Search results for: metal chelation
143 Dependence of Densification, Hardness and Wear Behaviors of Ti6Al4V Powders on Sintering Temperature
Authors: Adewale O. Adegbenjo, Elsie Nsiah-Baafi, Mxolisi B. Shongwe, Mercy Ramakokovhu, Peter A. Olubambi
Abstract:
The sintering step in powder metallurgy (P/M) processes is very sensitive as it determines to a large extent the properties of the final component produced. Spark plasma sintering over the past decade has been extensively used in consolidating a wide range of materials including metallic alloy powders. This novel, non-conventional sintering method has proven to be advantageous offering full densification of materials, high heating rates, low sintering temperatures, and short sintering cycles over conventional sintering methods. Ti6Al4V has been adjudged the most widely used α+β alloy due to its impressive mechanical performance in service environments, especially in the aerospace and automobile industries being a light metal alloy with the capacity for fuel efficiency needed in these industries. The P/M route has been a promising method for the fabrication of parts made from Ti6Al4V alloy due to its cost and material loss reductions and the ability to produce near net and intricate shapes. However, the use of this alloy has been largely limited owing to its relatively poor hardness and wear properties. The effect of sintering temperature on the densification, hardness, and wear behaviors of spark plasma sintered Ti6Al4V powders was investigated in this present study. Sintering of the alloy powders was performed in the 650–850°C temperature range at a constant heating rate, applied pressure and holding time of 100°C/min, 50 MPa and 5 min, respectively. Density measurements were carried out according to Archimedes’ principle and microhardness tests were performed on sectioned as-polished surfaces at a load of 100gf and dwell time of 15 s. Dry sliding wear tests were performed at varied sliding loads of 5, 15, 25 and 35 N using the ball-on-disc tribometer configuration with WC as the counterface material. Microstructural characterization of the sintered samples and wear tracks were carried out using SEM and EDX techniques. The density and hardness characteristics of sintered samples increased with increasing sintering temperature. Near full densification (99.6% of the theoretical density) and Vickers’ micro-indentation hardness of 360 HV were attained at 850°C. The coefficient of friction (COF) and wear depth improved significantly with increased sintering temperature under all the loading conditions examined, except at 25 N indicating better mechanical properties at high sintering temperatures. Worn surface analyses showed the wear mechanism was a synergy of adhesive and abrasive wears, although the former was prevalent.Keywords: hardness, powder metallurgy, spark plasma sintering, wear
Procedia PDF Downloads 278142 Combining Nitrocarburisation and Dry Lubrication for Improving Component Lifetime
Authors: Kaushik Vaideeswaran, Jean Gobet, Patrick Margraf, Olha Sereda
Abstract:
Nitrocarburisation is a surface hardening technique often applied to improve the wear resistance of steel surfaces. It is considered to be a promising solution in comparison with other processes such as flame spraying, owing to the formation of a diffusion layer which provides mechanical integrity, as well as its cost-effectiveness. To improve other tribological properties of the surface such as the coefficient of friction (COF), dry lubricants are utilized. Currently, the lifetime of steel components in many applications using either of these techniques individually are faced with the limitations of the two: high COF for nitrocarburized surfaces and low wear resistance of dry lubricant coatings. To this end, the current study involves the creation of a hybrid surface using the impregnation of a dry lubricant on to a nitrocarburized surface. The mechanical strength and hardness of Gerster SA’s nitrocarburized surfaces accompanied by the impregnation of the porous outermost layer with a solid lubricant will create a hybrid surface possessing both outstanding wear resistance and a low friction coefficient and with high adherence to the substrate. Gerster SA has the state-of-the-art technology for the surface hardening of various steels. Through their expertise in the field, the nitrocarburizing process parameters (atmosphere, temperature, dwelling time) were optimized to obtain samples that have a distinct porous structure (in terms of size, shape, and density) as observed by metallographic and microscopic analyses. The porosity thus obtained is suitable for the impregnation of a dry lubricant. A commercially available dry lubricant with a thermoplastic matrix was employed for the impregnation process, which was optimized to obtain a void-free interface with the surface of the nitrocarburized layer (henceforth called hybrid surface). In parallel, metallic samples without nitrocarburisation were also impregnated with the same dry lubricant as a reference (henceforth called reference surface). The reference and the nitrocarburized surfaces, with and without the dry lubricant were tested for their tribological behavior by sliding against a quenched steel ball using a nanotribometer. Without any lubricant, the nitrocarburized surface showed a wear rate 5x lower than the reference metal. In the presence of a thin film of dry lubricant ( < 2 micrometers) and under the application of high loads (500 mN or ~800 MPa), while the COF for the reference surface increased from ~0.1 to > 0.3 within 120 m, the hybrid surface retained a COF < 0.2 for over 400m of sliding. In addition, while the steel ball sliding against the reference surface showed heavy wear, the corresponding ball sliding against the hybrid surface showed very limited wear. Observations of the sliding tracks in the hybrid surface using Electron Microscopy show the presence of the nitrocarburized nodules as well as the lubricant, whereas no traces of the lubricant were found in the sliding track on the reference surface. In this manner, the clear advantage of combining nitrocarburisation with the impregnation of a dry lubricant towards forming a hybrid surface has been demonstrated.Keywords: dry lubrication, hybrid surfaces, improved wear resistance, nitrocarburisation, steels
Procedia PDF Downloads 123141 Quality Improvement of the Sand Moulding Process in Foundries Using Six Sigma Technique
Authors: Cindy Sithole, Didier Nyembwe, Peter Olubambi
Abstract:
The sand casting process involves pattern making, mould making, metal pouring and shake out. Every step in the sand moulding process is very critical for production of good quality castings. However, waste generated during the sand moulding operation and lack of quality are matters that influences performance inefficiencies and lack of competitiveness in South African foundries. Defects produced from the sand moulding process are only visible in the final product (casting) which results in increased number of scrap, reduced sales and increases cost in the foundry. The purpose of this Research is to propose six sigma technique (DMAIC, Define, Measure, Analyze, Improve and Control) intervention in sand moulding foundries and to reduce variation caused by deficiencies in the sand moulding process in South African foundries. Its objective is to create sustainability and enhance productivity in the South African foundry industry. Six sigma is a data driven method to process improvement that aims to eliminate variation in business processes using statistical control methods .Six sigma focuses on business performance improvement through quality initiative using the seven basic tools of quality by Ishikawa. The objectives of six sigma are to eliminate features that affects productivity, profit and meeting customers’ demands. Six sigma has become one of the most important tools/techniques for attaining competitive advantage. Competitive advantage for sand casting foundries in South Africa means improved plant maintenance processes, improved product quality and proper utilization of resources especially scarce resources. Defects such as sand inclusion, Flashes and sand burn on were some of the defects that were identified as resulting from the sand moulding process inefficiencies using six sigma technique. The courses were we found to be wrong design of the mould due to the pattern used and poor ramming of the moulding sand in a foundry. Six sigma tools such as the voice of customer, the Fishbone, the voice of the process and process mapping were used to define the problem in the foundry and to outline the critical to quality elements. The SIPOC (Supplier Input Process Output Customer) Diagram was also employed to ensure that the material and process parameters were achieved to ensure quality improvement in a foundry. The process capability of the sand moulding process was measured to understand the current performance to enable improvement. The Expected results of this research are; reduced sand moulding process variation, increased productivity and competitive advantage.Keywords: defects, foundries, quality improvement, sand moulding, six sigma (DMAIC)
Procedia PDF Downloads 197140 A Hydrometallurgical Route for the Recovery of Molybdenum from Mo-Co Spent Catalyst
Authors: Bina Gupta, Rashmi Singh, Harshit Mahandra
Abstract:
Molybdenum is a strategic metal and finds applications in petroleum refining, thermocouples, X-ray tubes and in making of steel alloy owing to its high melting temperature and tensile strength. The growing significance and economic value of molybdenum have increased interest in the development of efficient processes aiming its recovery from secondary sources. Main secondary sources of Mo are molybdenum catalysts which are used for hydrodesulphurisation process in petrochemical refineries. The activity of these catalysts gradually decreases with time during the desulphurisation process as the catalysts get contaminated with toxic material and are dumped as waste which leads to environmental issues. In this scenario, recovery of molybdenum from spent catalyst is significant from both economic and environmental point of view. Recently ionic liquids have gained prominence due to their low vapour pressure, high thermal stability, good extraction efficiency and recycling capacity. Present study reports recovery of molybdenum from Mo-Co spent leach liquor using Cyphos IL 102[trihexyl(tetradecyl)phosphonium bromide] as an extractant. Spent catalyst was leached with 3 mol/L HCl and the leach liquor containing Mo-870 ppm, Co-341 ppm, Al-508 ppm and Fe-42 ppm was subjected to extraction step. The effect of extractant concentration on the leach liquor was investigated and almost 85% extraction of Mo was achieved with 0.05 mol/L Cyphos IL 102. Results of stripping studies revealed that 2 mol/L HNO3 can effectively strip 94% of the extracted Mo from the loaded organic phase. McCabe-Thiele diagrams were constructed to determine the number of stages required for quantitative extraction and stripping of molybdenum and were confirmed by counter current simulation studies. According to McCabe-Thiele extraction and stripping isotherms, two stages are required for quantitative extraction and stripping of molybdenum at A/O= 1:1. Around 95.4% extraction of molybdenum was achieved in two stage counter current at A/O= 1:1 with negligible extraction of Co and Al. However, iron was coextracted and removed from the loaded organic phase by scrubbing with 0.01 mol/L HCl. Quantitative stripping (~99.5 %) of molybdenum was achieved with 2.0 mol/L HNO3 in two stages at O/A=1:1. Overall ~95.0% molybdenum with 99 % purity was recovered from Mo-Co spent catalyst. From the strip solution, MoO3 was obtained by crystallization followed by thermal decomposition. The product obtained after thermal decomposition was characterized by XRD, FE-SEM and EDX techniques. XRD peaks of MoO3correspond to molybdite Syn-MoO3 structure. FE-SEM depicts the rod like morphology of synthesized MoO3. EDX analysis of MoO3 shows 1:3 atomic percentage of molybdenum and oxygen. The synthesised MoO3 can find application in gas sensors, electrodes of batteries, display devices, smart windows, lubricants and as catalyst.Keywords: cyphos IL 102, extraction, Mo-Co spent catalyst, recovery
Procedia PDF Downloads 269139 Co-pyrolysis of Sludge and Kaolin/Zeolite to Stabilize Heavy Metals
Authors: Qian Li, Zhaoping Zhong
Abstract:
Sewage sludge, a typical solid waste, has inevitably been produced in enormous quantities in China. Still worse, the amount of sewage sludge produced has been increasing due to rapid economic development and urbanization. Compared to the conventional method to treat sewage sludge, pyrolysis has been considered an economic and ecological technology because it can significantly reduce the sludge volume, completely kill pathogens, and produce valuable solid, gas, and liquid products. However, the large-scale utilization of sludge biochar has been limited due to the considerable risk posed by heavy metals in the sludge. Heavy metals enriched in pyrolytic biochar could be divided into exchangeable, reducible, oxidizable, and residual forms. The residual form of heavy metals is the most stable and cannot be used by organisms. Kaolin and zeolite are environmentally friendly inorganic minerals with a high surface area and heat resistance characteristics. So, they exhibit the enormous potential to immobilize heavy metals. In order to reduce the risk of leaching heavy metals in the pyrolysis biochar, this study pyrolyzed sewage sludge mixed with kaolin/zeolite in a small rotary kiln. The influences of additives and pyrolysis temperature on the leaching concentration and morphological transformation of heavy metals in pyrolysis biochar were investigated. The potential mechanism of stabilizing heavy metals in the co-pyrolysis of sludge blended with kaolin/zeolite was explained by scanning electron microscopy, X-ray diffraction, and specific surface area and porosity analysis. The European Community Bureau of Reference sequential extraction procedure has been applied to analyze the forms of heavy metals in sludge and pyrolysis biochar. All the concentrations of heavy metals were examined by flame atomic absorption spectrophotometry. Compared with the proportions of heavy metals associated with the F4 fraction in pyrolytic carbon prepared without additional agents, those in carbon obtained by co-pyrolysis of sludge and kaolin/zeolite increased. Increasing the additive dosage could improve the proportions of the stable fraction of various heavy metals in biochar. Kaolin exhibited a better effect on stabilizing heavy metals than zeolite. Aluminosilicate additives with excellent adsorption performance could capture more released heavy metals during sludge pyrolysis. Then heavy metal ions would react with the oxygen ions of additives to form silicate and aluminate, causing the conversion of heavy metals from unstable fractions (sulfate, chloride, etc.) to stable fractions (silicate, aluminate, etc.). This study reveals that the efficiency of stabilizing heavy metals depends on the formation of stable mineral compounds containing heavy metals in pyrolysis biochar.Keywords: co-pyrolysis, heavy metals, immobilization mechanism, sewage sludge
Procedia PDF Downloads 68138 Selective Extraction of Lithium from Native Geothermal Brines Using Lithium-ion Sieves
Authors: Misagh Ghobadi, Rich Crane, Karen Hudson-Edwards, Clemens Vinzenz Ullmann
Abstract:
Lithium is recognized as the critical energy metal of the 21st century, comparable in importance to coal in the 19th century and oil in the 20th century, often termed 'white gold'. Current global demand for lithium, estimated at 0.95-0.98 million metric tons (Mt) of lithium carbonate equivalent (LCE) annually in 2024, is projected to rise to 1.87 Mt by 2027 and 3.06 Mt by 2030. Despite anticipated short-term stability in supply and demand, meeting the forecasted 2030 demand will require the lithium industry to develop an additional capacity of 1.42 Mt of LCE annually, exceeding current planned and ongoing efforts. Brine resources constitute nearly 65% of global lithium reserves, underscoring the importance of exploring lithium recovery from underutilized sources, especially geothermal brines. However, conventional lithium extraction from brine deposits faces challenges due to its time-intensive process, low efficiency (30-50% lithium recovery), unsuitability for low lithium concentrations (<300 mg/l), and notable environmental impacts. Addressing these challenges, direct lithium extraction (DLE) methods have emerged as promising technologies capable of economically extracting lithium even from low-concentration brines (>50 mg/l) with high recovery rates (75-98%). However, most studies (70%) have predominantly focused on synthetic brines instead of native (natural/real), with limited application of these approaches in real-world case studies or industrial settings. This study aims to bridge this gap by investigating a geothermal brine sample collected from a real case study site in the UK. A Mn-based lithium-ion sieve (LIS) adsorbent was synthesized and employed to selectively extract lithium from the sample brine. Adsorbents with a Li:Mn molar ratio of 1:1 demonstrated superior lithium selectivity and adsorption capacity. Furthermore, the pristine Mn-based adsorbent was modified through transition metals doping, resulting in enhanced lithium selectivity and adsorption capacity. The modified adsorbent exhibited a higher separation factor for lithium over major co-existing cations such as Ca, Mg, Na, and K, with separation factors exceeding 200. The adsorption behaviour was well-described by the Langmuir model, indicating monolayer adsorption, and the kinetics followed a pseudo-second-order mechanism, suggesting chemisorption at the solid surface. Thermodynamically, negative ΔG° values and positive ΔH° and ΔS° values were observed, indicating the spontaneity and endothermic nature of the adsorption process.Keywords: adsorption, critical minerals, DLE, geothermal brines, geochemistry, lithium, lithium-ion sieves
Procedia PDF Downloads 49137 Influence of Strain on the Corrosion Behavior of Dual Phase 590 Steel
Authors: Amit Sarkar, Jayanta K. Mahato, Tushar Bhattacharya, Amrita Kundu, P. C. Chakraborti
Abstract:
With increasing the demand for safety and fuel efficiency of automobiles, automotive manufacturers are looking for light weight, high strength steel with excellent formability and corrosion resistance. Dual-phase steel is finding applications in automotive sectors, because of its high strength, good formability, and high corrosion resistance. During service automotive components suffer from environmental attack and thereby gradual degradation of the components occurs reducing the service life of the components. The objective of the present investigation is to assess the effect of deformation on corrosion behaviour of DP590 grade dual phase steel which is used in automotive industries. The material was received from TATA Steel Jamshedpur, India in the form of 1 mm thick sheet. Tensile properties of the steel at strain rate of 10-3 sec-1: 0.2 % Yield Stress is 382 MPa, Ultimate Tensile Strength is 629 MPa, Uniform Strain is 16.30% and Ductility is 29%. Rectangular strips of 100x10x1 mm were machined keeping the long axis of the strips parallel to rolling direction of the sheet. These strips were longitudinally deformed at a strain rate at 10-3 sec-1 to a different percentage of strain, e.g. 2.5, 5, 7.5,10 and 12.5%, and then slowly unloaded. Small specimens were extracted from the mid region of the unclamped portion of these deformed strips. These small specimens were metallographic polished, and corrosion behaviour has been studied by potentiodynamic polarization, electrochemical impedance spectra, and cyclic polarization and potentiostatic tests. Present results show that among three different environments, the 3.5 pct NaCl solution is most aggressive in case of DP 590 dual-phase steel. It is observed that with the increase in the amount of deformation, corrosion rate increases. With deformation, the stored energy increases and leads to enhanced corrosion rate. Cyclic polarization results revealed highly deformed specimen are more prone to pitting corrosion as compared to the condition when amount of deformation is less. It is also observed that stability of the passive layer decreases with the amount of deformation. With the increase of deformation, current density increases in a passive zone and passive zone is also decreased. From Electrochemical impedance spectroscopy study it is found that with increasing amount of deformation polarization resistance (Rp) decreases. EBSD results showed that average geometrically necessary dislocation density increases with increasing strain which in term increased galvanic corrosion as dislocation areas act as the less noble metal.Keywords: dual phase 590 steel, prestrain, potentiodynamic polarization, cyclic polarization, electrochemical impedance spectra
Procedia PDF Downloads 431136 Immobilization of Horseradish Peroxidase onto Bio-Linked Magnetic Particles with Allium Cepa Peel Water Extracts
Authors: Mirjana Petronijević, Sanja Panić, Aleksandra Cvetanović, Branko Kordić, Nenad Grba
Abstract:
Enzyme peroxidases are biological catalysts and play a major role in phenolic wastewater treatments and other environmental applications. The most studied species from the peroxidases family is horseradish peroxidase (HRP). In environmental processes, HRP could be used in its free or immobilized form. Enzyme immobilization onto solid support is performed to improve the enzyme properties, prolong its lifespan and operational stability and allow its reuse in industrial applications. One of the enzyme supports of a newer generation is magnetic particles (MPs). Fe₃O₄ MPs are the most widely pursued immobilization of enzymes owing to their remarkable advantages of biocompatibility and non-toxicity. Also, MPs can be easily separated and recovered from the water by applying an external magnetic field. On the other hand, metals and metal oxides are not suitable for the covalent binding of enzymes, so it is necessary to perform their surface modification. Fe₃O₄ MPs functionalization could be performed during the process of their synthesis if it takes place in the presence of plant extracts. Extracts of plant material, such as wild plants, herbs, even waste materials of the food and agricultural industry (bark, shell, leaves, peel), are rich in various bioactive components such as polyphenols, flavonoids, sugars, etc. When the synthesis of magnetite is performed in the presence of plant extracts, bioactive components are incorporated into the surface of the magnetite, thereby affecting its functionalization. In this paper, the suitability of bio-magnetite as solid support for covalent immobilization of HRP across glutaraldehyde was examined. The activity of immobilized HRP at different pH values (4-9) and temperatures (20-80°C) and reusability were examined. Bio-MP was synthesized by co-precipitation method from Fe(II) and Fe(III) sulfate salts in the presence of water extract of the Allium cepa peel. The water extract showed 81% of antiradical potential (according to DPPH assay), which is connected with the high content of polyphenols. According to the FTIR analysis, the bio-magnetite contains oxygen functional groups (-OH, -COOH, C=O) suitable for binding to glutaraldehyde, after which the enzyme is covalently immobilized. The immobilized enzyme showed high activity at ambient temperature and pH 7 (30 U/g) and retained ≥ 80% of its activity at a wide range of pH (5-8) and temperature (20-50°C). The HRP immobilized onto bio-MPs showed remarkable stability towards temperature and pH variations compared to the free enzyme form. On the other hand, immobilized HRP showed low reusability after the first washing cycle enzyme retains 50% of its activity, while after the third washing cycle retains only 22%.Keywords: bio-magnetite, enzyme immobilization, water extracts, environmental protection
Procedia PDF Downloads 225135 Lead Removal From Ex- Mining Pond Water by Electrocoagulation: Kinetics, Isotherm, and Dynamic Studies
Authors: Kalu Uka Orji, Nasiman Sapari, Khamaruzaman W. Yusof
Abstract:
Exposure of galena (PbS), tealite (PbSnS2), and other associated minerals during mining activities release lead (Pb) and other heavy metals into the mining water through oxidation and dissolution. Heavy metal pollution has become an environmental challenge. Lead, for instance, can cause toxic effects to human health, including brain damage. Ex-mining pond water was reported to contain lead as high as 69.46 mg/L. Conventional treatment does not easily remove lead from water. A promising and emerging treatment technology for lead removal is the application of the electrocoagulation (EC) process. However, some of the problems associated with EC are systematic reactor design, selection of maximum EC operating parameters, scale-up, among others. This study investigated an EC process for the removal of lead from synthetic ex-mining pond water using a batch reactor and Fe electrodes. The effects of various operating parameters on lead removal efficiency were examined. The results obtained indicated that the maximum removal efficiency of 98.6% was achieved at an initial PH of 9, the current density of 15mA/cm2, electrode spacing of 0.3cm, treatment time of 60 minutes, Liquid Motion of Magnetic Stirring (LM-MS), and electrode arrangement = BP-S. The above experimental data were further modeled and optimized using a 2-Level 4-Factor Full Factorial design, a Response Surface Methodology (RSM). The four factors optimized were the current density, electrode spacing, electrode arrangements, and Liquid Motion Driving Mode (LM). Based on the regression model and the analysis of variance (ANOVA) at 0.01%, the results showed that an increase in current density and LM-MS increased the removal efficiency while the reverse was the case for electrode spacing. The model predicted the optimal lead removal efficiency of 99.962% with an electrode spacing of 0.38 cm alongside others. Applying the predicted parameters, the lead removal efficiency of 100% was actualized. The electrode and energy consumptions were 0.192kg/m3 and 2.56 kWh/m3 respectively. Meanwhile, the adsorption kinetic studies indicated that the overall lead adsorption system belongs to the pseudo-second-order kinetic model. The adsorption dynamics were also random, spontaneous, and endothermic. The higher temperature of the process enhances adsorption capacity. Furthermore, the adsorption isotherm fitted the Freundlish model more than the Langmuir model; describing the adsorption on a heterogeneous surface and showed good adsorption efficiency by the Fe electrodes. Adsorption of Pb2+ onto the Fe electrodes was a complex reaction, involving more than one mechanism. The overall results proved that EC is an efficient technique for lead removal from synthetic mining pond water. The findings of this study would have application in the scale-up of EC reactor and in the design of water treatment plants for feed-water sources that contain lead using the electrocoagulation method.Keywords: ex-mining water, electrocoagulation, lead, adsorption kinetics
Procedia PDF Downloads 150134 Optimization Principles of Eddy Current Separator for Mixtures with Different Particle Sizes
Authors: Cao Bin, Yuan Yi, Wang Qiang, Amor Abdelkader, Ali Reza Kamali, Diogo Montalvão
Abstract:
The study of the electrodynamic behavior of non-ferrous particles in time-varying magnetic fields is a promising area of research with wide applications, including recycling of non-ferrous metals, mechanical transmission, and space debris. The key technology for recovering non-ferrous metals is eddy current separation (ECS), which utilizes the eddy current force and torque to separate non-ferrous metals. ECS has several advantages, such as low energy consumption, large processing capacity, and no secondary pollution, making it suitable for processing various mixtures like electronic scrap, auto shredder residue, aluminum scrap, and incineration bottom ash. Improving the separation efficiency of mixtures with different particle sizes in ECS can create significant social and economic benefits. Our previous study investigated the influence of particle size on separation efficiency by combining numerical simulations and separation experiments. Pearson correlation analysis found a strong correlation between the eddy current force in simulations and the repulsion distance in experiments, which confirmed the effectiveness of our simulation model. The interaction effects between particle size and material type, rotational speed, and magnetic pole arrangement were examined. It offer valuable insights for the design and optimization of eddy current separators. The underlying mechanism behind the effect of particle size on separation efficiency was discovered by analyzing eddy current and field gradient. The results showed that the magnitude and distribution heterogeneity of eddy current and magnetic field gradient increased with particle size in eddy current separation. Based on this, we further found that increasing the curvature of magnetic field lines within particles could also increase the eddy current force, providing a optimized method to improving the separation efficiency of fine particles. By combining the results of the studies, a more systematic and comprehensive set of optimization guidelines can be proposed for mixtures with different particle size ranges. The separation efficiency of fine particles could be improved by increasing the rotational speed, curvature of magnetic field lines, and electrical conductivity/density of materials, as well as utilizing the eddy current torque. When designing an ECS, the particle size range of the target mixture should be investigated in advance, and the suitable parameters for separating the mixture can be fixed accordingly. In summary, these results can guide the design and optimization of ECS, and also expand the application areas for ECS.Keywords: eddy current separation, particle size, numerical simulation, metal recovery
Procedia PDF Downloads 91133 Study of the Possibility of Adsorption of Heavy Metal Ions on the Surface of Engineered Nanoparticles
Authors: Antonina A. Shumakova, Sergey A. Khotimchenko
Abstract:
The relevance of research is associated, on the one hand, with an ever-increasing volume of production and the expansion of the scope of application of engineered nanomaterials (ENMs), and on the other hand, with the lack of sufficient scientific information on the nature of the interactions of nanoparticles (NPs) with components of biogenic and abiogenic origin. In particular, studying the effect of ENMs (TiO2 NPs, SiO2 NPs, Al2O3 NPs, fullerenol) on the toxicometric characteristics of common contaminants such as lead and cadmium is an important hygienic task, given the high probability of their joint presence in food products. Data were obtained characterizing a multidirectional change in the toxicity of model toxicants when they are co-administered with various types of ENMs. One explanation for this fact is the difference in the adsorption capacity of ENMs, which was further studied in in vitro studies. For this, a method was proposed based on in vitro modeling of conditions simulating the environment of the small intestine. It should be noted that the obtained data are in good agreement with the results of in vivo experiments: - with the combined administration of lead and TiO2 NPs, there were no significant changes in the accumulation of lead in rat liver; in other organs (kidneys, spleen, testes and brain), the lead content was lower than in animals of the control group; - studying the combined effect of lead and Al2O3 NPs, a multiple and significant increase in the accumulation of lead in rat liver was observed with an increase in the dose of Al2O3 NPs. For other organs, the introduction of various doses of Al2O3 NPs did not significantly affect the bioaccumulation of lead; - with the combined administration of lead and SiO2 NPs in different doses, there was no increase in lead accumulation in all studied organs. Based on the data obtained, it can be assumed that at least three scenarios of the combined effects of ENMs and chemical contaminants on the body: - ENMs quite firmly bind contaminants in the gastrointestinal tract and such a complex becomes inaccessible (or inaccessible) for absorption; in this case, it can be expected that the toxicity of both ENMs and contaminants will decrease; - the complex formed in the gastrointestinal tract has partial solubility and can penetrate biological membranes and / or physiological barriers of the body; in this case, ENMs can play the role of a kind of conductor for contaminants and, thus, their penetration into the internal environment of the body increases, thereby increasing the toxicity of contaminants; - ENMs and contaminants do not interact with each other in any way, therefore the toxicity of each of them is determined only by its quantity and does not depend on the quantity of another component. Authors hypothesized that the degree of adsorption of various elements on the surface of ENMs may be a unique characteristic of their action, allowing a more accurate understanding of the processes occurring in a living organism.Keywords: absorption, cadmium, engineered nanomaterials, lead
Procedia PDF Downloads 89132 In vitro Antioxidant, Anti-Diabetic and Nutritional Properties of Breynia retusa
Authors: Parimelazhagan Thangaraj
Abstract:
Natural products serves human kind as a source of all drugs and higher plants provide most of these therapeutic agents. These products are widely recognized in the pharmaceutical industry for their broad structural diversity as well as their wide range of pharmacological activities. Euphorbiaceae is one of the important families with significant pharmacological activities, of which many species has been used traditionally for the treatment of various ailments. Breynia retusa belongs to the family Euphorbiaceae is used to cure ailments like body pain, skin inflammation, hyperglycaemia, diarrhoea, dysentery and toothache. Flowers and young leaves of B. retusa are cooked and eaten, roots are used for meningitis. The juice of the stem is used in conjunctivtis and leaves as poultice to hasten suppuration. Based on the strong evidences of traditional uses of Breynia retusa, the present study was focused on neutraceuticals evaluation of the species with special reference to oxidative stress and diabetes. Both leaves and stem of B. retusa were extracted with different solvents and analyzed for radical scavenging ability wherein ABTS.+ (8396.95±1529.01 µM TEAC/g extract), phosphomolybdenum (17.34±0.08 g AAE/100 g extract) and FRAP (6075.66±414.28 µM Fe (II) E/mg extract) assays showed good radical scavenging activity in stem. Furthermore, leaf extracts showed good radical inhibition in DPPH (2.4 µg/mL), metal ion (27.44±0.09 mg EDTAE/g extract) scavenging methods. The α-amylase and α-glucosidase inhibitors are currently used for diabetic treatment as oral hypoglycemic agents. The inhibitory effects of the B. retusa leaf and stem ethyl acetate extracts showed good inhibition on α-amylase (96.25% and 95.69 respectively) and α-glucosidase (54.50% and 50.87% respectively) enzymes compared to standard acarbose. The proximate composition analysis of B. retusa leaves contains higher amount of total carbohydrates (14.08 g Glucose equivalents/100 g sample), ash (19.04 %) and crude fibre (0.52 %). The examination of mineral profile explored that the leaves was rich in calcium (1891 ppm), sulphur (1406 ppm), copper (2600 ppm) and magnesium (778 ppm). Leaves sample revealed very minimal amount of anti-nutrient contents like trypsin (14.08±0.03 TIU/mg protein) and tannin (0.011±0.001 mg TAE/g sample). The low anti nutritional factors may not pose any serious nutritional problems when these leaves are consumed. In conclusion, it is very clear that dietary compounds from B. retusa are suitable and promising for the development of safe food products and natural additives. Based on the studies, it may be concluded that nutritional composition, antioxidant and anti-diabetic activities this species can be used as future therapeutic medicine.Keywords: Breynia retusa, nutraceuticals, antioxidant, anti diabetic
Procedia PDF Downloads 335131 In Vitro Assessment of the Genotoxicity of Composite Obtained by Mixture of Natural Rubber and Leather Residues for Textile Application
Authors: Dalita G. S. M. Cavalcante, Elton A. P. dos Reis, Andressa S. Gomes, Caroline S. Danna, Leandra Ernest Kerche-Silva, Eidi Yoshihara, Aldo E. Job
Abstract:
In order to minimize environmental impacts, a composite was developed from mixture of leather shavings (LE) with natural rubber (NR), which patent is already deposited. The new material created can be used in applications such as floors e heels for shoes. Besides these applications, the aim is to use this new material for the production of products for the textile industry, such as boots, gloves and bags. But the question arises, as to biocompatibility of this new material. This is justified because the structure of the leather shavings has chrome. The trivalent chromium is usually not toxic, but the hexavalent chromium can be highly toxic and genotoxic for living beings, causing damage to the DNA molecule and contributing to the formation of cancer. Based on this, the objective of this study is evaluate the possible genotoxic effects of the new composite, using as system - test two cell lines (MRC-5 and CHO-K1) by comet assay. For this, the production of the composite was performed in three proportions: for every 100 grams of NR was added 40 (E40), 50 (E50) or 60 (E60) grams of LE. The latex was collected from the rubber tree (Hevea brasiliensis). For vulcanization of the NR, activators and accelerators were used. The two cell lines were exposed to the new composite in its three proportions using elution method, that is, cells exposed to liquid extracts obtained from the composite for 24 hours. For obtaining the liquid extract, each sample of the composite was crushed into pieces and mixed with an extraction solution. The quantification of total chromium and hexavalent chromium in the extracts were performed by Optical Emission Spectrometry by Inductively Coupled Plasma (ICP-OES). The levels of DNA damage in cells exposed to both extracts were monitored by alkaline version of the comet assay. The results of the quantification of metals in ICP-OES indicated the presence of total chromium in different extracts, but were not detected presence of hexavalent chromium in any extract. Through the comet assay were not found DNA damage of the CHO-K1 cells exposed to both extracts. As for MRC-5, was found a significant increase in DNA damage in cells exposed to E50 and E60. Based on the above data, it can be asserted that the extracts obtained from the composite were highly genotoxic for MRC-5 cells. These biological responses do not appear to be related to chromium metal, since there was a predominance of trivalent chromium in the extracts, indicating that during the production process of the new composite, there was no formation of hexavalent chromium. In conclusion it can infer that the leather shavings containing chromium can be reused, thereby reducing the environmental impacts of this waste. Already on the composite indicates to its incorporation in applications that do not aim at direct contact with the human skin, and it is suggested the chain of composite production be studied, in an attempt to make it biocompatible so that it may be safely used by the textile industry.Keywords: cell line, chrome, genotoxicity, leather, natural rubber
Procedia PDF Downloads 198130 Glasshouse Experiment to Improve Phytomanagement Solutions for Cu-Polluted Mine Soils
Authors: Marc Romero-Estonllo, Judith Ramos-Castro, Yaiza San Miguel, Beatriz Rodríguez-Garrido, Carmela Monterroso
Abstract:
Mining activity is among the main sources of trace and heavy metal(loid) pollution worldwide, which is a hazard to human and environmental health. That is why several projects have been emerging for the remediation of such polluted places. Phytomanagement strategies draw good performances besides big side benefits. In this work, a glasshouse assay with trace element polluted soils from an old Cu mine ore (NW of Spain) which forms part of the PhytoSUDOE network of phytomanaged contaminated field sites (PhytoSUDOE Project (SOE1/P5/E0189)) was set. The objective was to evaluate improvements induced by the following phytoremediation-related treatments. Three increasingly complex amendments alone or together with plant growth (Populus nigra L. alone and together with Tripholium repens L.) were tested. And three different rhizosphere bioinocula were applied (Plant Growth Promoting Bacteria (PGP), mycorrhiza (MYC), or mixed (PGP+MYC)). After 110 days of growth, plants were collected, biomass was weighed, and tree length was measured. Physical-chemical analyses were carried out to determine pH, effective Cation Exchange Capacity, carbon and nitrogen contents, bioavailable phosphorous (Olsen bicarbonate method), pseudo total element content (microwave acid digested fraction), EDTA extractable metals (complexed fraction), and NH4NO3 extractable metals (easily bioavailable fraction). On plant material, nitrogen content and acid digestion elements were determined. Amendment usage, plant growth, and bioinoculation were demonstrated to improve soil fertility and/or plant health within the time span of this study. Particularly, pH levels increased from 3 (highly acidic) to 5 (acidic) in the worst-case scenario, even reaching 7 (neutrality) in the best plots. Organic matter and pH increments were related to polluting metals’ bioavailability decrements. Plants grew better both with the most complex amendment and the middle one, with few differences due to bioinoculation. Using the less complex amendment (just compost) beneficial effects of bioinoculants were more observable, although plants didn’t thrive very well. On unamended soils, plants neither sprouted nor bloomed. The scheme assayed in this study is suitable for phytomanagement of these kinds of soils affected by mining activity. These findings should be tested now on a larger scale.Keywords: aided phytoremediation, mine pollution, phytostabilization, soil pollution, trace elements
Procedia PDF Downloads 67129 Investigating Sediment-Bound Chemical Transport in an Eastern Mediterranean Perennial Stream to Identify Priority Pollution Sources on a Catchment Scale
Authors: Felicia Orah Rein Moshe
Abstract:
Soil erosion has become a priority global concern, impairing water quality and degrading ecosystem services. In Mediterranean climates, following a long dry period, the onset of rain occurs when agricultural soils are often bare and most vulnerable to erosion. Early storms transport sediments and sediment-bound pollutants into streams, along with dissolved chemicals. This results in loss of valuable topsoil, water quality degradation, and potentially expensive dredged-material disposal costs. Information on the provenance of fine sediment and priority sources of adsorbed pollutants represents a critical need for developing effective control strategies aimed at source reduction. Modifying sediment traps designed for marine systems, this study tested a cost-effective method to collect suspended sediments on a catchment scale to characterize stream water quality during first-flush storm events in a flashy Eastern Mediterranean coastal perennial stream. This study investigated the Kishon Basin, deploying sediment traps in 23 locations, including 4 in the mainstream and one downstream in each of 19 tributaries, enabling the characterization of sediment as a vehicle for transporting chemicals. Further, it enabled direct comparison of sediment-bound pollutants transported during the first-flush winter storms of 2020 from each of 19 tributaries, allowing subsequent ecotoxicity ranking. Sediment samples were successfully captured in 22 locations. Pesticides, pharmaceuticals, nutrients, and metal concentrations were quantified, identifying a total of 50 pesticides, 15 pharmaceuticals, and 22 metals, with 16 pesticides and 3 pharmaceuticals found in all 23 locations, demonstrating the importance of this transport pathway. Heavy metals were detected in only one tributary, identifying an important watershed pollution source with immediate potential influence on long-term dredging costs. Simultaneous sediment sampling at first flush storms enabled clear identification of priority tributaries and their chemical contributions, advancing a new national watershed monitoring approach, facilitating strategic plan development based on source reduction, and advancing the goal of improving the farm-stream interface, conserving soil resources, and protecting water quality.Keywords: adsorbed pollution, dredged material, heavy metals, suspended sediment, water quality monitoring
Procedia PDF Downloads 111128 The Torah Scroll of the National Library of the Kingdom of Morocco: Parchment Support and Black Ink Analytical Study
Authors: Oubelkacem Yacine, El Bast Hassan, El Bakkali Abdelmajid, Lamhasni Taibi, Ettakni Mahmoud, Ait Lyazidi Saadia, Haddad Mustapha, Ben-Ncer Abdelouahed, El Ferrane Mohammed, Boufarra Abdelkrim
Abstract:
The present work relates to an on-site and completely non-invasive investigation of one of the most famous west Mediterranean Torah Scroll housed at the National Library of the Kingdom of Morocco. The scroll is 26 m long and consists of 143 parchment sheets of 59 cm x 19 cm, exhibiting only black writings; it is of unknown age. The artifact has been restored by the curator staff of the library. The investigation exploring separately the parchment support and the writing black ink aims at: i) the examination of the parchment conservation/degradation state, ii) the identification of the black ink and iii) the identification of the parchment handcrafting materials. For this purpose, the analyses have been based on combining all of elemental XRF and structural Raman, ATR-FT Infrared Red and Fiber Optical Reflectance spectroscopies, in addition to chroma-metric and pH measurements. pH measurements showing values around 6.5 are in concordance with the absence of any visual corrosion related to the parchment acidity. However, on the basis of the relative intensities and frequency shift of amid I (AI) and amid II (AII) vibrational bands of the collagen, ATR-FTIR spectra revealed diffuse hydrolysis and gelatinization of the parchment writing support; diffuse and non-homogeny degradation by gelatinization has been also confirmed by the IG gelatinization index deduced from the NIR bands on the FOR spectra. This IG index, defined as the ratio I (6860 cm-1) / I (6685 cm-1), ranges in the interval 0.98 – 1 and highlights collagen degradation at the molecular level. Sequentially Shifted Excitation Raman measurements (SSERS) crossed to X-ray fluorescence (XRF) ones on the black writings revealed that the black ink used is an iron-copper gall one, while FOR spectra are typical of pure metal gall inks. These later reflectance measurements exclude, thus, any intentional addition of carbon black to the ink recipe. Moreover, no lead white had been used while pre-drawing the writing lines. On another side, ATR-FTIR measurements highlighted the presence of oxalates as ink degradation products. Considering the parchment handcrafting, the combination of XRF and ATR-FTIR measurements led to the assumption that this writing support had been prepared according to ancient Middle East practices; the parchment infrared fingerprint seems identical to that of the Dead Sea scroll. The present multi-technical analyses are the first ones performed on an ancient Judaic written parchment of Morocco; it is under furthering. The investigation will be extended to other parchments belonging to the Jewish Cultural Heritage Museum of Morocco in Casablanca.Keywords: torah scroll, parchment, black ink, non-invasive analyses, XRF/ATR-FTIR/RAMAN/FORS
Procedia PDF Downloads 87127 Condition Assessment and Diagnosis for Aging Drinking Water Pipeline According to Scientific and Reasonable Methods
Authors: Dohwan Kim, Dongchoon Ryou, Pyungjong Yoo
Abstract:
In public water facilities, drinking water distribution systems have played an important role along with water purification systems. The water distribution network is one of the most expensive components of water supply infrastructure systems. To improve the reliability for the drinking rate of tap water, advanced water treatment processes such as granular activated carbon and membrane filtration were used by water service providers in Korea. But, distrust of the people for tap water are still. Therefore, accurate diagnosis and condition assessment for water pipelines are required to supply the clean water. The internal corrosion of water pipe has increased as time passed. Also, the cross-sectional areas in pipe are reduced by the rust, deposits and tubercles. It is the water supply ability decreases as the increase of hydraulic pump capacity is required to supply an amount of water, such as the initial condition. If not, the poor area of water supply will be occurred by the decrease of water pressure. In order to solve these problems, water managers and engineers should be always checked for the current status of the water pipe, such as water leakage and damage of pipe. If problems occur, it should be able to respond rapidly and make an accurate estimate. In Korea, replacement and rehabilitation of aging drinking water pipes are carried out based on the circumstances of simply buried years. So, water distribution system management may not consider the entire water pipeline network. The long-term design and upgrading of a water distribution network should address economic, social, environmental, health, hydraulic, and other technical issues. This is a multi-objective problem with a high level of complexity. In this study, the thickness of the old water pipes, corrosion levels of the inner and outer surface for water pipes, basic data research (i.e. pipe types, buried years, accident record, embedded environment, etc.), specific resistance of soil, ultimate tensile strength and elongation of metal pipes, samples characteristics, and chemical composition analysis were performed about aging drinking water pipes. Samples of water pipes used in this study were cement mortar lining ductile cast iron pipe (CML-DCIP, diameter 100mm) and epoxy lining steel pipe (diameter 65 and 50mm). Buried years of CML-DCIP and epoxy lining steel pipe were respectively 32 and 23 years. The area of embedded environment was marine reclamation zone since 1940’s. The result of this study was that CML-DCIP needed replacement and epoxy lining steel pipe was still useful.Keywords: drinking water distribution system, water supply, replacement, rehabilitation, water pipe
Procedia PDF Downloads 259126 Viability Analysis of a Centralized Hydrogen Generation Plant for Use in Oil Refining Industry
Authors: C. Fúnez Guerra, B. Nieto Calderón, M. Jaén Caparrós, L. Reyes-Bozo, A. Godoy-Faúndez, E. Vyhmeister
Abstract:
The global energy system is experiencing a change of scenery. Unstable energy markets, an increasing focus on climate change and its sustainable development is forcing businesses to pursue new solutions in order to ensure future economic growth. This has led to the interest in using hydrogen as an energy carrier in transportation and industrial applications. As an energy carrier, hydrogen is accessible and holds a high gravimetric energy density. Abundant in hydrocarbons, hydrogen can play an important role in the shift towards low-emission fossil value chains. By combining hydrogen production by natural gas reforming with carbon capture and storage, the overall CO2 emissions are significantly reduced. In addition, the flexibility of hydrogen as an energy storage makes it applicable as a stabilizer in the renewable energy mix. The recent development in hydrogen fuel cells is also raising the expectations for a hydrogen powered transportation sector. Hydrogen value chains exist to a large extent in the industry today. The global hydrogen consumption was approximately 50 million tonnes (7.2 EJ) in 2013, where refineries, ammonia, methanol production and metal processing were main consumers. Natural gas reforming produced 48% of this hydrogen, but without carbon capture and storage (CCS). The total emissions from the production reached 500 million tonnes of CO2, hence alternative production methods with lower emissions will be necessary in future value chains. Hydrogen from electrolysis is used for a wide range of industrial chemical reactions for many years. Possibly, the earliest use was for the production of ammonia-based fertilisers by Norsk Hydro, with a test reactor set up in Notodden, Norway, in 1927. This application also claims one of the world’s largest electrolyser installations, at Sable Chemicals in Zimbabwe. Its array of 28 electrolysers consumes 80 MW per hour, producing around 21,000 Nm3/h of hydrogen. These electrolysers can compete if cheap sources of electricity are available and natural gas for steam reforming is relatively expensive. Because electrolysis of water produces oxygen as a by-product, a system of Autothermal Reforming (ATR) utilizing this oxygen has been analyzed. Replacing the air separation unit with electrolysers produces the required amount of oxygen to the ATR as well as additional hydrogen. The aim of this paper is to evaluate the technical and economic potential of large-scale production of hydrogen for oil refining industry. Sensitivity analysis of parameters such as investment costs, plant operating hours, electricity price and sale price of hydrogen and oxygen are performed.Keywords: autothermal reforming, electrolyser, hydrogen, natural gas, steam methane reforming
Procedia PDF Downloads 212125 Fabrication of SnO₂ Nanotube Arrays for Enhanced Gas Sensing Properties
Authors: Hsyi-En Cheng, Ying-Yi Liou
Abstract:
Metal-oxide semiconductor (MOS) gas sensors are widely used in the gas-detection market due to their high sensitivity, fast response, and simple device structures. However, the high working temperature of MOS gas sensors makes them difficult to integrate with the appliance or consumer goods. One-dimensional (1-D) nanostructures are considered to have the potential to lower their working temperature due to their large surface-to-volume ratio, confined electrical conduction channels, and small feature sizes. Unfortunately, the difficulty of fabricating 1-D nanostructure electrodes has hindered the development of low-temperature MOS gas sensors. In this work, we proposed a method to fabricate nanotube-arrays, and the SnO₂ nanotube-array sensors with different wall thickness were successfully prepared and examined. The fabrication of SnO₂ nanotube arrays incorporates the techniques of barrier-free anodic aluminum oxide (AAO) template and atomic layer deposition (ALD) of SnO₂. First, 1.0 µm Al film was deposited on ITO glass substrate by electron beam evaporation and then anodically oxidized by five wt% phosphoric acid solution at 5°C under a constant voltage of 100 V to form porous aluminum oxide. As the Al film was fully oxidized, a 15 min over anodization and a 30 min post chemical dissolution were used to remove the barrier oxide at the bottom end of pores to generate a barrier-free AAO template. The ALD using reactants of TiCl4 and H₂O was followed to grow a thin layer of SnO₂ on the template to form SnO₂ nanotube arrays. After removing the surface layer of SnO₂ by H₂ plasma and dissolving the template by 5 wt% phosphoric acid solution at 50°C, upright standing SnO₂ nanotube arrays on ITO glass were produced. Finally, Ag top electrode with line width of 5 μm was printed on the nanotube arrays to form SnO₂ nanotube-array sensor. Two SnO₂ nanotube-arrays with wall thickness of 30 and 60 nm were produced in this experiment for the evaluation of gas sensing ability. The flat SnO₂ films with thickness of 30 and 60 nm were also examined for comparison. The results show that the properties of ALD SnO₂ films were related to the deposition temperature. The films grown at 350°C had a low electrical resistivity of 3.6×10-3 Ω-cm and were, therefore, used for the nanotube-array sensors. The carrier concentration and mobility of the SnO₂ films were characterized by Ecopia HMS-3000 Hall-effect measurement system and were 1.1×1020 cm-3 and 16 cm3/V-s, respectively. The electrical resistance of SnO₂ film and nanotube-array sensors in air and in a 5% H₂-95% N₂ mixture gas was monitored by Pico text M3510A 6 1/2 Digits Multimeter. It was found that, at 200 °C, the 30-nm-wall SnO₂ nanotube-array sensor performs the highest responsivity to 5% H₂, followed by the 30-nm SnO₂ film sensor, the 60-nm SnO₂ film sensor, and the 60-nm-wall SnO₂ nanotube-array sensor. However, at temperatures below 100°C, all the samples were insensitive to the 5% H₂ gas. Further investigation on the sensors with thinner SnO₂ is necessary for improving the sensing ability at temperatures below 100 °C.Keywords: atomic layer deposition, nanotube arrays, gas sensor, tin dioxide
Procedia PDF Downloads 243124 Carbon-Supported Pd Nano-Particles as Green Catalysts for the Production of Fuels from Biomass
Authors: Andrea Dragu, Solen Kinayyigit, Valerie Colliere, Karin Karin Philippot, Camelia Bala, Vasile I. Parvulescu
Abstract:
The production of transportation fuels from biomass has gained a growing attention due to diminishing fossil fuel reserves, rising petroleum prices and increasing concern about global warming. In recent years, renewable hydrocarbons that are completely fungible with fossil fuels have been suggested to be efficiently produced by catalytic deoxygenation of fatty acids and their derivatives viadecarboxylation / decarbonylation. Several triglycerides (tall oil fatty acids) and saturated/unsaturated fatty acids and their corresponding esters were used as feedstocks. Their impact together with the influence of the reaction conditions and the catalyst composition on the nature of the reaction pathways of the deoxygenation of vegetable oils and their derivatives were recently reviewed. Following this state of the art the aim of the present study was the investigation of Pd NPs deposited onto mesoporous carbon supports as active and stable catalysts for the deoxygenation of oleic acid. The catalysts were prepared by the deposition of Pd NPs synthesised following an organometallic route on mesoporous carbons with different characteristics. Experiments were carried out under both batch and flow conditions. They demonstrated that under batch conditions (200 atm; 573K), the extent of the reaction depended, firstly, on the Pd loading and then on the metal dispersion and the oxidation state of palladium, both influenced by the way the support has been treated before the NPs deposition and by the preparation/stabilization methodology of Pd NPs. No aromatic compounds were detected in the reaction products but octadecanol and octadecane were observed in large extents. Under flow conditions (4 atm; 573 K), the conversion of stearic acid was superior to that observed in batch conditions. The product mixture contained over 20% heptadecane. No octadecanol, octadecane, and aromatic compounds were detected. The maxima in performances are obtained after only 0.5 h. After that, the yields in heptadecane suffer from a severe decrease until 3h reaction time. However, at that time, stopping feeding the reactor with oleic acid and flushing the catalyst only with mesitylene recovered the activity and the selectivity of the catalysts. With the complete removal of H2, the analysis revealed the presence of heptadecene in high excess compared to heptadecane (almost 7 to 1), thus suggesting decarbonylation as the main route. ICP-OES measurements indicated no leaching of palladium and simple washing of catalysts with mesitylene allowed recycling without any change in conversion or product distribution. Noteworthy, mesitylene as solvent exhibited no effect in this reaction. In conclusion, this study demonstrates the feasibility of such catalysts for the green production of fuels from biomass.Keywords: fuels from biomass, green catalyst, Pd nano-particles , recycble catalyst
Procedia PDF Downloads 304123 Analysis of Superconducting and Optical Properties in Atomic Layer Deposition and Sputtered Thin Films for Next-Generation Single-Photon Detectors
Authors: Nidhi Choudhary, Silke A. Peeters, Ciaran T. Lennon, Dmytro Besprozvannyy, Harm C. M. Knoops, Robert H. Hadfield
Abstract:
Superconducting Nanowire Single Photon Detectors (SNSPDs) have become leading devices in quantum optics and photonics, known for their exceptional efficiency in detecting single photons from ultraviolet to mid-infrared wavelengths with minimal dark counts, low noise, and reduced timing jitter. Recent advancements in materials science focus attention on refractory metal thin films such as NbN and NbTiN to enhance the optical properties and superconducting performance of SNSPDs, opening the way for next-generation detectors. These films have been deposited by several different techniques, such as atomic layer deposition (ALD), plasma pro-advanced plasma processing (ASP) and magnetron sputtering. The fabrication flexibility of these films enables precise control over morphology, crystallinity, stoichiometry and optical properties, which is crucial for optimising the SNSPD performance. Hence, it is imperative to study the optical and superconducting properties of these materials across a wide range of wavelengths. This study provides a comprehensive analysis of the optical and superconducting properties of some important materials in this category (NbN, NbTiN) by different deposition methods. Using Variable angle ellipsometry spectroscopy (VASE), we measured the refractive index, extinction, and absorption coefficient across a wide wavelength range (200-1700 nm) to enhance light confinement for optical communication devices. The critical temperature and sheet resistance were measured using a four-probe method in a custom-built, cryogen-free cooling system with a Sumitomo RDK-101D cold head and CNA-11C compressor. Our results indicate that ALD-deposited NbN shows a higher refractive index and extinction coefficient in the near-infrared region (~1500 nm) than sputtered NbN of the same thickness. Further, the analysis of the optical properties of plasma pro-ASP deposited NbTiN was performed at different substrate bias voltages and different thicknesses. The analysis of substrate bias voltage indicates that the maximum value of the refractive index and extinction coefficient observed for the substrate biasing of 50-80 V across a substrate bias range of (0 V - 150 V). The optical properties of sputtered NbN films are also investigated in terms of the different substrate temperatures during deposition (100 °C-500 °C). We find the higher the substrate temperature during deposition, the higher the value of the refractive index and extinction coefficient has been observed. In all our superconducting thin films ALD-deposited NbN films possess the highest critical temperature (~12 K) compared to sputtered (~8 K) and plasma pro-ASP (~5 K).Keywords: optical communication, thin films, superconductivity, atomic layer deposition (ALD), niobium nitride (NbN), niobium titanium nitride (NbTiN), SNSPD, superconducting detector, photon-counting.
Procedia PDF Downloads 35122 High Capacity SnO₂/Graphene Composite Anode Materials for Li-Ion Batteries
Authors: Hilal Köse, Şeyma Dombaycıoğlu, Ali Osman Aydın, Hatem Akbulut
Abstract:
Rechargeable lithium-ion batteries (LIBs) have become promising power sources for a wide range of applications, such as mobile communication devices, portable electronic devices and electrical/hybrid vehicles due to their long cycle life, high voltage and high energy density. Graphite, as anode material, has been widely used owing to its extraordinary electronic transport properties, large surface area, and high electrocatalytic activities although its limited specific capacity (372 mAh g-1) cannot fulfil the increasing demand for lithium-ion batteries with higher energy density. To settle this problem, many studies have been taken into consideration to investigate new electrode materials and metal oxide/graphene composites are selected as a kind of promising material for lithium ion batteries as their specific capacities are much higher than graphene. Among them, SnO₂, an n-type and wide band gap semiconductor, has attracted much attention as an anode material for the new-generation lithium-ion batteries with its high theoretical capacity (790 mAh g-1). However, it suffers from large volume changes and agglomeration associated with the Li-ion insertion and extraction processes, which brings about failure and loss of electrical contact of the anode. In addition, there is also a huge irreversible capacity during the first cycle due to the formation of amorphous Li₂O matrix. To obtain high capacity anode materials, we studied on the synthesis and characterization of SnO₂-Graphene nanocomposites and investigated the capacity of this free-standing anode material in this work. For this aim, firstly, graphite oxide was obtained from graphite powder using the method described by Hummers method. To prepare the nanocomposites as free-standing anode, graphite oxide particles were ultrasonicated in distilled water with SnO2 nanoparticles (1:1, w/w). After vacuum filtration, the GO-SnO₂ paper was peeled off from the PVDF membrane to obtain a flexible, free-standing GO paper. Then, GO structure was reduced in hydrazine solution. Produced SnO2- graphene nanocomposites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), and X-ray diffraction (XRD) analyses. CR2016 cells were assembled in a glove box (MBraun-Labstar). The cells were charged and discharged at 25°C between fixed voltage limits (2.5 V to 0.2 V) at a constant current density on a BST8-MA MTI model battery tester with 0.2C charge-discharge rate. Cyclic voltammetry (CV) was performed at the scan rate of 0.1 mVs-1 and electrochemical impedance spectroscopy (EIS) measurements were carried out using Gamry Instrument applying a sine wave of 10 mV amplitude over a frequency range of 1000 kHz-0.01 Hz.Keywords: SnO₂-graphene, nanocomposite, anode, Li-ion battery
Procedia PDF Downloads 230121 Measuring Biobased Content of Building Materials Using Carbon-14 Testing
Authors: Haley Gershon
Abstract:
The transition from using fossil fuel-based building material to formulating eco-friendly and biobased building materials plays a key role in sustainable building. The growing demand on a global level for biobased materials in the building and construction industries heightens the importance of carbon-14 testing, an analytical method used to determine the percentage of biobased content that comprises a material’s ingredients. This presentation will focus on the use of carbon-14 analysis within the building materials sector. Carbon-14, also known as radiocarbon, is a weakly radioactive isotope present in all living organisms. Any fossil material older than 50,000 years will not contain any carbon-14 content. The radiocarbon method is thus used to determine the amount of carbon-14 content present in a given sample. Carbon-14 testing is performed according to ASTM D6866, a standard test method developed specifically for biobased content determination of material in solid, liquid, or gaseous form, which requires radiocarbon dating. Samples are combusted and converted into a solid graphite form and then pressed onto a metal disc and mounted onto a wheel of an accelerator mass spectrometer (AMS) machine for the analysis. The AMS instrument is used in order to count the amount of carbon-14 present. By submitting samples for carbon-14 analysis, manufacturers of building materials can confirm the biobased content of ingredients used. Biobased testing through carbon-14 analysis reports results as percent biobased content, indicating the percentage of ingredients coming from biomass sourced carbon versus fossil carbon. The analysis is performed according to standardized methods such as ASTM D6866, ISO 16620, and EN 16640. Products 100% sourced from plants, animals, or microbiological material are therefore 100% biobased, while products sourced only from fossil fuel material are 0% biobased. Any result in between 0% and 100% biobased indicates that there is a mixture of both biomass-derived and fossil fuel-derived sources. Furthermore, biobased testing for building materials allows manufacturers to submit eligible material for certification and eco-label programs such as the United States Department of Agriculture (USDA) BioPreferred Program. This program includes a voluntary labeling initiative for biobased products, in which companies may apply to receive and display the USDA Certified Biobased Product label, stating third-party verification and displaying a product’s percentage of biobased content. The USDA program includes a specific category for Building Materials. In order to qualify for the biobased certification under this product category, examples of product criteria that must be met include minimum 62% biobased content for wall coverings, minimum 25% biobased content for lumber, and a minimum 91% biobased content for floor coverings (non-carpet). As a result, consumers can easily identify plant-based products in the marketplace.Keywords: carbon-14 testing, biobased, biobased content, radiocarbon dating, accelerator mass spectrometry, AMS, materials
Procedia PDF Downloads 160120 Study of Chemical State Analysis of Rubidium Compounds in Lα, Lβ₁, Lβ₃,₄ and Lγ₂,₃ X-Ray Emission Lines with Wavelength Dispersive X-Ray Fluorescence Spectrometer
Authors: Harpreet Singh Kainth
Abstract:
Rubidium salts have been commonly used as an electrolyte to improve the efficiency cycle of Li-ion batteries. In recent years, it has been implemented into the large scale for further technological advances to improve the performance rate and better cyclability in the batteries. X-ray absorption spectroscopy (XAS) is a powerful tool for obtaining the information in the electronic structure which involves the chemical state analysis in the active materials used in the batteries. However, this technique is not well suited for the industrial applications because it needs a synchrotron X-ray source and special sample file for in-situ measurements. In contrast to this, conventional wavelength dispersive X-ray fluorescence (WDXRF) spectrometer is nondestructive technique used to study the chemical shift in all transitions (K, L, M, …) and does not require any special pre-preparation planning. In the present work, the fluorescent Lα, Lβ₁ , Lβ₃,₄ and Lγ₂,₃ X-ray spectra of rubidium in different chemical forms (Rb₂CO₃ , RbCl, RbBr, and RbI) have been measured first time with high resolution wavelength dispersive X-ray fluorescence (WDXRF) spectrometer (Model: S8 TIGER, Bruker, Germany), equipped with an Rh anode X-ray tube (4-kW, 60 kV and 170 mA). In ₃₇Rb compounds, the measured energy shifts are in the range (-0.45 to - 1.71) eV for Lα X-ray peak, (0.02 to 0.21) eV for Lβ₁ , (0.04 to 0.21) eV for Lβ₃ , (0.15 to 0.43) eV for Lβ₄ and (0.22 to 0.75) eV for Lγ₂,₃ X-ray emission lines. The chemical shifts in rubidium compounds have been measured by considering Rb₂CO₃ compounds taking as a standard reference. A Voigt function is used to determine the central peak position of all compounds. Both positive and negative shifts have been observed in L shell emission lines. In Lα X-ray emission lines, all compounds show negative shift while in Lβ₁, Lβ₃,₄, and Lγ₂,₃ X-ray emission lines, all compounds show a positive shift. These positive and negative shifts result increase or decrease in X-ray energy shifts. It looks like that ligands attached with central metal atom attract or repel the electrons towards or away from the parent nucleus. This pulling and pushing character of rubidium affects the central peak position of the compounds which causes a chemical shift. To understand the chemical effect more briefly, factors like electro-negativity, line intensity ratio, effective charge and bond length are responsible for the chemical state analysis in rubidium compounds. The effective charge has been calculated from Suchet and Pauling method while the line intensity ratio has been calculated by calculating the area under the relevant emission peak. In the present work, it has been observed that electro-negativity, effective charge and intensity ratio (Lβ₁/Lα, Lβ₃,₄/Lα and Lγ₂,₃/Lα) are inversely proportional to the chemical shift (RbCl > RbBr > RbI), while bond length has been found directly proportional to the chemical shift (RbI > RbBr > RbCl).Keywords: chemical shift in L emission lines, bond length, electro-negativity, effective charge, intensity ratio, Rubidium compounds, WDXRF spectrometer
Procedia PDF Downloads 508119 Life Cycle Assessment of a Parabolic Solar Cooker
Authors: Bastien Sanglard, Lou Magnat, Ligia Barna, Julian Carrey, Sébastien Lachaize
Abstract:
Cooking is a primary need for humans, several techniques being used around the globe based on different sources of energy: electricity, solid fuel (wood, coal...), fuel or liquefied petroleum gas. However, all of them leads to direct or indirect greenhouse gas emissions and sometimes health damage in household. Therefore, the solar concentrated power represent a great option to lower the damages because of a cleaner using phase. Nevertheless, the construction phase of the solar cooker still requires primary energy and materials, which leads to environmental impacts. The aims of this work is to analyse the ecological impacts of a commercialaluminium parabola and to compare it with other means of cooking, taking the boiling of 2 litres of water three times a day during 40 years as the functional unit. Life cycle assessment was performed using the software Umberto and the EcoInvent database. Calculations were realized over more than 13 criteria using two methods: the international panel on climate change method and the ReCiPe method. For the reflector itself, different aluminium provenances were compared, as well as the use of recycled aluminium. For the structure, aluminium was compared to iron (primary and recycled) and wood. Results show that climate impacts of the studied parabola was 0.0353 kgCO2eq/kWh when built with Chinese aluminium and can be reduced by 4 using aluminium from Canada. Assessment also showed that using 32% of recycled aluminium would reduce the impact by 1.33 and 1.43 compared to the use of primary Canadian aluminium and primary Chinese aluminium, respectively. The exclusive use of recycled aluminium lower the impact by 17. Besides, the use of iron (recycled or primary) or wood for the structure supporting the reflector significantly lowers the impact. The impact categories of the ReCiPe method show that the parabola made from Chinese aluminium has the heaviest impact - except for metal resource depletion - compared to aluminium from Canada, recycled aluminium or iron. Impact of solar cooking was then compared to gas stove and induction. The gas stove model was a cast iron tripod that supports the cooking pot, and the induction plate was as well a single spot plate. Results show the parabolic solar cooker has the lowest ecological impact over the 13 criteria of the ReCiPe method and over the global warming potential compared to the two other technologies. The climate impact of gas cooking is 0.628kgCO2/kWh when used with natural gas and 0.723 kgCO2/kWh when used with a bottle of gas. In each case, the main part of emissions came from gas burning. Induction cooking has a global warming potential of 0.12 kgCO2eq/kWh with the electricity mix of France, 96.3% of the impact being due to electricity production. Therefore, the electricity mix is a key factor for this impact: for instance, with the electricity mix of Germany and Poland, impacts are 0.81kgCO2eq/kWh and 1.39 kgCO2eq/kWh, respectively. Therefore, the parabolic solar cooker has a real ecological advantages compared to both gas stove and induction plate.Keywords: life cycle assessement, solar concentration, cooking, sustainability
Procedia PDF Downloads 186118 Synergy Surface Modification for High Performance Li-Rich Cathode
Authors: Aipeng Zhu, Yun Zhang
Abstract:
The growing grievous environment problems together with the exhaustion of energy resources put urgent demands for developing high energy density. Considering the factors including capacity, resource and environment, Manganese-based lithium-rich layer-structured cathode materials xLi₂MnO₃⋅(1-x)LiMO₂ (M = Ni, Co, Mn, and other metals) are drawing increasing attention due to their high reversible capacities, high discharge potentials, and low cost. They are expected to be one type of the most promising cathode materials for the next-generation Li-ion batteries (LIBs) with higher energy densities. Unfortunately, their commercial applications are hindered with crucial drawbacks such as poor rate performance, limited cycle life and continuous falling of the discharge potential. With decades of extensive studies, significant achievements have been obtained in improving their cyclability and rate performances, but they cannot meet the requirement of commercial utilization till now. One major problem for lithium-rich layer-structured cathode materials (LLOs) is the side reaction during cycling, which leads to severe surface degradation. In this process, the metal ions can dissolve in the electrolyte, and the surface phase change can hinder the intercalation/deintercalation of Li ions and resulting in low capacity retention and low working voltage. To optimize the LLOs cathode material, the surface coating is an efficient method. Considering the price and stability, Al₂O₃ was used as a coating material in the research. Meanwhile, due to the low initial Coulombic efficiency (ICE), the pristine LLOs was pretreated by KMnO₄ to increase the ICE. The precursor was prepared by a facile coprecipitation method. The as-prepared precursor was then thoroughly mixed with Li₂CO₃ and calcined in air at 500℃ for 5h and 900℃ for 12h to produce Li₁.₂[Ni₀.₂Mn₀.₆]O₂ (LNMO). The LNMO was then put into 0.1ml/g KMnO₄ solution stirring for 3h. The resultant was filtered and washed with water, and dried in an oven. The LLOs obtained was dispersed in Al(NO₃)₃ solution. The mixture was lyophilized to confer the Al(NO₃)₃ was uniformly coated on LLOs. After lyophilization, the LLOs was calcined at 500℃ for 3h to obtain LNMO@LMO@ALO. The working electrodes were prepared by casting the mixture of active material, acetylene black, and binder (polyvinglidene fluoride) dissolved in N-methyl-2-pyrrolidone with a mass ratio of 80: 15: 5 onto an aluminum foil. The electrochemical performance tests showed that the multiple surface modified materials had a higher initial Coulombic efficiency (84%) and better capacity retention (91% after 100 cycles) compared with that of pristine LNMO (76% and 80%, respectively). The modified material suggests that the KMnO₄ pretreat and Al₂O₃ coating can increase the ICE and cycling stability.Keywords: Li-rich materials, surface coating, lithium ion batteries, Al₂O₃
Procedia PDF Downloads 134117 Assessing Acute Toxicity and Endocrine Disruption Potential of Selected Packages Internal Layers Extracts
Authors: N. Szczepanska, B. Kudlak, G. Yotova, S. Tsakovski, J. Namiesnik
Abstract:
In the scientific literature related to the widely understood issue of packaging materials designed to have contact with food (food contact materials), there is much information on raw materials used for their production, as well as their physiochemical properties, types, and parameters. However, not much attention is given to the issues concerning migration of toxic substances from packaging and its actual influence on the health of the final consumer, even though health protection and food safety are the priority tasks. The goal of this study was to estimate the impact of particular foodstuff packaging type, food production, and storage conditions on the degree of leaching of potentially toxic compounds and endocrine disruptors to foodstuffs using the acute toxicity test Microtox and XenoScreen YES YAS assay. The selected foodstuff packaging materials were metal cans used for fish storage and tetrapak. Five stimulants respectful to specific kinds of food were chosen in order to assess global migration: distilled water for aqueous foods with a pH above 4.5; acetic acid at 3% in distilled water for acidic aqueous food with pH below 4.5; ethanol at 5% for any food that may contain alcohol; dimethyl sulfoxide (DMSO) and artificial saliva were used in regard to the possibility of using it as an simulation medium. For each packaging three independent variables (temperature and contact time) factorial design simulant was performed. Xenobiotics migration from epoxy resins was studied at three different temperatures (25°C, 65°C, and 121°C) and extraction time of 12h, 48h and 2 weeks. Such experimental design leads to 9 experiments for each food simulant as conditions for each experiment are obtained by combination of temperature and contact time levels. Each experiment was run in triplicate for acute toxicity and in duplicate for estrogen disruption potential determination. Multi-factor analysis of variation (MANOVA) was used to evaluate the effects of the three main factors solvent, temperature (temperature regime for cup), contact time and their interactions on the respected dependent variable (acute toxicity or estrogen disruption potential). From all stimulants studied the most toxic were can and tetrapak lining acetic acid extracts that are indication for significant migration of toxic compounds. This migration increased with increase of contact time and temperature and justified the hypothesis that food products with low pH values cause significant damage internal resin filling. Can lining extracts of all simulation medias excluding distilled water and artificial saliva proved to contain androgen agonists even at 25°C and extraction time of 12h. For tetrapak extracts significant endocrine potential for acetic acid, DMSO and saliva were detected.Keywords: food packaging, extraction, migration, toxicity, biotest
Procedia PDF Downloads 181116 Recirculation Type Photocatalytic Reactor for Degradation of Monocrotophos Using TiO₂ and W-TiO₂ Coated Immobilized Clay Beads
Authors: Abhishek Sraw, Amit Sobti, Yamini Pandey, R. K. Wanchoo, Amrit Pal Toor
Abstract:
Monocrotophos (MCP) is a widely used pesticide in India, which belong to an extremely toxic organophosphorus family, is persistent in nature and its toxicity is widely reported in all environmental segments in the country. Advanced Oxidation Process (AOP) is a promising solution to the problem of water pollution. TiO₂ is being widely used as a photocatalyst because of its many advantages, but it has a large band gap, due to which it is modified using metal and nonmetal dopant to make it active under sunlight and visible light. The use of nanosized powdered catalysts makes the recovery process extremely complicated. Hence the aim is to use low cost, easily available, eco-friendly clay material in form of bead as the support for the immobilization of catalyst, to solve the problem of post-separation of suspended catalyst from treated water. A recirculation type photocatalytic reactor (RTPR), using ultraviolet light emitting source (blue black lamp) was designed which work effectively for both suspended catalysts and catalyst coated clay beads. The bare, TiO₂ and W-TiO₂ coated clay beads were characterized by scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS) and N₂ adsorption–desorption measurements techniques (BET) for their structural, textural and electronic properties. The study involved variation of different parameters like light conditions, recirculation rate, light intensity and initial MCP concentration under UV and sunlight for the degradation of MCP. The degradation and mineralization studies of the insecticide solution were performed using UV-Visible spectrophotometer, and COD vario-photometer and GC-MS analysis respectively. The main focus of the work lies in checking the recyclability of the immobilized TiO₂ over clay beads in the developed RTPR up to 30 continuous cycles without reactivation of catalyst. The results demonstrated the economic feasibility of the utilization of developed RTPR for the efficient purification of pesticide polluted water. The prepared TiO₂ clay beads delivered 75.78% degradation of MCP under UV light with negligible catalyst loss. Application of W-TiO₂ coated clay beads filled RTPR for the degradation of MCP under sunlight, however, shows 32% higher degradation of MCP than the same system based on undoped TiO₂. The COD measurements of TiO₂ coated beads led to 73.75% COD reduction while W-TiO₂ resulted in 87.89% COD reduction. The GC-MS analysis confirms the efficient breakdown of complex MCP molecules into simpler hydrocarbons. This supports the promising application of clay beads as a support for the photocatalyst and proves its eco-friendly nature, excellent recyclability, catalyst holding capacity, and economic viability.Keywords: immobilized clay beads, monocrotophos, recirculation type photocatalytic reactor, TiO₂
Procedia PDF Downloads 183115 Tailoring Quantum Oscillations of Excitonic Schrodinger’s Cats as Qubits
Authors: Amit Bhunia, Mohit Kumar Singh, Maryam Al Huwayz, Mohamed Henini, Shouvik Datta
Abstract:
We report [https://arxiv.org/abs/2107.13518] experimental detection and control of Schrodinger’s Cat like macroscopically large, quantum coherent state of a two-component Bose-Einstein condensate of spatially indirect electron-hole pairs or excitons using a resonant tunneling diode of III-V Semiconductors. This provides access to millions of excitons as qubits to allow efficient, fault-tolerant quantum computation. In this work, we measure phase-coherent periodic oscillations in photo-generated capacitance as a function of an applied voltage bias and light intensity over a macroscopically large area. Periodic presence and absence of splitting of excitonic peaks in the optical spectra measured by photocapacitance point towards tunneling induced variations in capacitive coupling between the quantum well and quantum dots. Observation of negative ‘quantum capacitance’ due to a screening of charge carriers by the quantum well indicates Coulomb correlations of interacting excitons in the plane of the sample. We also establish that coherent resonant tunneling in this well-dot heterostructure restricts the available momentum space of the charge carriers within this quantum well. Consequently, the electric polarization vector of the associated indirect excitons collective orients along the direction of applied bias and these excitons undergo Bose-Einstein condensation below ~100 K. Generation of interference beats in photocapacitance oscillation even with incoherent white light further confirm the presence of stable, long-range spatial correlation among these indirect excitons. We finally demonstrate collective Rabi oscillations of these macroscopically large, ‘multipartite’, two-level, coupled and uncoupled quantum states of excitonic condensate as qubits. Therefore, our study not only brings the physics and technology of Bose-Einstein condensation within the reaches of semiconductor chips but also opens up experimental investigations of the fundamentals of quantum physics using similar techniques. Operational temperatures of such two-component excitonic BEC can be raised further with a more densely packed, ordered array of QDs and/or using materials having larger excitonic binding energies. However, fabrications of single crystals of 0D-2D heterostructures using 2D materials (e.g. transition metal di-chalcogenides, oxides, perovskites etc.) having higher excitonic binding energies are still an open challenge for semiconductor optoelectronics. As of now, these 0D-2D heterostructures can already be scaled up for mass production of miniaturized, portable quantum optoelectronic devices using the existing III-V and/or Nitride based semiconductor fabrication technologies.Keywords: exciton, Bose-Einstein condensation, quantum computation, heterostructures, semiconductor Physics, quantum fluids, Schrodinger's Cat
Procedia PDF Downloads 183114 Modified Graphene Oxide in Ceramic Composite
Authors: Natia Jalagonia, Jimsher Maisuradze, Karlo Barbakadze, Tinatin Kuchukhidze
Abstract:
At present intensive scientific researches of ceramics, cermets and metal alloys have been conducted for improving materials physical-mechanical characteristics. In purpose of increasing impact strength of ceramics based on alumina, simple method of graphene homogenization was developed. Homogeneous distribution of graphene (homogenization) in pressing composite became possible through the connection of functional groups of graphene oxide (-OH, -COOH, -O-O- and others) and alumina superficial OH groups with aluminum organic compounds. These two components connect with each other with -O-Al–O- bonds, and by their thermal treatment (300–500°C), graphene and alumina phase are transformed. Thus, choosing of aluminum organic compounds for modification is stipulated by the following opinion: aluminum organic compounds fragments fixed on graphene and alumina finally are transformed into an integral part of the matrix. By using of other elements as modifier on the matrix surface (Al2O3) other phases are transformed, which change sharply physical-mechanical properties of ceramic composites, for this reason, effect caused by the inclusion of graphene will be unknown. Fixing graphene fragments on alumina surface by alumoorganic compounds result in new type graphene-alumina complex, in which these two components are connected by C-O-Al bonds. Part of carbon atoms in graphene oxide are in sp3 hybrid state, so functional groups (-OH, -COOH) are located on both sides of graphene oxide layer. Aluminum organic compound reacts with graphene oxide at the room temperature, and modified graphene oxide is obtained: R2Al-O-[graphene]–COOAlR2. Remaining Al–C bonds also reacts rapidly with surface OH groups of alumina. In a result of these process, pressing powdery composite [Al2O3]-O-Al-O-[graphene]–COO–Al–O–[Al2O3] is obtained. For the purpose, graphene oxide suspension in dry toluene have added alumoorganic compound Al(iC4H9)3 in toluene with equimolecular ratio. Obtained suspension has put in the flask and removed solution in a rotary evaporate presence nitrogen atmosphere. Obtained powdery have been researched and used to consolidation of ceramic materials based on alumina. Ceramic composites are obtained in high temperature vacuum furnace with different temperature and pressure conditions. Received ceramics do not have open pores and their density reaches 99.5 % of TD. During the work, the following devices have been used: High temperature vacuum furnace OXY-GON Industries Inc (USA), device of spark-plasma synthesis, induction furnace, Electronic Scanning Microscopes Nikon Eclipse LV 150, Optical Microscope NMM-800TRF, Planetary mill Pulverisette 7 premium line, Shimadzu Dynamic Ultra Micro Hardness Tester DUH-211S, Analysette 12 Dynasizer and others.Keywords: graphene oxide, alumo-organic, ceramic
Procedia PDF Downloads 310