Search results for: ratio of shear modulus and rolling shear modulus
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6215

Search results for: ratio of shear modulus and rolling shear modulus

3875 Olefin and Paraffin Separation Using Simulations on Extractive Distillation

Authors: Muhammad Naeem, Abdulrahman A. Al-Rabiah

Abstract:

Technical mixture of C4 containing 1-butene and n-butane are very close to each other with respect to their boiling points i.e. -6.3°C for 1-butene and -1°C for n-butane. Extractive distillation process is used for the separation of 1-butene from the existing mixture of C4. The solvent is the essential of extractive distillation, and an appropriate solvent shows an important role in the process economy of extractive distillation. Aspen Plus has been applied for the separation of these hydrocarbons as a simulator; moreover NRTL activity coefficient model was used in the simulation. This model indicated that the material balances in this separation process were accurate for several solvent flow rates. Mixture of acetonitrile and water used as a solvent and 99 % pure 1-butene was separated. This simulation proposed the ratio of the feed to solvent as 1 : 7.9 and 15 plates for the solvent recovery column, previously feed to solvent ratio was more than this and the proposed plates were 30, which can economize the separation process.

Keywords: extractive distillation, 1-butene, Aspen Plus, ACN solvent

Procedia PDF Downloads 423
3874 Biodiesel Production from Palm Oil Using an Oscillatory Baffled Reactor

Authors: Malee Santikunaporn, Tattep Techopittayakul, Channarong Asavatesanupap

Abstract:

Biofuel production especially that of biodiesel has gained tremendous attention during the last decade due to environmental concerns and shortage in petroleum oil reservoir. This research aims to investigate the influences of operating parameters, such as the alcohol-to-oil molar ratio (4:1, 6:1, and 9:1) and the amount of catalyst (1, 1.5, and 2 wt.%) on the trans esterification of refined palm oil (RPO) in a medium-scale oscillatory baffle reactor.  It has been shown that an increase in the methanol-to-oil ratio resulted in an increase in fatty acid methyl esters (FAMEs) content. The amount of catalyst has an insignificant effect on the FAMEs content. Engine testing was performed on B0 (100 v/v% diesel) and blended fuel or B50 (50 v/v% diesel). Combustion of B50 was found to give lower torque compared to pure diesel. Exhaust gas from B50 was found to contain lower concentration of CO and CO2.

Keywords: biodiesel, palm oil, transesterification, oscillatory baffled reactor

Procedia PDF Downloads 157
3873 Performance Evaluation of Single Basin Solar Still

Authors: Prem Singh, Jagdeep Singh

Abstract:

In an attempt to investigate the performance of single basin solar still for climate conditions of Ludhiana a single basin solar still was designed, fabricated and tested. The energy balance equations for various parts of the still are solved by Gauss-Seidel iteration method. Computer model was made and experimentally validated. The validated computer model was used to estimate the annual distillation yield and performance ratio of the still for Ludhiana. The Theoretical and experimental distillation yield were 4318.79 ml and 3850 ml, respectively for the typical day. The predicted distillation yield was 12.5% higher than the experimental yield. The annual distillation yield per square meter aperture area and annual performance ratio for single basin solar still is 1095 liters and 0.43 liters, respectively. The payback period for micro-stepped solar still is 2.5 years.

Keywords: solar distillation, solar still, single basin, still

Procedia PDF Downloads 489
3872 Excitonic Refractive Index Change in High Purity GaAs Modulator at Room Temperature for Optical Fiber Communication Network

Authors: Durga Prasad Sapkota, Madhu Sudan Kayastha, Koichi Wakita

Abstract:

In this paper, we have compared and analyzed the electron absorption properties between with and without excitonic effect bulk in high purity GaAs spatial light modulator for an optical fiber communication network. The electroabsorption properties such as absorption spectra, change in absorption spectra, change in refractive index and extinction ratio have been calculated. We have also compared the result of absorption spectra and change in absorption spectra with the experimental results and found close agreement with experimental results.

Keywords: exciton, refractive index change, extinction ratio, GaAs

Procedia PDF Downloads 564
3871 Dissolution Leaching Kinetics of Ulexite in Disodium Hydrogen Phosphate Solutions

Authors: Betül Özgenç, Soner Kuşlu, Sabri Çolak, Turan Çalban

Abstract:

The aim of this study was investigate the leaching kinetics of ulexite in disodium hydrogen phosphate solutions in a mechanical agitation system. Reaction temperature, concentration of disodium hydrogen phosphate solutions, stirring speed, solid/liquid ratio and ulexite particle size were selected as parameters. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase the dissolution rate of ulexite. The activation energy was found to be 63.4 kJ/mol. The leaching of ulexite was controlled by chemical reaction.

Keywords: ulexite, disodium hydrogen phosphate, leaching kinetics

Procedia PDF Downloads 392
3870 Analytical Study of Flexural Strength of Concrete-Filled Steel Tube Beams

Authors: Maru R., Singh V. P.

Abstract:

In this research, analytical study of the flexural strength of Concrete Filled Steel Tube (CFST) beams is carried out based on wide-range finite element models to obtain the better perspective for flexural strength achievement with the use of ABAQUS finite element program. This work adopts concrete damaged plasticity model to get the actual simulation of CFST under bending. To get the decent interaction between concrete and steel, normal and tangential surface interaction provided by ABAQUS is used with hard contact for normal surface interaction and for 0.65 friction coefficient for tangential surface interactions. In this study, rectangular and square CFST beam model cross-sections are adopted with its limits pertained to Eurocode specifications. To get the visualization for flexural strength of CFST beams, total of 74 rectangular CFST beams and 86 square CFST beams are used with four-point bending test setup and the length of the beam model as 1000mm. The grades of concrete and grades of steel are used as 30 MPa & 35MPa and 235 MPa and 275MPa respectively for both sections to get the confinement factor 0.583 to 2.833, steel ratio of 0.069 to 0.236 and length to depth ratio of 4.167 to 16.667. It was found based on this study that flexural strength of CFST beams falls around strain of 0.012. Eurocode provides the results harmonically with finite elemental results. It was also noted for square sections that reduction of steel ratio is not useful as compared to rectangular section although it increases moment capacity up to certain limits because for square sectional area similar to that of rectangular, it possesses lesser depth than rectangular sections. Also It can be said that effect of increment of grade of concrete can be achieved when thicker steel tube is present. It is observed that there is less increment in moment capacity initially but after D/b ratio 1.2, moment capacity of CFST beam rapidly.

Keywords: ABAQUS, CFST beams, flexural strength, four-point bending, rectangular and square sections

Procedia PDF Downloads 147
3869 Data Quality on Regular Childhood Immunization Programme at Degehabur District: Somali Region, Ethiopia

Authors: Eyob Seife

Abstract:

Immunization is a life-saving intervention which prevents needless suffering through sickness, disability, and death. Emphasis on data quality and use will become even stronger with the development of the immunization agenda 2030 (IA2030). Quality of data is a key factor in generating reliable health information that enables monitoring progress, financial planning, vaccine forecasting capacities, and making decisions for continuous improvement of the national immunization program. However, ensuring data of sufficient quality and promoting an information-use culture at the point of the collection remains critical and challenging, especially in hard-to-reach and pastoralist areas where Degehabur district is selected based on a hypothesis of ‘there is no difference in reported and recounted immunization data consistency. Data quality is dependent on different factors where organizational, behavioral, technical, and contextual factors are the mentioned ones. A cross-sectional quantitative study was conducted on September 2022 in the Degehabur district. The study used the world health organization (WHO) recommended data quality self-assessment (DQS) tools. Immunization tally sheets, registers, and reporting documents were reviewed at 5 health facilities (2 health centers and 3 health posts) of primary health care units for one fiscal year (12 months) to determine the accuracy ratio. The data was collected by trained DQS assessors to explore the quality of monitoring systems at health posts, health centers, and the district health office. A quality index (QI) was assessed, and the accuracy ratio formulated were: the first and third doses of pentavalent vaccines, fully immunized (FI), and the first dose of measles-containing vaccines (MCV). In this study, facility-level results showed both over-reporting and under-reporting were observed at health posts when computing the accuracy ratio of the tally sheet to health post reports found at health centers for almost all antigens verified where pentavalent 1 was 88.3%, 60.4%, and 125.6% for Health posts A, B, and C respectively. For first-dose measles-containing vaccines (MCV), similarly, the accuracy ratio was found to be 126.6%, 42.6%, and 140.9% for Health posts A, B, and C, respectively. The accuracy ratio for fully immunized children also showed 0% for health posts A and B and 100% for health post-C. A relatively better accuracy ratio was seen at health centers where the first pentavalent dose was 97.4% and 103.3% for health centers A and B, while a first dose of measles-containing vaccines (MCV) was 89.2% and 100.9% for health centers A and B, respectively. A quality index (QI) of all facilities also showed results between the maximum of 33.33% and a minimum of 0%. Most of the verified immunization data accuracy ratios were found to be relatively better at the health center level. However, the quality of the monitoring system is poor at all levels, besides poor data accuracy at all health posts. So attention should be given to improving the capacity of staff and quality of monitoring system components, namely recording, reporting, archiving, data analysis, and using information for decision at all levels, especially in pastoralist areas where such kinds of study findings need to be improved beside to improving the data quality at root and health posts level.

Keywords: accuracy ratio, Degehabur District, regular childhood immunization program, quality of monitoring system, Somali Region-Ethiopia

Procedia PDF Downloads 84
3868 Rollet vs Rocket: A New in-Space Propulsion Concept

Authors: Arthur Baraov

Abstract:

Nearly all rocket and spacecraft propulsion concepts in existence today can be linked one way or the other to one of the two ancient warfare devices: the gun and the sling. Chemical, thermoelectric, ion, nuclear thermal and electromagnetic rocket engines – all fall into the first group which, for obvious reasons, can be categorized as “hot” space propulsion concepts. Space elevator, orbital tower, rolling satellite, orbital skyhook, tether propulsion and gravitational assist – are examples of the second category which lends itself for the title “cold” space propulsion concepts. The “hot” space propulsion concepts skyrocketed – literally and figuratively – from the naïve ideas of Jules Verne to the manned missions to the Moon. On the other hand, with the notable exception of gravitational assist, hardly any of the “cold” space propulsion concepts made any progress in terms of practical application. Why is that? This article aims to show that the right answer to this question has the potential comparable by its implications and practical consequences to that of transition from Jules Verne’s stillborn and impractical conceptions of space flight to cogent and highly fertile ideas of Konstantin Tsiolkovsky and Yuri Kondratyuk.

Keywords: propulsion, rocket, rollet, spacecraft

Procedia PDF Downloads 518
3867 Restrained Shrinkage Behavior of Self Consolidating Concrete

Authors: Boudjelthia Radhwane

Abstract:

Self-compacting concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work condition and also reduce the impact of environment by elimination of the need for compaction. The shrinkage of concrete is the main cause of cracking in bridge decks. Bridge decks tend to be restrained from shrinkage, and this restraint along with other factors causes the bridge to crack. The characteristics of SCC under restrained shrinkage are important to understand in order to predict the cracking behavior in actual structures. Restrained shrinkage testing is done in accordance to AASHTO testing protocol. The free shrinkage performance and cracking behavior were reported and compared when changing the sand to aggregate ratio and the water to cement ratio. The results of free shrinkage show that when a mix design has higher free shrinkage, it will crack in restrained shrinkage earlier than a mix with lower free shrinkage.

Keywords: concrete mix, cracking behavior, restrained shrinkage, self compacting concrete

Procedia PDF Downloads 363
3866 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics

Authors: Anas H. Aljemely, Jianping Xuan

Abstract:

Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.

Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features

Procedia PDF Downloads 186
3865 Design and Performance Analysis of Advanced B-Spline Algorithm for Image Resolution Enhancement

Authors: M. Z. Kurian, M. V. Chidananda Murthy, H. S. Guruprasad

Abstract:

An approach to super-resolve the low-resolution (LR) image is presented in this paper which is very useful in multimedia communication, medical image enhancement and satellite image enhancement to have a clear view of the information in the image. The proposed Advanced B-Spline method generates a high-resolution (HR) image from single LR image and tries to retain the higher frequency components such as edges in the image. This method uses B-Spline technique and Crispening. This work is evaluated qualitatively and quantitatively using Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR). The method is also suitable for real-time applications. Different combinations of decimation and super-resolution algorithms in the presence of different noise and noise factors are tested.

Keywords: advanced b-spline, image super-resolution, mean square error (MSE), peak signal to noise ratio (PSNR), resolution down converter

Procedia PDF Downloads 386
3864 Exergy: An Effective Tool to Quantify Sustainable Development of Biodiesel Production

Authors: Mahmoud Karimi, Golmohammad Khoobbakht

Abstract:

This study focuses on the exergy flow analysis in the transesterification of waste cooking oil with methanol to decrease the consumption of materials and energy and promote the use of renewable resources. The exergy analysis performed is based on the thermodynamic performance parameters namely exergy destruction and exergy efficiency to investigate the effects of variable parameters on renewability of transesterification. The experiment variables were methanol to WCO ratio, catalyst concentration and reaction temperature in the transesterification reaction. The optimum condition with yield of 90.2% and exergy efficiency of 95.2% was obtained at methanol to oil molar ratio of 8:1, 1 wt.% of KOH, at 55 °C. In this condition, the total waste exergy was found to be 45.4 MJ for 1 kg biodiesel production. However high yield in the optimal condition resulted high exergy efficiency in the transesterification of WCO with methanol.

Keywords: biodiesel, exergy, thermodynamic analysis, transesterification, waste cooking oil

Procedia PDF Downloads 182
3863 Ecological Effect on Aphid Population in Safflower Crop

Authors: Jan M. Mari

Abstract:

Safflower is a renowned drought tolerant oil seed crop. Previously its flowers were used for cooking and herbal medicines in China and it was cultivated by small growers for his personal needs of oil. A field study was conducted at experimental field, faculty of crop protection, Sindh Agricultural University Tandojam, during winter, 2012-13, to observe ecological effect on aphid population in safflower crop. Aphid population gradually increased with the growth of safflower. It developed with maximum aphid per leaf on 3rd week of February and it decreased in March as crop matured. A non-significant interaction was found with temperature of aphid, zigzag and hoverfly, respectively and a highly significant interaction with temperature was found with 7-spotted, lacewing, 9-spotted, and Brumus, respectively. The data revealed the overall mean population of zigzag was highest, followed by 9-spotted, 7-spotted, lace wing, hover fly and Brumus, respectively. In initial time the predator and prey ratio indicated that there was not a big difference between predator and prey ratio. After January 1st, the population of aphid increased suddenly until 18th February and it established a significant difference between predator prey ratios. After that aphid population started decreasing and it affected ratio between pest and predators. It is concluded that biotic factors, 7-spotted, zigzag, 9-spotted Brumus and lacewing exhibited a strong and positive correlation with aphid population. It is suggested that aphid pest should be monitored regularly and before reaching economic threshold level augmentation of natural enemies may be managed.

Keywords: aphid, ecology, population, safflower

Procedia PDF Downloads 247
3862 Effect of the Alloying Elements on Mechanical Properties of TWIP Steel

Authors: Yuksel Akinay, Fatih Hayat

Abstract:

The influence of the alloying element on mechanical properties and micro structures of the Fe-22Mn-0.6C-0,6Si twinning induced plasticity (TWIP) steel were investigated at different temperatures. This composition was fabricated by a vacuum induction melting method. This steel was homogenized at 1200◦C for 8h. After heat treatment it was hot-rolled at 1100◦C to 6 mm thickness. The hot rolled plates were cold rolled to 3 mm and annealed at 700 800 and 900 °C for 60 and 150 minute and then air-cooled. X-ray diffractometry (XRD), optic microscope and field emission scanning electron microscope (FESEM), hardness and tensile tests were used to analyse the relationship between mechanical properties and micro structure after annealing process. The results show that, the excellent mechanical properties were obtained after heat treatment process. The tensile strength of material was decreased and the ductility of material was improved with increasing annealing temperature. Ni element were increased the mechanical resistance of specimens and because of carbide precipitation the hardness of specimen annealed at 700 C is higher than others.

Keywords: high manganese, heat treatment, SEM, XRD, cold-rolling

Procedia PDF Downloads 492
3861 Characteristics of the Mortars Obtained by Radioactive Recycled Sand

Authors: Claudiu Mazilu, Ion Robu, Radu Deju

Abstract:

At the end of 2011 worldwide there were 124 power reactors shut down, from which: 16 fully decommissioned, 50 power reactors in a decommissioning process, 49 reactors in “safe enclosure mode”, 3 reactors “entombed”, for other 6 reactors it was not yet have specified the decommissioning strategy. The concrete radioactive waste that will be generated from dismantled structures of VVR-S nuclear research reactor from Magurele (e.g.: biological shield of the reactor core and hot cells) represents an estimated amount of about 70 tons. Until now the solid low activity radioactive waste (LLW) was pre-placed in containers and cementation with mortar made from cement and natural fine aggregates, providing a fill ratio of the container of approximately 50 vol. % for concrete. In this paper is presented an innovative technology in which radioactive concrete is crushed and the mortar made from recycled radioactive sand, cement, water and superplasticizer agent is poured in container with radioactive rubble (that is pre-placed in container) for cimentation. Is achieved a radioactive waste package in which the degree of filling of radioactive waste increases substantially. The tests were carried out on non-radioactive material because the radioactive concrete was not available in a good time. Waste concrete with maximum size of 350 mm were crushed in the first stage with a Liebhher type jaw crusher, adjusted to nominal size of 50 mm. Crushed concrete less than 50 mm was sieved in order to obtain useful sort for preplacement, 10 to 50 mm. The rest of the screening > 50 mm obtained from primary crushing of concrete was crushed in the second stage, with different working principles crushers at size < 2.5 mm, in order to produce recycled fine aggregate (sand) for the filler mortar and which fulfills the technical specifications proposed: –jaw crusher, Retsch type, model BB 100; –hammer crusher, Buffalo Shuttle model WA-12-H; presented a series of characteristics of recycled concrete aggregates by predefined class (the granulosity, the granule shape, the absorption of water, behavior to the Los Angeles test, the content of attached mortar etc.), most in comparison with characteristics of natural aggregates. Various mortar recipes were used in order to identify those that meet the proposed specification (flow-rate: 16-50s, no bleeding, min. 30N/mm2 compressive strength of the mortar after 28 days, the proportion of recycled sand used in mortar: min. 900kg/m3) and allow obtaining of the highest fill ratio for mortar. In order to optimize the mortars following compositional factors were varied: aggregate nature, water/cement (W/C) ratio, sand/cement (S/C) ratio, nature and proportion of additive. To confirm the results obtained on a small scale, it made an attempt to fill the mortar in a container that simulates the final storage drums. Was measured the mortar fill ratio (98.9%) compared with the results of laboratory tests and targets set out in the proposed specification. Although fill ratio obtained on the mock-up is lower by 0.8 vol. % compared to that obtained in the laboratory tests (99.7%), the result meets the specification criteria.

Keywords: characteristics, radioactive recycled concrete aggregate, mortars, fill ratio

Procedia PDF Downloads 184
3860 Anticipation of Bending Reinforcement Based on Iranian Concrete Code Using Meta-Heuristic Tools

Authors: Seyed Sadegh Naseralavi, Najmeh Bemani

Abstract:

In this paper, different concrete codes including America, New Zealand, Mexico, Italy, India, Canada, Hong Kong, Euro Code and Britain are compared with the Iranian concrete design code. First, by using Adaptive Neuro Fuzzy Inference System (ANFIS), the codes having the most correlation with the Iranian ninth issue of the national regulation are determined. Consequently, two anticipated methods are used for comparing the codes: Artificial Neural Network (ANN) and Multi-variable regression. The results show that ANN performs better. Predicting is done by using only tensile steel ratio and with ignoring the compression steel ratio.

Keywords: adaptive neuro fuzzy inference system, anticipate method, artificial neural network, concrete design code, multi-variable regression

Procedia PDF Downloads 269
3859 Carbide Structure and Fracture Toughness of High Speed Tool Steels

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

M2 steels, the typical Co-free high speed steel (HSS) possessing hardness level of 63~65 HRc, are most widely used for cutting tools. On the other hand, Co-containing HSS’s, such as M35 and M42, show a higher hardness level of 65~67 HRc and used for high quality cutting tools. In the fabrication of HSS’s, it is very important to control cleanliness and eutectic carbide structure of the ingot and it is required to increase productivity at the same time. Production of HSS ingots includes a variety of processes such as casting, electro-slag remelting (ESR), forging, blooming, and wire rod rolling processes. In the present study, electro-slag rapid remelting (ESRR) process, an advanced ESR process combined by continuous casting, was successfully employed to fabricate HSS billets of M2, M35, and M42 steels. Distribution and structure of eutectic carbides of the billets were analysed and cleanliness, hardness, and composition profile of the billets were also evaluated.

Keywords: high speed tool steel, eutectic carbide, microstructure, hardness, fracture toughness

Procedia PDF Downloads 432
3858 Entropy Generation Analysis of Heat Recovery Vapor Generator for Ammonia-Water Mixture

Authors: Chul Ho Han, Kyoung Hoon Kim

Abstract:

This paper carries out a performance analysis based on the first and second laws of thermodynamics for heat recovery vapor generator (HRVG) of ammonia-water mixture when the heat source is low-temperature energy in the form of sensible heat. In the analysis, effects of the ammonia mass concentration and mass flow ratio of the binary mixture are investigated on the system performance including the effectiveness of heat transfer, entropy generation, and exergy efficiency. The results show that the ammonia concentration and the mass flow ratio of the mixture have significant effects on the system performance of HRVG.

Keywords: entropy, exergy, ammonia-water mixture, heat exchanger

Procedia PDF Downloads 384
3857 Meso-Scopic Structural Analysis of Chaura Thrust, Himachal Pradesh, India

Authors: Rajkumar Ghosh

Abstract:

Jhakri Thrust (JT) coeval of Sarahan Thrust (ST) was later considered to be part of Chaura Thrust (CT). The Main Central Thrust (MCT) delimits the southern extreme of Higher Himalaya, whereas the northern boundary defines by South Tibetan Detachment System (STDS). STDS is parallel set of north dipping extensional faults. The activation timing of MCT and STDS. MCT activated in two parts (MCT-L during 15- 0.7 Ma, and MCT-U during 25-14 Ma). Similarly, STDS triggered in two parts (STDS-L during 24-12 Ma, and STDS-U during 19-14 Ma). The activation ages for MBT and MFT. Besides, the MBT occurred during 11-9 Ma, and MFT followed as <2.5 Ma. There are two mylonitised zones (zone of S-C fabric) found under the microscope. Dynamic and bulging recrystallization and sub-grain formation was documented under the optical microscope from samples collected from these zones. The varieties of crenulated schistosity are shown in photomicrographs. In a rare and uncommon case, crenulation cleavage and sigmoid Muscovite were found together side-by-side. Recrystallized quartzo-feldspathic grains exist in between crenulation cleavages. These thin-section studies allow three possible hypotheses for such variations in crenulation cleavages. S/SE verging meso- and micro-scale box folds around Chaura might be a manifestation of some structural upliftment. Near Chaura, kink folds are visible. Prominent asymmetric shear sense indicators in augen mylonite are missing in meso-scale but dominantly present under the microscope. The main foliation became steepest (range of dip ~ 65 – 80 º) at this place. The aim of this section is to characterize the box fold and its signature in the regional geology of Himachal Himalaya. Grain Boundary Migration (GBM) associated temperature range (400–750 ºC) from microstructural studies in grain scale along Jhakri-Wangtu transect documented. Oriented samples were collected from the Jhakri-Chaura transect at a regular interval of ~ 1km for strain analysis. The Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh is documented a decade ago. The OOST in other parts of the Himalayas is represented as a line in between MCTL and MCTU. But In Himachal Pradesh area, OOST activated the MCTL as well as in between a zone located south of MCTU. The expectations for strain variation near the OOST are very obvious. But multiple sets of OOSTs may produce a zigzag pattern of strain accumulation for this area and figure out the overprinting structures for multiple sets of OOSTs.

Keywords: Chaura Thrust, out-of-sequence thrust, Main Central Thrust, Sarahan Thrust

Procedia PDF Downloads 63
3856 Fuzzy Logic-Based Approach to Predict Fault in Transformer Oil Based on Health Index Using Dissolved Gas Analysis

Authors: Kharisma Utomo Mulyodinoto, Suwarno, Ahmed Abu-Siada

Abstract:

Transformer insulating oil is a key component that can be utilized to detect incipient faults within operating transformers without taking them out of service. Dissolved gas-in-oil analysis has been widely accepted as a powerful technique to detect such incipient faults. While the measurement of dissolved gases within transformer oil samples has been standardized over the past two decades, analysis of the results is not always straightforward as it depends on personnel expertise more than mathematical formulas. In analyzing such data, the generation rate of each dissolved gas is of more concern than the absolute value of the gas. As such, history of dissolved gases within a particular transformer should be archived for future comparison. Lack of such history may lead to misinterpretation of the obtained results. IEEE C57.104-2008 standards have classified the health condition of the transformer based on the absolute value of individual dissolved gases along with the total dissolved combustible gas (TDCG) within transformer oil into 4 conditions. While the technique is easy to implement, it is considered as a very conservative technique and is not widely accepted as a reliable interpretation tool. Moreover, measured gases for the same oil sample can be within various conditions limits and hence, misinterpretation of the data is expected. To overcome this limitation, this paper introduces a fuzzy logic approach to predict the health condition of the transformer oil based on IEEE C57.104-2008 standards along with Roger ratio and IEC ratio-based methods. DGA results of 31 chosen oil samples from 469 transformer oil samples of normal transformers and pre-known fault-type transformers that were collected from Indonesia Electrical Utility Company, PT. PLN (Persero), from different voltage rating: 500/150 kV, 150/20 kV, and 70/20 kV; different capacity: 500 MVA, 60 MVA, 50 MVA, 30 MVA, 20 MVA, 15 MVA, and 10 MVA; and different lifespan, are used to test and establish the fuzzy logic model. Results show that the proposed approach is of good accuracy and can be considered as a platform toward the standardization of the dissolved gas interpretation process.

Keywords: dissolved gas analysis, fuzzy logic, health index, IEEE C57.104-2008, IEC ratio method, Roger ratio method

Procedia PDF Downloads 145
3855 An Experimental Study of Low Concentration CO₂ Capture from Regenerative Thermal Oxidation Tail Gas in Rotating Packed Bed

Authors: Dang HuynhMinhTam, Kuang-Cong Lu, Yi-Hung Chen, Zhung-Yu Lin, Cheng-Siang Cheng

Abstract:

Carbon capture, utilization, and storage (CCUS) technology become a predominant technique to mitigate carbon dioxide and achieve net-zero emissions goals. This research targets to continuously capture the low concentration CO₂ from the tail gas of the regenerative thermal oxidizer (RTO) in the high technology industry. A rotating packed bed (RPB) reactor is investigated to capture the efficiency of CO₂ using a mixture of NaOH/Na₂CO₃ solutions to simulate the real absorbed solution. On a lab scale, semi-batch experiments of continuous gas flow and circulating absorbent solution are conducted to find the optimal parameters and are then examined in a continuous operation. In the semi-batch tests, the carbon capture efficiency and pH variation in the conditions of a low concentration CO₂ (about 1.13 vol%), the NaOH concentration of 1 wt% or 2 wt% mixed with 14 wt% Na₂CO₃, the rotating speed (600, 900, 1200 rpm), the gas-liquid ratio (100, 200, and 400), and the temperature of absorbent solution of 40 ºC are studied. The CO₂ capture efficiency significantly increases with higher rotating speed and smaller gas-liquid ratio, respectively, while the difference between the NaOH concentration of 1 wt% and 2 wt% is relatively small. The maximum capture efficiency is close to 80% in the conditions of the NaOH concentration of 1 wt%, the G/L ratio of 100, and the rotating speed of 1200 rpm within the first 5 minutes. Furthermore, the continuous operation based on similar conditions also demonstrates the steady efficiency of the carbon capture of around 80%.

Keywords: carbon dioxide capture, regenerative thermal oxidizer, rotating packed bed, sodium hydroxide

Procedia PDF Downloads 40
3854 Clinical, Bacteriological and Histopathological Aspects of First-Time Pyoderma in a Population of Iranian Domestic Dogs: A Retrospective Study (2012-2017)

Authors: Shaghayegh Rafatpanah, Mehrnaz Rad, Ahmad Reza Movassaghi, Javad Khoshnegah

Abstract:

The purpose of the present study was to investigate the prevalence of isolation, antimicrobial susceptibility and ERIC-PCR typing of staphylococci species from dogs with pyoderma. The study animals were 61 clinical cases of Iranian domestic dogs with the first-time pyoderma. The prevalence of pyoderma was significantly higher amongst adult (odds Ratio: 0.21; p=0.001) large breed (odds Ratio: 2.42; p=0.002)dogs. There was no difference in prevalence of pyoderma in male and females (odds Ratio: 1.27; p= 0.337). The 'head, face and pinna' and 'trunk' were the most affected lesion regions, each with 19 cases (26.76%). An identifiable underlying disease was present in 52 (85.24%) of the dogs. Bacterial species were recovered from 43 of the 61 (70.49%) studied animals. No isolates were recovered from 18 studied dogs. The most frequently recovered bacterial genus was Staphylococcus (32/43 isolates, 74.41%) including S. epidermidis (22/43 isolates, 51.16%), S. aureus (7/43 isolates, 16.27%) and S. pseudintermedius (3/43 isolates, 6.97%). Staphylococci species resistance was most commonly seen against amoxicillin (94.11%), penicillin (83.35%), and ampicillin (76.47%). Resistant to cephalexin and cefoxitin was 5.88% and 2.94%, respectively. A total of 27 of the staphylococci isolated (84.37 %) were resistant to at least one antimicrobial agent, and 19 isolates (59.37%) were resistant to three or more antimicrobial drugs. There were no significant differences in the prevalence of resistance between the staphylococci isolated from cases of superficial and deep pyoderma. ERIC-PCR results revealed 19 different patterns among 22 isolates of S. epidermidis and 7 isolates of S. aureus.

Keywords: dog, pyoderma, Staphylococcus, Staphylococcus epidermidis, Iran

Procedia PDF Downloads 162
3853 Experimental Studies of the Reverse Load-Unloading Effect on the Mechanical, Linear and Nonlinear Elastic Properties of n-AMg6/C60 Nanocomposite

Authors: Aleksandr I. Korobov, Natalia V. Shirgina, Aleksey I. Kokshaiskiy, Vyacheslav M. Prokhorov

Abstract:

The paper presents the results of an experimental study of the effect of reverse mechanical load-unloading on the mechanical, linear, and nonlinear elastic properties of n-AMg6/C60 nanocomposite. Samples for experimental studies of n-AMg6/C60 nanocomposite were obtained by grinding AMg6 polycrystalline alloy in a planetary mill with 0.3 wt % of C60 fullerite in an argon atmosphere. The resulting product consisted of 200-500-micron agglomerates of nanoparticles. X-ray coherent scattering (CSL) method has shown that the average nanoparticle size is 40-60 nm. The resulting preform was extruded at high temperature. Modifications of C60 fullerite interferes the process of recrystallization at grain boundaries. In the samples of n-AMg6/C60 nanocomposite, the load curve is measured: the dependence of the mechanical stress σ on the strain of the sample ε under its multi-cycle load-unloading process till its destruction. The hysteresis dependence σ = σ(ε) was observed, and insignificant residual strain ε < 0.005 were recorded. At σ≈500 MPa and ε≈0.025, the sample was destroyed. The destruction of the sample was fragile. Microhardness was measured before and after destruction of the sample. It was found that the loading-unloading process led to an increase in its microhardness. The effect of the reversible mechanical stress on the linear and nonlinear elastic properties of the n-AMg6/C60 nanocomposite was studied experimentally by ultrasonic method on the automated complex Ritec RAM-5000 SNAP SYSTEM. In the n-AMg6/C60 nanocomposite, the velocities of the longitudinal and shear bulk waves were measured with the pulse method, and all the second-order elasticity coefficients and their dependence on the magnitude of the reversible mechanical stress applied to the sample were calculated. Studies of nonlinear elastic properties of the n-AMg6/C60 nanocomposite at reversible load-unloading of the sample were carried out with the spectral method. At arbitrary values of the strain of the sample (up to its breakage), the dependence of the amplitude of the second longitudinal acoustic harmonic at a frequency of 2f = 10MHz on the amplitude of the first harmonic at a frequency f = 5MHz of the acoustic wave is measured. Based on the results of these measurements, the values of the nonlinear acoustic parameter in the n-AMg6/C60 nanocomposite sample at different mechanical stress were determined. The obtained results can be used in solid-state physics, materials science, for development of new techniques for nondestructive testing of structural materials using methods of nonlinear acoustic diagnostics. This study was supported by the Russian Science Foundation (project №14-22-00042).

Keywords: nanocomposite, generation of acoustic harmonics, nonlinear acoustic parameter, hysteresis

Procedia PDF Downloads 134
3852 Integrated Geophysical Surveys for Sinkhole and Subsidence Vulnerability Assessment, in the West Rand Area of Johannesburg

Authors: Ramoshweu Melvin Sethobya, Emmanuel Chirenje, Mihlali Hobo, Simon Sebothoma

Abstract:

The recent surge in residential infrastructure development around the metropolitan areas of South Africa has necessitated conditions for thorough geotechnical assessments to be conducted prior to site developments to ensure human and infrastructure safety. This paper appraises the success in the application of multi-method geophysical techniques for the delineation of sinkhole vulnerability in a residential landscape. Geophysical techniques ERT, MASW, VES, Magnetics and gravity surveys were conducted to assist in mapping sinkhole vulnerability, using an existing sinkhole as a constraint at Venterspost town, West of Johannesburg city. A combination of different geophysical techniques and results integration from those proved to be useful in the delineation of the lithologic succession around sinkhole locality, and determining the geotechnical characteristics of each layer for its contribution to the development of sinkholes, subsidence and cavities at the vicinity of the site. Study results have also assisted in the determination of the possible depth extension of the currently existing sinkhole and the location of sites where other similar karstic features and sinkholes could form. Results of the ERT, VES and MASW surveys have uncovered dolomitic bedrock at varying depths around the sites, which exhibits high resistivity values in the range 2500-8000ohm.m and corresponding high velocities in the range 1000-2400 m/s. The dolomite layer was found to be overlain by a weathered chert-poor dolomite layer, which has resistivities between the range 250-2400ohm.m, and velocities ranging from 500-600m/s, from which the large sinkhole has been found to collapse/ cave in. A compiled 2.5D high resolution Shear Wave Velocity (Vs) map of the study area was created using 2D profiles of MASW data, offering insights into the prevailing lithological setup conducive for formation various types of karstic features around the site. 3D magnetic models of the site highlighted the regions of possible subsurface interconnections between the currently existing large sinkhole and the other subsidence feature at the site. A number of depth slices were used to detail the conditions near the sinkhole as depth increases. Gravity surveys results mapped the possible formational pathways for development of new karstic features around the site. Combination and correlation of different geophysical techniques proved useful in delineation of the site geotechnical characteristics and mapping the possible depth extend of the currently existing sinkhole.

Keywords: resistivity, magnetics, sinkhole, gravity, karst, delineation, VES

Procedia PDF Downloads 55
3851 Preparation of Corn Flour Based Extruded Product and Evaluate Its Physical Characteristics

Authors: C. S. Saini

Abstract:

The composite flour blend consisting of corn, pearl millet, black gram and wheat bran in the ratio of 80:5:10:5 was taken to prepare the extruded product and their effect on physical properties of extrudate was studied. The extrusion process was conducted in laboratory by using twin screw extruder. The physical characteristics evaluated include lateral expansion, bulk density, water absorption index, water solubility index, rehydration ratio and moisture retention. The Central Composite Rotatable Design (CCRD) was used to decide the level of processing variables i.e. feed moisture content (%), screw speed (rpm), and barrel temperature (oC) for the experiment. The data obtained after extrusion process were analyzed by using response surface methodology. A second order polynomial model for the dependent variables was established to fit the experimental data. The numerical optimization studies resulted in 127°C of barrel temperature, 246 rpm of screw speed, and 14.5% of feed moisture as optimum variables to produce acceptable extruded product. The responses predicted by the software for the optimum process condition resulted in lateral expansion 126 %, bulk density 0.28 g/cm3, water absorption index 4.10 g/g, water solubility index 39.90 %, rehydration ratio 544 % and moisture retention 11.90 % with 75 % desirability.

Keywords: black gram, corn flour, extrusion, physical characteristics

Procedia PDF Downloads 462
3850 Effect of Robot Configuration Parameters, Masses and Friction on Painlevé Paradox for a Sliding Two-Link (P-R) Robot

Authors: Hassan Mohammad Alkomy, Hesham Elkaranshawy, Ahmed Ibrahim Ashour, Khaled Tawfik Mohamed

Abstract:

For a rigid body sliding on a rough surface, a range of uncertainty or non-uniqueness of solution could be found, which is termed: Painlevé paradox. Painlevé paradox is the reason of a wide range of bouncing motion, observed during sliding of robotic manipulators on rough surfaces. In this research work, the existence of the paradox zone during the sliding motion of a two-link (P-R) robotic manipulator with a unilateral constraint is investigated. Parametric study is performed to investigate the effect of friction, link-length ratio, total height and link-mass ratio on the paradox zone.

Keywords: dynamical system, friction, multibody system, painlevé paradox, robotic systems, sliding robots, unilateral constraint

Procedia PDF Downloads 438
3849 Elasto-Plastic Analysis of Structures Using Adaptive Gaussian Springs Based Applied Element Method

Authors: Mai Abdul Latif, Yuntian Feng

Abstract:

Applied Element Method (AEM) is a method that was developed to aid in the analysis of the collapse of structures. Current available methods cannot deal with structural collapse accurately; however, AEM can simulate the behavior of a structure from an initial state of no loading until collapse of the structure. The elements in AEM are connected with sets of normal and shear springs along the edges of the elements, that represent the stresses and strains of the element in that region. The elements are rigid, and the material properties are introduced through the spring stiffness. Nonlinear dynamic analysis has been widely modelled using the finite element method for analysis of progressive collapse of structures; however, difficulties in the analysis were found at the presence of excessively deformed elements with cracking or crushing, as well as having a high computational cost, and difficulties on choosing the appropriate material models for analysis. The Applied Element method is developed and coded to significantly improve the accuracy and also reduce the computational costs of the method. The scheme works for both linear elastic, and nonlinear cases, including elasto-plastic materials. This paper will focus on elastic and elasto-plastic material behaviour, where the number of springs required for an accurate analysis is tested. A steel cantilever beam is used as the structural element for the analysis. The first modification of the method is based on the Gaussian Quadrature to distribute the springs. Usually, the springs are equally distributed along the face of the element, but it was found that using Gaussian springs, only up to 2 springs were required for perfectly elastic cases, while with equal springs at least 5 springs were required. The method runs on a Newton-Raphson iteration scheme, and quadratic convergence was obtained. The second modification is based on adapting the number of springs required depending on the elasticity of the material. After the first Newton Raphson iteration, Von Mises stress conditions were used to calculate the stresses in the springs, and the springs are classified as elastic or plastic. Then transition springs, springs located exactly between the elastic and plastic region, are interpolated between regions to strictly identify the elastic and plastic regions in the cross section. Since a rectangular cross-section was analyzed, there were two plastic regions (top and bottom), and one elastic region (middle). The results of the present study show that elasto-plastic cases require only 2 springs for the elastic region, and 2 springs for the plastic region. This showed to improve the computational cost, reducing the minimum number of springs in elasto-plastic cases to only 6 springs. All the work is done using MATLAB and the results will be compared to models of structural elements using the finite element method in ANSYS.

Keywords: applied element method, elasto-plastic, Gaussian springs, nonlinear

Procedia PDF Downloads 213
3848 Optimizing Road Transportation Network Considering the Durability Factors

Authors: Yapegue Bayogo, Ahmadou Halassi Dicko, Brahima Songore

Abstract:

In developing countries, the road transportation system occupies an important place because of its flexibility and the low prices of infrastructure and rolling stock. While road transport is necessary for economic development, the movement of people and their goods, it is urgent to use transportation systems that minimize carbon emissions in order to ensure sustainable development. One of the main objectives of OEDC and the Word Bank is to ensure sustainable economic’ development. This paper aims to develop a road transport network taking into account environmental impacts. The methodology adopted consists of formulating a model optimizing the flow of goods and then collecting information relating to the transport of products. Our model was tested with data on product transport in CMDT areas in the Republic of Mali. The results of our study indicate that emissions from the transport sector can be significantly reduced by minimizing the traffic volume. According to our study, optimizing the transportation network, we benefit from a significant amount of tons of CO₂.

Keywords: road transport, transport sustainability, pollution, flexibility, optimized network

Procedia PDF Downloads 132
3847 Assessment of Korea's Natural Gas Portfolio Considering Panama Canal Expansion

Authors: Juhan Kim, Jinsoo Kim

Abstract:

South Korea cannot import natural gas in any form other than LNG because of the division of South and North Korea. Further, the high proportion of natural gas in the national energy mix makes this resource crucial for energy security in Korea. Expansion of Panama Canal will allow for reducing the cost of shipping between the Far East and U.S East. Panama Canal expansion can have significant impacts on South Korea. Due to this situation, we review the natural gas optimal portfolio by considering the uniqueness of the Korean Natural gas market and expansion of Panama Canal. In order to assess Korea’s natural gas optimal portfolio, we developed natural gas portfolio model. The model comprises two steps. First, to obtain the optimal long-term spot contract ratio, the study examines the price level and the correlation between spot and long-term contracts by using the Markowitz, portfolio model. The optimal long-term spot contract ratio follows the efficient frontier of the cost/risk level related to this price level and degree of correlation. Second, by applying the obtained long-term contract purchase ratio as the constraint in the linear programming portfolio model, we determined the natural gas optimal import portfolio that minimizes total intangible and tangible costs. Using this model, we derived the optimal natural gas portfolio considering the expansion of Panama Canal. Based on these results, we assess the portfolio for natural gas import to Korea from the perspective of energy security and present some relevant policy proposals.

Keywords: natural gas, Panama Canal, portfolio analysis, South Korea

Procedia PDF Downloads 278
3846 Performance and Emissions Analysis of Diesel Engine with Bio-Diesel of Waste Cooking Oils

Authors: Mukesh Kumar, Onkar Singh, Naveen Kumar, Amar Deep

Abstract:

The waste cooking oil is taken as feedstock for biodiesel production. For this research, waste cooking oil is collected from many hotels and restaurants, and then biodiesel is prepared for experimentation purpose. The prepared biodiesel is mixed with mineral diesel in the proportion of 10%, 20%, and 30% to perform tests on a diesel engine. The experimental analysis is carried out at different load conditions to analyze the impact of the blending ratio on the performance and emission parameters. When the blending proportion of biodiesel is increased, then the highest pressure reduces due to the fall in the calorific value of the blended mixture. Experimental analysis shows a promising decrease in nitrogen oxides (NOx). A mixture of 20% biodiesel and mineral diesel is the best negotiation, mixing ratio, and beyond that, a remarkable reduction in the outcome of the performance has been observed.

Keywords: alternative sources, diesel engine, emissions, performance

Procedia PDF Downloads 159