Search results for: work satisfaction and performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24637

Search results for: work satisfaction and performance

997 Production of Nanocomposite Electrical Contact Materials Ag-SnO2, W-Cu and Cu-C in Thermal Plasma

Authors: A. V. Samokhin, A. A. Fadeev, M. A. Sinaiskii, N. V. Alekseev, A. V. Kolesnikov

Abstract:

Composite materials where metal matrix is reinforced by ceramic or metal particles are of great interest for use in the manufacturing of electrical contacts. Significant improvement of the composite physical and mechanical properties as well as increase of the performance parameters of composite-based products can be achieved if the nanoscale structure in the composite materials is obtained by using nanosized powders as starting components. The results of nanosized composite powders synthesis (Ag-SnO2, W-Cu and Cu-C) in the DC thermal plasma flows are presented in this paper. The investigations included the following processes: - Recondensation of micron powder mixture Ag + SnO2 in a nitrogen plasma; - The reduction of the oxide powders mixture (WO3 + CuO) in a hydrogen-nitrogen plasma; - Decomposition of the copper formate and copper acetate powders in nitrogen plasma. The calculations of equilibrium compositions of multicomponent systems Ag-Sn-O-N, W-Cu-O-H-N and Cu-O-C-H-N in the temperature range of 400-5000 K were carried to estimate basic process characteristics. Experimental studies of the processes were performed using a plasma reactor with a confined jet flow. The plasma jet net power was in the range of 2 - 13 kW, and the feedstock flow rate was up to 0.35 kg/h. The obtained powders were characterized by TEM, HR-TEM, SEM, EDS, ED-XRF, XRD, BET and QEA methods. Nanocomposite Ag-SnO2 (12 wt. %). Processing of the initial powder mixture (Ag-SnO2) in nitrogen thermal plasma stream allowed to produce nanopowders with a specific surface area up to 24 m2/g, consisting predominantly of particles with size less than 100 nm. According to XRD results, tin was present in the obtained products as SnO2 phase, and also as intermetallic phases AgxSn. Nanocomposite W-Cu (20 wt .%). Reduction of (WO3+CuO) mixture in the hydrogen-nitrogen plasma provides W-Cu nanopowder with particle sizes in the range of 10-150 nm. The particles have mainly spherical shape and structure tungsten core - copper shell. The thickness of the shell is about several nanometers, the shell is composed of copper and its oxides (Cu2O, CuO). The nanopowders had 1.5 wt. % oxygen impurity. Heat treatment in a hydrogen atmosphere allows to reduce the oxygen content to less than 0.1 wt. %. Nanocomposite Cu-C. Copper nanopowders were found as products of the starting copper compounds decomposition. The nanopowders primarily had a spherical shape with a particle size of less than 100 nm. The main phase was copper, with small amount of Cu2O and CuO oxides. Copper formate decomposition products had a specific surface area 2.5-7 m2/g and contained 0.15 - 4 wt. % carbon; and copper acetate decomposition products had the specific surface area 5-35 m2/g, and carbon content of 0.3 - 5 wt. %. Compacting of nanocomposites (sintering in hydrogen for Ag-SnO2 and electric spark sintering (SPS) for W-Cu) showed that the samples having a relative density of 97-98 % can be obtained with a submicron structure. The studies indicate the possibility of using high-intensity plasma processes to create new technologies to produce nanocomposite materials for electric contacts.

Keywords: electrical contact, material, nanocomposite, plasma, synthesis

Procedia PDF Downloads 223
996 Analyzing Concrete Structures by Using Laser Induced Breakdown Spectroscopy

Authors: Nina Sankat, Gerd Wilsch, Cassian Gottlieb, Steven Millar, Tobias Guenther

Abstract:

Laser-Induced Breakdown Spectroscopy (LIBS) is a combination of laser ablation and optical emission spectroscopy, which in principle can simultaneously analyze all elements on the periodic table. Materials can be analyzed in terms of chemical composition in a two-dimensional, time efficient and minor destructive manner. These advantages predestine LIBS as a monitoring technique in the field of civil engineering. The decreasing service life of concrete infrastructures is a continuously growing problematic. A variety of intruding, harmful substances can damage the reinforcement or the concrete itself. To insure a sufficient service life a regular monitoring of the structure is necessary. LIBS offers many applications to accomplish a successful examination of the conditions of concrete structures. A selection of those applications are the 2D-evaluation of chlorine-, sodium- and sulfur-concentration, the identification of carbonation depths and the representation of the heterogeneity of concrete. LIBS obtains this information by using a pulsed laser with a short pulse length (some mJ), which is focused on the surfaces of the analyzed specimen, for this only an optical access is needed. Because of the high power density (some GW/cm²) a minimal amount of material is vaporized and transformed into a plasma. This plasma emits light depending on the chemical composition of the vaporized material. By analyzing the emitted light, information for every measurement point is gained. The chemical composition of the scanned area is visualized in a 2D-map with spatial resolutions up to 0.1 mm x 0.1 mm. Those 2D-maps can be converted into classic depth profiles, as typically seen for the results of chloride concentration provided by chemical analysis like potentiometric titration. However, the 2D-visualization offers many advantages like illustrating chlorine carrying cracks, direct imaging of the carbonation depth and in general allowing the separation of the aggregates from the cement paste. By calibrating the LIBS-System, not only qualitative but quantitative results can be obtained. Those quantitative results can also be based on the cement paste, while excluding the aggregates. An additional advantage of LIBS is its mobility. By using the mobile system, located at BAM, onsite measurements are feasible. The mobile LIBS-system was already used to obtain chloride, sodium and sulfur concentrations onsite of parking decks, bridges and sewage treatment plants even under hard conditions like ongoing construction work or rough weather. All those prospects make LIBS a promising method to secure the integrity of infrastructures in a sustainable manner.

Keywords: concrete, damage assessment, harmful substances, LIBS

Procedia PDF Downloads 166
995 Primary-Color Emitting Photon Energy Storage Nanophosphors for Developing High Contrast Latent Fingerprints

Authors: G. Swati, D. Haranath

Abstract:

Commercially available long afterglow /persistent phosphors are proprietary materials and hence the exact composition and phase responsible for their luminescent characteristics such as initial intensity and afterglow luminescence time are not known. Further to generate various emission colors, commercially available persistence phosphors are physically blended with fluorescent organic dyes such as rodhamine, kiton and methylene blue etc. Blending phosphors with organic dyes results into complete color coverage in visible spectra, however with time, such phosphors undergo thermal and photo-bleaching. This results in the loss of their true emission color. Hence, the current work is dedicated studies on inorganic based thermally and chemically stable primary color emitting nanophosphors namely SrAl2O4:Eu2+, Dy3+, (CaZn)TiO3:Pr3+, and Sr2MgSi2O7:Eu2+, Dy3+. SrAl2O4: Eu2+, Dy3+ phosphor exhibits a strong excitation in UV and visible region (280-470 nm) with a broad emission peak centered at 514 nm is the characteristic emission of parity allowed 4f65d1→4f7 transitions of Eu2+ (8S7/2→2D5/2). Sunlight excitable Sr2MgSi2O7:Eu2+,Dy3+ nanophosphors emits blue color (464 nm) with Commercial international de I’Eclairage (CIE) coordinates to be (0.15, 0.13) with a color purity of 74 % with afterglow time of > 5 hours for dark adapted human eyes. (CaZn)TiO3:Pr3+ phosphor system possess high color purity (98%) which emits intense, stable and narrow red emission at 612 nm due intra 4f transitions (1D2 → 3H4) with afterglow time of 0.5 hour. Unusual property of persistence luminescence of these nanophoshphors supersedes background effects without losing sensitive information these nanophosphors offer several advantages of visible light excitation, negligible substrate interference, high contrast bifurcation of ridge pattern, non-toxic nature revealing finger ridge details of the fingerprints. Both level 1 and level 2 features from a fingerprint can be studied which are useful for used classification, indexing, comparison and personal identification. facile methodology to extract high contrast fingerprints on non-porous and porous substrates using a chemically inert, visible light excitable, and nanosized phosphorescent label in the dark has been presented. The chemistry of non-covalent physisorption interaction between the long afterglow phosphor powder and sweat residue in fingerprints has been discussed in detail. Real-time fingerprint development on porous and non-porous substrates has also been performed. To conclude, apart from conventional dark vision applications, as prepared primary color emitting afterglow phosphors are potentional candidate for developing high contrast latent fingerprints.

Keywords: fingerprints, luminescence, persistent phosphors, rare earth

Procedia PDF Downloads 191
994 Numerical Investigation of the Boundary Conditions at Liquid-Liquid Interfaces in the Presence of Surfactants

Authors: Bamikole J. Adeyemi, Prashant Jadhawar, Lateef Akanji

Abstract:

Liquid-liquid interfacial flow is an important process that has applications across many spheres. One such applications are residual oil mobilization, where crude oil and low salinity water are emulsified due to lowered interfacial tension under the condition of low shear rates. The amphiphilic components (asphaltenes and resins) in crude oil are considered to assemble at the interface between the two immiscible liquids. To justify emulsification, drag and snap-off suppression as the main effects of low salinity water, mobilization of residual oil is visualized as thickening and slip of the wetting phase at the brine/crude oil interface which results in the squeezing and drag of the non-wetting phase to the pressure sinks. Meanwhile, defining the boundary conditions for such a system can be very challenging since the interfacial dynamics do not only depend on interfacial tension but also the flow rate. Hence, understanding the flow boundary condition at the brine/crude oil interface is an important step towards defining the influence of low salinity water composition on residual oil mobilization. This work presents a numerical evaluation of three slip boundary conditions that may apply at liquid-liquid interfaces. A mathematical model was developed to describe the evolution of a viscoelastic interfacial thin liquid film. The base model is developed by the asymptotic expansion of the full Navier-Stokes equations for fluid motion due to gradients of surface tension. This model was upscaled to describe the dynamics of the film surface deformation. Subsequently, Jeffrey’s model was integrated into the formulations to account for viscoelastic stress within a long wave approximation of the Navier-Stokes equations. To study the fluid response to a prescribed disturbance, a linear stability analysis (LSA) was performed. The dispersion relation and the corresponding characteristic equation for the growth rate were obtained. Three slip (slip, 1; locking, -1; and no-slip, 0) boundary conditions were examined using the resulted characteristic equation. Also, the dynamics of the evolved interfacial thin liquid film were numerically evaluated by considering the influence of the boundary conditions. The linear stability analysis shows that the boundary conditions of such systems are greatly impacted by the presence of amphiphilic molecules when three different values of interfacial tension were tested. The results for slip and locking conditions are consistent with the fundamental solution representation of the diffusion equation where there is film decay. The interfacial films at both boundary conditions respond to exposure time in a similar manner with increasing growth rate which resulted in the formation of more droplets with time. Contrarily, no-slip boundary condition yielded an unbounded growth and it is not affected by interfacial tension.

Keywords: boundary conditions, liquid-liquid interfaces, low salinity water, residual oil mobilization

Procedia PDF Downloads 118
993 Study of Elastic-Plastic Fatigue Crack in Functionally Graded Materials

Authors: Somnath Bhattacharya, Kamal Sharma, Vaibhav Sonkar

Abstract:

Composite materials emerged in the middle of the 20th century as a promising class of engineering materials providing new prospects for modern technology. Recently, a new class of composite materials known as functionally graded materials (FGMs) has drawn considerable attention of the scientific community. In general, FGMs are defined as composite materials in which the composition or microstructure or both are locally varied so that a certain variation of the local material properties is achieved. This gradual change in composition and microstructure of material is suitable to get gradient of properties and performances. FGMs are synthesized in such a way that they possess continuous spatial variations in volume fractions of their constituents to yield a predetermined composition. These variations lead to the formation of a non-homogeneous macrostructure with continuously varying mechanical and / or thermal properties in one or more than one direction. Lightweight functionally graded composites with high strength to weight and stiffness to weight ratios have been used successfully in aircraft industry and other engineering applications like in electronics industry and in thermal barrier coatings. In the present work, elastic-plastic crack growth problems (using Ramberg-Osgood Model) in an FGM plate under cyclic load has been explored by extended finite element method. Both edge and centre crack problems have been solved by taking additionally holes, inclusions and minor cracks under plane stress conditions. Both soft and hard inclusions have been implemented in the problems. The validity of linear elastic fracture mechanics theory is limited to the brittle materials. A rectangular plate of functionally graded material of length 100 mm and height 200 mm with 100% copper-nickel alloy on left side and 100% ceramic (alumina) on right side is considered in the problem. Exponential gradation in property is imparted in x-direction. A uniform traction of 100 MPa is applied to the top edge of the rectangular domain along y direction. In some problems, domain contains major crack along with minor cracks or / and holes or / and inclusions. Major crack is located the centre of the left edge or the centre of the domain. The discontinuities, such as minor cracks, holes, and inclusions are added either singly or in combination with each other. On the basis of this study, it is found that effect of minor crack in the domain’s failure crack length is minimum whereas soft inclusions have moderate effect and the effect of holes have maximum effect. It is observed that the crack growth is more before the failure in each case when hard inclusions are present in place of soft inclusions.

Keywords: elastic-plastic, fatigue crack, functionally graded materials, extended finite element method (XFEM)

Procedia PDF Downloads 372
992 Navigate the Labyrinth of Leadership: Leaders’ Experiences in Saudi Higher Education

Authors: Laila Albughayl

Abstract:

The purpose of this qualitative case study was to explore Saudi females’ leadership journeys as they navigate the labyrinth of leadership in higher education. To gain a better understanding of how these leaders overcame challenges and accessed support as they progressed through the labyrinth to top positions in Saudi higher education. The significance of this research derived from the premise that leaders need to acquire essential leadership competencies such as knowledge, skills, and practices to effectively lead through economic transformation, growing globalism, and rapidly developing technology in an increasingly diverse world. In addition, understanding Saudi women’s challenges in the labyrinth will encourage policymakers to improve the situation under which these women work. The metaphor ‘labyrinth’ for Eagly and Carli (2007) encapsulates the winding paths, dead ends, and maze-like pathways that are full of challenges and supports that women traverse to access and maintain leadership positions was used. In this study, ‘labyrinth’ was used as the conceptual framework to explore women leaders’ challenges and opportunities in leadership in Saudi higher education. A proposed model for efficient navigation of the labyrinth of leadership was used. This model focused on knowledge, skills, and behaviours (KSB) as the analytical framework for examining responses to the research questions. This research was conducted using an interpretivist qualitative approach. A case study was the methodology used. Semi-structured interviews were the main data collection method. Purposive sampling was used to select ten Saudi leaders in three public universities. In coding, the 6-step framework of thematic analysis for Braun and Clarke was used to identify, analyze, and report themes within the data. NVivo software was also used as a tool to assist with managing and organizing the data. The resultant findings showed that the challenges identified by participants in navigating the labyrinth of leadership in Saudi higher education replicated some of those identified in the literature. The onset findings also revealed that the organizational barriers in Saudi higher education came as the top hindrance to women’s advancement in the labyrinth of leadership, followed by societal barriers. The findings also showed that women’s paths in the labyrinth of leadership in higher education were still convoluted and tedious compared to their male counterparts. In addition, the findings revealed that Saudi women leaders use significant strategies to access leadership posts and effectively navigate the labyrinth; this was not indicated in the literature. In addition, the resultant findings revealed that there are keys that assisted Saudi female leaders in effectively navigating the labyrinth of leadership. For example, the findings indicated that spirituality (religion) was a powerful key that enabled Saudi women leaders to pursue and persist in their leadership paths. Based on participants' experiences, a compass for effective navigation of the labyrinth of leadership in higher education was created for current and aspirant Saudi women leaders to follow. Finally, the findings had several significant implications for practice, policy, theory, and future research.

Keywords: women, leadership, labyrinth, higher education

Procedia PDF Downloads 69
991 A Biophysical Study of the Dynamic Properties of Glucagon Granules in α Cells by Imaging-Derived Mean Square Displacement and Single Particle Tracking Approaches

Authors: Samuele Ghignoli, Valentina de Lorenzi, Gianmarco Ferri, Stefano Luin, Francesco Cardarelli

Abstract:

Insulin and glucagon are the two essential hormones for maintaining proper blood glucose homeostasis, which is disrupted in Diabetes. A constantly growing research interest has been focused on the study of the subcellular structures involved in hormone secretion, namely insulin- and glucagon-containing granules, and on the mechanisms regulating their behaviour. Yet, while several successful attempts were reported describing the dynamic properties of insulin granules, little is known about their counterparts in α cells, the glucagon-containing granules. To fill this gap, we used αTC1 clone 9 cells as a model of α cells and ZIGIR as a fluorescent Zinc chelator for granule labelling. We started by using spatiotemporal fluorescence correlation spectroscopy in the form of imaging-derived mean square displacement (iMSD) analysis. This afforded quantitative information on the average dynamical and structural properties of glucagon granules having insulin granules as a benchmark. Interestingly, the iMSD sensitivity to average granule size allowed us to confirm that glucagon granules are smaller than insulin ones (~1.4 folds, further validated by STORM imaging). To investigate possible heterogeneities in granule dynamic properties, we moved from correlation spectroscopy to single particle tracking (SPT). We developed a MATLAB script to localize and track single granules with high spatial resolution. This enabled us to classify the glucagon granules, based on their dynamic properties, as ‘blocked’ (i.e., trajectories corresponding to immobile granules), ‘confined/diffusive’ (i.e., trajectories corresponding to slowly moving granules in a defined region of the cell), or ‘drifted’ (i.e., trajectories corresponding to fast-moving granules). In cell-culturing control conditions, results show this average distribution: 32.9 ± 9.3% blocked, 59.6 ± 9.3% conf/diff, and 7.4 ± 3.2% drifted. This benchmarking provided us with a foundation for investigating selected experimental conditions of interest, such as the glucagon-granule relationship with the cytoskeleton. For instance, if Nocodazole (10 μM) is used for microtubule depolymerization, the percentage of drifted motion collapses to 3.5 ± 1.7% while immobile granules increase to 56.0 ± 10.7% (remaining 40.4 ± 10.2% of conf/diff). This result confirms the clear link between glucagon-granule motion and cytoskeleton structures, a first step towards understanding the intracellular behaviour of this subcellular compartment. The information collected might now serve to support future investigations on glucagon granules in physiology and disease. Acknowledgment: This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 866127, project CAPTUR3D).

Keywords: glucagon granules, single particle tracking, correlation spectroscopy, ZIGIR

Procedia PDF Downloads 82
990 Measurement of Influence of the COVID-19 Pandemic on Efficiency of Japan’s Railway Companies

Authors: Hideaki Endo, Mika Goto

Abstract:

The global outbreak of the COVID-19 pandemic has seriously affected railway businesses. The number of railway passengers decreased due to the decline in the number of commuters and business travelers to avoid crowded trains and a sharp drop in inbound tourists visiting Japan. This has affected not only railway businesses but also related businesses, including hotels, leisure businesses, and retail businesses at station buildings. In 2021, the companies were divided into profitable and loss-making companies. This division suggests that railway companies, particularly loss-making companies, needed to decrease operational inefficiency. To measure the impact of COVID-19 and discuss the sustainable management strategies of railway companies, we examine the cost inefficiency of Japanese listed railway companies by applying stochastic frontier analysis (SFA) to their operational and financial data. First, we employ the stochastic frontier cost function approach to measure inefficiency. The cost frontier function is formulated as a Cobb–Douglas type, and we estimated parameters and variables for inefficiency. This study uses panel data comprising 26 Japanese-listed railway companies from 2005 to 2020. This period includes several events deteriorating the business environment, such as the financial crisis from 2007 to 2008 and the Great East Japan Earthquake of 2011, and we compare those impacts with those of the COVID-19 pandemic after 2020. Second, we identify the characteristics of the best-practice railway companies and examine the drivers of cost inefficiencies. Third, we analyze the factors influencing cost inefficiency by comparing the profiles of the top 10 railway companies and others before and during the pandemic. Finally, we examine the relationship between cost inefficiency and the implementation of efficiency measures for each railway company. We obtained the following four findings. First, most Japanese railway companies showed the lowest cost inefficiency (most efficient) in 2014 and the highest in 2020 (least efficient) during the COVID-19 pandemic. The second worst occurred in 2009 when it was affected by the financial crisis. However, we did not observe a significant impact of the 2011 Great East Japan Earthquake. This is because no railway company was influenced by the earthquake in this operating area, except for JR-EAST. Second, the best-practice railway companies are KEIO and TOKYU. The main reason for their good performance is that both operate in and near the Tokyo metropolitan area, which is densely populated. Third, we found that non-best-practice companies had a larger decrease in passenger kilometers than best-practice companies. This indicates that passengers made fewer long-distance trips because they refrained from inter-prefectural travel during the pandemic. Finally, we found that companies that implement more efficiency improvement measures had higher cost efficiency and they effectively used their customer databases through proactive DX investments in marketing and asset management.

Keywords: COVID-19 pandemic, stochastic frontier analysis, railway sector, cost efficiency

Procedia PDF Downloads 56
989 A Numerical Hybrid Finite Element Model for Lattice Structures Using 3D/Beam Elements

Authors: Ahmadali Tahmasebimoradi, Chetra Mang, Xavier Lorang

Abstract:

Thanks to the additive manufacturing process, lattice structures are replacing the traditional structures in aeronautical and automobile industries. In order to evaluate the mechanical response of the lattice structures, one has to resort to numerical techniques. Ansys is a globally well-known and trusted commercial software that allows us to model the lattice structures and analyze their mechanical responses using either solid or beam elements. In this software, a script may be used to systematically generate the lattice structures for any size. On the one hand, solid elements allow us to correctly model the contact between the substrates (the supports of the lattice structure) and the lattice structure, the local plasticity, and the junctions of the microbeams. However, their computational cost increases rapidly with the size of the lattice structure. On the other hand, although beam elements reduce the computational cost drastically, it doesn’t correctly model the contact between the lattice structures and the substrates nor the junctions of the microbeams. Also, the notion of local plasticity is not valid anymore. Moreover, the deformed shape of the lattice structure doesn’t correspond to the deformed shape of the lattice structure using 3D solid elements. In this work, motivated by the pros and cons of the 3D and beam models, a numerically hybrid model is presented for the lattice structures to reduce the computational cost of the simulations while avoiding the aforementioned drawbacks of the beam elements. This approach consists of the utilization of solid elements for the junctions and beam elements for the microbeams connecting the corresponding junctions to each other. When the global response of the structure is linear, the results from the hybrid models are in good agreement with the ones from the 3D models for body-centered cubic with z-struts (BCCZ) and body-centered cubic without z-struts (BCC) lattice structures. However, the hybrid models have difficulty to converge when the effect of large deformation and local plasticity are considerable in the BCCZ structures. Furthermore, the effect of the junction’s size of the hybrid models on the results is investigated. For BCCZ lattice structures, the results are not affected by the junction’s size. This is also valid for BCC lattice structures as long as the ratio of the junction’s size to the diameter of the microbeams is greater than 2. The hybrid model can take into account the geometric defects. As a demonstration, the point clouds of two lattice structures are parametrized in a platform called LATANA (LATtice ANAlysis) developed by IRT-SystemX. In this process, for each microbeam of the lattice structures, an ellipse is fitted to capture the effect of shape variation and roughness. Each ellipse is represented by three parameters; semi-major axis, semi-minor axis, and angle of rotation. Having the parameters of the ellipses, the lattice structures are constructed in Spaceclaim (ANSYS) using the geometrical hybrid approach. The results show a negligible discrepancy between the hybrid and 3D models, while the computational cost of the hybrid model is lower than the computational cost of the 3D model.

Keywords: additive manufacturing, Ansys, geometric defects, hybrid finite element model, lattice structure

Procedia PDF Downloads 104
988 Compositional Influence in the Photovoltaic Properties of Dual Ion Beam Sputtered Cu₂ZnSn(S,Se)₄ Thin Films

Authors: Brajendra S. Sengar, Vivek Garg, Gaurav Siddharth, Nisheka Anadkat, Amitesh Kumar, Shaibal Mukherjee

Abstract:

The optimal band gap (~ 1 to 1.5 eV) and high absorption coefficient ~104 cm⁻¹ has made Cu₂ZnSn(S,Se)₄ (CZTSSe) films as one of the most promising absorber materials in thin-film photovoltaics. Additionally, CZTSSe consists of elements that are abundant and non-toxic, makes it even more favourable. The CZTSSe thin films are grown at 100 to 500ᵒC substrate temperature (Tsub) on Soda lime glass (SLG) substrate by Elettrorava dual ion beam sputtering (DIBS) system by utilizing a target at 2.43x10⁻⁴ mbar working pressure with RF power of 45 W in argon ambient. The chemical composition, depth profiling, structural properties and optical properties of these CZTSSe thin films prepared on SLG were examined by energy dispersive X-ray spectroscopy (EDX, Oxford Instruments), Hiden secondary ion mass spectroscopy (SIMS) workstation with oxygen ion gun of energy up to 5 keV, X-ray diffraction (XRD) (Rigaku Cu Kα radiation, λ=.154nm) and Spectroscopic Ellipsometry (SE, M-2000D from J. A. Woollam Co., Inc). It is observed that from that, the thin films deposited at Tsub=200 and 300°C show Cu-poor and Zn-rich states (i.e., Cu/(Zn + Sn) < 1 and Zn/Sn > 1), which is not the case for films grown at other Tsub. It has been reported that the CZTSSe thin films with the highest efficiency are typically at Cu-poor and Zn-rich states. The values of band gap in the fundamental absorption region of CZTSSe are found to be in the range of 1.23-1.70 eV depending upon the Cu/(Zn+Sn) ratio. It is also observed that there is a decline in optical band gap with the increase in Cu/(Zn+Sn) ratio (evaluated from EDX measurement). Cu-poor films are found to have higher optical band gap than Cu-rich films. The decrease in the band gap with the increase in Cu content in case of CZTSSe films may be attributed to changes in the extent of p-d hybridization between Cu d-levels and (S, Se) p-levels. CZTSSe thin films with Cu/(Zn+Sn) ratio in the range 0.86–1.5 have been successfully deposited using DIBS. Optical band gap of the films is found to vary from 1.23 to 1.70 eV based on Cu/(Zn+Sn) ratio. CZTSe films with Cu/ (Zn+Sn) ratio of .86 are found to have optical band gap close to the ideal band gap (1.49 eV) for highest theoretical conversion efficiency. Thus by tailoring the value of Cu/(Zn+Sn), CZTSSe thin films with the desired band gap could be obtained. Acknowledgment: We are thankful to DIBS, EDX, and XRD facility equipped at Sophisticated Instrument Centre (SIC) at IIT Indore. The authors B. S. S and A. K. acknowledge CSIR, and V. G. acknowledges UGC, India for their fellowships. B. S. S is thankful to DST and IUSSTF for BASE Internship Award. Prof. Shaibal Mukherjee is thankful to DST and IUSSTF for BASE Fellowship and MEITY YFRF award. This work is partially supported by DAE BRNS, DST CERI, and DST-RFBR Project under India-Russia Programme of Cooperation in Science and Technology. We are thankful to Mukul Gupta for SIMS facility equipped at UGC-DAE Indore.

Keywords: CZTSSe, DIBS, EDX, solar cell

Procedia PDF Downloads 235
987 Monitoring of Indoor Air Quality in Museums

Authors: Olympia Nisiforou

Abstract:

The cultural heritage of each country represents a unique and irreplaceable witness of the past. Nevertheless, on many occasions, such heritage is extremely vulnerable to natural disasters and reckless behaviors. Even if such exhibits are now located in Museums, they still receive insufficient protection due to improper environmental conditions. These external changes can negatively affect the conditions of the exhibits and contribute to inefficient maintenance in time. Hence, it is imperative to develop an innovative, low-cost system, to monitor indoor air quality systematically, since conventional methods are quite expensive and time-consuming. The present study gives an insight into the indoor air quality of the National Byzantine Museum of Cyprus. In particular, systematic measurements of particulate matter, bio-aerosols, the concentration of targeted chemical pollutants (including Volatile organic compounds (VOCs), temperature, relative humidity, and lighting conditions as well as microbial counts have been performed using conventional techniques. Measurements showed that most of the monitored physiochemical parameters did not vary significantly within the various sampling locations. Seasonal fluctuations of ammonia were observed, showing higher concentrations in the summer and lower in winter. It was found that the outdoor environment does not significantly affect indoor air quality in terms of VOC and Nitrogen oxides (NOX). A cutting-edge portable Gas Chromatography-Mass Spectrometry (GC-MS) system (TORION T-9) was used to identify and measure the concentrations of specific Volatile and Semi-volatile Organic Compounds. A large number of different VOCs and SVOCs found such as Benzene, Toluene, Xylene, Ethanol, Hexadecane, and Acetic acid, as well as some more complex compounds such as 3-ethyl-2,4-dimethyl-Isopropyl alcohol, 4,4'-biphenylene-bis-(3-aminobenzoate) and trifluoro-2,2-dimethylpropyl ester. Apart from the permanent indoor/outdoor sources (i.e., wooden frames, painted exhibits, carpets, ventilation system and outdoor air) of the above organic compounds, the concentration of some of them within the areas of the museum were found to increase when large groups of visitors were simultaneously present at a specific place within the museum. The high presence of Particulate Matter (PM), fungi and bacteria were found in the museum’s areas where carpets were present but low colonial counts were found in rooms where artworks are exhibited. Measurements mentioned above were used to validate an innovative low-cost air-quality monitoring system that has been developed within the present work. The developed system is able to monitor the average concentrations (on a bidaily basis) of several pollutants and presents several innovative features, including the prompt alerting in case of increased average concentrations of monitored pollutants, i.e., exceeding the limit values defined by the user.

Keywords: exibitions, indoor air quality , VOCs, pollution

Procedia PDF Downloads 109
986 Temporal Profile of Exercise-Induced Changes in Plasma Brain-Derived Neurotrophic Factor Levels of Schizophrenic Individuals

Authors: Caroline Lavratti, Pedro Dal Lago, Gustavo Reinaldo, Gilson Dorneles, Andreia Bard, Laira Fuhr, Daniela Pochmann, Alessandra Peres, Luciane Wagner, Viviane Elsner

Abstract:

Approximately 1% of the world's population is affected by schizophrenia (SZ), a chronic and debilitating neurodevelopmental disorder. Among possible factors, reduced levels of Brain-derived neurotrophic factor (BDNF) has been recognized in physiopathogenesis and course of SZ. In this context, peripheral BDNF levels have been used as a biomarker in several clinical studies, since this neurotrophin is able to cross the blood-brain barrier in a bi-directional manner and seems to present a strong correlation with the central nervous system fluid levels. The patients with SZ usually adopts a sedentary lifestyle, which has been partly associated with the increase in obesity incidence rates, metabolic syndrome, type 2 diabetes and coronary heart disease. On the other hand, exercise, a non-invasive and low cost intervention, has been considered an important additional therapeutic option for this population, promoting benefits to physical and mental health. To our knowledge, few studies have been pointed out that the positive effects of exercise in SZ patients are mediated, at least in part, to enhanced levels of BDNF after training. However, these studies are focused on evaluating the effect of single bouts of exercise of chronic interventions, data concerning the short- and long-term exercise outcomes on BDNF are scarce. Therefore, this study aimed to evaluate the effect of a concurrent exercise protocol (CEP) on plasma BDNF levels of SZ patients in different time-points. Material and Methods: This study was approved by the Research Ethics Committee of the Centro Universitário Metodista do IPA (no 1.243.680/2015). The participants (n=15) were subbmited to the CEP during 90 days, 3 times a week for 60 minutes each session. In order to evaluate the short and long-term effects of exercise, blood samples were collected pre, 30, 60 and 90 days after the intervention began. Plasma BDNF levels were determined with the ELISA method, from Sigma-Aldrich commercial kit (catalog number RAB0026) according to manufacturer's instructions. Results: A remarkable increase on plasma BDNF levels at 90 days after training compared to baseline (p=0.006) and 30 days (p=0.007) values were observed. Conclusion: Our data are in agreement with several studies that show significant enhancement on BDNF levels in response to different exercise protocols in SZ individuals. We might suggest that BDNF upregulation after training in SZ patients acts in a dose-dependent manner, being more pronounced in response to chronic exposure. Acknowledgments: This work was supported by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS)/Brazil.

Keywords: exercise, BDNF, schizophrenia, time-points

Procedia PDF Downloads 238
985 Puereria mirifica Replacement Improves Skeletal Muscle Performance Associated with Increasing Parvalbumin Levels in Ovariectomized Rat

Authors: Uraporn Vongvatcharanon, Kochakorn Sukjan, Wandee Udomuksorn, Ekkasit Kumarnsit, Surapong Vongvatcharanon

Abstract:

Sarcopenia is a loss of muscle mass, and strength frequently found in menopause. Estrogen replacement has been shown to improve such a loss of muscle functions. However, there is an increased risk of cancer that has to be considered because of the estrogen replacement therapy. Thus, phytoestrogen supplementation has been suggested as an alternative therapy. Pueraria mirifica (PM) is a plant in the family Leguminosae, that is known to be phytoestrogen-rich and has been traditionally used for the treatment of menopausal symptoms. It contains isoflavones and other compounds such as miroestrol and its derivatives. Parvalbumin (PV) is a calcium binding protein and functions as a relaxing factor in fast twitch muscle fibers. A decrease of the PV level results in a reduction of the speed of the twitch relaxation. Therefore, this study aimed to investigate the effect of an ethanolic extract from Pueraria mirifica on the estrogen levels, skeletal muscle functions and PV levels in the extensor digitorum longus (EDL) and gastrocnemius of ovariectomized rats. Twelve-week old female Wistar rats (200-250 g) were divided into 6 groups: SHAM (un-ovariectomized rats, that received double distilled water), PM-0 (ovariectomized rats, OVX, receiving double distilled water), E (OVX, receiving an estradiol benzoate dose of 0.04 mg/kg), PM-50 (OVX receiving PM 50 mg/kg), PM-500 (OVX receiving PM 500 mg/kg), PM-1000 (OVX receiving PM 1000 mg/kg) all for 90 days. The PM-0 group had estrogen levels, uterus weights, muscle mass, myofiber cross-section areas, peak tension, fatigue resistance, speed of relaxation and parvalbumin levels of both EDL and gastrocnemius that were significantly reduced compared to those of the SHAM group (p<0.05). Also the α and β estrogen receptor immunoreactivities and the parvalbumin immunoreactivities of both EDL and gastrocnemius were decreased in the PM-0 group. In contrast the E, PM-50, PM-500 and PM-1000 group had estrogen levels, uterus weights, muscle mass, myofiber cross-section areas, peak tension, fatigue resistance, speed of relaxation of both EDL and gastrocnemius that were significantly increased compared with PM-0 group (p<0.05). In addition, the α and β estrogen receptor immunoreactivities and parvalbumin immunoreactivity of both the EDL and gastrocnemius were increased in the E, PM-50, PM-500 and PM-1000 group. In addition the extract of Pueraria mirifica replacement group at 50 and 500 mg/kg had significantly increased parvalbumin levels in the EDL muscle but in the gastrocnemius, only the dose of 500 mg/kg increased the parvalbumin levels (p<0.05). These results have demonstrated that the use of the Pueraria mirifica extract as a replacement therapy for estrogen produced estrogenic activity that was similar to that produced by the estradiol benzoate replacement. It seems that the phytoestrogens could bind with the estrogen receptors and stimulate the transcriptional activity to synthesise muscle protein that caused an increase in muscle mass and parvalbumin levels. Thus, muscle synthesis may restore parvalbumin levels resulting in an enhanced relaxation efficiency that would lead to a shortened latent period before the next contraction.

Keywords: Puereria mirifica, Parvalbumin, estrogen, ovariectomized rats

Procedia PDF Downloads 368
984 The Role of Formal and Informal Social Support in Predicting the Involvement of Mothers and Fathers of Young Children with Autism Spectrum Disorder

Authors: Adi Sharabi, Dafna Marom-Golan

Abstract:

Parents’ involvement in the care of their children with Autism Spectrum Disorder (ASD) and its beneficial effect on the children’s developmental and educational outcomes is well documented. At the same time, parents of children with ASD tend to experience greater psychological distress than parents of children with other developmental disabilities or with typical development. Positive social support is an important resource used by parents to reduce their psychological distress. The goal of the current research was to examine the contribution of formal and informal social support in explaining mothers’ and fathers’ involvement with their young children with ASD. The sample consisted of 107 parents who live in Israel (61 mothers and 46 fathers) of children aged between 2 and 7, all diagnosed with ASD and attending special kindergartens or special day care for children with ASD. Parental involvement and social support perception were assessed. Initial analysis focused on the relations between involvement, support, and demographic variables. In addition, analysis of variance (ANOVA) was conducted to test differences between mothers and fathers. Two hierarchical multiple regression analyses were performed to examine the predicted factors in the involvement model while controlling for group (mothers/fathers). Results indicate that mothers reported significantly higher levels of parenting involvement than fathers. Mothers reported higher levels of general involvement and all sub-types of involvement. For example, mothers reported that they were more interested in and have higher levels of attendance in their child’s educational program. They were also more collaborative in their child’s educational therapeutic program, and socialized with other parents of children from their child’s kindergarten than fathers. Mothers’ involvement was found to be related to their informal support (non-formal relatives). Findings also reveal significant differences between mothers and fathers on the formal support subscale measure of specializes services. Fathers, more than mothers, reported more specializes services support such as social workers or professional therapists. Separate hierarchical multiple regression analyses revealed a unique gender difference in the factors that explained parental involvement. Specifically, informal support only had a unique positive contribution in explaining mothers’, but not fathers’ involvement. This study highlights the central role of mothers in maintaining constant contact with the educational system and the professionals who help care for their child with ASD. At the same time, this research emphasizes the crucial role of both mothers and fathers in their child's development and well-being at every development stage, particularly in early development. Further, different kinds of social support seem to relate to the different kinds of parental involvement. It is in the best interest of educators and family therapists who work with families with children with ASD to support the cohesiveness of the family and the collaboration of the parents by understanding and respecting the way each member addresses the responsibilities of parenting a child with ASD, and her or his need for different types of social support.

Keywords: parental differences, parental involvement, social support, specialized support services

Procedia PDF Downloads 236
983 Pandemic-Related Disruption to the Home Environment and Early Vocabulary Acquisition

Authors: Matthew McArthur, Margaret Friend

Abstract:

The COVID-19 pandemic disrupted the stability of the home environment for families across the world. Potential disruptions include parent work modality (in-person vs. remote), levels of health anxiety, family routines, and caregiving. These disruptions may have interfered with the processes of early vocabulary acquisition, carrying lasting effects over the life course. Our justification for this research is as follows: First, early, stable, caregiver-child reciprocal interactions, which may have been disrupted during the pandemic, contribute to the development of the brain architecture that supports language, cognitive, and social-emotional development. Second, early vocabulary predicts several cognitive outcomes, such as numeracy, literacy, and executive function. Further, disruption in the home is associated with adverse cognitive, academic, socio-emotional, behavioral, and communication outcomes in young children. We are interested in how disruptions related to the COVID-19 pandemic are associated with vocabulary acquisition in children born during the first two waves of the pandemic. We are conducting a moderated online experiment to assess this question. Participants are 16 children (10F) ranging in age from 19 to 39 months (M=25.27) and their caregivers. All child participants were screened for language background, health history, and history of language disorders, and were typically developing. Parents completed a modified version of the COVID-19 Family Stressor Scale (CoFaSS), a published measure of COVID-19-related family stressors. Thirteen items from the original scale were replaced to better capture change in family organization and stability specifically related to disruptions in income, anxiety, family relations, and childcare. Following completion of the modified CoFaSS, children completed a Web-Based version of the Computerized Comprehension Task and the Receptive One Word Picture Vocabulary if 24 months or older or the MacArthur-Bates Communicative Development Inventory if younger than 24 months. We report our preliminary data as a partial correlation analysis controlling for age. Raw vocabulary scores on the CCT, ROWPVT-4, and MCDI were all negatively associated with pandemic-related disruptions related to anxiety (r12=-.321; r1=-.332; r9=-.509), family relations (r12=-.590*; r1=-.155; r9=-.468), and childcare (r12=-.294; r1=-.468; r9=-.177). Although the small sample size for these preliminary data limits our power to detect significance, this trend is in the predicted direction, suggesting that increased pandemic-related disruption across multiple domains is associated with lower vocabulary scores. We anticipate presenting data on a full sample of 50 monolingual English participants. A sample of 50 participants would provide sufficient statistical power to detect a moderate effect size, adhering to a nominal alpha of 0.05 and ensuring a power level of 0.80.

Keywords: COVID-19, early vocabulary, home environment, language acquisition, multiple measures

Procedia PDF Downloads 49
982 A Reusable Foundation Solution for Onshore Windmills

Authors: Wael Mohamed, Per-Erik Austrell, Ola Dahlblom

Abstract:

Wind farms repowering is a significant topic nowadays. Wind farms repowering means the complete dismantling of the existing turbine, tower and foundation at an existing site and replacing these units with taller and larger units. Modern wind turbines are designed to withstand approximately for 20~25 years. However, a very long design life of 100 years or more can be expected for high-quality concrete foundations. Based on that there are significant economic and environmental benefits of replacing the out-of-date wind turbine with a new turbine of better power generation capacity and reuse the foundation. The big difference in lifetime shows a potential for new foundation solution to allow wind farms to be updated with taller and larger units in order to increase the energy production. This also means a significant change in the design loads on the foundations. Therefore, the new foundation solution should be able to handle the additional overturning loads. A raft surrounded by an active stabilisation system is proposed in this study. The concept of an active stabilisation system is a novel idea using a movable load to stabilise against the overturning moment. The active stabilisation system consists of a water tank being divided into eight compartments. The system uses the water as a movable load by pumping it into two compartments to stabilise against the overturning moment. The position of the water will rely on the wind direction and a water movement system depending on a number of electric motors and pipes with electric valves is used. One of the advantages of this active foundation solution is that some cost-efficient adjustment could be done to make this foundation able to support larger and taller units. After the end of the first turbine lifetime, an option is presented here to reuse this foundation and make it able to support taller and larger units. This option is considered using extra water volume to fill four compartments instead of two compartments. This extra water volume will increase the stability moment by 41% compared to using water in two compartments. The geotechnical performance of the new foundation solution is investigated using two existing weak soil profiles in Egypt and Sweden. A comparative study of the new solution and a piled raft with long friction piles is performed using finite element simulations. The results show that using a raft surrounded by an active stabilisation system decreases the tilting compared to a piled raft with friction piles. Moreover, it is found that using a raft surrounded by an active stabilisation system decreases the foundation costs compared to a piled raft with friction piles. In term of the environmental impact, it is found that the new foundation has a beneficial impact on the CO2 emissions. It saves roughly from 296.1 tonnes-CO2 to 518.21 tonnes-CO2 from the manufacture of concrete if the new foundation solution is used for another turbine-lifetime.

Keywords: active stabilisation system, CO2 emissions, FE analysis, reusable, weak soils

Procedia PDF Downloads 199
981 Diversity and Use of Agroforestry Yards of Family Farmers of Ponte Alta – Gama, Federal District, Brazil

Authors: Kever Bruno Paradelo Gomes, Rosana Carvalho Martins

Abstract:

The home gardens areas are production systems, which are located near the homes and are quite common in the tropics. They consist of agricultural and forest species and may also involve the raising of small animals to produce food for subsistence as well as income generation, with a special focus on the conservation of biodiversity. Home gardens are diverse Agroforestry systems with multiple uses, among many, food security, income aid, traditional medicine. The work was carried out on rural properties of the family farmers of the Ponte Alta Rural Nucleus, Gama Administrative Region, in the city of Brasília, Federal District- Brazil. The present research is characterized methodologically as a quantitative, exploratory and descriptive nature. The instruments used in this research were: bibliographic survey and semi-structured questionnaire. The data collection was performed through the application of a semi-structured questionnaire, containing questions that referred to the perception and behavior of the interviewed producer on the subject under analysis. In each question, the respondent explained his knowledge about sustainability, agroecological practices, environmental legislation, conservation methods, forest and medicinal species, ago social and socioeconomic characteristics, use and purpose of agroforestry and technical assistance. The sample represented 55.62% of the universe of the study. We interviewed 99 people aged 18-83 years, with a mean age of 49 years. The low level of education, coupled with the lack of training and guidance for small family farmers in the Ponte Alta Rural Nucleus, is one of the limitations to the development of practices oriented towards sustainable and agroecological agriculture in the nucleus. It is observed that 50.5% of the interviewed people landed with agroforestry yards less than 20 years ago, and only 16.17% of them are older than 35 years. In identifying agriculture as the main activity of most of the rural properties studied, attention is drawn to the cultivation of medicinal plants, fruits and crops as the most extracted products. However, it is verified that the crops in the backyards have the exclusive purpose of family consumption, which could be complemented with the marketing of the surplus, as well as with the aggregation of value to the cultivated products. Initiatives such as this may contribute to the increase in family income and to the motivation and value of the crop in agroecological gardens. We conclude that home gardens of Ponte Alta are highly diverse thus contributing to local biodiversity conservation of are managed by women to ensure food security and allows income generation. The tradition of existing knowledge on the use and management of the diversity of resources used in agroforestry yards is of paramount importance for the development of sustainable alternative practices.

Keywords: agriculture, agroforestry system, rural development, sustainability

Procedia PDF Downloads 126
980 Exploring Disengaging and Engaging Behavior of Doctoral Students

Authors: Salome Schulze

Abstract:

The delay of students in completing their dissertations is a worldwide problem. At the University of South Africa where this research was done, only about a third of the students complete their studies within the required period of time. This study explored the reasons why the students interrupted their studies, and why they resumed their research at a later stage. If this knowledge could be utilised to improve the throughput of doctoral students, it could have significant economic benefits for institutions of higher education while at the same time enhancing their academic prestige. To inform the investigation, attention was given to key theories concerning the learning of doctoral students, namely the situated learning theory, the social capital theory and the self-regulated learning theory, based on the social cognitive theory of learning. Ten students in the faculty of Education were purposefully selected on the grounds of their poor progress, or of having been in the system for too long. The collection of the data was in accordance with a Finnish study, since the two studies had the same aims, namely to investigate student engagement and disengagement. Graphic elicitation interviews, based on visualisations were considered appropriate to collect the data. This method could stimulate the reflection and recall of the participants’ ‘stories’ with very little input from the interviewer. The interviewees were requested to visualise, on paper, their journeys as doctoral students from the time when they first registered. They were to indicate the significant events that occurred and which facilitated their engagement or disengagement. In the interviews that followed, they were requested to elaborate on these motivating or challenging events by explaining when and why they occurred, and what prompted them to resume their studies. The interviews were tape-recorded and transcribed verbatim. Information-rich data were obtained containing visual metaphors. The data indicated that when the students suffered a period of disengagement, it was sometimes related to a lack of self-regulated learning, in particular, a lack of autonomy, and the inability to manage their time effectively. When the students felt isolated from the academic community of practice disengagement also occurred. This included poor guidance by their supervisors, which accordingly deprived them of significant social capital. The study also revealed that situational factors at home or at work were often the main reasons for the students’ procrastinating behaviour. The students, however, remained in the system. They were motivated towards a renewed engagement with their studies if they were self-regulated learners, and if they felt a connectedness with the academic community of practice because of positive relationships with their supervisors and of participation in the activities of the community (e.g., in workshops or conferences). In support of their learning, networking with significant others who were sources of information provided the students with the necessary social capital. Generally, institutions of higher education cannot address the students’ personal issues directly, but they can deal with key institutional factors in order to improve the throughput of doctoral students. It is also suggested that graphic elicitation interviews be used more often in social research that investigates the learning and development of the students.

Keywords: doctoral students, engaging and disengaging experiences, graphic elicitation interviews, student procrastination

Procedia PDF Downloads 181
979 Contribution of Word Decoding and Reading Fluency on Reading Comprehension in Young Typical Readers of Kannada Language

Authors: Vangmayee V. Subban, Suzan Deelan. Pinto, Somashekara Haralakatta Shivananjappa, Shwetha Prabhu, Jayashree S. Bhat

Abstract:

Introduction and Need: During early years of schooling, the instruction in the schools mainly focus on children’s word decoding abilities. However, the skilled readers should master all the components of reading such as word decoding, reading fluency and comprehension. Nevertheless, the relationship between each component during the process of learning to read is less clear. The studies conducted in alphabetical languages have mixed opinion on relative contribution of word decoding and reading fluency on reading comprehension. However, the scenarios in alphasyllabary languages are unexplored. Aim and Objectives: The aim of the study was to explore the role of word decoding, reading fluency on reading comprehension abilities in children learning to read Kannada between the age ranges of 5.6 to 8.6 years. Method: In this cross sectional study, a total of 60 typically developing children, 20 each from Grade I, Grade II, Grade III maintaining equal gender ratio between the age range of 5.6 to 6.6 years, 6.7 to 7.6 years and 7.7 to 8.6 years respectively were selected from Kannada medium schools. The reading fluency and reading comprehension abilities of the children were assessed using Grade level passages selected from the Kannada text book of children core curriculum. All the passages consist of five questions to assess reading comprehension. The pseudoword decoding skills were assessed using 40 pseudowords with varying syllable length and their Akshara composition. Pseudowords are formed by interchanging the syllables within the meaningful word while maintaining the phonotactic constraints of Kannada language. The assessment material was subjected to content validation and reliability measures before collecting the data on the study samples. The data were collected individually, and reading fluency was assessed for words correctly read per minute. Pseudoword decoding was scored for the accuracy of reading. Results: The descriptive statistics indicated that the mean pseudoword reading, reading comprehension, words accurately read per minute increased with the Grades. The performance of Grade III children found to be higher, Grade I lower and Grade II remained intermediate of Grade III and Grade I. The trend indicated that reading skills gradually improve with the Grades. Pearson’s correlation co-efficient showed moderate and highly significant (p=0.00) positive co-relation between the variables, indicating the interdependency of all the three components required for reading. The hierarchical regression analysis revealed 37% variance in reading comprehension was explained by pseudoword decoding and was highly significant. Subsequent entry of reading fluency measure, there was no significant change in R-square and was only change 3%. Therefore, pseudoword-decoding evolved as a single most significant predictor of reading comprehension during early Grades of reading acquisition. Conclusion: The present study concludes that the pseudoword decoding skills contribute significantly to reading comprehension than reading fluency during initial years of schooling in children learning to read Kannada language.

Keywords: alphasyllabary, pseudo-word decoding, reading comprehension, reading fluency

Procedia PDF Downloads 245
978 Effects of Virtual Reality Treadmill Training on Gait and Balance Performance of Patients with Stroke: Review

Authors: Hanan Algarni

Abstract:

Background: Impairment of walking and balance skills has negative impact on functional independence and community participation after stroke. Gait recovery is considered a primary goal in rehabilitation by both patients and physiotherapists. Treadmill training coupled with virtual reality technology is a new emerging approach that offers patients with feedback, open and random skills practice while walking and interacting with virtual environmental scenes. Objectives: To synthesize the evidence around the effects of the VR treadmill training on gait speed and balance primarily, functional independence and community participation secondarily in stroke patients. Methods: Systematic review was conducted; search strategy included electronic data bases: MEDLINE, AMED, Cochrane, CINAHL, EMBASE, PEDro, Web of Science, and unpublished literature. Inclusion criteria: Participant: adult >18 years, stroke, ambulatory, without severe visual or cognitive impartments. Intervention: VR treadmill training alone or with physiotherapy. Comparator: any other interventions. Outcomes: gait speed, balance, function, community participation. Characteristics of included studies were extracted for analysis. Risk of bias assessment was performed using Cochrane's ROB tool. Narrative synthesis of findings was undertaken and summary of findings in each outcome was reported using GRADEpro. Results: Four studies were included involving 84 stroke participants with chronic hemiparesis. Interventions intensity ranged (6-12 sessions, 20 minutes-1 hour/session). Three studies investigated the effects on gait speed and balance. 2 studies investigated functional outcomes and one study assessed community participation. ROB assessment showed 50% unclear risk of selection bias and 25% of unclear risk of detection bias across the studies. Heterogeneity was identified in the intervention effects at post training and follow up. Outcome measures, training intensity and durations also varied across the studies, grade of evidence was low for balance, moderate for speed and function outcomes, and high for community participation. However, it is important to note that grading was done on few numbers of studies in each outcome. Conclusions: The summary of findings suggests positive and statistically significant effects (p<0.05) of VR treadmill training compared to other interventions on gait speed, dynamic balance skills, function and participation directly after training. However, the effects were not sustained at follow up in two studies (2 weeks-1 month) and other studies did not perform follow up measurements. More RCTs with larger sample sizes and higher methodological quality are required to examine the long term effects of VR treadmill effects on function independence and community participation after stroke, in order to draw conclusions and produce stronger robust evidence.

Keywords: virtual reality, treadmill, stroke, gait rehabilitation

Procedia PDF Downloads 264
977 De-Densifying Congested Cores of Cities and Their Emerging Design Opportunities

Authors: Faith Abdul Rasak Asharaf

Abstract:

Every city has a threshold known as urban carrying capacity based on which it can withstand a particular density of people, above which the city might need to resort to measures like expanding its boundaries or growing vertically. As a result of this circumstance, the number of squatter communities is growing, as is the claustrophobic feeling of being confined inside a "concrete jungle." The expansion of suburbs, commercial areas, and industrial real estate in the areas surrounding medium-sized cities has resulted in changes to their landscapes and urban forms, as well as a systematic shift in their role in the urban hierarchy when functional endowment and connections to other territories are considered. The urban carrying capacity idea provides crucial guidance for city administrators and planners in better managing, designing, planning, constructing, and distributing urban resources to satisfy the huge demands of an evergrowing urban population. An ecological footprint is a criterion of urban carrying capacity, which is the amount of land required to provide humanity with renewable resources and absorb its trash. However, as each piece of land has its unique carrying capacity, including ecological, social, and economic considerations, these metropolitan areas begin to reach a saturation point over time. Various city models have been tried throughout the years to meet the increasing urban population density by moving the zones of work, life, and leisure to achieve maximum sustainable growth. The current scenario is that of a vertical city and compact city concept, in which the maximum density of people is attempted to fit into a definite area using efficient land use and a variety of other strategies, but this has proven to be a very unsustainable method of growth, as evidenced by the COVID-19 period. Due to a shortage of housing and basic infrastructure, densely populated cities gave rise to massive squatter communities, unable to accommodate the overflowing migrants. To achieve optimum carrying capacity, planning measures such as polycentric city and diffuse city concepts can be implemented, which will help to relieve the congested city core by relocating certain sectors of the town to the city periphery, which will help to create newer spaces for design in terms of public space, transportation, and housing, which is a major concern in the current scenario. The study's goal is focused on suggesting design options and solutions in terms of placemaking for better urban quality and urban life for the citizens once city centres have been de-densified based on urban carrying capacity and ecological footprint, taking the case of Kochi as an apt example of a highly densified city core, focusing on Edappally, which is an agglomeration of many urban factors.

Keywords: urban carrying capacity, urbanization, urban sprawl, ecological footprint

Procedia PDF Downloads 64
976 A New Model to Perform Preliminary Evaluations of Complex Systems for the Production of Energy for Buildings: Case Study

Authors: Roberto de Lieto Vollaro, Emanuele de Lieto Vollaro, Gianluca Coltrinari

Abstract:

The building sector is responsible, in many industrialized countries, for about 40% of the total energy requirements, so it seems necessary to devote some efforts in this area in order to achieve a significant reduction of energy consumption and of greenhouse gases emissions. The paper presents a study aiming at providing a design methodology able to identify the best configuration of the system building/plant, from a technical, economic and environmentally point of view. Normally, the classical approach involves a building's energy loads analysis under steady state conditions, and subsequent selection of measures aimed at improving the energy performance, based on previous experience made by architects and engineers in the design team. Instead, the proposed approach uses a sequence of two well known scientifically validated calculation methods (TRNSYS and RETScreen), that allow quite a detailed feasibility analysis. To assess the validity of the calculation model, an existing, historical building in Central Italy, that will be the object of restoration and preservative redevelopment, was selected as a case-study. The building is made of a basement and three floors, with a total floor area of about 3,000 square meters. The first step has been the determination of the heating and cooling energy loads of the building in a dynamic regime by means of TRNSYS, which allows to simulate the real energy needs of the building in function of its use. Traditional methodologies, based as they are on steady-state conditions, cannot faithfully reproduce the effects of varying climatic conditions and of inertial properties of the structure. With TRNSYS it is possible to obtain quite accurate and reliable results, that allow to identify effective combinations building-HVAC system. The second step has consisted of using output data obtained with TRNSYS as input to the calculation model RETScreen, which enables to compare different system configurations from the energy, environmental and financial point of view, with an analysis of investment, and operation and maintenance costs, so allowing to determine the economic benefit of possible interventions. The classical methodology often leads to the choice of conventional plant systems, while RETScreen provides a financial-economic assessment for innovative energy systems and low environmental impact. Computational analysis can help in the design phase, particularly in the case of complex structures with centralized plant systems, by comparing the data returned by the calculation model RETScreen for different design options. For example, the analysis performed on the building, taken as a case study, found that the most suitable plant solution, taking into account technical, economic and environmental aspects, is the one based on a CCHP system (Combined Cooling, Heating, and Power) using an internal combustion engine.

Keywords: energy, system, building, cooling, electrical

Procedia PDF Downloads 561
975 Impact of Customer Experience Quality on Loyalty of Mobile and Fixed Broadband Services: Case Study of Telecom Egypt Group

Authors: Nawal Alawad, Passent Ibrahim Tantawi, Mohamed Abdel Salam Ragheb

Abstract:

Providing customers with quality experiences has been confirmed to be a sustainable, competitive advantage with a distinct financial impact for companies. The success of service providers now relies on their ability to provide customer-centric services. The importance of perceived service quality and customer experience is widely recognized. The focus of this research is in the area of mobile and fixed broadband services. This study is of dual importance both academically and practically. Academically, this research applies a new model investigating the impact of customer experience quality on loyalty based on modifying the multiple-item scale for measuring customers’ service experience in a new area and did not depend on the traditional models. The integrated scale embraces four dimensions: service experience, outcome focus, moments of truth and peace of mind. In addition, it gives a scientific explanation for this relationship so this research fill the gap in such relations in which no one correlate or give explanations for these relations before using such integrated model and this is the first time to apply such modified and integrated new model in telecom field. Practically, this research gives insights to marketers and practitioners to improve customer loyalty through evolving the experience quality of broadband customers which is interpreted to suggested outcomes: purchase, commitment, repeat purchase and word-of-mouth, this approach is one of the emerging topics in service marketing. Data were collected through 412 questionnaires and analyzed by using structural equation modeling.Findings revealed that both outcome focus and moments of truth have a significant impact on loyalty while both service experience and peace of mind have insignificant impact on loyalty.In addition, it was found that 72% of the variation occurring in loyalty is explained by the model. The researcher also measured the net prompters score and gave explanation for the results. Furthermore, assessed customer’s priorities of broadband services. The researcher recommends that the findings of this research will extend to be considered in the future plans of Telecom Egypt Group. In addition, to be applied in the same industry especially in the developing countries that have the same circumstances with similar service settings. This research is a positive contribution in service marketing, particularly in telecom industry for making marketing more reliable as managers can relate investments in service experience directly with the performance closest to income for instance, repurchasing behavior, positive word of mouth and, commitment. Finally, the researcher recommends that future studies should consider this model to explain significant marketing outcomes such as share of wallet and ultimately profitability.

Keywords: broadband services, customer experience quality, loyalty, net promoters score

Procedia PDF Downloads 253
974 Active Development of Tacit Knowledge: Knowledge Management, High Impact Practices and Experiential Learning

Authors: John Zanetich

Abstract:

Due to their positive associations with student learning and retention, certain undergraduate opportunities are designated ‘high-impact.’ High-Impact Practices (HIPs) such as, learning communities, community based projects, research, internships, study abroad and culminating senior experience, share several traits bin common: they demand considerable time and effort, learning occurs outside of the classroom, and they require meaningful interactions between faculty and students, they encourage collaboration with diverse others, and they provide frequent and substantive feedback. As a result of experiential learning in these practices, participation in these practices can be life changing. High impact learning helps individuals locate tacit knowledge, and build mental models that support the accumulation of knowledge. On-going learning from experience and knowledge conversion provides the individual with a way to implicitly organize knowledge and share knowledge over a lifetime. Knowledge conversion is a knowledge management component which focuses on the explication of the tacit knowledge that exists in the minds of students and that knowledge which is embedded in the process and relationships of the classroom educational experience. Knowledge conversion is required when working with tacit knowledge and the demand for a learner to align deeply held beliefs with the cognitive dissonance created by new information. Knowledge conversion and tacit knowledge result from the fact that an individual's way of knowing, that is, their core belief structure, is considered generalized and tacit instead of explicit and specific. As a phenomenon, tacit knowledge is not readily available to the learner for explicit description unless evoked by an external source. The development of knowledge–related capabilities such as Aggressive Development of Tacit Knowledge (ADTK) can be used in experiential educational programs to enhance knowledge, foster behavioral change, improve decision making, and overall performance. ADTK allows the student in HIPs to use their existing knowledge in a way that allows them to evaluate and make any necessary modifications to their core construct of reality in order to amalgamate new information. Based on the Lewin/Schein Change Theory, the learner will reach for tacit knowledge as a stabilizing mechanism when they are challenged by new information that puts them slightly off balance. As in word association drills, the important concept is the first thought. The reactionary outpouring to an experience is the programmed or tacit memory and knowledge of their core belief structure. ADTK is a way to help teachers design their own methods and activities to unfreeze, create new learning, and then refreeze the core constructs upon which future learning in a subject area is built. This paper will explore the use of ADTK as a technique for knowledge conversion in the classroom in general and in HIP programs specifically. It will focus on knowledge conversion in curriculum development and propose the use of one-time educational experiences, multi-session experiences and sequential program experiences focusing on tacit knowledge in educational programs.

Keywords: tacit knowledge, knowledge management, college programs, experiential learning

Procedia PDF Downloads 246
973 The Use of Emerging Technologies in Higher Education Institutions: A Case of Nelson Mandela University, South Africa

Authors: Ayanda P. Deliwe, Storm B. Watson

Abstract:

The COVID-19 pandemic has disrupted the established practices of higher education institutions (HEIs). Most higher education institutions worldwide had to shift from traditional face-to-face to online learning. The online environment and new online tools are disrupting the way in which higher education is presented. Furthermore, the structures of higher education institutions have been impacted by rapid advancements in information and communication technologies. Emerging technologies should not be viewed in a negative light because, as opposed to the traditional curriculum that worked to create productive and efficient researchers, emerging technologies encourage creativity and innovation. Therefore, using technology together with traditional means will enhance teaching and learning. Emerging technologies in higher education not only change the experience of students, lecturers, and the content, but it is also influencing the attraction and retention of students. Higher education institutions are under immense pressure because not only are they competing locally and nationally, but emerging technologies also expand the competition internationally. Emerging technologies have eliminated border barriers, allowing students to study in the country of their choice regardless of where they are in the world. Higher education institutions are becoming indifferent as technology is finding its way into the lecture room day by day. Academics need to utilise technology at their disposal if they want to get through to their students. Academics are now competing for students' attention with social media platforms such as WhatsApp, Snapchat, Instagram, Facebook, TikTok, and others. This is posing a significant challenge to higher education institutions. It is, therefore, critical to pay attention to emerging technologies in order to see how they can be incorporated into the classroom in order to improve educational quality while remaining relevant in the work industry. This study aims to understand how emerging technologies have been utilised at Nelson Mandela University in presenting teaching and learning activities since April 2020. The primary objective of this study is to analyse how academics are incorporating emerging technologies in their teaching and learning activities. This primary objective was achieved by conducting a literature review on clarifying and conceptualising the emerging technologies being utilised by higher education institutions, reviewing and analysing the use of emerging technologies, and will further be investigated through an empirical analysis of the use of emerging technologies at Nelson Mandela University. Findings from the literature review revealed that emerging technology is impacting several key areas in higher education institutions, such as the attraction and retention of students, enhancement of teaching and learning, increase in global competition, elimination of border barriers, and highlighting the digital divide. The literature review further identified that learning management systems, open educational resources, learning analytics, and artificial intelligence are the most prevalent emerging technologies being used in higher education institutions. The identified emerging technologies will be further analysed through an empirical analysis to identify how they are being utilised at Nelson Mandela University.

Keywords: artificial intelligence, emerging technologies, learning analytics, learner management systems, open educational resources

Procedia PDF Downloads 56
972 Wetting Induced Collapse Behavior of Loosely Compacted Kaolin Soil: A Microstructural Study

Authors: Dhanesh Sing Das, Bharat Tadikonda Venkata

Abstract:

Collapsible soils undergo significant volume reduction upon wetting under the pre-existing mechanically applied normal stress (inundation pressure). These soils exhibit a very high strength in air-dried conditions and can carry up to a considerable magnitude of normal stress without undergoing significant volume change. The soil strength is, however, lost upon saturation and results in a sudden collapse of the soil structure under the existing mechanical stress condition. The intrusion of water into the dry deposits of such soil causes ground subsidence leading to damages in the overlying buildings/structures. A study on the wetting-induced volume change behavior of collapsible soils is essential in dealing with the ground subsidence problems in various geotechnical engineering practices. The collapse of loosely compacted Kaolin soil upon wetting under various inundation pressures has been reported in recent studies. The collapse in the Kaolin soil is attributed to the alteration in the soil particle-particle association (fabric) resulting due to the changes in the various inter-particle (microscale) forces induced by the water saturation. The inundation pressure plays a significant role in the fabric evolution during the wetting process, thus controls the collapse potential of the compacted soil. A microstructural study is useful to understand the collapse mechanisms at various pore-fabric levels under different inundation pressure. Kaolin soil compacted to a dry density of 1.25 g/cc was used in this work to study the wetting-induced volume change behavior under different inundation pressures in the range of 10-1600 kPa. The compacted specimen of Kaolin soil exhibited a consistent collapse under all the studied inundation pressure. The collapse potential was observed to be increasing with an increase in the inundation pressure up to a maximum value of 13.85% under 800 kPa and then decreased to 11.7% under 1600 kPa. Microstructural analysis was carried out based on the fabric images and the pore size distributions (PSDs) obtained from FESEM analysis and mercury intrusion porosimetry (MIP), respectively. The PSDs and the soil fabric images of ‘as-compacted’ specimen and post-collapse specimen under 400 kPa were analyzed to understand the changes in the soil fabric and pores due to wetting. The pore size density curve for the post-collapse specimen was found to be on the finer side with respect to the ‘as-compacted’ specimen, indicating the reduction of the larger pores during the collapse. The inter-aggregate pores in the range of 0.1-0.5μm were identified as the major contributing pore size classes to the macroscopic volume change. Wetting under an inundation pressure results in the reduction of these pore sizes and lead to an increase in the finer pore sizes. The magnitude of inundation pressure influences the amount of reduction of these pores during the wetting process. The collapse potential was directly related to the degree of reduction in the pore volume contributed by these pore sizes.

Keywords: collapse behavior, inundation pressure, kaolin, microstructure

Procedia PDF Downloads 123
971 Income Inequality and Its Effects on Household Livelihoods in Parker Paint Community, Liberia

Authors: Robertson Freeman

Abstract:

The prime objective of this research is to examine income inequality and its effects on household livelihoods in Parker Paint. Many researchers failed to address the potential threat of income inequality on diverse household livelihood indicators, including health, food, housing, transport and many others. They examine and generalize the effects of income differentials on household livelihoods by addressing one indicator of livelihood security. This research fills the loopholes of previous research by examining the effects of income inequality and how it affects the livelihoods of households, taking into consideration livelihood indicators including health, food security, and transport. The researcher employed the mixed research method to analyze the distribution of income and solicit opinions of household heads on the effects of their monthly income on their livelihoods. Age and sex structure, household composition, type of employment and educational status influence income inequality. The level of income, Lorenz curve and the Gini coefficient was mutually employed to calculate and determine the level of income inequality. One hundred eighty-two representing 96% of household heads are employed while 8, representing 4%, are unemployed. However, out of a total number of 182 employed, representing 96%, 27 people representing 14%, are employed in the formal private sector, while 110, representing 58%, are employed in the private informal sector. Monthly average income, savings, investments and unexpected circumstances affect the livelihood of households. Infrastructural development and wellbeing should be pursued by reducing expenditure earmarked in other sectors and channeling the funds towards the provision of household needs. One of the potent tools for consolidating household livelihoods is to initiate livelihood empowerment programs. Government and private sector agencies should establish more health insurance schemes, providing mosquito nets, immunization services, public transport, as well as embarking on feeding programs, especially in the remote areas of Parker paint. To climax the research findings, self-employment, entrepreneurship and the general private sector employment is a transparent double-edged sword. If employed in the private sector, there is the likelihood to increase one’s income. However, this also induces the income gap between the rich and poor since many people are exploited by affluence, thereby relegating the poor from the wealth hierarchy. Age and sex structure, as well as type of employment, should not be overlooked since they all play fundamental roles in influencing income inequality. Savings and investments seem to play a positive role in reducing income inequality. However, savings and investment in this research affect livelihoods negatively. It behooves mankind to strive and work hard to the best of ability in earning sufficient income and embracing measures to retain his financial strength. In so doing, people will be able to provide basic household needs, celebrate the reduction in unemployment and dependence and finally ensure sustainable livelihoods.

Keywords: income, inequality, livelihood, pakerpaint

Procedia PDF Downloads 108
970 Experimental Study of Infill Walls with Joint Reinforcement Subjected to In-Plane Lateral Load

Authors: J. Martin Leal-Graciano, Juan J. Pérez-Gavilán, A. Reyes-Salazar, J. H. Castorena, J. L. Rivera-Salas

Abstract:

The experimental results about the global behavior of twelve 1:2 scaled reinforced concrete frames subject to in-plane lateral load are presented. The main objective was to generate experimental evidence about the use of steel bars within mortar bed joints as shear reinforcement in infill walls. Similar to the Canadian and New Zealand standards, the Mexican code includes specifications for this type of reinforcement. However, these specifications were obtained through experimental studies of load-bearing walls, mainly confined walls. Little information is found in the existing literature about the effects of joint reinforcement on the seismic behavior of infill masonry walls. Consequently, the Mexican code establishes the same equations to estimate the contribution of joint reinforcement for both confined walls and infill walls. Confined masonry construction and a reinforced concrete frame infilled with masonry walls have similar appearances. However, substantial differences exist between these two construction systems, which are mainly related to the sequence of construction and to how these structures support vertical and lateral loads. To achieve the objective established, ten reinforced concrete frames with masonry infill walls were built and tested in pairs, having both specimens in the pair identical characteristics except that one of them included joint reinforcement. The variables between pairs were the type of units, the size of the columns of the frame, and the aspect ratio of the wall. All cases included tie columns and tie beams on the perimeter of the wall to anchor the joint reinforcement. Also, two bare frames with identical characteristics to the infilled frames were tested. The purpose was to investigate the effects of the infill wall on the behavior of the system to in-plane lateral load. In addition, the experimental results were compared with the prediction of the Mexican code. All the specimens were tested in a cantilever under reversible cyclic lateral load. To simulate gravity load, constant vertical load was applied on the top of the columns. The results indicate that the contribution of the joint reinforcement to lateral strength depends on the size of the columns of the frame. Larger size columns produce a failure mode that is predominantly a sliding mode. Sliding inhibits the production of new inclined cracks, which are necessary to activate (deform) the joint reinforcement. Regarding the effects of joint reinforcement in the performance of confined masonry walls, many facts were confirmed for infill walls. This type of reinforcement increases the lateral strength of the wall, produces a more distributed cracking, and reduces the width of the cracks. Moreover, it reduces the ductility demand of the system at maximum strength. The prediction of the lateral strength provided by the Mexican code is a property in some cases; however, the effect of the size of the columns on the contribution of joint reinforcement needs to be better understood.

Keywords: experimental study, infill wall, infilled frame, masonry wall

Procedia PDF Downloads 163
969 Aerosol Chemical Composition in Urban Sites: A Comparative Study of Lima and Medellin

Authors: Guilherme M. Pereira, Kimmo Teinïla, Danilo Custódio, Risto Hillamo, Célia Alves, Pérola de C. Vasconcellos

Abstract:

South American large cities often present serious air pollution problems and their atmosphere composition is influenced by a variety of emissions sources. The South American Emissions Megacities, and Climate project (SAEMC) has focused on the study of emissions and its influence on climate in the South American largest cities and it also included Lima (Peru) and Medellin (Colombia), sites where few studies of the genre were done. Lima is a coastal city with more than 8 million inhabitants and the second largest city in South America. Medellin is a 2.5 million inhabitants city and second largest city in Colombia; it is situated in a valley. The samples were collected in quartz fiber filters in high volume samplers (Hi-Vol), in 24 hours of sampling. The samples were collected in intensive campaigns in both sites, in July, 2010. Several species were determined in the aerosol samples of Lima and Medellin. Organic and elemental carbon (OC and EC) in thermal-optical analysis; biomass burning tracers (levoglucosan - Lev, mannosan - Man and galactosan - Gal) in high-performance anion exchange ion chromatography with mass spectrometer detection; water soluble ions in ion chromatography. The average particulate matter was similar for both campaigns, the PM10 concentrations were above the recommended by World Health Organization (50 µg m⁻³ – daily limit) in 40% of the samples in Medellin, while in Lima it was above that value in 15% of the samples. The average total ions concentration was higher in Lima (17450 ng m⁻³ in Lima and 3816 ng m⁻³ in Medellin) and the average concentrations of sodium and chloride were higher in this site, these species also had better correlations (Pearson’s coefficient = 0,63); suggesting a higher influence of marine aerosol in the site due its location in the coast. Sulphate concentrations were also much higher at Lima site; which may be explained by a higher influence of marine originated sulphate. However, the OC, EC and monosaccharides average concentrations were higher at Medellin site; this may be due to the lower dispersion of pollutants due to the site’s location and a larger influence of biomass burning sources. The levoglucosan average concentration was 95 ng m⁻³ for Medellin and 16 ng m⁻³ and OC was well correlated with levoglucosan (Pearson’s coefficient = 0,86) in Medellin; suggesting a higher influence of biomass burning over the organic aerosol in this site. The Lev/Man ratio is often related to the type of biomass burned and was close to 18, similar to the observed in previous studies done at biomass burning impacted sites in the Amazon region; backward trajectories also suggested the transport of aerosol from that region. Biomass burning appears to have a larger influence on the air quality in Medellin, in addition the vehicular emissions; while Lima showed a larger influence of marine aerosol during the study period.

Keywords: aerosol transport, atmospheric particulate matter, biomass burning, SAEMC project

Procedia PDF Downloads 247
968 Crosslinked Porous 3-Dimensional Cellulose Nanofibers/Gelatin Based Biocomposite Aerogels for Tissue Engineering Application

Authors: Ali Mirtaghavi, Andy Baldwin, Rajendarn Muthuraj, Jack Luo

Abstract:

Recent advances in biomaterials have led to utilizing biopolymers to develop 3D scaffolds in tissue regeneration. One of the major challenges of designing biomaterials for 3D scaffolds is to mimic the building blocks similar to the extracellular matrix (ECM) of the native tissues. Biopolymer based aerogels obtained by freeze-drying have shown to provide structural similarities to the ECM owing to their 3D format and a highly porous structure with interconnected pores, similar to the ECM. Gelatin (GEL) is known to be a promising biomaterial with inherent regenerative characteristics owing to its chemical similarities to the ECM in native tissue, biocompatibility abundance, cost-effectiveness and accessible functional groups, which makes it facile for chemical modifications with other biomaterials to form biocomposites. Despite such advantages, gelatin offers poor mechanical properties, sensitive enzymatic degradation and high viscosity at room temperature which limits its application and encourages its use to develop biocomposites. Hydrophilic biomass-based cellulose nanofibrous (CNF) has been explored to use as suspension for biocomposite aerogels for the development of 3D porous structures with excellent mechanical properties, biocompatibility and slow enzymatic degradation. In this work, CNF biocomposite aerogels with various ratios of CNF:GEL) (90:10, 70:30 and 50:50) were prepared by freeze-drying technique, and their properties were investigated in terms of physicochemical, mechanical and biological characteristics. Epichlorohydrin (EPH) was used to investigate the effect of chemical crosslinking on the molecular interaction of CNF: GEL, and its effects on physicochemical, mechanical and biological properties of the biocomposite aerogels. Ultimately, chemical crosslinking helped to improve the mechanical resilience of the resulting aerogels. Amongst all the CNF-GEL composites, the crosslinked CNF: GEL (70:30) biocomposite was found to be favourable for cell attachment and viability. It possessed highly porous structure (porosity of ~93%) with pore sizes ranging from 16-110 µm, adequate mechanical properties (compression modulus of ~47 kPa) and optimal biocompatibility both in-vitro and in-vivo, as well as controlled enzymatic biodegradation, high water penetration, which could be considered a suitable option for wound healing application. In-vivo experiments showed improvement on inflammation and foreign giant body cell reaction for the crosslinked CNF: GEL (70:30) compared to the other samples. This could be due to the superior interaction of CNF with gelatin through chemical crosslinking, resulting in more optimal in-vivo improvement. In-vitro cell culture investigation on human dermal fibroblasts showed satisfactory 3D cell attachment over time. Overall, it has been observed that the developed CNF: GEL aerogel can be considered as a potential scaffold for soft tissue regeneration application.

Keywords: 3D scaffolds, aerogels, Biocomposites , tissue engineering

Procedia PDF Downloads 118