine Learning Point-level Predictor
Authors: Theoktisti Makridou, Konstantinos Tsaprailis, George Arvanitakis, Charalampos Kontoes
Abstract:
In the literature, the data-driven approaches for mosquito abundance prediction relaying on supervised machine learning models that get trained with historical in-situ measurements. The counterpart of this approach is once the model gets trained on pointlevel (specific x,y coordinates) measurements, the predictions of the model refer again to point-level. These point-level predictions reduce the applicability of those solutions once a lot of early warning and mitigation actions applications need predictions for an area level, such as a municipality, village, etc... In this study, we apply a data-driven predictive model, which relies on public-open satellite Earth Observation and geospatial data and gets trained with historical point-level in-Situ measurements of mosquito abundance. Then we propose a methodology to extract information from a point-level predictive model to a broader area-level prediction. Our methodology relies on the randomly spatial sampling of the area of interest (similar to the Poisson hardcore process), obtaining the EO and geomorphological information for each sample, doing the point-wise prediction for each sample, and aggregating the predictions to represent the average mosquito abundance of the area. We quantify the performance of the transformation from the pointlevel to the area-level predictions, and we analyze it in order to understand which parameters have a positive or negative impact on it. The goal of this study is to propose a methodology that predicts the mosquito abundance of a given area by relying on point-level prediction and to provide qualitative insights regarding the expected performance of the area-level prediction. We applied our methodology to historical data (of Culex pipiens) of two areas of interest (Veneto region of Italy and Central Macedonia of Greece). In both cases, the results were consistent. The mean mosquito abundance of a given area can be estimated with similar accuracy to the point-level predictor, sometimes even better. The density of the samples that we use to represent one area has a positive effect on the performance in contrast to the actual number of sampling points which is not informative at all regarding the performance without the size of the area. Additionally, we saw that the distance between the sampling points and the real in-situ measurements that were used for training did not strongly affect the performance.Keywords: mosquito abundance, supervised machine learning, culex pipiens, spatial sampling, west nile virus, earth observation data
Procedia PDF Downloads 1477057 Privacy Policy Prediction for Uploaded Image on Content Sharing Sites
Authors: Pallavi Mane, Nikita Mankar, Shraddha Mazire, Rasika Pashankar
Abstract:
Content sharing sites are very useful in sharing information and images. However, with the increasing demand of content sharing sites privacy and security concern have also increased. There is need to develop a tool for controlling user access to their shared content. Therefore, we are developing an Adaptive Privacy Policy Prediction (A3P) system which is helpful for users to create privacy settings for their images. We propose the two-level framework which assigns the best available privacy policy for the users images according to users available histories on the site.Keywords: online information services, prediction, security and protection, web based services
Procedia PDF Downloads 3587056 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: Sam Khozama, Ali M. Mayya
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion
Procedia PDF Downloads 1617055 Agriculture Yield Prediction Using Predictive Analytic Techniques
Authors: Nagini Sabbineni, Rajini T. V. Kanth, B. V. Kiranmayee
Abstract:
India’s economy primarily depends on agriculture yield growth and their allied agro industry products. The agriculture yield prediction is the toughest task for agricultural departments across the globe. The agriculture yield depends on various factors. Particularly countries like India, majority of agriculture growth depends on rain water, which is highly unpredictable. Agriculture growth depends on different parameters, namely Water, Nitrogen, Weather, Soil characteristics, Crop rotation, Soil moisture, Surface temperature and Rain water etc. In our paper, lot of Explorative Data Analysis is done and various predictive models were designed. Further various regression models like Linear, Multiple Linear, Non-linear models are tested for the effective prediction or the forecast of the agriculture yield for various crops in Andhra Pradesh and Telangana states.Keywords: agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models
Procedia PDF Downloads 3137054 Early Prediction of Disposable Addresses in Ethereum Blockchain
Authors: Ahmad Saleem
Abstract:
Ethereum is the second largest crypto currency in blockchain ecosystem. Along with standard transactions, it supports smart contracts and NFT’s. Current research trends are focused on analyzing the overall structure of the network its growth and behavior. Ethereum addresses are anonymous and can be created on fly. The nature of Ethereum network and addresses make it hard to predict their behavior. The activity period of an ethereum address is not much analyzed. Using machine learning we can make early prediction about the disposability of the address. In this paper we analyzed the lifetime of the addresses. We also identified and predicted the disposable addresses using machine learning models and compared the results.Keywords: blockchain, Ethereum, cryptocurrency, prediction
Procedia PDF Downloads 977053 Real Time Classification of Political Tendency of Twitter Spanish Users based on Sentiment Analysis
Authors: Marc Solé, Francesc Giné, Magda Valls, Nina Bijedic
Abstract:
What people say on social media has turned into a rich source of information to understand social behavior. Specifically, the growing use of Twitter social media for political communication has arisen high opportunities to know the opinion of large numbers of politically active individuals in real time and predict the global political tendencies of a specific country. It has led to an increasing body of research on this topic. The majority of these studies have been focused on polarized political contexts characterized by only two alternatives. Unlike them, this paper tackles the challenge of forecasting Spanish political trends, characterized by multiple political parties, by means of analyzing the Twitters Users political tendency. According to this, a new strategy, named Tweets Analysis Strategy (TAS), is proposed. This is based on analyzing the users tweets by means of discovering its sentiment (positive, negative or neutral) and classifying them according to the political party they support. From this individual political tendency, the global political prediction for each political party is calculated. In order to do this, two different strategies for analyzing the sentiment analysis are proposed: one is based on Positive and Negative words Matching (PNM) and the second one is based on a Neural Networks Strategy (NNS). The complete TAS strategy has been performed in a Big-Data environment. The experimental results presented in this paper reveal that NNS strategy performs much better than PNM strategy to analyze the tweet sentiment. In addition, this research analyzes the viability of the TAS strategy to obtain the global trend in a political context make up by multiple parties with an error lower than 23%.Keywords: political tendency, prediction, sentiment analysis, Twitter
Procedia PDF Downloads 2387052 Performance, Need and Discriminatory Allegiance of Employees as Awarding Criteria of Distributive Justice
Authors: B. Gangloff, L. Mayoral, A. Rezrazi
Abstract:
Three types of salary distribution are usually proposed by the theorists of distributive justice: Equality, equity and need. Their influence has been studied, taking into consideration (in terms of equity) the performance of the employees and their degree of allegiance/rebellion in what regards discriminatory hierarchical orders, by taking into account the reasons of such allegiance/rebellion (allegiance out of conviction, legalism or opportunism/ethical rebellion). Conducted in Argentina, the study has confronted 480 students (240 male and 240 female) with a practical case in which they had to advise a manager of a real estate agency on the allocation of a bonus amongst his employees. The latter were characterized according to their respective performance, one of them being further defined as being (or not) in a financial need and as having complied (or not) with a discriminatory hierarchical order regarding foreigners. The results show that the distribution of the bonus only follows the rules of equity and need: The employees more efficient, allegiant or in need, are rewarded more than the others. It is also noteworthy that the allegiant employees are rewarded in the same way, regardless of the reason for their allegiance, and that the employee who refuses to adopt a discriminatory conduct is penalized.Keywords: distributive justice, equity, performance, allegiance, ethics
Procedia PDF Downloads 2967051 The Types of Collaboration Models Driven by Public Art Establishment–Case Study of Taichung City
Authors: Cheng-Lung Yu, Ying-His Liao
Abstract:
Some evidence show that public art accelerates local economic growth. Even local governments award the collaboration of public-private partnership to sustain the creation of public art for urban economic development. Through the public-private partnership of public art establishment it is obvious that public construction projects have been led by the governmental policy yet the private developers have played crucial roles to drive the innovative business models such as tourism investment, real estate value up and community participation. This study shows that the types of collaboration have been driven by Taichung city governmental policy from the regulation of public art establishment in the past three years. Through some cases empirical analyzes the authors discover the trends concerning the public art development to support local economic growth in Taiwan.Keywords: public art, public art establishment regulation, construction management, urban governance
Procedia PDF Downloads 327050 Hybrid Renewable Energy System Development Towards Autonomous Operation: The Deployment Potential in Greece
Authors: Afroditi Zamanidou, Dionysios Giannakopoulos, Konstantinos Manolitsis
Abstract:
A notable amount of electrical energy demand in many countries worldwide is used to cover public energy demand for road, square and other public spaces’ lighting. Renewable energy can contribute in a significant way to the electrical energy demand coverage for public lighting. This paper focuses on the sizing and design of a hybrid energy system (HES) exploiting the solar-wind energy potential to meet the electrical energy needs of lighting roads, squares and other public spaces. Moreover, the proposed HES provides coverage of the electrical energy demand for a Wi-Fi hotspot and a charging hotspot for the end-users. Alongside the sizing of the energy production system of the proposed HES, in order to ensure a reliable supply without interruptions, a storage system is added and sized. Multiple scenarios of energy consumption are assumed and applied in order to optimize the sizing of the energy production system and the energy storage system. A database with meteorological prediction data for 51 areas in Greece is developed in order to assess the possible deployment of the proposed HES. Since there are detailed meteorological prediction data for all 51 areas under investigation, the use of these data is evaluated, comparing them to real meteorological data. The meteorological prediction data are exploited to form three hourly production profiles for each area for every month of the year; minimum, average and maximum energy production. The energy production profiles are combined with the energy consumption scenarios and the sizing results of the energy production system and the energy storage system are extracted and presented for every area. Finally, the economic performance of the proposed HES in terms of Levelized cost of energy is estimated by calculating and assessing construction, operation and maintenance costs.Keywords: energy production system sizing, Greece’s deployment potential, meteorological prediction data, wind-solar hybrid energy system, levelized cost of energy
Procedia PDF Downloads 1547049 Development of the Structure of the Knowledgebase for Countermeasures in the Knowledge Acquisition Process for Trouble Prediction in Healthcare Processes
Authors: Shogo Kato, Daisuke Okamoto, Satoko Tsuru, Yoshinori Iizuka, Ryoko Shimono
Abstract:
Healthcare safety has been perceived important. It is essential to prevent troubles in healthcare processes for healthcare safety. Trouble prevention is based on trouble prediction using accumulated knowledge on processes, troubles, and countermeasures. However, information on troubles has not been accumulated in hospitals in the appropriate structure, and it has not been utilized effectively to prevent troubles. In the previous study, though a detailed knowledge acquisition process for trouble prediction was proposed, the knowledgebase for countermeasures was not involved. In this paper, we aim to propose the structure of the knowledgebase for countermeasures in the knowledge acquisition process for trouble prediction in healthcare process. We first design the structure of countermeasures and propose the knowledge representation form on countermeasures. Then, we evaluate the validity of the proposal, by applying it into an actual hospital.Keywords: trouble prevention, knowledge structure, structured knowledge, reusable knowledge
Procedia PDF Downloads 3677048 Intelligent Prediction System for Diagnosis of Heart Attack
Authors: Oluwaponmile David Alao
Abstract:
Due to an increase in the death rate as a result of heart attack. There is need to develop a system that can be useful in the diagnosis of the disease at the medical centre. This system will help in preventing misdiagnosis that may occur from the medical practitioner or the physicians. In this research work, heart disease dataset obtained from UCI repository has been used to develop an intelligent prediction diagnosis system. The system is modeled on a feedforwad neural network and trained with back propagation neural network. A recognition rate of 86% is obtained from the testing of the network.Keywords: heart disease, artificial neural network, diagnosis, prediction system
Procedia PDF Downloads 4507047 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks
Abstract:
Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.Keywords: springback, cold stamping, convolutional neural networks, machine learning
Procedia PDF Downloads 1497046 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record
Authors: Raghavi C. Janaswamy
Abstract:
In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.Keywords: electronic health record, graph neural network, heterogeneous data, prediction
Procedia PDF Downloads 867045 Payment for Pain: Differences between Hypothetical and Real Preferences
Authors: J. Trarbach, S. Schosser, B. Vogt
Abstract:
Decision-makers tend to prefer the first alternative over subsequent alternatives which is called the primacy effect. To reliably measure this effect, we conducted an experiment with real consequences for preference statements. Therefore, we elicit preferences of subjects using a rating scale, i.e. hypothetical preferences, and willingness to pay, i.e. real preferences, for two sequences of pain. Within these sequences, both overall intensity and duration of pain are identical. Hence, a rational decision-maker should be indifferent, whereas the primacy effect predicts a stronger preference for the first sequence. What we see is a primacy effect only for hypothetical preferences. This effect vanishes for real preferences.Keywords: decision making, primacy effect, real incentives, willingness to pay
Procedia PDF Downloads 2947044 Research on Air pollution Spatiotemporal Forecast Model Based on LSTM
Authors: JingWei Yu, Hong Yang Yu
Abstract:
At present, the increasingly serious air pollution in various cities of China has made people pay more attention to the air quality index(hereinafter referred to as AQI) of their living areas. To face this situation, it is of great significance to predict air pollution in heavily polluted areas. In this paper, based on the time series model of LSTM, a spatiotemporal prediction model of PM2.5 concentration in Mianyang, Sichuan Province, is established. The model fully considers the temporal variability and spatial distribution characteristics of PM2.5 concentration. The spatial correlation of air quality at different locations is based on the Air quality status of other nearby monitoring stations, including AQI and meteorological data to predict the air quality of a monitoring station. The experimental results show that the method has good prediction accuracy that the fitting degree with the actual measured data reaches more than 0.7, which can be applied to the modeling and prediction of the spatial and temporal distribution of regional PM2.5 concentration.Keywords: LSTM, PM2.5, neural networks, spatio-temporal prediction
Procedia PDF Downloads 1347043 Multilayer Neural Network and Fuzzy Logic Based Software Quality Prediction
Authors: Sadaf Sahar, Usman Qamar, Sadaf Ayaz
Abstract:
In the software development lifecycle, the quality prediction techniques hold a prime importance in order to minimize future design errors and expensive maintenance. There are many techniques proposed by various researchers, but with the increasing complexity of the software lifecycle model, it is crucial to develop a flexible system which can cater for the factors which in result have an impact on the quality of the end product. These factors include properties of the software development process and the product along with its operation conditions. In this paper, a neural network (perceptron) based software quality prediction technique is proposed. Using this technique, the stakeholders can predict the quality of the resulting software during the early phases of the lifecycle saving time and resources on future elimination of design errors and costly maintenance. This technique can be brought into practical use using successful training.Keywords: software quality, fuzzy logic, perception, prediction
Procedia PDF Downloads 3177042 COVID-19 Analysis with Deep Learning Model Using Chest X-Rays Images
Authors: Uma Maheshwari V., Rajanikanth Aluvalu, Kumar Gautam
Abstract:
The COVID-19 disease is a highly contagious viral infection with major worldwide health implications. The global economy suffers as a result of COVID. The spread of this pandemic disease can be slowed if positive patients are found early. COVID-19 disease prediction is beneficial for identifying patients' health problems that are at risk for COVID. Deep learning and machine learning algorithms for COVID prediction using X-rays have the potential to be extremely useful in solving the scarcity of doctors and clinicians in remote places. In this paper, a convolutional neural network (CNN) with deep layers is presented for recognizing COVID-19 patients using real-world datasets. We gathered around 6000 X-ray scan images from various sources and split them into two categories: normal and COVID-impacted. Our model examines chest X-ray images to recognize such patients. Because X-rays are commonly available and affordable, our findings show that X-ray analysis is effective in COVID diagnosis. The predictions performed well, with an average accuracy of 99% on training photographs and 88% on X-ray test images.Keywords: deep CNN, COVID–19 analysis, feature extraction, feature map, accuracy
Procedia PDF Downloads 797041 Regional Adjustment to the Analytical Attenuation Coefficient in the GMPM BSSA 14 for the Region of Spain
Authors: Gonzalez Carlos, Martinez Fransisco
Abstract:
There are various types of analysis that allow us to involve seismic phenomena that cause strong requirements for structures that are designed by society; one of them is a probabilistic analysis which works from prediction equations that have been created based on metadata seismic compiled in different regions. These equations form models that are used to describe the 5% damped pseudo spectra response for the various zones considering some easily known input parameters. The biggest problem for the creation of these models requires data with great robust statistics that support the results, and there are several places where this type of information is not available, for which the use of alternative methodologies helps to achieve adjustments to different models of seismic prediction.Keywords: GMPM, 5% damped pseudo-response spectra, models of seismic prediction, PSHA
Procedia PDF Downloads 767040 Market Index Trend Prediction using Deep Learning and Risk Analysis
Authors: Shervin Alaei, Reza Moradi
Abstract:
Trading in financial markets is subject to risks due to their high volatilities. Here, using an LSTM neural network, and by doing some risk-based feature engineering tasks, we developed a method that can accurately predict trends of the Tehran stock exchange market index from a few days ago. Our test results have shown that the proposed method with an average prediction accuracy of more than 94% is superior to the other common machine learning algorithms. To the best of our knowledge, this is the first work incorporating deep learning and risk factors to accurately predict market trends.Keywords: deep learning, LSTM, trend prediction, risk management, artificial neural networks
Procedia PDF Downloads 1567039 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks
Authors: Shiva Kumar, G. S. Vijay, Srinivas Pai P., Shrinivasa Rao B. R.
Abstract:
In the present study RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tech and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.Keywords: radial basis function networks, emissions, performance parameters, fuzzy c means
Procedia PDF Downloads 5587038 Interest Rate Prediction with Taylor Rule
Authors: T. Bouchabchoub, A. Bendahmane, A. Haouriqui, N. Attou
Abstract:
This paper presents simulation results of Forex predicting model equations in order to give approximately a prevision of interest rates. First, Hall-Taylor (HT) equations have been used with Taylor rule (TR) to adapt them to European and American Forex Markets. Indeed, initial Taylor Rule equation is conceived for all Forex transactions in every States: It includes only one equation and six parameters. Here, the model has been used with Hall-Taylor equations, initially including twelve equations which have been reduced to only three equations. Analysis has been developed on the following base macroeconomic variables: Real change rate, investment wages, anticipated inflation, realized inflation, real production, interest rates, gap production and potential production. This model has been used to specifically study the impact of an inflation shock on macroeconomic director interest rates.Keywords: interest rate, Forex, Taylor rule, production, European Central Bank (ECB), Federal Reserve System (FED).
Procedia PDF Downloads 5277037 Deliberate Learning and Practice: Enhancing Situated Learning Approach in Professional Communication Course
Authors: Susan Lee
Abstract:
Situated learning principles are adopted in the design of the module, professional communication, in its iteration of tasks and assignments to create a learning environment that simulates workplace reality. The success of situated learning is met when students are able to transfer and apply their skills beyond the classroom, in their personal life, and workplace. The learning process should help students recognize the relevance and opportunities for application. In the module’s learning component on negotiation, cases are created based on scenarios inspired by industry practices. The cases simulate scenarios that students on the course may encounter when they enter the workforce when they take on executive roles in the real estate sector. Engaging in the cases has enhanced students’ learning experience as they apply interpersonal communication skills in negotiation contexts of executives. Through the process of case analysis, role-playing, and peer feedback, students are placed in an experiential learning space to think and act in a deliberate manner not only as students but as professionals they will graduate to be. The immersive skills practices enable students to continuously apply a range of verbal and non-verbal communication skills purposefully as they stage their negotiations. The theme in students' feedback resonates with their awareness of the authentic and workplace experiences offered through visceral role-playing. Students also note relevant opportunities for the future transfer of the skills acquired. This indicates that students recognize the possibility of encountering similar negotiation episodes in the real world and realize they possess the negotiation tools and communication skills to deliberately apply them when these opportunities arise outside the classroom.Keywords: deliberate practice, interpersonal communication skills, role-play, situated learning
Procedia PDF Downloads 2147036 Developing and Evaluating Clinical Risk Prediction Models for Coronary Artery Bypass Graft Surgery
Authors: Mohammadreza Mohebbi, Masoumeh Sanagou
Abstract:
The ability to predict clinical outcomes is of great importance to physicians and clinicians. A number of different methods have been used in an effort to accurately predict these outcomes. These methods include the development of scoring systems based on multivariate statistical modelling, and models involving the use of classification and regression trees. The process usually consists of two consecutive phases, namely model development and external validation. The model development phase consists of building a multivariate model and evaluating its predictive performance by examining calibration and discrimination, and internal validation. External validation tests the predictive performance of a model by assessing its calibration and discrimination in different but plausibly related patients. A motivate example focuses on prediction modeling using a sample of patients undergone coronary artery bypass graft (CABG) has been used for illustrative purpose and a set of primary considerations for evaluating prediction model studies using specific quality indicators as criteria to help stakeholders evaluate the quality of a prediction model study has been proposed.Keywords: clinical prediction models, clinical decision rule, prognosis, external validation, model calibration, biostatistics
Procedia PDF Downloads 2977035 A-Score, Distress Prediction Model with Earning Response during the Financial Crisis: Evidence from Emerging Market
Authors: Sumaira Ashraf, Elisabete G.S. Félix, Zélia Serrasqueiro
Abstract:
Traditional financial distress prediction models performed well to predict bankrupt and insolvent firms of the developed markets. Previous studies particularly focused on the predictability of financial distress, financial failure, and bankruptcy of firms. This paper contributes to the literature by extending the definition of financial distress with the inclusion of early warning signs related to quotation of face value, dividend/bonus declaration, annual general meeting, and listing fee. The study used five well-known distress prediction models to see if they have the ability to predict early warning signs of financial distress. Results showed that the predictive ability of the models varies over time and decreases specifically for the sample with early warning signs of financial distress. Furthermore, the study checked the differences in the predictive ability of the models with respect to the financial crisis. The results conclude that the predictive ability of the traditional financial distress prediction models decreases for the firms with early warning signs of financial distress and during the time of financial crisis. The study developed a new model comprising significant variables from the five models and one new variable earning response. This new model outperforms the old distress prediction models before, during and after the financial crisis. Thus, it can be used by researchers, organizations and all other concerned parties to indicate early warning signs for the emerging markets.Keywords: financial distress, emerging market, prediction models, Z-Score, logit analysis, probit model
Procedia PDF Downloads 2427034 Resale Housing Development Board Price Prediction Considering Covid-19 through Sentiment Analysis
Authors: Srinaath Anbu Durai, Wang Zhaoxia
Abstract:
Twitter sentiment has been used as a predictor to predict price values or trends in both the stock market and housing market. The pioneering works in this stream of research drew upon works in behavioural economics to show that sentiment or emotions impact economic decisions. Latest works in this stream focus on the algorithm used as opposed to the data used. A literature review of works in this stream through the lens of data used shows that there is a paucity of work that considers the impact of sentiments caused due to an external factor on either the stock or the housing market. This is despite an abundance of works in behavioural economics that show that sentiment or emotions caused due to an external factor impact economic decisions. To address this gap, this research studies the impact of Twitter sentiment pertaining to the Covid-19 pandemic on resale Housing Development Board (HDB) apartment prices in Singapore. It leverages SNSCRAPE to collect tweets pertaining to Covid-19 for sentiment analysis, lexicon based tools VADER and TextBlob are used for sentiment analysis, Granger Causality is used to examine the relationship between Covid-19 cases and the sentiment score, and neural networks are leveraged as prediction models. Twitter sentiment pertaining to Covid-19 as a predictor of HDB price in Singapore is studied in comparison with the traditional predictors of housing prices i.e., the structural and neighbourhood characteristics. The results indicate that using Twitter sentiment pertaining to Covid19 leads to better prediction than using only the traditional predictors and performs better as a predictor compared to two of the traditional predictors. Hence, Twitter sentiment pertaining to an external factor should be considered as important as traditional predictors. This paper demonstrates the real world economic applications of sentiment analysis of Twitter data.Keywords: sentiment analysis, Covid-19, housing price prediction, tweets, social media, Singapore HDB, behavioral economics, neural networks
Procedia PDF Downloads 1157033 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network
Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing
Abstract:
Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.Keywords: convolutional neural network, lithology, prediction of reservoir, seismic attributes
Procedia PDF Downloads 1767032 EDM for Prediction of Academic Trends and Patterns
Authors: Trupti Diwan
Abstract:
Predicting student failure at school has changed into a difficult challenge due to both the large number of factors that can affect the reduced performance of students and the imbalanced nature of these kinds of data sets. This paper surveys the two elements needed to make prediction on Students’ Academic Performances which are parameters and methods. This paper also proposes a framework for predicting the performance of engineering students. Genetic programming can be used to predict student failure/success. Ranking algorithm is used to rank students according to their credit points. The framework can be used as a basis for the system implementation & prediction of students’ Academic Performance in Higher Learning Institute.Keywords: classification, educational data mining, student failure, grammar-based genetic programming
Procedia PDF Downloads 4227031 Discrete State Prediction Algorithm Design with Self Performance Enhancement Capacity
Authors: Smail Tigani, Mohamed Ouzzif
Abstract:
This work presents a discrete quantitative state prediction algorithm with intelligent behavior making it able to self-improve some performance aspects. The specificity of this algorithm is the capacity of self-rectification of the prediction strategy before the final decision. The auto-rectification mechanism is based on two parallel mathematical models. In one hand, the algorithm predicts the next state based on event transition matrix updated after each observation. In the other hand, the algorithm extracts its residues trend with a linear regression representing historical residues data-points in order to rectify the first decision if needs. For a normal distribution, the interactivity between the two models allows the algorithm to self-optimize its performance and then make better prediction. Designed key performance indicator, computed during a Monte Carlo simulation, shows the advantages of the proposed approach compared with traditional one.Keywords: discrete state, Markov Chains, linear regression, auto-adaptive systems, decision making, Monte Carlo Simulation
Procedia PDF Downloads 4987030 A Comparative Soft Computing Approach to Supplier Performance Prediction Using GEP and ANN Models: An Automotive Case Study
Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari
Abstract:
In multi-echelon supply chain networks, optimal supplier selection significantly depends on the accuracy of suppliers’ performance prediction. Different methods of multi criteria decision making such as ANN, GA, Fuzzy, AHP, etc have been previously used to predict the supplier performance but the “black-box” characteristic of these methods is yet a major concern to be resolved. Therefore, the primary objective in this paper is to implement an artificial intelligence-based gene expression programming (GEP) model to compare the prediction accuracy with that of ANN. A full factorial design with %95 confidence interval is initially applied to determine the appropriate set of criteria for supplier performance evaluation. A test-train approach is then utilized for the ANN and GEP exclusively. The training results are used to find the optimal network architecture and the testing data will determine the prediction accuracy of each method based on measures of root mean square error (RMSE) and correlation coefficient (R2). The results of a case study conducted in Supplying Automotive Parts Co. (SAPCO) with more than 100 local and foreign supply chain members revealed that, in comparison with ANN, gene expression programming has a significant preference in predicting supplier performance by referring to the respective RMSE and R-squared values. Moreover, using GEP, a mathematical function was also derived to solve the issue of ANN black-box structure in modeling the performance prediction.Keywords: Supplier Performance Prediction, ANN, GEP, Automotive, SAPCO
Procedia PDF Downloads 4197029 An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks
Authors: Danilo López, Edwin Rivas, Leyla López
Abstract:
This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made.Keywords: cognitive radio, base station, best effort, MLPNN, prediction, real time
Procedia PDF Downloads 330