Search results for: flow rate sensing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12393

Search results for: flow rate sensing

12183 Groundwater Numerical Modeling, an Application of Remote Sensing, and GIS Techniques in South Darb El Arbaieen, Western Desert, Egypt

Authors: Abdallah M. Fayed

Abstract:

The study area is located in south Darb El Arbaieen, western desert of Egypt. It occupies the area between latitudes 22° 00/ and 22° 30/ North and Longitudes 29° 30/ and 30° 00/ East, from southern border of Egypt to the area north Bir Kuraiym and from the area East of East Owienat to the area west Tushka district, its area about 2750 Km2. The famous features; southern part of Darb El Arbaieen road, G Baraqat El Scab El Qarra, Bir Dibis, Bir El Shab and Bir Kuraiym, Interpretation of soil stratification shows layers that are related to Quaternary and Upper-Lower Cretaceous eras. It is dissected by a series of NE-SW striking faults. The regional groundwater flow direction is in SW-NE direction with a hydraulic gradient is 1m / 2km. Mathematical model program has been applied for evaluation of groundwater potentials in the main Aquifer –Nubian Sandstone- in the area of study and Remote sensing technique is considered powerful, accurate and saving time in this respect. These techniques are widely used for illustrating and analysis different phenomenon such as the new development in the desert (land reclamation), residential development (new communities), urbanization, etc. The major issues concerning water development objective of this work is to determine the new development areas in western desert of Egypt during the period from 2003 to 2015 using remote sensing technique, the impacts of the present and future development have been evaluated by using the two-dimensional numerical groundwater flow Simulation Package (visual modflow 4.2). The package was used to construct and calibrate a numerical model that can be used to simulate the response of the aquifer in the study area under implementing different management alternatives in the form of changes in piezometric levels and salinity. Total period of simulation is 100 years. After steady state calibration, two different scenarios are simulated for groundwater development. 21 production wells are installed at the study area and used in the model, with the total discharge for the two scenarios were 105000 m3/d, 210000 m3/d. The drawdown was 11.8 m and 23.7 m for the two scenarios in the end of 100 year. Contour maps for water heads and drawdown and hydrographs for piezometric head are represented. The drawdown was less than the half of the saturated thickness (the safe yield case).

Keywords: remote sensing, management of aquifer systems, simulation modeling, western desert, South Darb El Arbaieen

Procedia PDF Downloads 376
12182 An Energy Detection-Based Algorithm for Cooperative Spectrum Sensing in Rayleigh Fading Channel

Authors: H. Bakhshi, E. Khayyamian

Abstract:

Cognitive radios have been recognized as one of the most promising technologies dealing with the scarcity of the radio spectrum. In cognitive radio systems, secondary users are allowed to utilize the frequency bands of primary users when the bands are idle. Hence, how to accurately detect the idle frequency bands has attracted many researchers’ interest. Detection performance is sensitive toward noise power and gain fluctuation. Since signal to noise ratio (SNR) between primary user and secondary users are not the same and change over the time, SNR and noise power estimation is essential. In this paper, we present a cooperative spectrum sensing algorithm using SNR estimation to improve detection performance in the real situation.

Keywords: cognitive radio, cooperative spectrum sensing, energy detection, SNR estimation, spectrum sensing, rayleigh fading channel

Procedia PDF Downloads 427
12181 Correlations between Wear Rate and Energy Dissipation Mechanisms in a Ti6Al4V–WC/Co Sliding Pair

Authors: J. S. Rudas, J. M. Gutiérrez Cabeza, A. Corz Rodríguez, L. M. Gómez, A. O. Toro

Abstract:

The prediction of the wear rate of rubbing pairs has attracted the interest of many researchers for years. It has been recently proposed that the sliding wear rate can be inferred from the calculation of the energy rate dissipated by the tribological pair. In this paper some of the dissipative mechanisms present in a pin-on-disc configuration are discussed and both analytical and numerical calculations are carried out. Three dissipative mechanisms were studied: First, the energy release due to temperature gradients within the solid; second, the heat flow from the solid to the environment, and third, the energy loss due to abrasive damage of the surface. The Finite Element Method was used to calculate the dynamics of heat transfer within the solid, with the aid of commercial software. Validation the FEM model was assisted by virtual and laboratory experimentation using different operating points (sliding velocity and geometry contact). The materials for the experiments were Ti6Al4V alloy and Tungsten Carbide (WC-Co). The results showed that the sliding wear rate has a linear relationship with the energy dissipation flow. It was also found that energy loss due to micro-cutting is relevant for the system. This mechanism changes if the sliding velocity and pin geometry are modified though the degradation coefficient continues to present a linear behavior. We found that the less relevant dissipation mechanism for all the cases studied is the energy release by temperature gradients in the solid.

Keywords: degradation, dissipative mechanism, dry sliding, entropy, friction, wear

Procedia PDF Downloads 481
12180 Iron Removal from Aqueous Solutions by Fabricated Calcite Ooids

Authors: Al-Sayed A. Bakr, W. A. Makled

Abstract:

The precipitated low magnesium calcite ooids in assembled softening unit from natural Mediterranean seawater samples were used as adsorbent media in a comparative study with granular activated carbon media in a two separated single-media filtration vessels (operating in parallel) for removal of iron from aqueous solutions. In each vessel, the maximum bed capacity, which required to be filled, was 13.2 l and the bed filled in the vessels of ooids and GAC were 8.6, and 6.6 l, respectively. The operating conditions applied to the semi-pilot filtration unit were constant pH (7.5), different temperatures (293, 303 and 313 k), different flow rates (20, 30, 40, 50 and 60 l/min), different initial Fe(II) concentrations (15–105 mg/ l) and the calculated adsorbent masses were 34.1 and 123 g/l for GAC and calcite ooids, respectively. At higher temperature (313 k) and higher flow rate (60 l/min), the maximum adsorption capacities for ferrous ions by GAC and calcite ooids filters were 3.87 and 1.29 mg/g and at lower flow rate (20 l/min), the maximum adsorption capacities were 2.21 and 3.95 mg/g, respectively. From the experimental data, Freundlich and Langmuir adsorption isotherms were used to verify the adsorption performance. Therefore, the calcite ooids could act as new highly effective materials in iron removal from aqueous solutions.

Keywords: water treatment, calcite ooids, activated carbon, Fe(II) removal, filtration

Procedia PDF Downloads 125
12179 Research on the Strategy of Orbital Avoidance for Optical Remote Sensing Satellite

Authors: Zheng DianXun, Cheng Bo, Lin Hetong

Abstract:

This paper focuses on the orbit avoidance strategies of optical remote sensing satellite. The optical remote sensing satellite, moving along the Sun-synchronous orbit, is equipped with laser warning equipment to alert CCD camera from laser attacks. There are three ways to protect the CCD camera: closing the camera cover, satellite attitude maneuver and satellite orbit avoidance. In order to enhance the safety of optical remote sensing satellite in orbit, this paper explores the strategy of satellite avoidance. The avoidance strategy is expressed as the evasion of pre-determined target points in the orbital coordinates of virtual satellite. The so-called virtual satellite is a passive vehicle which superposes the satellite at the initial stage of avoidance. The target points share the consistent cycle time and the same semi-major axis with the virtual satellite, which ensures the properties of the satellite’s Sun-synchronous orbit remain unchanged. Moreover, to further strengthen the avoidance capability of satellite, it can perform multi-target-points avoid maneuvers. On occasions of fulfilling the satellite orbit tasks, the orbit can be restored back to virtual satellite through orbit maneuvers. Thereinto, the avoid maneuvers adopts pulse guidance. And the fuel consumption is also optimized. The avoidance strategy discussed in this article is applicable to optical remote sensing satellite when it is encountered with hostile attack of space-based laser anti-satellite.

Keywords: optical remote sensing satellite, satellite avoidance, virtual satellite, avoid target-point, avoid maneuver

Procedia PDF Downloads 378
12178 Experimental Investigation on Correlation Between Permeability Variation and Sabkha Soil Salts Dissolution

Authors: Fahad A. Alotaibi

Abstract:

An increase in salt dissolution rate with continuous water flow is expected to lead to the progressive collapse of the soil structure. Evaluation of the relationship between soil salt dissolution and the variation of sabkha soil permeability in terms of type, rate, and quantity in order to assure construction safety in these environments. The current study investigates the relationship of soil permeability with the rate of dissolution of calcium (Ca2+), sulfate (SO4-2), chloride (CL−1), magnesium (Mg2+), sodium (Na+), and potassium (K+1) ions. Results revealed an increase in sabkha soil permeability with the rate of ions dissolution. This makes the efficiency of using a waterproofing stabilization agent in the reduction of sabkha salts dissolution the main criterion is selecting suitable stabilizing method.

Keywords: sabkha, permeability, salts, dissolution

Procedia PDF Downloads 75
12177 Semi-pilot Biooxidation of Refractory Sulfide-Gold Ore Using Ferroplasma Acidophilum: D-(+)-Sucsore as a Booster and Columns Tests

Authors: Mohammad Hossein Karimi Darvanjooghi, Sara Magdouli, Satinder Kaur Brar

Abstract:

It has been reported that the microorganism’s attachment to the surfaces of ore samples is a key factor that influences the biooxidation in pretreatment for recovery of gold in sulfide-bearing ores. In this research, the implementation of D-(+)-Sucrose on the biooxidation of ore samples were studied in a semi-pilot experiment. The experiments were carried out in five separate jacketed columns (1 m height and 6 cm diameter) at a constant temperature of 37.5 ̊C and saturated humidity. The airflow rate and recycling solution flow rate were studied in the research and the optimum operating condition were reported. The ore sample (0.49 ppm gold grade) was obtained from the Hammond Reef mine site containing 15 wt.% of pyrite which included 98% of gold according to the results of micrograph images. The experiments were continued up to 100 days while air flow rates were chosen to be 0.5, 1, 1.5, 2, and 3 lit/min and the recycling solution (Containing 9K media and 0.4 wt.% D-(+)-Sucrose) flow rates were kept 5, 8, 15 ml/hr. The results indicated that the addition of D-(+)-Sucrose increased the bacterial activity due to the overproduction of extracellular polymeric substance (EPS) up to 95% and for the condition that the recycling solution and air flow rate were chosen to be 8 ml/hr and 2 lit/min, respectively, the maximum pyrite dissolution of 76% was obtained after 60 days. The results indicated that for the air flow rates of 0.5, 1, 1.5, 2, and 3 lit/min the ratio of daily pyrite dissolution per daily solution lost were found to be 0.025, 0.033, 0.031, 0.043, and 0.009 %-pyrite dissolution/ml-lost. The implementation of this microorganisms and the addition of D-(+)-Sucrose will enhance the efficiency of gold recovery through faster biooxidation process and leads to decrease in the time and energy of operation toward desired target; however, still other parameters including particle size distribution, agglomeration, aeration design, chemistry of recycling solution need to be controlled and monitored for reaching the optimum condition.

Keywords: column tests, biooxidation, gold recovery, Ferroplasma acidophilum, optimization

Procedia PDF Downloads 47
12176 Oil Pollution Analysis of the Ecuadorian Rainforest Using Remote Sensing Methods

Authors: Juan Heredia, Naci Dilekli

Abstract:

The Ecuadorian Rainforest has been polluted for almost 60 years with little to no regard to oversight, law, or regulations. The consequences have been vast environmental damage such as pollution and deforestation, as well as sickness and the death of many people and animals. The aim of this paper is to quantify and localize the polluted zones, which something that has not been conducted and is the first step for remediation. To approach this problem, multi-spectral Remote Sensing imagery was utilized using a novel algorithm developed for this study, based on four normalized indices available in the literature. The algorithm classifies the pixels in polluted or healthy ones. The results of this study include a new algorithm for pixel classification and quantification of the polluted area in the selected image. Those results were finally validated by ground control points found in the literature. The main conclusion of this work is that using hyperspectral images, it is possible to identify polluted vegetation. The future work is environmental remediation, in-situ tests, and more extensive results that would inform new policymaking.

Keywords: remote sensing, oil pollution quatification, amazon forest, hyperspectral remote sensing

Procedia PDF Downloads 131
12175 A Facile and Room Temperature Growth of Pd-Pt Decorated Hexagonal-ZnO Framework and Their Selective H₂ Gas Sensing Properties

Authors: Gaurav Malik, Satyendra Mourya, Jyoti Jaiswal, Ramesh Chandra

Abstract:

The attractive and multifunctional properties of ZnO make it a promising material for the fabrication of highly sensitive and selective efficient gas sensors at room temperature. This presented article focuses on the development of highly selective and sensitive H₂ gas sensor based on the Pd-Pt decorated ZnO framework and its sensing mechanisms. The gas sensing performance of sputter made Pd-Pt/ZnO electrode on anodized porous silicon (PSi) substrate toward H₂ gas is studied under low detection limit (2–500 ppm) of H₂ in the air. The chemiresistive sensor demonstrated sublimate selectivity, good sensing response, and fast response/recovery time with excellent stability towards H₂ at low temperature operation under ambient environment. The elaborate selective measurement of Pd-Pt/ZnO/PSi structure was performed towards different oxidizing and reducing gases. This structure exhibited advance and reversible response to H₂ gas, which revealed that the acquired architecture with ZnO framework is a promising candidate for H₂ gas sensor.

Keywords: sputtering, porous silicon, ZnO framework, XPS spectra, gas sensor

Procedia PDF Downloads 365
12174 The Practice of Low Flow Anesthesia to Reduce Carbon Footprints Sustainability Project

Authors: Ahmed Eid, Amita Gupta

Abstract:

Abstract: Background: Background Medical gases are estimated to contribute to 5% of the carbon footprints produced by hospitals, Desflurane has the largest impact, but all increase significantly when used with N2O admixture. Climate Change Act 2008, we must reduce our carbon emission by 80% of the 1990 baseline by 2050.NHS carbon emissions have reduced by 18.5% (2007-2017). The NHS Long Term Plan has outlined measures to achieve this objective, including a 2% reduction by transforming anaesthetic practices. FGF is an important variable that determines the utilization of inhalational agents and can be tightly controlled by the anaesthetist. Aims and Objectives Environmental safety, Identification of areas of high N20 and different anaesthetic agents used across the St Helier operating theatres and consider improvising on the current practice. Methods: Data was collected from St Helier operating theatres and retrieved daily from Care Station 650 anaesthetic machines. 60 cases were included in the sample. Collected data (average flow rate, amount and type of agent used, duration of surgery, type of surgery, duration, and the total amount of Air, O2 and N2O used. AAGBI impact anaesthesia calculator was used to identify the amount of CO2 produced and also the cost per hour for every pt. Communication via reminder emails to staff emphasized the significance of low-flow anaesthesia and departmental meeting presentations aimed at heightening awareness of LFA, Distribution of AAGBI calculator QR codes in all theatres enables the calculation of volatile anaesthetic consumption and CO2e post each case, facilitating informed environmental impact assessment. Results: A significant reduction in the flow rate use in the 2nd sample was observed, flow rate usage between 0-1L was 60% which means a great reduction of the consumption of volatile anaesthetics and also Co2e. By using LFA we can save money but most importantly we can make our lives much greener and save the planet.

Keywords: low flow anesthesia, sustainability project, N₂0, Co2e

Procedia PDF Downloads 38
12173 CFD Modeling of Mixing Enhancement in a Pitted Micromixer by High Frequency Ultrasound Waves

Authors: Faezeh Mohammadi, Ebrahim Ebrahimi, Neda Azimi

Abstract:

Use of ultrasound waves is one of the techniques for increasing the mixing and mass transfer in the microdevices. Ultrasound propagation into liquid medium leads to stimulation of the fluid, creates turbulence and so increases the mixing performance. In this study, CFD modeling of two-phase flow in a pitted micromixer equipped with a piezoelectric with frequency of 1.7 MHz has been studied. CFD modeling of micromixer at different velocity of fluid flow in the absence of ultrasound waves and with ultrasound application has been performed. The hydrodynamic of fluid flow and mixing efficiency for using ultrasound has been compared with the layout of no ultrasound application. The result of CFD modeling shows well agreements with the experimental results. The results showed that the flow pattern inside the micromixer in the absence of ultrasound waves is parallel, while when ultrasound has been applied, it is not parallel. In fact, propagation of ultrasound energy into the fluid flow in the studied micromixer changed the hydrodynamic and the forms of the flow pattern and caused to mixing enhancement. In general, from the CFD modeling results, it can be concluded that the applying ultrasound energy into the liquid medium causes an increase in the turbulences and mixing and consequently, improves the mass transfer rate within the micromixer.

Keywords: CFD modeling, ultrasound, mixing, mass transfer

Procedia PDF Downloads 157
12172 Simulation of the Asphaltene Deposition Rate in a Wellbore Blockage via Computational Fluid Dynamic

Authors: Xiaodong Gao, Pingchuan Dong, Qichao Gao

Abstract:

There has been lots of published work focused on asphaltene deposited on the smooth pipe under steady conditions, while particle deposition on the blockage wellbores under transient conditions has not been well elucidated. This work attempts to predict the deposition rate of asphaltene particles in blockage tube through CFD simulation. The Euler-Lagrange equation has been applied during the flow of crude oil and asphaltene particles. The net gravitational force, virtual mass, pressure gradient, saffman lift, and drag forces are incorporated in the simulations process. Validation of CFD simulation results is compared to the benchmark experiments from the previous literature. Furthermore, the effect of blockage location, blockage length, and blockage thickness on deposition rate are also analyzed. The simulation results indicate that the maximum deposition rate of asphaltene occurs in the blocked tube section, and the greater the deposition thickness, the greater the deposition rate. Moreover, the deposition amount and maximum deposition rate along the length of the tube have the same trend. Results of this study are in the ability to better understand the deposition of asphaltene particles in production and help achieve to deal with the asphaltene challenges.

Keywords: asphaltene deposition rate, blockage length, blockage thickness, blockage diameter, transient condition

Procedia PDF Downloads 171
12171 Coordinative Remote Sensing Observation Technology for a High Altitude Barrier Lake

Authors: Zhang Xin

Abstract:

Barrier lakes are lakes formed by storing water in valleys, river valleys or riverbeds after being blocked by landslide, earthquake, debris flow, and other factors. They have great potential safety hazards. When the water is stored to a certain extent, it may burst in case of strong earthquake or rainstorm, and the lake water overflows, resulting in large-scale flood disasters. In order to ensure the safety of people's lives and property in the downstream, it is very necessary to monitor the barrier lake. However, it is very difficult and time-consuming to manually monitor the barrier lake in high altitude areas due to the harsh climate and steep terrain. With the development of earth observation technology, remote sensing monitoring has become one of the main ways to obtain observation data. Compared with a single satellite, multi-satellite remote sensing cooperative observation has more advantages; its spatial coverage is extensive, observation time is continuous, imaging types and bands are abundant, it can monitor and respond quickly to emergencies, and complete complex monitoring tasks. Monitoring with multi-temporal and multi-platform remote sensing satellites can obtain a variety of observation data in time, acquire key information such as water level and water storage capacity of the barrier lake, scientifically judge the situation of the barrier lake and reasonably predict its future development trend. In this study, The Sarez Lake, which formed on February 18, 1911, in the central part of the Pamir as a result of blockage of the Murgab River valley by a landslide triggered by a strong earthquake with magnitude of 7.4 and intensity of 9, is selected as the research area. Since the formation of Lake Sarez, it has aroused widespread international concern about its safety. At present, the use of mechanical methods in the international analysis of the safety of Lake Sarez is more common, and remote sensing methods are seldom used. This study combines remote sensing data with field observation data, and uses the 'space-air-ground' joint observation technology to study the changes in water level and water storage capacity of Lake Sarez in recent decades, and evaluate its safety. The situation of the collapse is simulated, and the future development trend of Lake Sarez is predicted. The results show that: 1) in recent decades, the water level of Lake Sarez has not changed much and remained at a stable level; 2) unless there is a strong earthquake or heavy rain, it is less likely that the Lake Sarez will be broken under normal conditions, 3) lake Sarez will remain stable in the future, but it is necessary to establish an early warning system in the Lake Sarez area for remote sensing of the area, 4) the coordinative remote sensing observation technology is feasible for the high altitude barrier lake of Sarez.

Keywords: coordinative observation, disaster, remote sensing, geographic information system, GIS

Procedia PDF Downloads 96
12170 Surface Sensing of Atomic Behavior of Polymer Nanofilms via Molecular Dynamics Simulation

Authors: Ling Dai

Abstract:

Surface-sensing devices such as atomic force microscope have been widely used to characterize the surface structure and properties of nanoscale polymer films. However, using molecular dynamics simulations, we show that there is intrinsic and unavoidable inelastic deformation at polymer surfaces induced by the sensing tip. For linear chain polymers like perfluoropolyether, such tip-induced deformation derives from the differences in the atomic interactions which are atomic specie-based Van der Waals interactions, and resulting in atomic shuffling and causing inelastic alternation in both molecular structures and mechanical properties at the regions of the polymer surface. For those aromatic chain polymers like epoxy, the intrinsic deformation is depicted as the intra-chain rotation of aromatic rings and kinking of linear atomic connections. The present work highlights the need to reinterpret the data obtained from surface-sensing tests by considering this intrinsic inelastic deformation occurring at polymer surfaces.

Keywords: polymer, surface, nano, molecular dynamics

Procedia PDF Downloads 335
12169 Anisotropic Approach for Discontinuity Preserving in Optical Flow Estimation

Authors: Pushpendra Kumar, Sanjeev Kumar, R. Balasubramanian

Abstract:

Estimation of optical flow from a sequence of images using variational methods is one of the most successful approach. Discontinuity between different motions is one of the challenging problem in flow estimation. In this paper, we design a new anisotropic diffusion operator, which is able to provide smooth flow over a region and efficiently preserve discontinuity in optical flow. This operator is designed on the basis of intensity differences of the pixels and isotropic operator using exponential function. The combination of these are used to control the propagation of flow. Experimental results on the different datasets verify the robustness and accuracy of the algorithm and also validate the effect of anisotropic operator in the discontinuity preserving.

Keywords: optical flow, variational methods, computer vision, anisotropic operator

Procedia PDF Downloads 845
12168 Flow as a Positive Intervention for Post-Traumatic Stress Disorder

Authors: Sonal Khosla

Abstract:

A research is proposed in the present paper to explore the role of flow in coping with traumatic experiences and attaining post-traumatic growth. A grounded theory research is proposed to be carried by analyzing memoirs of people who have been through trauma. A pilot study was carried out on two memoirs of women who were held captive for over ten years and were sexually assaulted repeatedly. The role of flow in their coping experiences was explored by analyzing the books. Some of the flow activities that were used by them were- drawing and daydreaming. Their narratives show the evidence for flow as having cathartic and healing effects on them. Applicability of the findings can take two forms: 1. Flow can be applied as a preventive technique to help the people who are going through trauma, 2. Flow can be adopted into a positive intervention to help people suffering from PTSD.

Keywords: flow, positive intervention, PTSD, PTG

Procedia PDF Downloads 341
12167 Non-Adiabatic Silica Microfibre Sensor for BOD/COD Ratio Measurement

Authors: S. S. Chong, A. R. Abdul Aziz, S. W. Harun, H. Arof

Abstract:

A miniaturized non-adiabatic silica microfiber is proposed for biological oxygen demand (BOD) ratio chemical oxygen demand (COD) sensing for the first time. BOD and COD are two main parameters to justify quality of wastewater. A ratio, BOD:COD can usually be established between the two analytical methods once COD and BOD value has been gathered. This ratio plays a vital role to determine appropriate strategy in wastewater treatment. A non-adiabatic microfiber sensor was formed by tapering the SMF to generate evanescent field where sensitive to perturbation of sensing medium. Because difference ratio BOD and COD contain in solution, this may induced changes of effective refractive index between microfiber and sensing medium. Attenuation wavelength shift to right with 0.5 nm and 3.5 nm while BOD:COD equal to 0.09 and 0.18 respectively. Significance difference wavelength shift may relate with the biodegradability of analyte. This proposed sensor is compact, reliable and feasible to determine the BOD:COD. Further research and investigation should be proceeded to enhance sensitivity and precision of the sensor for several of wastewater online monitoring.

Keywords: non-adiabatic fiber sensor, environmental sensing, biodegradability, evanescent field

Procedia PDF Downloads 635
12166 Experimental Investigation of Fluid Dynamic Effects on Crystallisation Scale Growth and Suppression in Agitation Tank

Authors: Prasanjit Das, M. M. K. Khan, M. G. Rasul, Jie Wu, I. Youn

Abstract:

Mineral scale formation is undoubtedly a more serious problem in the mineral industry than other process industries. To better understand scale growth and suppression, an experimental model is proposed in this study for supersaturated crystallised solutions commonly found in mineral process plants. In this experiment, surface crystallisation of potassium nitrate (KNO3) on the wall of the agitation tank and agitation effects on the scale growth and suppression are studied. The new quantitative scale suppression model predicts that at lower agitation speed, the scale growth rate is enhanced and at higher agitation speed, the scale suppression rate increases due to the increased flow erosion effect. A lab-scale agitation tank with and without baffles were used as a benchmark in this study. The fluid dynamic effects on scale growth and suppression in the agitation tank with three different size impellers (diameter 86, 114, 160 mm and model A310 with flow number 0.56) at various ranges of rotational speed (up to 700 rpm) and solution with different concentration (4.5, 4.75 and 5.25 mol/dm3) were investigated. For more elucidation, the effects of the different size of the impeller on wall surface scale growth and suppression rate as well as bottom settled scale accumulation rate are also discussed. Emphasis was placed on applications in the mineral industry, although results are also relevant to other industrial applications.

Keywords: agitation tank, crystallisation, impeller speed, scale

Procedia PDF Downloads 190
12165 Theoretical Model of a Flat Plate Solar Collector Integrated with Phase Change Material

Authors: Mouna Hamed, Ammar B. Brahim

Abstract:

The objective of this work was to develop a theoretical model to study the dynamic thermal behavior of a flat plate solar collector integrated with a phase change material (PCM). The PCM acted as a heat source for the solar system during low intensity solar radiation and night. The energy balance equations for the various components of the collector as well as for the PCM were formulated and numerically solved using MATLAB computational program. The effect of natural convection on heat during the melting process was taken into account by using an effective thermal conductivity. The model was used to investigate the effect of inlet water temperature, water mass flow rate, and PCM thickness on the outlet water temperature and the melt fraction during charging and discharging modes. A comparison with a collector without PCM was made. Results showed that charging and discharging processes of PCM have six stages. The adding of PCM caused a decrease in temperature during charge and an increase during discharge. The rise was most enhanced for higher inlet water temperature, PCM thickness and for lower mass flow rate. Analysis indicated that the complete melting time was shorter than the solidification time due to the high heat transfer coefficient during melting. The increases in PCM height and mass flow rate were not linear with the melting and solidification times.

Keywords: thermal energy storage, phase change material, melting, solidification

Procedia PDF Downloads 320
12164 Performance Improvement in a Micro Compressor for Micro Gas Turbine Using Computational Fluid Dynamics

Authors: Kamran Siddique, Hiroyuki Asada, Yoshifumi Ogami

Abstract:

Micro gas turbine (MGT) nowadays has a wide variety of applications from drones to hybrid electric vehicles. As microfabrication technology getting better, the size of MGT is getting smaller. Overall performance of MGT is dependent on the individual components. Each component’s performance is dependent and interrelated with another component. Therefore, careful consideration needs to be given to each and every individual component of MGT. In this study, the focus is on improving the performance of the compressor in order to improve the overall performance of MGT. Computational Fluid Dynamics (CFD) is being performed using the software FLUENT to analyze the design of a micro compressor. Operating parameters like mass flow rate and RPM, and design parameters like inner blade angle (IBA), outer blade angle (OBA), blade thickness and number of blades are varied to study its effect on the performance of the compressor. Pressure ratio is used as a tool to measure the performance of the compressor. Higher the pressure ratio, better the design is. In the study, target mass flow rate is 0.2 g/s and RPM to be less than or equal to 900,000. So far, a pressure ratio of above 3 has been achieved at 0.2 g/s mass flow rate with 5 rotor blades, 0.36 mm blade thickness, 94.25 degrees OBA and 10.46 degrees IBA. The design in this study differs from a regular centrifugal compressor used in conventional gas turbines such that compressor is designed keeping in mind ease of manufacturability. So, this study proposes a compressor design which has a good pressure ratio, and at the same time, it is easy to manufacture using current microfabrication technologies.

Keywords: computational fluid dynamics, FLUENT microfabrication, RPM

Procedia PDF Downloads 121
12163 The Strategy of Orbit Avoidance for Optical Remote Sensing Satellite

Authors: Dianxun Zheng, Wuxing Jing, Lin Hetong

Abstract:

Optical remote sensing satellite, always running on the Sun-synchronous orbit, equipped laser warning equipment to alert CCD camera from laser attack. There have three ways to protect the CCD camera, closing the camera cover satellite attitude maneuver and satellite orbit avoidance. In order to enhance the safety of optical remote sensing satellite in orbit, this paper explores the strategy of satellite avoidance. The avoidance strategy is expressed as the evasion of pre-determined target points in the orbital coordinates of virtual satellite. The so-called virtual satellite is a passive vehicle which superposes a satellite at the initial stage of avoidance. The target points share the consistent cycle time and the same semi-major axis with the virtual satellite, which ensures the properties of the Sun-synchronous orbit remain unchanged. Moreover, to further strengthen the avoidance capability of satellite, it can perform multi-object avoid maneuvers. On occasions of fulfilling the orbit tasks of the satellite, the orbit can be restored back to virtual satellite through orbit maneuvers. There into, the avoid maneuvers adopts pulse guidance. and the fuel consumption is also optimized. The avoidance strategy discussed in this article is applicable to avoidance for optical remote sensing satellite when encounter the laser hostile attacks.

Keywords: optical remote sensing satellite, always running on the sun-synchronous

Procedia PDF Downloads 377
12162 Interaction with Earth’s Surface in Remote Sensing

Authors: Spoorthi Sripad

Abstract:

Remote sensing is a powerful tool for acquiring information about the Earth's surface without direct contact, relying on the interaction of electromagnetic radiation with various materials and features. This paper explores the fundamental principle of "Interaction with Earth's Surface" in remote sensing, shedding light on the intricate processes that occur when electromagnetic waves encounter different surfaces. The absorption, reflection, and transmission of radiation generate distinct spectral signatures, allowing for the identification and classification of surface materials. The paper delves into the significance of the visible, infrared, and thermal infrared regions of the electromagnetic spectrum, highlighting how their unique interactions contribute to a wealth of applications, from land cover classification to environmental monitoring. The discussion encompasses the types of sensors and platforms used to capture these interactions, including multispectral and hyperspectral imaging systems. By examining real-world applications, such as land cover classification and environmental monitoring, the paper underscores the critical role of understanding the interaction with the Earth's surface for accurate and meaningful interpretation of remote sensing data.

Keywords: remote sensing, earth's surface interaction, electromagnetic radiation, spectral signatures, land cover classification, archeology and cultural heritage preservation

Procedia PDF Downloads 34
12161 Analysis of Syngas Combustion Characteristics in Can-Type Combustor using CFD

Authors: Norhaslina Mat Zian, Hasril Hasini, Nur Irmawati Om

Abstract:

This study focuses on the flow and combustion behavior inside gas turbine combustor used in thermal power plant. The combustion process takes place using synthetic gas and the baseline solution was made on gas turbine combustor firing natural gas (100% Methane) as the main source of fuel. Attention is given to the effect of the H2/CO ratio on the variation of the flame profile, temperature distribution, and emissions. The H2/CO ratio varies in the range of 10-80 % and the CH4 values are fixed 10% for each case. While keeping constant the mass flow rate and operating pressure, the preliminary result shows that the flow inside the can-combustor is highly swirling which indicates good mixing of fuel and air prior to the entrance of the mixture to the main combustion zone.

Keywords: cfd, combustion, flame, syngas

Procedia PDF Downloads 258
12160 A Fast Chemiresistive H₂ Gas Sensor Based on Sputter Grown Nanocrystalline P-TiO₂ Thin Film Decorated with Catalytic Pd-Pt Layer on P-Si Substrate

Authors: Jyoti Jaiswal, Satyendra Mourya, Gaurav Malik, Ramesh Chandra

Abstract:

In the present work, we have fabricated and studied a resistive H₂ gas sensor based on Pd-Pt decorated room temperature sputter grown nanocrystalline porous titanium dioxide (p-TiO₂) thin film on porous silicon (p-Si) substrate for fast H₂ detection. The gas sensing performance of Pd-Pt/p-TiO₂/p-Si sensing electrode towards H₂ gas under low (10-500 ppm) detection limit and operating temperature regime (25-200 °C) was discussed. The sensor is highly sensitive even at room temperature, with response (Ra/Rg) reaching ~102 for 500 ppm H₂ in dry air and its capability of sensing H₂ concentrations as low as ~10 ppm was demonstrated. At elevated temperature of 200 ℃, the response reached more than ~103 for 500 ppm H₂. Overall the fabricated resistive gas sensor exhibited high selectivity, good sensing response, and fast response/recovery time with good stability towards H₂.

Keywords: sputtering, porous silicon (p-Si), TiO₂ thin film, hydrogen gas sensor

Procedia PDF Downloads 233
12159 BodeACD: Buffer Overflow Vulnerabilities Detecting Based on Abstract Syntax Tree, Control Flow Graph, and Data Dependency Graph

Authors: Xinghang Lv, Tao Peng, Jia Chen, Junping Liu, Xinrong Hu, Ruhan He, Minghua Jiang, Wenli Cao

Abstract:

As one of the most dangerous vulnerabilities, effective detection of buffer overflow vulnerabilities is extremely necessary. Traditional detection methods are not accurate enough and consume more resources to meet complex and enormous code environment at present. In order to resolve the above problems, we propose the method for Buffer overflow detection based on Abstract syntax tree, Control flow graph, and Data dependency graph (BodeACD) in C/C++ programs with source code. Firstly, BodeACD constructs the function samples of buffer overflow that are available on Github, then represents them as code representation sequences, which fuse control flow, data dependency, and syntax structure of source code to reduce information loss during code representation. Finally, BodeACD learns vulnerability patterns for vulnerability detection through deep learning. The results of the experiments show that BodeACD has increased the precision and recall by 6.3% and 8.5% respectively compared with the latest methods, which can effectively improve vulnerability detection and reduce False-positive rate and False-negative rate.

Keywords: vulnerability detection, abstract syntax tree, control flow graph, data dependency graph, code representation, deep learning

Procedia PDF Downloads 145
12158 Systematic Evaluation of Convolutional Neural Network on Land Cover Classification from Remotely Sensed Images

Authors: Eiman Kattan, Hong Wei

Abstract:

In using Convolutional Neural Network (CNN) for classification, there is a set of hyperparameters available for the configuration purpose. This study aims to evaluate the impact of a range of parameters in CNN architecture i.e. AlexNet on land cover classification based on four remotely sensed datasets. The evaluation tests the influence of a set of hyperparameters on the classification performance. The parameters concerned are epoch values, batch size, and convolutional filter size against input image size. Thus, a set of experiments were conducted to specify the effectiveness of the selected parameters using two implementing approaches, named pertained and fine-tuned. We first explore the number of epochs under several selected batch size values (32, 64, 128 and 200). The impact of kernel size of convolutional filters (1, 3, 5, 7, 10, 15, 20, 25 and 30) was evaluated against the image size under testing (64, 96, 128, 180 and 224), which gave us insight of the relationship between the size of convolutional filters and image size. To generalise the validation, four remote sensing datasets, AID, RSD, UCMerced and RSCCN, which have different land covers and are publicly available, were used in the experiments. These datasets have a wide diversity of input data, such as number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in both training and testing. The results have shown that increasing the number of epochs leads to a higher accuracy rate, as expected. However, the convergence state is highly related to datasets. For the batch size evaluation, it has shown that a larger batch size slightly decreases the classification accuracy compared to a small batch size. For example, selecting the value 32 as the batch size on the RSCCN dataset achieves the accuracy rate of 90.34 % at the 11th epoch while decreasing the epoch value to one makes the accuracy rate drop to 74%. On the other extreme, setting an increased value of batch size to 200 decreases the accuracy rate at the 11th epoch is 86.5%, and 63% when using one epoch only. On the other hand, selecting the kernel size is loosely related to data set. From a practical point of view, the filter size 20 produces 70.4286%. The last performed image size experiment shows a dependency in the accuracy improvement. However, an expensive performance gain had been noticed. The represented conclusion opens the opportunities toward a better classification performance in various applications such as planetary remote sensing.

Keywords: CNNs, hyperparamters, remote sensing, land cover, land use

Procedia PDF Downloads 146
12157 Unveiling the Potential of PANI@MnO2@rGO Ternary Nanocomposite in Energy Storage and Gas Sensing

Authors: Ahmad Umar, Sheikh Akbar, Ahmed A. Ibrahim, Mohsen A. Alhamami

Abstract:

The development of advanced materials for energy storage and gas sensing applications has gained significant attention in recent years. In this study, we synthesized and characterized PANI@MnO2@rGO ternary nanocomposites (NCs) to explore their potential in supercapacitors and gas sensing devices. The ternary NCs were synthesized through a multi-step process involving the hydrothermal synthesis of MnO2 nanoparticles, preparation of PANI@rGO composites and the assembly to the ternary PANI@MnO2@rGO ternary NCs. The structural, morphological, and compositional characteristics of the materials were thoroughly analyzed using techniques such as XRD, FESEM, TEM, FTIR, and Raman spectroscopy. In the realm of gas sensing, the ternary NCs exhibited excellent performance as NH3 gas sensors. The optimized operating temperature of 100 °C yielded a peak response of 15.56 towards 50 ppm NH3. The nanocomposites demonstrated fast response and recovery times of 6 s and 10 s, respectively, and displayed remarkable selectivity for NH3 gas over other tested gases. For supercapacitor applications, the electrochemical performance of the ternary NCs was evaluated using cyclic voltammetry and galvanostatic charge-discharge techniques. The composites exhibited pseudocapacitive behavior, with the capacitance reaching up to 185 F/g at 1 A/g and excellent capacitance retention of approximately 88.54% over 4000 charge-discharge cycles. The unique combination of rGO, PANI, and MnO2 nanoparticles in these ternary NCs offer synergistic advantages, showcasing their potential to address challenges in energy storage and gas sensing technologies.

Keywords: paniI@mnO2@rGO ternary NCs, synergistic effects, supercapacitors, gas sensing, energy storage

Procedia PDF Downloads 43
12156 Exergy Based Analysis of Parabolic Trough Collector Using Twisted-Tape Inserts

Authors: Atwari Rawani, Suresh Prasad Sharma, K. D. P. Singh

Abstract:

In this paper, an analytical investigation based on energy and exergy analysis of the parabolic trough collector (PTC) with alternate clockwise and counter-clockwise twisted tape inserts in the absorber tube has been presented. For fully developed flow under quasi-steady state conditions, energy equations have been developed in order to analyze the rise in fluid temperature, thermal efficiency, entropy generation and exergy efficiency. Also the effect of system and operating parameters on performance have been studied. A computer program, based on mathematical models is developed in C++ language to estimate the temperature rise of fluid for evaluation of performances under specified conditions. For numerical simulations four different twist ratio, x = 2,3,4,5 and mass flow rate 0.06 kg/s to 0.16 kg/s which cover the Reynolds number range of 3000 - 9000 is considered. This study shows that twisted tape inserts when used shows great promise for enhancing the performance of PTC. Results show that for x=1, Nusselt number/heat transfer coefficient is found to be 3.528 and 3.008 times over plain absorber of PTC at mass flow rate of 0.06 kg/s and 0.16 kg/s respectively; while corresponding enhancement in thermal efficiency is 12.57% and 5.065% respectively. Also the exergy efficiency has been found to be 10.61% and 10.97% and enhancement factor is 1.135 and 1.048 for same set of conditions.

Keywords: exergy efficiency, twisted tape ratio, turbulent flow, useful heat gain

Procedia PDF Downloads 146
12155 Numerical Erosion Investigation of Standalone Screen (Wire-Wrapped) Due to the Impact of Sand Particles Entrained in a Single-Phase Flow (Water Flow)

Authors: Ahmed Alghurabi, Mysara Mohyaldinn, Shiferaw Jufar, Obai Younis, Abdullah Abduljabbar

Abstract:

Erosion modeling equations were typically acquired from regulated experimental trials for solid particles entrained in single-phase or multi-phase flows. Evidently, those equations were later employed to predict the erosion damage caused by the continuous impacts of solid particles entrained in streamflow. It is also well-known that the particle impact angle and velocity do not change drastically in gas-sand flow erosion prediction; hence an accurate prediction of erosion can be projected. On the contrary, high-density fluid flows, such as water flow, through complex geometries, such as sand screens, greatly affect the sand particles’ trajectories/tracks and consequently impact the erosion rate predictions. Particle tracking models and erosion equations are frequently applied simultaneously as a method to improve erosion visualization and estimation. In the present work, computational fluid dynamic (CFD)-based erosion modeling was performed using a commercially available software; ANSYS Fluent. The continuous phase (water flow) behavior was simulated using the realizable K-epsilon model, and the secondary phase (solid particles), having a 5% flow concentration, was tracked with the help of the discrete phase model (DPM). To accomplish a successful erosion modeling, three erosion equations from the literature were utilized and introduced to the ANSYS Fluent software to predict the screen wire-slot velocity surge and estimate the maximum erosion rates on the screen surface. Results of turbulent kinetic energy, turbulence intensity, dissipation rate, the total pressure on the screen, screen wall shear stress, and flow velocity vectors were presented and discussed. Moreover, the particle tracks and path-lines were also demonstrated based on their residence time, velocity magnitude, and flow turbulence. On one hand, results from the utilized erosion equations have shown similarities in screen erosion patterns, locations, and DPM concentrations. On the other hand, the model equations estimated slightly different values of maximum erosion rates of the wire-wrapped screen. This is solely based on the fact that the utilized erosion equations were developed with some assumptions that are controlled by the experimental lab conditions.

Keywords: CFD simulation, erosion rate prediction, material loss due to erosion, water-sand flow

Procedia PDF Downloads 134
12154 The Proposal of Modification of California Pipe Method for Inclined Pipe

Authors: Wojciech Dąbrowski, Joanna Bąk, Laurent Solliec

Abstract:

Nowadays technical and technological progress and constant development of methods and devices applied to sanitary engineering is indispensable. Issues related to sanitary engineering involve flow measurements for water and wastewater. The precise measurement is very important and pivotal for further actions, like monitoring. There are many methods and techniques of flow measurement in the area of sanitary engineering. Weirs and flumes are well–known methods and common used. But also there are alternative methods. Some of them are very simple methods, others are solutions using high technique. The old–time method combined with new technique could be more useful than earlier. Paper describes substitute method of flow gauging (California pipe method) and proposal of modification of this method used for inclined pipe. Examination of possibility of improving and developing old–time methods is direction of the investigation.

Keywords: California pipe, sewerage, flow rate measurement, water, wastewater, improve, modification, hydraulic monitoring, stream

Procedia PDF Downloads 416