Search results for: cellulose/zinc and nickeloxides composite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2997

Search results for: cellulose/zinc and nickeloxides composite

657 Waterproofing Agent in Concrete for Tensile Improvement

Authors: Muhamad Azani Yahya, Umi Nadiah Nor Ali, Mohammed Alias Yusof, Norazman Mohamad Nor, Vikneswaran Munikanan

Abstract:

In construction, concrete is one of the materials that can commonly be used as for structural elements. Concrete consists of cement, sand, aggregate and water. Concrete can be added with admixture in the wet condition to suit the design purpose such as to prolong the setting time to improve workability. For strength improvement, concrete is being added with other hybrid materials to increase strength; this is because the tensile strength of concrete is very low in comparison to the compressive strength. This paper shows the usage of a waterproofing agent in concrete to enhance the tensile strength. High tensile concrete is expensive because the concrete mix needs fiber and also high cement content to be incorporated in the mix. High tensile concrete being used for structures that are being imposed by high impact dynamic load such as blast loading that hit the structure. High tensile concrete can be defined as a concrete mix design that achieved 30%-40% tensile strength compared to its compression strength. This research evaluates the usage of a waterproofing agent in a concrete mix as an element of reinforcement to enhance the tensile strength. According to the compression and tensile test, it shows that the concrete mix with a waterproofing agent enhanced the mechanical properties of the concrete. It is also show that the composite concrete with waterproofing is a high tensile concrete; this is because of the tensile is between 30% and 40% of the compression strength. This mix is economical because it can produce high tensile concrete with low cost.

Keywords: high tensile concrete, waterproofing agent, concrete, rheology

Procedia PDF Downloads 327
656 Cointegration Dynamics in Asian Stock Markets: Implications for Long-Term Portfolio Management

Authors: Xinyi Xu

Abstract:

This study conducts a detailed examination of Asian stock markets over the period from 2008 to 2023, with a focus on the dynamics of cointegration and their relevance for long-term investment strategies. Specifically, we assess the co-movement and potential for pairs trading—a strategy where investors take opposing positions on two stocks, indices, or financial instruments that historically move together. For example, we explore the relationship between the Nikkei 225 (N225), Japan’s benchmark stock index, and the Straits Times Index (STI) of Singapore, as well as the relationship between the Korea Composite Stock Price Index (KS11) and the STI. The methodology includes tests for normality, stationarity, cointegration, and the application of Vector Error Correction Modeling (VECM). Our findings reveal significant long-term relationships between these pairs, indicating opportunities for pairs trading strategies. Furthermore, the research underscores the challenges posed by model instability and the influence of major global incidents, which are identified as structural breaks. These findings pave the way for further exploration into the intricacies of financial market dynamics.

Keywords: normality tests, stationarity, cointegration, VECM, pairs trading

Procedia PDF Downloads 56
655 The Concentration of Natural Alpha Emitters Radionuclides in Fish and Their Contribution to the Internal Dose

Authors: Wagner Pereira, Alphonse Kelecom

Abstract:

Mining can impact the environment, and the major impact of some mining activities is the radiological impact. In human populations, such impact is well studied and regulated. For biota, this assessment always had as focus the protection of human food chain. The protection of biota itself is a new approach, still developing. In order to contribute to this new approach, fish collecting was carried out in areas of naturally occurring radioactive materials (NORM), where a uranium mine is in decommissioning phase. The activity concentrations were analyzed, in Bq/kg wet weight, for Uranium (Unat), Th-232 and Ra-226 in the lambari fish Astyanax bimaculatus L. (omnivorous fish) and in the traíra fish Hoplias malabaricus Bloch, 1794 (carnivorous fish). Seven composite samples (that is: a sufficient number of individuals to reach at least 2 kg of fresh weight) were collected every six months between 2013 and 2015. The mean activity concentrations (AC) for uranium ranged from 1.12 (lambari) to 0.60 (lungfish). For Th, variations ranged from 0.30 to 0.05 (lambari and traíra, respectively). Finally, the Ra-226 means ranged between 0.08 and 0.03. No temporal trends of accumulation could be identified. Systematically, the AC values of radionuclides were higher in omnivorous fish when compared to the carnivore ones.

Keywords: biota dose, NORM, fish, environmental protection

Procedia PDF Downloads 258
654 Preparation of IPNs and Effect of Swift Heavy Ions Irradiation on their Physico-Chemical Properties

Authors: B. S Kaith, K. Sharma, V. Kumar, S. Kalia

Abstract:

Superabsorbent are three-dimensional networks of linear or branched polymeric chains which can uptake large volume of biological fluids. The ability is due to the presence of functional groups like –NH2, -COOH and –OH. Such cross-linked products based on natural materials, such as cellulose, starch, dextran, gum and chitosan, because of their easy availability, low production cost, non-toxicity and biodegradability have attracted the attention of Scientists and Technologists all over the world. Since natural polymers have better biocompatibility and are non-toxic than most synthetic one, therefore, such materials can be applied in the preparation of controlled drug delivery devices, biosensors, tissue engineering, contact lenses, soil conditioning, removal of heavy metal ions and dyes. Gums are natural potential antioxidants and are used as food additives. They have excellent properties like high solubility, pH stability, non-toxicity and gelling characteristics. Till date lot of methods have been applied for the synthesis and modifications of cross-linked materials with improved properties suitable for different applications. It is well known that ion beam irradiation can play a crucial role to synthesize, modify, crosslink or degrade polymeric materials. High energetic heavy ions irradiation on polymer film induces significant changes like chain scission, cross-linking, structural changes, amorphization and degradation in bulk. Various researchers reported the effects of low and heavy ion irradiation on the properties of polymeric materials and observed significant improvement in optical, electrical, chemical, thermal and dielectric properties. Moreover, modifications induced in the materials mainly depend on the structure, the ion beam parameters like energy, linear energy transfer, fluence, mass, charge and the nature of the target material. Ion-beam irradiation is a useful technique for improving the surface properties of biodegradable polymers without missing the bulk properties. Therefore, a considerable interest has been grown to study the effects of SHIs irradiation on the properties of synthesized semi-IPNs and IPNs. The present work deals with the preparation of semi-IPNs and IPNs and impact of SHI like O7+ and Ni9+ irradiation on optical, chemical, structural, morphological and thermal properties along with impact on different applications. The results have been discussed on the basis of Linear Energy Transfer (LET) of the ions.

Keywords: adsorbent, gel, IPNs, semi-IPNs

Procedia PDF Downloads 372
653 Response of Vibration and Damping System of UV Irradiated Renewable Biopolymer

Authors: Anika Zafiah M. Rus, Nik Normunira Mat Hassan

Abstract:

Biopolymer made from renewable material are one of the most important group of polymer because of their versatility and they can be manufactured in a wide range of densities and stiffness. In this project, biopolymer based on waste vegetable oil were synthesized and crosslink with commercial polymethane polyphenyl isocyanate (known as BF).The BF was compressed by using hot compression moulding technique at 90 oC based on the evaporation of volatile matter and known as compress biopolymer (CB). The density, vibration and damping characteristic of CB were determined after UV irradiation. Treatment with titanium dioxide (TiO2) was found to affect the physical property of compress biopolymer composite (CBC). The density of CBC samples was steadily increased with an increase of UV irradiation time and TiO2 loading. The highest density of CBC samples is at 10 % of TiO2 loading of 1.1088 g/cm3 due to the amount of filler loading. The vibration and damping characteristic of CBC samples was generated at displacements of 1 mm and 1.5 mm and acceleration of 0.1 G and 0.15 G base excitation according to ASTM D3580-9. It was revealed that, the vibration and damping characteristic of CBC samples is significantly increased with the increasing of UV irradiation time, lowest thickness and percentages of TiO2 loading at the frequency range of 15 - 25 Hz. Therefore, this study indicated that the damping property of CBC could be improved upon prolonged exposure to UV irradiation.

Keywords: biopolymer flexible foam, TGA, UV irradiation, vibration and damping

Procedia PDF Downloads 466
652 Analysis of Artificial Hip Joint Using Finite Element Method

Authors: Syed Zameer, Mohamed Haneef

Abstract:

Hip joint plays very important role in human beings as it takes up the whole body forces generated due to various activities. These loads are repetitive and fluctuating depending on the activities such as standing, sitting, jogging, stair casing, climbing, etc. which may lead to failure of Hip joint. Hip joint modification and replacement are common in old aged persons as well as younger persons. In this research study static and Fatigue analysis of Hip joint model was carried out using finite element software ANSYS. Stress distribution obtained from result of static analysis, material properties and S-N curve data of fabricated Ultra High molecular weight polyethylene / 50 wt% short E glass fibres + 40 wt% TiO2 Polymer matrix composites specimens were used to estimate fatigue life of Hip joint using stiffness Degradation model for polymer matrix composites. The stress distribution obtained from static analysis was found to be within the acceptable range.The factor of safety calculated from linear Palmgren linear damage rule is less than one, which indicates the component is safe under the design.

Keywords: hip joint, polymer matrix composite, static analysis, fatigue analysis, stress life approach

Procedia PDF Downloads 356
651 Optimization of Adsorptive Removal of Common Used Pesticides Water Wastewater Using Golden Activated Charcoal

Authors: Saad Mohamed Elsaid, Nabil Anwar, Mahmoud Rushdi

Abstract:

One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use traded activated charcoal with gold nitrate solution; for removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption, forming a complex with the gold metal immobilized on activated carbon surfaces. In addition, the gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups, were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.

Keywords: waste water, pesticides pollution, adsorption, activated carbon

Procedia PDF Downloads 73
650 Influence of Modified and Unmodified Cow Bone on the Mechanical Properties of Reinforced Polyester Composites for Biomedical Applications

Authors: I. O. Oladele, J. A. Omotoyinbo, A. M. Okoro, A. G. Okikiola, J. L. Olajide

Abstract:

This work was carried out to investigate comparatively the effects of modified and unmodified cow bone particles on the mechanical properties of polyester matrix composites in order to investigate the suitability of the materials as biomaterial. Cow bones were procured from an abattoir, sun dried for 4 weeks and crushed. The crushed bones were divided into two, where one part was turned to ash while the other part was pulverized with laboratory ball mill before the two grades were sieved using 75 µm sieve size. Bone ash and bone particle reinforced tensile and flexural composite samples were developed from pre-determined proportions of 2, 4, 6, and 8 %. The samples after curing were stripped from the moulds and were allowed to further cure for 3 weeks before tensile and flexural tests were performed on them. The tensile test result showed that, 8 wt % bone particle reinforced polyester composites has higher tensile properties except for modulus of elasticity where 8 wt % bone ash particle reinforced composites has higher value while for flexural test, bone ash particle reinforced composites demonstrate the best flexural properties. The results show that these materials are structurally compatible.

Keywords: biomedical, composites, cow bone, mechanical properties, polyester, reinforcement

Procedia PDF Downloads 279
649 Synthesis, Characterization and Electrical Studies of Solid Polymer Electrolyte (1-x) PANI-KAg₄I₅.xAl₂O₃

Authors: Rafiuddin

Abstract:

Solid polymer electrolytes have emerged as an area of interest in the field of solid state chemistry owing to their facile and cost-effective synthesis and number of applications in different areas of chemistry, extending over a wide range of temperatures. In the present work, polymer composite solid electrolyte comprising of Polyaniline (PANI) as polymer and potassium silver iodide (KAg4I5) using alumina (Al2O3) of different compositions having the formula (1-x) PANI- KAg4I5. x Al2O3 with x ranging from 0.0 to 0.5 was prepared by solid state reaction method. The structural elucidation and characterization was done by X- Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric- Differential Thermal Analysis (TG-DTA) and Impedance Spectroscopy. The thermal analysis shows a phase transition at 147°C attributed to β-α phase transition of AgI due to the disproportionation of KAg4I5 to AgI and KAg2I3 at temperatures higher than 36°C. The X Ray diffraction analysis also confirms the presence of both AgI and KAg2I3 in the samples. The conductivities recorded over a temperature range of 40-250° C lie in the range of 10-1 to 10-3 S cm-1. Maximum conductivity was seen in the compositon x = 0.4 i.e. 1.84 × 10-2 Scm-1 at 313 K and 1.38 × 10-1 Scm-1 at 513 K, with a minimum activation energy of 0.14 eV.

Keywords: polymer solid electrolytes, XRD, DTA, electrical conductivity, impedance spectroscopy

Procedia PDF Downloads 302
648 Bio-polymer Materials for Sustainable Consumer and Medical Applications

Authors: Sonny Yip Hong Choy

Abstract:

With the ubiquity of 3D printing technology in the last decade, a wide array of material choices are available for Fused Deposition Modelling (FDM) 3D printing technology. Exploration into creating printable bio-polymers has also seen progress recently in attempts to further the sustainability agenda and circular economy. By tackling waste and pollution via recycling and reusing, food by-products resulting from mass food production may see opportunities for renewed value and alternate applications through 3D printing. To date, many pure polymers, blends, as well as composites have been developed specifically for FDM printing contexts to heighten the physical performance of final printed products. This review article covers general information on various FDM printed polymers and composites while exploring experiments designed to create printable biopolymers made from reused food by-products. The biopolymer-based composites preparation is described in detail, while their advantages and disadvantages are also discussed. In addition, this article shares knowledge and highlights experimentation that aims to achieve acceptable 3D-printed biopolymer composite properties that may address the functional requirements of different application contexts. Furthermore, the article describes a brief overview of the potential applications of such bio-polymers and the future scope in this field.

Keywords: food by-products, bio-polymers, FDM, 3d printing

Procedia PDF Downloads 81
647 Plasma Spray Deposition of Bio-Active Coating on Titanium Alloy (Ti-6Al-4V) Substrate

Authors: Renu Kumari, Jyotsna Dutta Majumdar

Abstract:

In the present study, composite coating consisting of hydroxyapatite (HA) + 50 wt% TiO2 has been developed on Ti-6Al-4V substrate by plasma spray deposition technique. Followed by plasma spray deposition, detailed surface roughness and microstructural characterization were carried out by using optical profilometer and scanning electron microscopy (SEM), respectively. The composition and phase analysis were carried out by energy-dispersive X-ray spectroscopy analysis, and X-ray diffraction (XRD) technique, respectively. The bio-activity behavior of the uncoated and coated samples was also compared by dipping test in Hank’s solution. The average surface roughness of the coating was 10 µm (as compared to 0.5 µm of as-received Ti-6Al-4V substrate) with the presence of porosities. The microstructure of the coating was found to be continuous with the presence of solidified splats. A detailed XRD analysis shows phase transformation of TiO2 from anatase to rutile, decomposition of hydroxyapatite, and formation of CaTiO3 phase. Standard dipping test confirmed a faster kinetics of deposition of calcium phosphate in the coated HA+50% wt.% TiO2 surface as compared to the as-received substrate.

Keywords: titanium, plasma spraying, microstructure, bio-activity, TiO2, hydroxyapatite

Procedia PDF Downloads 322
646 Flood Monitoring in the Vietnamese Mekong Delta Using Sentinel-1 SAR with Global Flood Mapper

Authors: Ahmed S. Afifi, Ahmed Magdy

Abstract:

Satellite monitoring is an essential tool to study, understand, and map large-scale environmental changes that affect humans, climate, and biodiversity. The Sentinel-1 Synthetic Aperture Radar (SAR) instrument provides a high collection of data in all-weather, short revisit time, and high spatial resolution that can be used effectively in flood management. Floods occur when an overflow of water submerges dry land that requires to be distinguished from flooded areas. In this study, we use global flood mapper (GFM), a new google earth engine application that allows users to quickly map floods using Sentinel-1 SAR. The GFM enables the users to adjust manually the flood map parameters, e.g., the threshold for Z-value for VV and VH bands and the elevation and slope mask threshold. The composite R:G:B image results by coupling the bands of Sentinel-1 (VH:VV:VH) reduces false classification to a large extent compared to using one separate band (e.g., VH polarization band). The flood mapping algorithm in the GFM and the Otsu thresholding are compared with Sentinel-2 optical data. And the results show that the GFM algorithm can overcome the misclassification of a flooded area in An Giang, Vietnam.

Keywords: SAR backscattering, Sentinel-1, flood mapping, disaster

Procedia PDF Downloads 105
645 New Highly-Scalable Carbon Nanotube-Reinforced Glasses and Ceramics

Authors: Konstantinos G. Dassios, Guillaume Bonnefont, Gilbert Fantozzi, Theodore E. Matikas, Costas Galiotis

Abstract:

We report herein the development and preliminary mechanical characterization of fully-dense multi-wall carbon nanotube (MWCNT)-reinforced ceramics and glasses based on a completely new methodology termed High Shear Compaction (HSC). The tubes are introduced and bound to the matrix grains by aid of polymeric binders to form flexible green bodies which are sintered and densified by spark plasma sintering to unprecedentedly high densities of 100% of the pure-matrix value. The strategy was validated across a PyrexTM glass / MWCNT composite while no identifiable factors limit application to other types of matrices. Non-destructive evaluation, based on ultrasonics, of the dynamic mechanical properties of the materials including elastic, shear and bulk modulus as well as Poisson’s ratio showed optimum property improvement at 0.5 %wt tube loading while evidence of nanoscale-specific energy dissipative characteristics acting complementary to nanotube bridging and pull-out indicate a high potential in a wide range of reinforcing and multifunctional applications.

Keywords: ceramic matrix composites, carbon nanotubes, toughening, ultrasonics

Procedia PDF Downloads 374
644 Lifetime Assessment of Highly Efficient Metal-Based Air-Diffuser through Accelerated Degradation Test

Authors: Jinyoung Choi, Tae-Ho Yoon, Sunmook Lee

Abstract:

Degradation of standard oxygen transfer efficiency (SOTE) with time was observed for the assessment of lifetime of metal-based air-diffuser, which displaced a polymer composite-based air-diffuser in order to attain a longer lifetime in the actual field. The degradation of air-diffuser occurred due to the failure of the formation of small and uniform air bubbles since the patterns formed on the disc of air-diffuser deteriorated and/or changed from their initial shapes while they were continuously exposed to the air blowing condition during the operation in the field. Therefore, the lifetime assessment of metal-based air-diffuser was carried out through an accelerated degradation test by accelerating the air-blowing conditions in 200 L/min, 300 L/min, and 400 L/min and the lifetime of normal operating condition at 120 L/min was predicted. It was found that Weibull distribution was the most proper one for describing the lifetime distribution of metal-based air-diffuser in the present study. The shape and scale parameters indicated that the accelerated blowing conditions were all within the acceleration domain. The lifetime was predicted by adopting inverse power model for a stress-life relationship and estimated to be B10=94,004 hrs with CL=95%. Acknowledgement: This work was financially supported by the Ministry of Trade, Industry and Energy (Grant number: N0001475).

Keywords: accelerated degradation test, air-diffuser, lifetime assessment, SOTE

Procedia PDF Downloads 562
643 A Descriptive Study of the Mineral Content of Conserved Forage Fed to Horses in the United Kingdom, Ireland, and France

Authors: Louise Jones, Rafael De Andrade Moral, John C. Stephens

Abstract:

Background: Minerals are an essential component of correct nutrition. Conserved hay/haylage is an important component of many horse's diets. Variations in the mineral content of conserved forage should be considered when assessing dietary intake. Objectives: This study describes the levels and differences in 15 commonly analysed minerals in conserved forage fed to horses in the United Kingdom (UK), Ireland (IRL), and France (FRA). Methods: Hay (FRA n=92, IRL n=168, UK n=152) and haylage samples (UK n=287, IRL n=49) were collected during 2017-2020. Mineral analysis was undertaken using inductively coupled plasma-mass spectrometry (ICP-MS). Statistical analysis was performed using beta regression, Gaussian, or gamma models, depending on the nature of the response variable. Results: There are significant differences in the mineral content of the UK, IRL, and FRA conserved forage samples. FRA hay samples had a significantly higher (p < 0.05) levels of Sulphur (0.16 ± 0.0051 %), Calcium (0.56 ± 0.0342%), Magnesium (0.16 ± 0.0069 mg/ kg DM), Iron (194 ± 23.0 mg/kg DM), Cobalt (0.21 ± 0.0244 mg/kg DM) and Copper (4.94 ± 0.196 mg/kg DM) content compared to hay from the other two countries. UK hay samples had significantly less (p < 0.05) Selenium (0.07 ± 0.0084 mg/kg DM), whilst IRL hay samples were significantly (p < 0.05) higher in Chloride (0.9 ± 0.026mg/kg DM) compared to hay from the other two countries. IRL haylage samples were significantly (p < 0.05) higher in Phosphorus (0.26 ± 0.0102 %), Sulphur (0.17 ± 0.0052 %), Chloride (1.01 ± 0.0519 %), Calcium (0.54 ± 0.0257 %), Selenium (0.17 ± 0.0322 mg/kg DM) and Molybdenum (1.47 ± 0.137 mg/kg DM) compared to haylage from the UK. Main Limitations: Forage samples were obtained from professional yards and may not be reflective of forages fed by most horse owners. Information regarding soil type, species of grass, fertiliser treatment, harvest, or storage conditions were not included in this study. Conclusions: At a DM intake of 2% body weight, conserved forage as sampled in this study will be insufficient to meet Zinc, Iodine, and Copper NRC maintenance requirements, and Se intake will also be insufficient for horses fed the UK conserved forage. Many horses receive hay/haylage as the main component of their diet; this study highlights the need to consider forage analysis when making dietary recommendations.

Keywords: conserved forage, hay, haylage, minerals

Procedia PDF Downloads 227
642 Processing and Characterization of Glass-Epoxy Composites Filled with Linz-Donawitz (LD) Slag

Authors: Pravat Ranjan Pati, Alok Satapathy

Abstract:

Linz-Donawitz (LD) slag a major solid waste generated in huge quantities during steel making. It comes from slag formers such as burned lime/dolomite and from oxidizing of silica, iron etc. while refining the iron into steel in the LD furnace. Although a number of ways for its utilization have been suggested, its potential as a filler material in polymeric matrices has not yet been explored. The present work reports the possible use of this waste in glass fiber reinforced epoxy composites as a filler material. Hybrid composites consisting of bi-directional e-glass-fiber reinforced epoxy filled with different LD slag content (0, 7.5, 15, 22.5 wt%) are prepared by simple hand lay-up technique. The composites are characterized in regard to their density, porosity, micro-hardness and strength properties. X-ray diffractography is carried out in order to ascertain the various phases present in LDS. This work shows that LD slag, in spite of being a waste, possesses fairly good filler characteristics as it modifies the strength properties and improves the composite micro-hardness of the polymeric resin.

Keywords: characterization, glass-epoxy composites, LD slag, waste utilization

Procedia PDF Downloads 392
641 Repurposing Dairy Manure Solids as a Non- Polluting Fertilizer and the Effects on Nutrient Recovery in Tomatoes (Solanum Lycopersicum)

Authors: Devon Simpson

Abstract:

Recycled Manure Solids (RMS), attained via centrifugation from Canadian dairy farms, were synthesized into a non-polluting fertilizer by bonding micronutrients (Fe, Zn, and Mn) to cellulose fibers and then assessed for the effectiveness of nutrient recovery in tomatoes. Manure management technology is critical for improving the sustainability of agroecosystems and has the capacity to offer a truly circular economy. The ability to add value to manure byproducts offers an opportunity for economic benefits while generating tenable solutions to livestock waste. The dairy industry is under increasing pressure from new environmental protections such as government restrictions on manure applications, limitations on herd size as well as increased product demand from a growing population. Current systems use RMS as bedding, so there is a lack of data pertaining to RMS use as a fertilizer. This is because of nutrient distribution, where most nutrients are retained in the liquid effluent of the solid-liquid separation. A literature review on the physical and chemical properties of dairy manure further revealed more data for raw manure than centrifuged solids. This research offers an innovative perspective and a new avenue of exploration in the use of RMS. Manure solids in this study were obtained directly from dairy farms in Salmon Arm and Abbotsford, British Columbia, and underwent physical, chemical, and biological characterizations pre- and post-synthesis processing. Samples were sent to A&L labs Canada for analysis. Once characterized and bonded to micronutrients, the effect of synthesized RMS on nutrient recovery in tomatoes was studied in a greenhouse environment. The agricultural research package ‘agricolae’ for R was used for experimental design and data analysis. The growth trials consisted of a randomized complete block design (RCBD) that allowed for analysis of variance (ANOVA). The primary outcome was to measure nutrient uptake, and this was done using an Inductively Coupled Plasma Mass Spectrometer (IC-PMS) to analyze the micronutrient content of both the tissue and fruit of the tomatoes. It was found that treatments containing bonded dairy manure solids had an increased micronutrient concentration. Treatments with bonded dairy manure solids also saw an increase in yield, and a brix analysis showed higher sugar content than the untreated control and a grower standard.

Keywords: aoecosystems, dairy manure, micronutrient fertilizer, manure management, nutrient recovery, nutrient recycling, recycled manure solids, regenerative agricugrlture, sustainable farming

Procedia PDF Downloads 193
640 Post-traumatic Checklist-5 (PCL-5) Psychometric Properties: Across Sectional Study Among Lebanese Population

Authors: Fadwa Alhalaiqa, Othman Alfuqaha, Anas H. Khalifeh, Mahmoud Alsaraireh, Rami Masa’Deh, Natija S Manaa

Abstract:

Background: Post-traumatic stress disorders (PTSD) usually occur after traumatic occurrences that exceed the range of common human experience. This study aimed to test the psychometric properties of PCL-5 checklist for the 20 PTSD symptoms from DSM-5 among Lebanese population and to identify the prevalence of PTSD. Methods: A cross sectional survey of PCL5 among 950 Lebanese using the online survey platform by Google form was conducted. Snowball recruitment was used to identify participants for the survey. STROBE guideline was used in reporting the current study. Results: Face content, construct, discriminant, and convergent validity had been accomplished of PCL-5. The reliability by Cronbach alpha, composite, and average variance extracted were set superior. We found also that more than half of the participants (55.6%) scored 33 or above, which is the cutoff score for a likely diagnosis of PTSD. Conclusion: The current study provides further support for the Arabic version PCL-5 validity and reliability among non-Western populations. This support using this tool in the screening of PTSD.

Keywords: post traumatic stress disorder, psychometric properties, stress, adult population

Procedia PDF Downloads 100
639 Towards a Biologically Inspired Supercritical Airfoil Adapted for Gliding Cross-Domain Vehicles

Authors: Hanyue Shen, Jiaying Zhang, Xingwei Kong

Abstract:

Growing research on cross-domain vehicles (CDVs) has addressed the requirement to balance airfoil efficiency in air and water. No existing airfoil is specifically developed to adapt to the large Reynold’s number range CDVs operate in. This research proposes a supercritical airfoil biologically inspired by Atlantic Puffins. The initial airfoil is parameterized with the composite Karman-Trefftz method, optimized with a series of multi-stage gradient descend procedures, and compared with other airfoils with Xfoil. Results from Xfoil are also validated via Fluent and experiment considering curvatures on the designed airfoil might affect the accuracy of Xfoil. The results indicate that while CFD and Xfoil results closely align, Xfoil produces results closest to the experimental value. The bionic airfoil demonstrates superior performance in the range Re = 2·10⁴ to Re = 2·10⁵ compared to other studied airfoils, satisfying design requirements. This airfoil and its future counterparts are probable solutions to be implemented on fixed-wing CDVs desiring to glide in the given working conditions, providing an efficient and structurally simple pathway.

Keywords: fluid dynamics, airfoil design, biomimicry, cross domain vehicle

Procedia PDF Downloads 49
638 Development of a Nanocompound Based Fibre to Combat Insects

Authors: Merle Bischoff, Thomas Gries, Gunnar Seide

Abstract:

Pesticides, which harm crop enemies, but can also interfere with the human body, are nowadays mostly used for crop spraying. Silica particles (SiO2) in the nanometer and micrometer scale offer a physical way to combat insects without harming humans and other mammals. Thereby, they allow foregoing pesticides, which can harm the environment. As silica particles are supplied as a powder or in a suspension to farmers, the silica use in large scale agriculture is not sufficient due to erosion through wind and rain. When silica is implemented in a textile’s surface (nanocompound), particles are locally bound and do resist erosion, but can function against bugs. By choosing polypropylene as a matrix polymer, the production of an inexpensive agritextile with an 'anti-bug' effect is made possible. In the Symposium the results of the manufacturing and filament spinning of silica nanocomposites from a polypropylene basis is compared to the fabrication from nanocomposites based on Polybutylene succinate, a biodegradable composite. The investigation focuses on the difference between degradable nanocomposite and stable nanocomposite. Focus will be laid on the filament characteristics as well as the degradation of the nanocompound to underline their potential use and application as an agricultural textile.

Keywords: agriculture, environment, insects, protection, silica, textile, nanocomposite

Procedia PDF Downloads 249
637 Transcriptomic Analysis of Fragrant Rice Reveals the Involvement of Post-transcriptional Regulation in Response to Zn Foliar Application

Authors: Muhammad Imran, Sarfraz Shafiq, Xiangru Tang

Abstract:

Alternative splicing (AS) is an important post-transcriptional regulatory mechanism to generate transcripts variability and proteome diversity in plants. Fragrant rice (Oryza sativa L.) has a high economic and nutritional value, and the application of micronutrients regulate 2-acetyl-1-pyrroline (2-AP) production, which is responsible for aroma in fragrant rice. However, no systematic investigation of AS events in response to micronutrients (Zn) has been performed in fragrant rice. Furthermore, the post-transcriptional regulation of genes involved in 2-AP biosynthesis is also not known. In this study, a comprehensive analysis of AS events under two gradients of Zn treatment in two different fragrant rice cultivars (Meixiangzhan-2 and Xiangyaxiangzhan) was performed. A total of 386 and 598 significant AS events were found in Meixiangzhan-2 treated with low and high doses of Zn, respectively. In Xiangyaxiangzhan, a total of 449 and 598 significant AS events were found in low and high doses of Zn, respectively. Go analysis indicated that these genes were highly enriched in physiological processes, metabolism, and cellular process in both cultivars. However, genotype and dose-dependent AS events were also detected in both cultivars. By comparing differential AS (DAS) events with differentially expressed genes (DEGs), we found a weak overlap among DAS and DEGs in both fragrant rice cultivars, indicating that only a few genes are post-transcriptionally regulated in response to Zn treatment. We further report that Zn differentially regulates the expression of 2-AP biosynthesis-related genes in both cultivars, and Zn treatment altered the editing frequency of SNPs in the genes involved in 2-AP biosynthesis. Finally, we showed that epigenetic modifications associated with active gene transcription are generally enriched over 2-AP biosynthesis-related genes. Taken together, our results provide evidence of the post-transcriptional gene regulation in fragrant rice in response to Zn treatment and highlight that the 2-AP biosynthesis pathway may also be post-transcriptionally regulated through epigenetic modifications. These findings will serve as a cornerstone for further investigation to understand the molecular mechanisms of 2-AP biosynthesis in fragrant rice.

Keywords: fragrant rice, 2-acetyl-1-pyrroline, gene expression, zinc, alternative splicing, SNPs

Procedia PDF Downloads 111
636 The “Buffer Layer” An Improved Electrode-Electrolyte Interface For Solid-State Batteries

Authors: Gregory Schmidt

Abstract:

Solid-state lithium batteries are broadly accepted as promising candidates for application in the next generation of EVs as they should offer safer and higher-energy-density batteries. Nonetheless, their development is impeded by many challenges, including the resistive electrode–electrolyte interface originating from the removal of the liquid electrolyte that normally permeates through the porous cathode and ensures efficient ionic conductivity through the cell. One way to tackle this challenge is by formulating composite cathodes containing solid ionic conductors in their structure, but this approach will require the conductors to exhibit chemical stability, electrochemical stability, flexibility, and adhesion and is, therefore, limited to some materials. Recently, Arkema developed a technology called buffering layer which allows the transformation of any conventional porous electrode into a catholyte. This organic layer has a very high ionic conductivity at room temperature, is compatible with all active materials, and can be processed with conventional Gigafactory equipment. Moreover, this layer helps protect the solid ionic conductor from the cathode and anode materials. During this presentation, the manufacture and the electrochemical performance of this layer for different systems of cathode and anode will be discussed.

Keywords: electrochemistry, all solid state battery, materials, interface

Procedia PDF Downloads 97
635 Effect of Hybridization of Composite Material on Buckling Analysis with Elastic Foundation Using the High Order Theory

Authors: Benselama Khadidja, El Meiche Noureddine

Abstract:

This paper presents the effect of hybridization material on the variation of non-dimensional critical buckling load with different cross-ply laminates plate resting on elastic foundations of Winkler and Pasternak types subjected to combine uniaxial and biaxial loading by using two variable refined plate theories. Governing equations are derived from the Principle of Virtual Displacement; the formulation is based on a new function of shear deformation theory taking into account transverse shear deformation effects vary parabolically across the thickness satisfying shear stress-free surface conditions. These equations are solved analytically using the Navier solution of a simply supported. The influence of the various parameters geometric and material, the thickness ratio, and the number of layers symmetric and antisymmetric hybrid laminates material has been investigated to find the critical buckling loads. The numerical results obtained through the present study with several examples are presented to verify and compared with other models with the ones available in the literature.

Keywords: buckling, hybrid cross-ply laminates, Winkler and Pasternak, elastic foundation, two variables plate theory

Procedia PDF Downloads 483
634 Hydrogen Storage Optimisation: Development of Advanced Tools for Improved Permeability Modelling in Materials

Authors: Sirine Sayed, Mahrez Ait Mohammed, Mourad Nachtane, Abdelwahed Barkaoui, Khalid Bouziane, Mostapha Tarfaoui

Abstract:

This study addresses a critical challenge in transitioning to a hydrogen-based economy by introducing and validating a one-dimensional (1D) tool for modelling hydrogen permeability through hybrid materials, focusing on tank applications. The model developed integrates rigorous experimental validation, published data, and advanced computational modelling using the PanDiffusion framework, significantly enhancing its validity and applicability. By elucidating complex interactions between material properties, storage system configurations, and operational parameters, the tool demonstrates its capability to optimize design and operational parameters in real-world scenarios, as illustrated through a case study of hydrogen leakage. This comprehensive approach to assessing hydrogen permeability contributes significantly to overcoming key barriers in hydrogen infrastructure development, potentially accelerating the widespread adoption of hydrogen technology across various industrial sectors and marking a crucial step towards a more sustainable energy future.

Keywords: hydrogen storage, composite tank, permeability modelling, PanDiffusion, energy carrier, transportation technology

Procedia PDF Downloads 14
633 Micromechanical Investigation on the Influence of Thermal Stress on Elastic Properties of Fiber-Reinforced Composites

Authors: Arber Sejdiji, Jan Schmitz-Huebsch, Christian Mittelstedt

Abstract:

Due to its use in a broad range of temperatures, the prediction of elastic properties of fiber composite materials under thermal load is significant. Especially the transversal stiffness dominates the potential of use for fiber-reinforced composites (FRC). A numerical study on the influence of thermal stress on transversal stiffness of fiber-reinforced composites is presented. In the numerical study, a representative volume element (RVE) is used to estimate the elastic properties of a unidirectional ply with finite element method (FEM). For the investigation, periodic boundary conditions are applied to the RVE. Firstly, the elastic properties under pure mechanical load are derived numerically and compared to results, which are obtained by analytical methods. Thereupon thermo-mechanical load is implemented into the model to investigate the influence of temperature change with low temperature as a key aspect. Regarding low temperatures, the transversal stiffness increases intensely, especially when thermal stress is dominant over mechanical stress. This paper outlines the employed numerical methods as well as the derived results.

Keywords: elastic properties, micromechanics, thermal stress, representative volume element

Procedia PDF Downloads 106
632 Mineralogy and Fluid Inclusion Study of the Kebbouch South Pb-Zn Deposit, Northwest Tunisia

Authors: Imen Salhi, Salah Bouhlel, Bernrd Lehmann

Abstract:

The Kebbouch South Pb-Zn deposit is located 20 km to the east of El Kef (NW) in the southeastern part of the Triassic diapir belt in the Tunisian Atlas. The deposit is composed of sulfide and non-sulfide zinc-lead ore bodies. The aim of this study is to provide petrographic results, mineralogy, as well as fluid inclusion data of the carbonate-hosted Pb-Zn Kebbouch South deposit. Mineralization forms two major ore types: (1) lenticular dolostones and clay breccias in the contact zone between Triassic and Upper Cretaceous strata;, it consists of small-scale lenticular, strata-or fault-controlled mineralization mainly composed of marcasite, galena, sphalerite, pyrite, and (2) stratiform mineralization in the Bahloul Formation (Upper Cenomanian-Lower Turonian) consisting of framboidal and cubic pyrite, disseminated sphalerite and galena. Non-metalliferous and/or gangue minerals are represented by dolomite, calcite, celestite and quartz. Fluid inclusion petrography study has been carried out on calcite and celestite. Fluid inclusions hosted in celestite are less than 20 µm large and show two types of aqueous inclusions: monophase liquid aqueous inclusions (L), abundant and very small, generally less than 15 µm and liquid-rich two phase inclusions (L+V). The gas phase forms a mobile vapor bubble. Microthermometric analyses of (L+V) fluid inclusions for celestite indicate that the homogenization temperature ranges from 121 to 156°C, and final ice melting temperatures are in the range of – 19 to -9°C corresponding to salinities of 12 to 21 wt% NaCl eq. (L+V) fluid inclusions from calcite are frequently localized along the growth zones; their homogenization temperature ranges from 96 to 164°C with final ice melting temperatures between -16 and -7°C corresponding to salinities of 9 to 19 wt% NaCl eq. According to mineralogical and fluid inclusion studies, mineralization in the Pb – Zn Kebbouch South deposit formed between 96 to 164°C with salinities ranging from 9 to 21 wt% NaCl eq. A contribution of basinal brines in the ore formation of the kebbouch South Pb–Zn deposit is likely. The deposit is part of the family of MVT deposits associated with the salt diapir environment.

Keywords: fluid inclusion, Kebbouch South, mineralogy, MVT deposits, Pb-Zn

Procedia PDF Downloads 252
631 Functionalized Ultra-Soft Rubber for Soft Robotics Application

Authors: Shib Shankar Banerjeea, Andreas Ferya, Gert Heinricha, Amit Das

Abstract:

Recently, the growing need for the development of soft robots consisting of highly deformable and compliance materials emerge from the serious limitations of conventional service robots. However, one of the main challenges of soft robotics is to develop such compliance materials, which facilitates the design of soft robotic structures and, simultaneously, controls the soft-body systems, like soft artificial muscles. Generally, silicone or acrylic-based elastomer composites are used for soft robotics. However, mechanical performance and long-term reliabilities of the functional parts (sensors, actuators, main body) of the robot made from these composite materials are inferior. This work will present the development and characterization of robust super-soft programmable elastomeric materials from crosslinked natural rubber that can serve as touch and strain sensors for soft robotic arms with very high elastic properties and strain, while the modulus is altered in the kilopascal range. Our results suggest that such soft natural programmable elastomers can be promising materials and can replace conventional silicone-based elastomer for soft robotics applications.

Keywords: elastomers, soft materials, natural rubber, sensors

Procedia PDF Downloads 154
630 Hydrothermal Synthesis of Carbon Sphere/Nickel Cobalt Sulfide Core/Shell Microstructure and Its Electrochemical Performance

Authors: Charmaine Lamiel, Van Hoa Nguyen, Marjorie Baynosa, Jae-Jin Shim

Abstract:

Electrochemical supercapacitors have attracted considerable attention because of their high potential as an efficient energy storage system. The combination of carbon-based material and transition metal oxides/sulfides are studied because they have long and improved cycle life as well as high energy and power densities. In this study, a hierarchical mesoporous carbon sphere/nickel cobalt sulfide (CS/Ni-Co-S) core/shell structure was synthesized using a facile hydrothermal method without any further sulfurization or post-heat treatment. The CS/Ni-Co-S core/shell microstructures exhibited a high capacitance of 724 F g−1 at 2 A g−1 in a 6 M KOH electrolyte. After 2000 charge-discharge cycles, it retained 86.1% of its original capacitance, with high Coulombic efficiency of 97.9%. The electrode exhibited a high energy density of 58.0 Wh kg−1 at an energy density of 1440 W kg−1, and high power density of 7200 W kg−1 at an energy density of 34.2 Wh kg−1. The successful synthesis was considered to be simple and cost-effective which supports the viability of this composite as an alternative activated material for high performance supercapacitors.

Keywords: carbon sphere, electrochemical, hydrothermal, nickel cobalt sulfide, supercapacitor

Procedia PDF Downloads 303
629 Effect of Roasting Temperature on the Proximate, Mineral and Antinutrient Content of Pigeon Pea (Cajanus cajan) Ready-to-Eat Snack

Authors: Olaide Ruth Aderibigbe, Oluwatoyin Oluwole

Abstract:

Pigeon pea is one of the minor leguminous plants; though underutilised, it is used traditionally by farmers to alleviate hunger and malnutrition. Pigeon pea is cultivated in Nigeria by subsistence farmers. It is rich in protein and minerals, however, its utilisation as food is only common among the poor and rural populace who cannot afford expensive sources of protein. One of the factors contributing to its limited use is the high antinutrient content which makes it indigestible, especially when eaten by children. The development of value-added products that can reduce the antinutrient content and make the nutrients more bioavailable will increase the utilisation of the crop and contribute to reduction of malnutrition. This research, therefore, determined the effects of different roasting temperatures (130 0C, 140 0C, and 150 0C) on the proximate, mineral and antinutrient component of a pigeon pea snack. The brown variety of pigeon pea seeds were purchased from a local market- Otto in Lagos, Nigeria. The seeds were cleaned, washed, and soaked in 50 ml of water containing sugar and salt (4:1) for 15 minutes, and thereafter the seeds were roasted at 130 0C, 140 0C, and 150 0C in an electric oven for 10 minutes. Proximate, minerals, phytate, tannin and alkaloid content analyses were carried out in triplicates following standard procedures. The results of the three replicates were polled and expressed as mean±standard deviation; a one-way analysis of variance (ANOVA) and the Least Significance Difference (LSD) were carried out. The roasting temperatures significantly (P<0.05) affected the protein, ash, fibre and carbohydrate content of the snack. Ready-to-eat snack prepared by roasting at 150 0C significantly had the highest protein (23.42±0.47%) compared the ones roasted at 130 0C and 140 0C (18.38±1.25% and 20.63±0.45%, respectively). The same trend was observed for the ash content (3.91±0.11 for 150 0C, 2.36±0.15 for 140 0C and 2.26±0.25 for 130 0C), while the fibre and carbohydrate contents were highest at roasting temperature of 130 0C. Iron, zinc, and calcium were not significantly (P<0.5) affected by the different roasting temperatures. Antinutrients decreased with increasing temperature. Phytate levels recorded were 0.02±0.00, 0.06±0.00, and 0.07±0.00 mg/g; tannin levels were 0.50±0.00, 0.57±0.00, and 0.68±0.00 mg/g, while alkaloids levels were 0.51±0.01, 0.78±0.01, and 0.82±0.01 mg/g for 150 0C, 140 0C, and 130 0C, respectively. These results show that roasting at high temperature (150 0C) can be utilised as a processing technique for increasing protein and decreasing antinutrient content of pigeon pea.

Keywords: antinutrients, pigeon pea, protein, roasting, underutilised species

Procedia PDF Downloads 141
628 Model Studies on Shear Behavior of Reinforced Reconstituted Clay

Authors: B. A. Mir, A. Juneja

Abstract:

In this paper, shear behavior of reconstituted clay reinforced with varying diameter of sand compaction piles with area replacement-ratio (as) of 6.25, 10.24, 16, 20.25 and 64% in 100mm diameter and 200mm long clay specimens is modeled using consolidated drained and undrained triaxial tests under different confining pressures ranging from 50kPa to 575kPa. The test results show that the stress-strain behavior of the clay was highly influenced by the presence of SCP. The insertion of SCPs into soft clay has shown to have a positive effect on the load carrying capacity of the clay, resulting in a composite soil mass that has greater shear strength and improved stiffness compared to the unreinforced clay due to increased reinforcement area ratio. In addition, SCP also acts as vertical drain in the clay thus accelerating the dissipation of excess pore water pressures that are generated during loading by shortening the drainage path and activating radial drainage, thereby reducing post-construction settlement. Thus, sand compaction piles currently stand as one of the most viable and practical techniques for improving the mechanical properties of soft clays.

Keywords: reconstituted clay, SCP, shear strength, stress-strain response, triaxial tests

Procedia PDF Downloads 409