Search results for: poverty prediction
2825 Social Inequality and Inclusion Policies in India: Lessons Learned and the Way Forward
Authors: Usharani Rathinam
Abstract:
Although policies directing inclusion of marginalized were in effect, majority of chronically impoverished in India belonged to schedule caste and schedule tribes. Also, taking into account that poverty is gendered; destitute women belonged to lower social order whose need is not largely highlighted at policy level. This paper discusses on social relations poverty which highlights on how social order that existed structurally in the society can perpetuate chronic poverty, followed by a critical review on social inclusion policies of India, its merits and demerits in addressing chronic poverty. Multiple case study design is utilized to address this concern in four districts of India; Jhansi, Tikamgarh, Cuddalore and Anantapur. These four districts were selected by purposive sampling based on the criteria; the district should either be categorized as a backward district or should have a history of high poverty rate. Qualitative methods including eighty in-depth interviews, six focus group discussions, six social mapping procedures and three key informant interviews were conducted in 2011, at each of the locations. Analysis of the data revealed that irrespective of gender, schedule castes and schedule tribe participants were found to be chronically poor in all districts. Caste based discrimination is exhibited at both micro and macro levels; village and institutional levels. At village level, lower caste respondents had lesser access to public resources. Also, within institutional settings, due to confiscation, unequal access to resources is noticed, especially in fund distribution. This study found that half of the budget intended for schedule caste and schedule tribes were confiscated by upper caste administrative staffs. This implies that power based on social hierarchy marginalize lower caste participants from accessing better economic, social, and political benefits, that had led them to suffer long term poverty. This study also explored the traditional ties between caste, social structure and bonded labour as a cause of long-term poverty. Though equal access is being emphasized in constitutional rights, issues at micro level have not been reflected in formulation of these rights. Therefore, it is significant for a policy to consider the structural complexity and then focus on issues such as equal distribution of assets and infrastructural facilities that will reduce exclusion and foster long-term security in areas such as employment, markets and public distribution.Keywords: caste, inclusion policies, India, social order
Procedia PDF Downloads 2062824 Jesus’ Approach in Liberation of the Poor, Luke 4:18-19: Lesson for Nigerian Leaders
Authors: Aboekwe, Mary Emilia
Abstract:
Jesus’ mission was not only a religious one but had social and political implications. From the birth to the death of Jesus, God’s message of liberation is proclaimed in and through Jesus. This work studied Jesus’ inaugural mission in Luke 4: 18 -19 in the context of Nigerian leaders. A theological interpretation was adopted and it was discovered that Luke 4: 18-19 unfolded Jesus’ mission statement. This mission statement centered in preaching the good news to the poor, the release of the captives, healing the sick, liberation to the oppressed, and favour and abundance in the land. Related to the Jewish-Roman world of Jesus and the Nigerian nation, it was discovered that most of the maladies enumerated in Jesus’ inaugural mission statement were prevalent in Nigerian society. Maladies like poverty, oppression, violence, sickness and diseases are widespread in Nigeria. Poverty affects all, irrespective of gender, religion, or ethnicity. There is insecurity everywhere. Unemployment bites harder on Nigeria’s youthful population, and they are unable to find a job at the prevailing wage rate. To this effect, therefore, this study proposes Jesus’ liberative technique as a solution to these maladies prevalent in the country. The work equally challenged the Nigerian leaders to emulate Jesus’ mission statement and take proactive measures in fighting against these social challenges resident in Nigeria today.Keywords: liberation, leadership, maladies, poverty
Procedia PDF Downloads 762823 From Poverty to Progress: A Comparative Analysis of Mongolia with PEER Countries
Authors: Yude Wu
Abstract:
Mongolia, grappling with significant socio-economic challenges, faces pressing issues of inequality and poverty, as evidenced by a high Gini coefficient and the highest poverty rate among the top 20 largest Asian countries. Despite government efforts, Mongolia's poverty rate experienced only a slight reduction from 29.6 percent in 2016 to 27.8 percent in 2020. PEER countries, such as South Africa, Botswana, Kazakhstan, and Peru, share characteristics with Mongolia, including reliance on the mining industry and classification as lower middle-income countries. Successful transitions of these countries to upper middle-income status between 1994 and the 2010s provide valuable insights. Drawing on secondary analyses of existing research and PEER country profiles, the study evaluates past policies, identifies gaps in current approaches, and proposes recommendations to combat poverty sustainably. The hypothesis includes a reliance on the mining industry and a transition from lower to upper middle-income status. Policies from these countries, such as the GEAR policy in South Africa and economic diversification in Botswana, offer insights into Mongolia's development. This essay aims to illuminate the multidimensional nature of underdevelopment in Mongolia through a secondary analysis of existing research and PEER country profiles, evaluating past policies, identifying gaps in current approaches, and providing recommendations for sustainable progress. Drawing inspiration from PEER countries, Mongolia can implement policies such as economic diversification to reduce vulnerability and create stable job opportunities. Emphasis on infrastructure, human capital, and strategic partnerships for Foreign Direct Investment (FDI) aligns with successful strategies implemented by PEER countries, providing a roadmap for Mongolia's development objectives.Keywords: inequality, PEER countries, comparative analysis, nomadic animal husbandry, sustainable growth
Procedia PDF Downloads 632822 Deadline Missing Prediction for Mobile Robots through the Use of Historical Data
Authors: Edwaldo R. B. Monteiro, Patricia D. M. Plentz, Edson R. De Pieri
Abstract:
Mobile robotics is gaining an increasingly important role in modern society. Several potentially dangerous or laborious tasks for human are assigned to mobile robots, which are increasingly capable. Many of these tasks need to be performed within a specified period, i.e., meet a deadline. Missing the deadline can result in financial and/or material losses. Mechanisms for predicting the missing of deadlines are fundamental because corrective actions can be taken to avoid or minimize the losses resulting from missing the deadline. In this work we propose a simple but reliable deadline missing prediction mechanism for mobile robots through the use of historical data and we use the Pioneer 3-DX robot for experiments and simulations, one of the most popular robots in academia.Keywords: deadline missing, historical data, mobile robots, prediction mechanism
Procedia PDF Downloads 4012821 Useful Lifetime Prediction of Rail Pads for High Speed Trains
Authors: Chang Su Woo, Hyun Sung Park
Abstract:
Useful lifetime evaluations of rail-pads were very important in design procedure to assure the safety and reliability. It is, therefore, necessary to establish a suitable criterion for the replacement period of rail pads. In this study, we performed properties and accelerated heat aging tests of rail pads considering degradation factors and all environmental conditions including operation, and then derived a lifetime prediction equation according to changes in hardness, thickness, and static spring constants in the Arrhenius plot to establish how to estimate the aging of rail pads. With the useful lifetime prediction equation, the lifetime of e-clip pads was 2.5 years when the change in hardness was 10% at 25°C; and that of f-clip pads was 1.7 years. When the change in thickness was 10%, the lifetime of e-clip pads and f-clip pads is 2.6 years respectively. The results obtained in this study to estimate the useful lifetime of rail pads for high speed trains can be used for determining the maintenance and replacement schedule for rail pads.Keywords: rail pads, accelerated test, Arrhenius plot, useful lifetime prediction, mechanical engineering design
Procedia PDF Downloads 3262820 Using Water Erosion Prediction Project Simulation Model for Studying Some Soil Properties in Egypt
Authors: H. A. Mansour
Abstract:
The objective of this research work is studying the water use prediction, prediction technology for water use by action agencies, and others involved in conservation, planning, and environmental assessment of the Water Erosion Prediction Project (WEPP) simulation model. Models the important physical, processes governing erosion in Egypt (climate, infiltration, runoff, ET, detachment by raindrops, detachment by flowing water, deposition, etc.). Simulation of the non-uniform slope, soils, cropping/management., and Egyptian databases for climate, soils, and crops. The study included important parameters in Egyptian conditions as follows: Water Balance & Percolation, Soil Component (Tillage impacts), Plant Growth & Residue Decomposition, Overland Flow Hydraulics. It could be concluded that we can adapt the WEPP simulation model to determining the previous important parameters under Egyptian conditions.Keywords: WEPP, adaptation, soil properties, tillage impacts, water balance, soil percolation
Procedia PDF Downloads 2972819 Development of Fuzzy Logic and Neuro-Fuzzy Surface Roughness Prediction Systems Coupled with Cutting Current in Milling Operation
Authors: Joseph C. Chen, Venkata Mohan Kudapa
Abstract:
Development of two real-time surface roughness (Ra) prediction systems for milling operations was attempted. The systems used not only cutting parameters, such as feed rate and spindle speed, but also the cutting current generated and corrected by a clamp type energy sensor. Two different approaches were developed. First, a fuzzy inference system (FIS), in which the fuzzy logic rules are generated by experts in the milling processes, was used to conduct prediction modeling using current cutting data. Second, a neuro-fuzzy system (ANFIS) was explored. Neuro-fuzzy systems are adaptive techniques in which data are collected on the network, processed, and rules are generated by the system. The inference system then uses these rules to predict Ra as the output. Experimental results showed that the parameters of spindle speed, feed rate, depth of cut, and input current variation could predict Ra. These two systems enable the prediction of Ra during the milling operation with an average of 91.83% and 94.48% accuracy by FIS and ANFIS systems, respectively. Statistically, the ANFIS system provided better prediction accuracy than that of the FIS system.Keywords: surface roughness, input current, fuzzy logic, neuro-fuzzy, milling operations
Procedia PDF Downloads 1452818 Neural Network Based Approach of Software Maintenance Prediction for Laboratory Information System
Authors: Vuk M. Popovic, Dunja D. Popovic
Abstract:
Software maintenance phase is started once a software project has been developed and delivered. After that, any modification to it corresponds to maintenance. Software maintenance involves modifications to keep a software project usable in a changed or a changing environment, to correct discovered faults, and modifications, and to improve performance or maintainability. Software maintenance and management of software maintenance are recognized as two most important and most expensive processes in a life of a software product. This research is basing the prediction of maintenance, on risks and time evaluation, and using them as data sets for working with neural networks. The aim of this paper is to provide support to project maintenance managers. They will be able to pass the issues planned for the next software-service-patch to the experts, for risk and working time evaluation, and afterward to put all data to neural networks in order to get software maintenance prediction. This process will lead to the more accurate prediction of the working hours needed for the software-service-patch, which will eventually lead to better planning of budget for the software maintenance projects.Keywords: laboratory information system, maintenance engineering, neural networks, software maintenance, software maintenance costs
Procedia PDF Downloads 3582817 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms
Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang
Abstract:
Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.Keywords: bioassay, machine learning, preprocessing, virtual screen
Procedia PDF Downloads 2742816 On Estimating the Headcount Index by Using the Logistic Regression Estimator
Authors: Encarnación Álvarez, Rosa M. García-Fernández, Juan F. Muñoz, Francisco J. Blanco-Encomienda
Abstract:
The problem of estimating a proportion has important applications in the field of economics, and in general, in many areas such as social sciences. A common application in economics is the estimation of the headcount index. In this paper, we define the general headcount index as a proportion. Furthermore, we introduce a new quantitative method for estimating the headcount index. In particular, we suggest to use the logistic regression estimator for the problem of estimating the headcount index. Assuming a real data set, results derived from Monte Carlo simulation studies indicate that the logistic regression estimator can be more accurate than the traditional estimator of the headcount index.Keywords: poverty line, poor, risk of poverty, Monte Carlo simulations, sample
Procedia PDF Downloads 4222815 Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks
Authors: Anne-Lena Kampen, Øivind Kure
Abstract:
Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.Keywords: central machine learning, embedded machine learning, energy consumption, local machine learning, wireless sensor networks, WSN
Procedia PDF Downloads 1532814 A Type-2 Fuzzy Model for Link Prediction in Social Network
Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi
Abstract:
Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.Keywords: social network, link prediction, granular computing, type-2 fuzzy sets
Procedia PDF Downloads 3252813 Fast Authentication Using User Path Prediction in Wireless Broadband Networks
Authors: Gunasekaran Raja, Rajakumar Arul, Kottilingam Kottursamy, Ramkumar Jayaraman, Sathya Pavithra, Swaminathan Venkatraman
Abstract:
Wireless Interoperability for Microwave Access (WiMAX) utilizes the IEEE 802.1X mechanism for authentication. However, this mechanism incurs considerable delay during handoffs. This delay during handoffs results in service disruption which becomes a severe bottleneck. To overcome this delay, our article proposes a key caching mechanism based on user path prediction. If the user mobility follows that path, the user bypasses the normal IEEE 802.1X mechanism and establishes the necessary authentication keys directly. Through analytical and simulation modeling, we have proved that our mechanism effectively decreases the handoff delay thereby achieving fast authentication.Keywords: authentication, authorization, and accounting (AAA), handoff, mobile, user path prediction (UPP) and user pattern
Procedia PDF Downloads 4042812 Pantawid Pamilyang Pilipino Program, '4P’s': Breaking the Vicious Poverty Cycle
Authors: Bernadette F. De La Cruz, Susan Marie R. Dela Cruz, Georgia D. Demavibas
Abstract:
Pantawid Pamilyang Pilipino Program (4P) is a conditional cash transfer program in the Philippines pay extremely poor household-beneficiaries in order to fulfill the country’s commitment to the number one of the Millennium Development Goals (MDG). 4P's send 10,235,256 school children aged 6-18 from a total of 4,353,597 registered households with an average of two to three children. We analyze this program in Iloilo, Philippines. We show that this program can be made efficient by selecting beneficiaries and calibrating transfer for a maximum breaking of intergenerational poverty cycle of hunger, health and achieve higher education.Keywords: ESGP-PA, millennium development goals, house hold beneficiaries, cash transfer
Procedia PDF Downloads 4042811 Estimation of Sediment Transport into a Reservoir Dam
Authors: Kiyoumars Roushangar, Saeid Sadaghian
Abstract:
Although accurate sediment load prediction is very important in planning, designing, operating and maintenance of water resources structures, the transport mechanism is complex, and the deterministic transport models are based on simplifying assumptions often lead to large prediction errors. In this research, firstly, two intelligent ANN methods, Radial Basis and General Regression Neural Networks, are adopted to model of total sediment load transport into Madani Dam reservoir (north of Iran) using the measured data and then applicability of the sediment transport methods developed by Engelund and Hansen, Ackers and White, Yang, and Toffaleti for predicting of sediment load discharge are evaluated. Based on comparison of the results, it is found that the GRNN model gives better estimates than the sediment rating curve and mentioned classic methods.Keywords: sediment transport, dam reservoir, RBF, GRNN, prediction
Procedia PDF Downloads 4962810 Community Empowerment: The Contribution of Network Urbanism on Urban Poverty Reduction
Authors: Lucia Antonela Mitidieri
Abstract:
This research analyzes the application of a model of settlements management based on networks of territorial integration that advocates planning as a cyclical and participatory process that engages early on with civic society, the private sector and the state. Through qualitative methods such as participant observation, interviews with snowball technique and an active research on territories, concrete results of community empowerment are obtained from the promotion of productive enterprises and community spaces of encounter and exchange. Studying the cultural and organizational dimensions of empowerment allows building indicators such as increase of capacities or community cohesion that can lead to support local governments in achieving sustainable urban development for a reduction of urban poverty.Keywords: community spaces, empowerment, network urbanism, participatory process
Procedia PDF Downloads 3312809 Protein Tertiary Structure Prediction by a Multiobjective Optimization and Neural Network Approach
Authors: Alexandre Barbosa de Almeida, Telma Woerle de Lima Soares
Abstract:
Protein structure prediction is a challenging task in the bioinformatics field. The biological function of all proteins majorly relies on the shape of their three-dimensional conformational structure, but less than 1% of all known proteins in the world have their structure solved. This work proposes a deep learning model to address this problem, attempting to predict some aspects of the protein conformations. Throughout a process of multiobjective dominance, a recurrent neural network was trained to abstract the particular bias of each individual multiobjective algorithm, generating a heuristic that could be useful to predict some of the relevant aspects of the three-dimensional conformation process formation, known as protein folding.Keywords: Ab initio heuristic modeling, multiobjective optimization, protein structure prediction, recurrent neural network
Procedia PDF Downloads 2052808 Review: Wavelet New Tool for Path Loss Prediction
Authors: Danladi Ali, Abdullahi Mukaila
Abstract:
In this work, GSM signal strength (power) was monitored in an indoor environment. Samples of the GSM signal strength was measured on mobile equipment (ME). One-dimensional multilevel wavelet is used to predict the fading phenomenon of the GSM signal measured and neural network clustering to determine the average power received in the study area. The wavelet prediction revealed that the GSM signal is attenuated due to the fast fading phenomenon which fades about 7 times faster than the radio wavelength while the neural network clustering determined that -75dBm appeared more frequently followed by -85dBm. The work revealed that significant part of the signal measured is dominated by weak signal and the signal followed more of Rayleigh than Gaussian distribution. This confirmed the wavelet prediction.Keywords: decomposition, clustering, propagation, model, wavelet, signal strength and spectral efficiency
Procedia PDF Downloads 4472807 Artificial Intelligence-Generated Previews of Hyaluronic Acid-Based Treatments
Authors: Ciro Cursio, Giulia Cursio, Pio Luigi Cursio, Luigi Cursio
Abstract:
Communication between practitioner and patient is of the utmost importance in aesthetic medicine: as of today, images of previous treatments are the most common tool used by doctors to describe and anticipate future results for their patients. However, using photos of other people often reduces the engagement of the prospective patient and is further limited by the number and quality of pictures available to the practitioner. Pre-existing work solves this issue in two ways: 3D scanning of the area with manual editing of the 3D model by the doctor or automatic prediction of the treatment by warping the image with hand-written parameters. The first approach requires the manual intervention of the doctor, while the second approach always generates results that aren’t always realistic. Thus, in one case, there is significant manual work required by the doctor, and in the other case, the prediction looks artificial. We propose an AI-based algorithm that autonomously generates a realistic prediction of treatment results. For the purpose of this study, we focus on hyaluronic acid treatments in the facial area. Our approach takes into account the individual characteristics of each face, and furthermore, the prediction system allows the patient to decide which area of the face she wants to modify. We show that the predictions generated by our system are realistic: first, the quality of the generated images is on par with real images; second, the prediction matches the actual results obtained after the treatment is completed. In conclusion, the proposed approach provides a valid tool for doctors to show patients what they will look like before deciding on the treatment.Keywords: prediction, hyaluronic acid, treatment, artificial intelligence
Procedia PDF Downloads 1142806 Contrasting The Water Consumption Estimation Methods
Authors: Etienne Alain Feukeu, L. W. Snyman
Abstract:
Water scarcity is becoming a real issue nowadays. Most countries in the world are facing it in their own way based on their own geographical coordinate and condition. Many countries are facing a challenge of a growing water demand as a result of not only an increased population, economic growth, but also as a pressure of the population dynamic and urbanization. In view to mitigate some of this related problem, an accurate method of water estimation and future prediction, forecast is essential to guarantee not only the sufficient quantity, but also a good water distribution and management system. Beside the fact that several works have been undertaken to address this concern, there is still a considerable disparity between different methods and standard used for water prediction and estimation. Hence this work contrast and compare two well-defined and established methods from two countries (USA and South Africa) to demonstrate the inconsistency when different method and standards are used interchangeably.Keywords: water scarcity, water estimation, water prediction, water forecast.
Procedia PDF Downloads 2012805 An Assessment of Entrepreneurial Landscape in Sub-Saharan Africa
Authors: Abubakar Salisu Garba
Abstract:
The objective of the paper is to highlight the nature of entrepreneurial activities in the Sub Sahara Africa. Five countries in the Sub Sahara African that are participating in Global Entrepreneurship Monitor (GEM) research have been studied to understand the types of entrepreneurial activities and their socio-economic implications in the region. The importance of entrepreneurial activities in boosting socio-economic development has been recognized not only in developing countries, but across the entire global economies. Some people believe that the wealth and poverty of developing countries is associated with nature and type of entrepreneurial activity. Policy makers are not only concern about the rate of business start up, but the growth and development of those starts up is of paramount importance to the development of the country’s economy. Although, the supply of entrepreneurs is essential, sometimes it does not really matters in boosting economic performance. What is more important is having high impact entrepreneurs who could make meaningful contribution to the economy. High growth oriented entrepreneurs are more stable and contribute greatly in enhancing the economic performance. When entrepreneurs are facing difficulties in sustaining and growing their businesses, it may be unlikely for entrepreneurship to reduce unemployment and poverty. Inadequate financial supports, insufficient infrastructure, lack of enforcing laws protecting the right of entrepreneurs are some of the problems making business environment difficult in Sub-Saharan Africa.Keywords: entrepreneurship, entrepreneurial activity, job creation, poverty reduction, Sub-Saharan Africa
Procedia PDF Downloads 4172804 Prediction on the Pursuance of Separation of Catalonia from Spain
Authors: Francis Mark A. Fernandez, Chelca Ubay, Armithan Suguitan
Abstract:
Regions or provinces in a definite state certainly contribute to the economy of their mainland. These regions or provinces are the ones supplying the mainland with different resources and assets. Thus, with a certain region separating from the mainland would indeed impinge the heart of an entire state to develop and expand. With these, the researchers decided to study on the effects of the separation of one’s region to its mainland and the consequences that will take place if the mainland would rule out the region to separate from them. The researchers wrote this paper to present the causes of the separation of Catalonia from Spain and the prediction regarding the pursuance of this region to revolt from its mainland, Spain. In conducting this research, the researchers utilized two analyses, namely: qualitative and quantitative. In qualitative, numerous of information regarding the existing experiences of the citizens of Catalonia were gathered by the authors to give certainty to the prediction of the researchers. Besides this undertaking, the researchers will also gather needed information and figures through books, journals and the published news and reports. In addition, to further support this prediction under qualitative analysis, the researchers intended to operate the Phenomenological research in which the examiners will exemplify the lived experiences of each citizen in Catalonia. Moreover, the researchers will utilize one of the types of Phenomenological research which is hermeneutical phenomenology by Van Manen. In quantitative analysis, the researchers utilized the regression analysis in which it will ascertain the causality in an underlying theory in understanding the relationship of the variables. The researchers assigned and identified different variables, wherein the dependent variable or the y which represents the prediction of the researchers, the independent variable however or the x represents the arising problems that grounds the partition of the region, the summation of the independent variable or the ∑x represents the sum of the problem and finally the summation of the dependent variable or the ∑y is the result of the prediction. With these variables, using the regression analysis, the researchers will be able to show the connections and how a single variable could affect the other variables. From these approaches, the prediction of the researchers will be specified. This research could help different states dealing with this kind of problem. It will further help certain states undergoing this problem by analyzing the causes of these insurgencies and the effects on it if it will obstruct its region to consign their full-pledge autonomy.Keywords: autonomy, liberty, prediction, separation
Procedia PDF Downloads 2502803 A New Prediction Model for Soil Compression Index
Authors: D. Mohammadzadeh S., J. Bolouri Bazaz
Abstract:
This paper presents a new prediction model for compression index of fine-grained soils using multi-gene genetic programming (MGGP) technique. The proposed model relates the soil compression index to its liquid limit, plastic limit and void ratio. Several laboratory test results for fine-grained were used to develop the models. Various criteria were considered to check the validity of the model. The parametric and sensitivity analyses were performed and discussed. The MGGP method was found to be very effective for predicting the soil compression index. A comparative study was further performed to prove the superiority of the MGGP model to the existing soft computing and traditional empirical equations.Keywords: new prediction model, compression index soil, multi-gene genetic programming, MGGP
Procedia PDF Downloads 3742802 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study
Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng
Abstract:
MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.Keywords: microRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM
Procedia PDF Downloads 3992801 Local Pricing Strategy Should Be the Entry Point of Equitable Benefit Sharing and Poverty Reduction in Community Based Forest Management: Some Evidences from Lowland Community Forestry in Nepal
Authors: Dhruba Khatri
Abstract:
Despite the short history of community based forest management, the community forestry program of Nepal has produced substantial positive effects to organize the local people at a local level institution called Community Forest User Group and manage the local forest resources in the line of poverty reduction since its inception in 1970s. Moreover, each CFUG has collected a community fund from the sale of forest products and non-forestry sources as well and the fund has played a vital role to improve the livelihood of user households living in and around the forests. The specific study sites were selected based on the criteria of i) community forests having dominancy of Sal forests, and ii) forests having 3-5 years experience of community forest management. The price rates of forest products fixed by the CFUGs and the distribution records were collected from the respective community forests. Nonetheless, the relation between pricing strategy and community fund collection revealed that the small change in price of forest products could greatly affect in community fund collection and carry out of forest management, community development, and income generation activities in the line of poverty reduction at local level.Keywords: benefit sharing, community forest, equitable, Nepal
Procedia PDF Downloads 3842800 Project Progress Prediction in Software Devlopment Integrating Time Prediction Algorithms and Large Language Modeling
Authors: Dong Wu, Michael Grenn
Abstract:
Managing software projects effectively is crucial for meeting deadlines, ensuring quality, and managing resources well. Traditional methods often struggle with predicting project timelines accurately due to uncertain schedules and complex data. This study addresses these challenges by combining time prediction algorithms with Large Language Models (LLMs). It makes use of real-world software project data to construct and validate a model. The model takes detailed project progress data such as task completion dynamic, team Interaction and development metrics as its input and outputs predictions of project timelines. To evaluate the effectiveness of this model, a comprehensive methodology is employed, involving simulations and practical applications in a variety of real-world software project scenarios. This multifaceted evaluation strategy is designed to validate the model's significant role in enhancing forecast accuracy and elevating overall management efficiency, particularly in complex software project environments. The results indicate that the integration of time prediction algorithms with LLMs has the potential to optimize software project progress management. These quantitative results suggest the effectiveness of the method in practical applications. In conclusion, this study demonstrates that integrating time prediction algorithms with LLMs can significantly improve the predictive accuracy and efficiency of software project management. This offers an advanced project management tool for the industry, with the potential to improve operational efficiency, optimize resource allocation, and ensure timely project completion.Keywords: software project management, time prediction algorithms, large language models (LLMS), forecast accuracy, project progress prediction
Procedia PDF Downloads 792799 Prediction of Oil Recovery Factor Using Artificial Neural Network
Authors: O. P. Oladipo, O. A. Falode
Abstract:
The determination of Recovery Factor is of great importance to the reservoir engineer since it relates reserves to the initial oil in place. Reserves are the producible portion of reservoirs and give an indication of the profitability of a field Development. The core objective of this project is to develop an artificial neural network model using selected reservoir data to predict Recovery Factors (RF) of hydrocarbon reservoirs and compare the model with a couple of the existing correlations. The type of Artificial Neural Network model developed was the Single Layer Feed Forward Network. MATLAB was used as the network simulator and the network was trained using the supervised learning method, Afterwards, the network was tested with input data never seen by the network. The results of the predicted values of the recovery factors of the Artificial Neural Network Model, API Correlation for water drive reservoirs (Sands and Sandstones) and Guthrie and Greenberger Correlation Equation were obtained and compared. It was noted that the coefficient of correlation of the Artificial Neural Network Model was higher than the coefficient of correlations of the other two correlation equations, thus making it a more accurate prediction tool. The Artificial Neural Network, because of its accurate prediction ability is helpful in the correct prediction of hydrocarbon reservoir factors. Artificial Neural Network could be applied in the prediction of other Petroleum Engineering parameters because it is able to recognise complex patterns of data set and establish a relationship between them.Keywords: recovery factor, reservoir, reserves, artificial neural network, hydrocarbon, MATLAB, API, Guthrie, Greenberger
Procedia PDF Downloads 4402798 Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines
Authors: Xiaogang Li, Jieqiong Miao
Abstract:
As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square errorKeywords: Grey prediction model, trigonometric functions, support vector machines, genetic algorithms, root mean square error
Procedia PDF Downloads 4612797 Virtual Chemistry Laboratory as Pre-Lab Experiences: Stimulating Student's Prediction Skill
Authors: Yenni Kurniawati
Abstract:
Students Prediction Skill in chemistry experiments is an important skill for pre-service chemistry students to stimulate students reflective thinking at each stage of many chemistry experiments, qualitatively and quantitatively. A Virtual Chemistry Laboratory was designed to give students opportunities and times to practicing many kinds of chemistry experiments repeatedly, everywhere and anytime, before they do a real experiment. The Virtual Chemistry Laboratory content was constructed using the Model of Educational Reconstruction and developed to enhance students ability to predicted the experiment results and analyzed the cause of error, calculating the accuracy and precision with carefully in using chemicals. This research showed students changing in making a decision and extremely beware with accuracy, but still had a low concern in precision. It enhancing students level of reflective thinking skill related to their prediction skill 1 until 2 stage in average. Most of them could predict the characteristics of the product in experiment, and even the result will going to be an error. In addition, they take experiments more seriously and curiously about the experiment results. This study recommends for a different subject matter to provide more opportunities for students to learn about other kinds of chemistry experiments design.Keywords: virtual chemistry laboratory, chemistry experiments, prediction skill, pre-lab experiences
Procedia PDF Downloads 3402796 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul
Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini
Abstract:
The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.Keywords: decision tree, breast cancer, probability, data mining
Procedia PDF Downloads 138