Search results for: variable precision rough sets theory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8824

Search results for: variable precision rough sets theory

6514 Sentiment Analysis on the East Timor Accession Process to the ASEAN

Authors: Marcelino Caetano Noronha, Vosco Pereira, Jose Soares Pinto, Ferdinando Da C. Saores

Abstract:

One particularly popular social media platform is Youtube. It’s a video-sharing platform where users can submit videos, and other users can like, dislike or comment on the videos. In this study, we conduct a binary classification task on YouTube’s video comments and review from the users regarding the accession process of Timor Leste to become the eleventh member of the Association of South East Asian Nations (ASEAN). We scrape the data directly from the public YouTube video and apply several pre-processing and weighting techniques. Before conducting the classification, we categorized the data into two classes, namely positive and negative. In the classification part, we apply Support Vector Machine (SVM) algorithm. By comparing with Naïve Bayes Algorithm, the experiment showed SVM achieved 84.1% of Accuracy, 94.5% of Precision, and Recall 73.8% simultaneously.

Keywords: classification, YouTube, sentiment analysis, support sector machine

Procedia PDF Downloads 107
6513 Lifetime Attachment: Adult Daughters Attachment to Their Old Mothers

Authors: Meltem Anafarta Şendağ, Funda Kutlu

Abstract:

Attachment theory has some major postulates that direct attention of psychologists from many different domains. First, the theory suggests that attachment is a lifetime process. This means that every human being from cradle to grave needs someone stronger to depend on in times of stress. Second, the attachment is a dynamic process and as one goes through developmental stages it is being transferred from one figure to another (friends, romantic partners). Third, the quality of attachment relationships later in time directly affected by the earliest attachment relationship established between the mother and the infant. Depending on these postulates, attachment literature focuses mostly on mother – child attachment during childhood and romantic relationship during adulthood. However, although romantic partners are important attachment figures in adults’ life, parents are not dropped out from the attachment hierarchy but they keep being important attachment figures. Despite the fact that parents could still be an important figure in adults’ life, adult – parent attachment is overlooked in the literature. Accordingly, this study focuses on adult daughters’ current attachment to their old mothers in relation with early parental bonding and current attachment to husbands. Participants of the study were 383 adult women (Average age = 40, ranging between 23 and 70) whose mothers were still alive and who were married at the time of the study. Participants were completed Adult Attachment Scale, Parental Bonding Instrument, and Experiences in Close Relationship – II together with demographic questionnaire. Results revealed that daughters’ attachment to their mothers weakens as they get older, have more children, and have longer marriages. Stronger attachment to mothers was found positively correlated with current satisfaction with the relationship, perception of maternal care before the age of 12 and negatively correlated with perception of controlling behavior before the age 12. Considering the relationship between current parental attachment and romantic attachment, it was found that as the current attachment to mother strengthens attachment avoidance towards husband decreases. Results revealed that although attachment between the adult daughters and old mothers weakens, the relationship is still critical in daughters’ lives. The strength of current attachment with the mother is related both with the early relationship with the mother and current attachment with the husband. The current study is thought to contribute to attachment theory emphasizing the attachment as a lifetime construct.

Keywords: adult daughter, attachment, old mothers, parental bonding

Procedia PDF Downloads 330
6512 Estimation of the External Force for a Co-Manipulation Task Using the Drive Chain Robot

Authors: Sylvain Devie, Pierre-Philippe Robet, Yannick Aoustin, Maxime Gautier

Abstract:

The aim of this paper is to show that the observation of the external effort and the sensor-less control of a system is limited by the mechanical system. First, the model of a one-joint robot with a prismatic joint is presented. Based on this model, two different procedures were performed in order to identify the mechanical parameters of the system and observe the external effort applied on it. Experiments have proven that the accuracy of the force observer, based on the DC motor current, is limited by the mechanics of the robot. The sensor-less control will be limited by the accuracy in estimation of the mechanical parameters and by the maximum static friction force, that is the minimum force which can be observed in this case. The consequence of this limitation is that industrial robots without specific design are not well adapted to perform sensor-less precision tasks. Finally, an efficient control law is presented for high effort applications.

Keywords: control, identification, robot, co-manipulation, sensor-less

Procedia PDF Downloads 157
6511 Consideration of Uncertainty in Engineering

Authors: A. Mohammadi, M. Moghimi, S. Mohammadi

Abstract:

Engineers need computational methods which could provide solutions less sensitive to the environmental effects, so the techniques should be used which take the uncertainty to account to control and minimize the risk associated with design and operation. In order to consider uncertainty in engineering problem, the optimization problem should be solved for a suitable range of the each uncertain input variable instead of just one estimated point. Using deterministic optimization problem, a large computational burden is required to consider every possible and probable combination of uncertain input variables. Several methods have been reported in the literature to deal with problems under uncertainty. In this paper, different methods presented and analyzed.

Keywords: uncertainty, Monte Carlo simulated, stochastic programming, scenario method

Procedia PDF Downloads 413
6510 On the Performance of Improvised Generalized M-Estimator in the Presence of High Leverage Collinearity Enhancing Observations

Authors: Habshah Midi, Mohammed A. Mohammed, Sohel Rana

Abstract:

Multicollinearity occurs when two or more independent variables in a multiple linear regression model are highly correlated. The ridge regression is the commonly used method to rectify this problem. However, the ridge regression cannot handle the problem of multicollinearity which is caused by high leverage collinearity enhancing observation (HLCEO). Since high leverage points (HLPs) are responsible for inducing multicollinearity, the effect of HLPs needs to be reduced by using Generalized M estimator. The existing GM6 estimator is based on the Minimum Volume Ellipsoid (MVE) which tends to swamp some low leverage points. Hence an improvised GM (MGM) estimator is presented to improve the precision of the GM6 estimator. Numerical example and simulation study are presented to show how HLPs can cause multicollinearity. The numerical results show that our MGM estimator is the most efficient method compared to some existing methods.

Keywords: identification, high leverage points, multicollinearity, GM-estimator, DRGP, DFFITS

Procedia PDF Downloads 260
6509 On the Stability Exact Analysis of Tall Buildings with Outrigger System

Authors: Mahrooz Abed, Amir R. Masoodi

Abstract:

Many structural lateral systems are used in tall buildings such as rigid frames, braced frames, shear walls, tubular structures and core structures. Some efficient structures for drift control and base moment reduction in tall buildings is outrigger and belt truss systems. When adopting outrigger beams in building design, their location should be in an optimum position for an economical design. A range of different strategies has been employed to identify the optimum locations of these outrigger beams under wind load. However, there is an absence of scientific research or case studies dealing with optimum outrigger location using buckling analysis. In this paper, one outrigger system is considered at the middle of height of structure. The optimum location of outrigger will be found based on the buckling load limitation. The core of structure is modeled by a clamped tapered beam. The exact stiffness matrix of tapered beam is formulated based on the Euler-Bernoulli theory. Finally, based on the buckling load of structure, the optimal location of outrigger will be found.

Keywords: tall buildings, outrigger system, buckling load, second-order effects, Euler-Bernoulli beam theory

Procedia PDF Downloads 395
6508 Visualizing the Commercial Activity of a City by Analyzing the Data Information in Layers

Authors: Taras Agryzkov, Jose L. Oliver, Leandro Tortosa, Jose Vicent

Abstract:

This paper aims to demonstrate how network models can be used to understand and to deal with some aspects of urban complexity. As it is well known, the Theory of Architecture and Urbanism has been using for decades’ intellectual tools based on the ‘sciences of complexity’ as a strategy to propose theoretical approaches about cities and about architecture. In this sense, it is possible to find a vast literature in which for instance network theory is used as an instrument to understand very diverse questions about cities: from their commercial activity to their heritage condition. The contribution of this research consists in adding one step of complexity to this process: instead of working with one single primal graph as it is usually done, we will show how new network models arise from the consideration of two different primal graphs interacting in two layers. When we model an urban network through a mathematical structure like a graph, the city is usually represented by a set of nodes and edges that reproduce its topology, with the data generated or extracted from the city embedded in it. All this information is normally displayed in a single layer. Here, we propose to separate the information in two layers so that we can evaluate the interaction between them. Besides, both layers may be composed of structures that do not have to coincide: from this bi-layer system, groups of interactions emerge, suggesting reflections and in consequence, possible actions.

Keywords: graphs, mathematics, networks, urban studies

Procedia PDF Downloads 179
6507 Metabolic Predictive Model for PMV Control Based on Deep Learning

Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon

Abstract:

In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.

Keywords: deep learning, indoor quality, metabolism, predictive model

Procedia PDF Downloads 255
6506 The Efficacy of Open Educational Resources in Students’ Performance and Engagement

Authors: Huda Al-Shuaily, E. M. Lacap

Abstract:

Higher Education is one of the most essential fundamentals for the advancement and progress of a country. It demands to be as accessible as possible and as comprehensive as it can be reached. In this paper, we succeeded to expand the accessibility and delivery of higher education using an Open Educational Resources (OER), a freely accessible, openly licensed documents, and media for teaching and learning. This study creates a comparative design of student’s academic performance on the course Introduction to Database and student engagement to the virtual learning environment (VLE). The study was done in two successive semesters - one without using the OER and the other is using OER. In the study, we established that there is a significant increase in student’s engagement in VLE in the latter semester compared to the former. By using the latter semester’s data, we manage to show that the student’s engagement has a positive impact on students’ academic performance. Moreso, after clustering their academic performance, the impact is seen higher for students who are low performing. The results show that these engagements can be used to potentially predict the learning styles of the student with a high degree of precision.

Keywords: EDM, learning analytics, moodle, OER, student-engagement

Procedia PDF Downloads 338
6505 Causal Estimation for the Left-Truncation Adjusted Time-Varying Covariates under the Semiparametric Transformation Models of a Survival Time

Authors: Yemane Hailu Fissuh, Zhongzhan Zhang

Abstract:

In biomedical researches and randomized clinical trials, the most commonly interested outcomes are time-to-event so-called survival data. The importance of robust models in this context is to compare the effect of randomly controlled experimental groups that have a sense of causality. Causal estimation is the scientific concept of comparing the pragmatic effect of treatments conditional to the given covariates rather than assessing the simple association of response and predictors. Hence, the causal effect based semiparametric transformation model was proposed to estimate the effect of treatment with the presence of possibly time-varying covariates. Due to its high flexibility and robustness, the semiparametric transformation model which shall be applied in this paper has been given much more attention for estimation of a causal effect in modeling left-truncated and right censored survival data. Despite its wide applications and popularity in estimating unknown parameters, the maximum likelihood estimation technique is quite complex and burdensome in estimating unknown parameters and unspecified transformation function in the presence of possibly time-varying covariates. Thus, to ease the complexity we proposed the modified estimating equations. After intuitive estimation procedures, the consistency and asymptotic properties of the estimators were derived and the characteristics of the estimators in the finite sample performance of the proposed model were illustrated via simulation studies and Stanford heart transplant real data example. To sum up the study, the bias of covariates was adjusted via estimating the density function for truncation variable which was also incorporated in the model as a covariate in order to relax the independence assumption of failure time and truncation time. Moreover, the expectation-maximization (EM) algorithm was described for the estimation of iterative unknown parameters and unspecified transformation function. In addition, the causal effect was derived by the ratio of the cumulative hazard function of active and passive experiments after adjusting for bias raised in the model due to the truncation variable.

Keywords: causal estimation, EM algorithm, semiparametric transformation models, time-to-event outcomes, time-varying covariate

Procedia PDF Downloads 123
6504 Droplet Impact on a High Frequency Vibrating Surface

Authors: Maryam Ebrahimiazar, Parsia Mohammadshahi, Amirreza Amighi, Nasser Ashgriz

Abstract:

Ultrasonic atomization is used to generate micron size aerosols. In this work, the aerosol formation by the atomization of a parent droplet dripping from a capillary needle onto the surface of a Teflon coated piezoelectric vibrating at 2.5 MHz is studied, and different steps of atomization are categorized. After the droplet impacts on the piezoelectric, surface acoustic streaming deforms the droplet into a fountain shape. This fountain soon collapses and forms a liquid layer. The breakup of the liquid layer results in the generation of both large ( 100 microns) and small drops (few microns). Next, the residual drops from the liquid layer start to be atomized to generate few micron size droplets. The high velocity and explosive aerosol formation in this step are better explained in terms of cavitation theory. However, the combination of both capillary waves and cavitation theory seem to be responsible for few-micron droplet generation. The current study focuses on both qualitative and quantitative aspects of fountain formation for both ethyl-alcohol and water. Even though the general steps of atomization are the same for both liquids, the quantitative results indicate that some noticeable differences lie between them.

Keywords: droplet breakup, ultrasonic atomization, acoustic streaming, droplet oscillation

Procedia PDF Downloads 178
6503 Effect of Different Ground Motion Scaling Methods on Behavior of 40 Story RC Core Wall Building

Authors: Muhammad Usman, Munir Ahmed

Abstract:

The demand of high-rise buildings has grown fast during the past decades. The design of these buildings by using RC core wall have been widespread nowadays in many countries. The RC core wall (RCCW) buildings encompasses central core wall and boundary columns joined through post tension slab at different floor levels. The core wall often provides greater stiffness as compared to the collective stiffness of the boundary columns. Hence, the core wall dominantly resists lateral loading i.e. wind or earthquake load. Non-linear response history analysis (NLRHA) procedure is the finest seismic design procedure of the times for designing high-rise buildings. The modern design tools for nonlinear response history analysis and performance based design has provided more confidence to design these structures for high-rise buildings. NLRHA requires selection and scaling of ground motions to match design spectrum for site specific conditions. Designers use several techniques for scaling ground motion records (time series). Time domain and frequency domain scaling are most commonly used which comprises their own benefits and drawbacks. Due to lengthy process of NLRHA, application of only one technique is conceivable. To the best of author’s knowledge, no consensus on the best procedures for the selection and scaling of the ground motions is available in literature. This research aims to provide the finest ground motion scaling technique specifically for designing 40 story high-rise RCCW buildings. Seismic response of 40 story RCCW building is checked by applying both the frequency domain and time domain scaling. Variable sites are selected in three critical seismic zones of Pakistan. The results indicates that there is extensive variation in seismic response of building for these scaling. There is still a need to build a consensus on the subjected research by investigating variable sites and buildings heights.

Keywords: 40-storied RC core wall building, nonlinear response history analysis, ground motions, time domain scaling, frequency domain scaling

Procedia PDF Downloads 130
6502 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis

Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy

Abstract:

Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.

Keywords: associated cervical cancer, data mining, random forest, logistic regression

Procedia PDF Downloads 82
6501 Drone Classification Using Classification Methods Using Conventional Model With Embedded Audio-Visual Features

Authors: Hrishi Rakshit, Pooneh Bagheri Zadeh

Abstract:

This paper investigates the performance of drone classification methods using conventional DCNN with different hyperparameters, when additional drone audio data is embedded in the dataset for training and further classification. In this paper, first a custom dataset is created using different images of drones from University of South California (USC) datasets and Leeds Beckett university datasets with embedded drone audio signal. The three well-known DCNN architectures namely, Resnet50, Darknet53 and Shufflenet are employed over the created dataset tuning their hyperparameters such as, learning rates, maximum epochs, Mini Batch size with different optimizers. Precision-Recall curves and F1 Scores-Threshold curves are used to evaluate the performance of the named classification algorithms. Experimental results show that Resnet50 has the highest efficiency compared to other DCNN methods.

Keywords: drone classifications, deep convolutional neural network, hyperparameters, drone audio signal

Procedia PDF Downloads 102
6500 An Economic Study for Fish Production in Egypt

Authors: Manal Elsayed Elkheshin, Rasha Saleh Mansour, Mohamed Fawzy Mohamed Eldnasury, Mamdouh Elbadry Mohamed

Abstract:

This research Aims to identify the main factors affecting the production and the fish consumption in Egypt, through the econometric estimation for various forms functions of fish production and fish consumption during the period (1991-2014), as the aim of this research to forecast the production and the fish consumption in Egypt until 2020, through determine the best standard methods using (ARIMA).This research also aims to the economic feasibility of the production of fish in aquaculture farms study; investment cost and represents the value of land, buildings, equipment and irrigation. Aquaculture requires three types of fish (Tilapia, carp fish, and mullet fish), and the total area of the farm, about an acre. The annual Fish production from this project about 3.5 tons. The annual investment costs of about 50500 pounds, Find conclude that the project can repay the cost of their investments after about 4 years and 5 months, and therefore recommend the implementation of the project, and internal rate of return reached (IRR) of about 22.1%, where it is clear that the rate of large internal rate of return, and achieves pound invested in this project annual return is estimated at 22.1 pounds, more than the opportunity cost, so we recommend the need to implement the project.Recommendations:1. Increasing the fish agriculture to decrease the gap of animal protein. 2.Increasing the number of mechanism fishing boats, and the provision of transport equipped to maintain the quality of fish production. 3.Encourage and attract the local and foreign investments, providing advice to the investor on the aquaculture field. 4. Action newsletters awareness of the importance of these projects where these projects resulted in a net profit after recovery in less than five years, IRR amounted to about 23%, which is much more than the opportunity cost of a bank interest rate is about 7%, helping to create work and graduates opportunities, and contribute to the reduction of imports of the fish, and improve the performance of the food trade balance.

Keywords: equation model, individual share, red meat, consumption, production, endogenous variable, exogenous variable, financial performance evaluates fish culture, feasibility study, fish production, aquaculture

Procedia PDF Downloads 367
6499 Internal Financing Constraints and Corporate Investment: Evidence from Indian Manufacturing Firms

Authors: Gaurav Gupta, Jitendra Mahakud

Abstract:

This study focuses on the significance of internal financing constraints on the determination of corporate fixed investments in the case of Indian manufacturing companies. Financing constraints companies which have less internal fund or retained earnings face more transaction and borrowing costs due to imperfections in the capital market. The period of study is 1999-2000 to 2013-2014 and we consider 618 manufacturing companies for which the continuous data is available throughout the study period. The data is collected from PROWESS data base maintained by Centre for Monitoring Indian Economy Pvt. Ltd. Panel data methods like fixed effect and random effect methods are used for the analysis. The Likelihood Ratio test, Lagrange Multiplier test, and Hausman test results conclude the suitability of the fixed effect model for the estimation. The cash flow and liquidity of the company have been used as the proxies for the internal financial constraints. In accordance with various theories of corporate investments, we consider other firm specific variable like firm age, firm size, profitability, sales and leverage as the control variables in the model. From the econometric analysis, we find internal cash flow and liquidity have the significant and positive impact on the corporate investments. The variables like cost of capital, sales growth and growth opportunities are found to be significantly determining the corporate investments in India, which is consistent with the neoclassical, accelerator and Tobin’s q theory of corporate investment. To check the robustness of results, we divided the sample on the basis of cash flow and liquidity. Firms having cash flow greater than zero are put under one group, and firms with cash flow less than zero are put under another group. Also, the firms are divided on the basis of liquidity following the same approach. We find that the results are robust to both types of companies having positive and negative cash flow and liquidity. The results for other variables are also in the same line as we find for the whole sample. These findings confirm that internal financing constraints play a significant role for determination of corporate investment in India. The findings of this study have the implications for the corporate managers to focus on the projects having higher expected cash inflows to avoid the financing constraints. Apart from that, they should also maintain adequate liquidity to minimize the external financing costs.

Keywords: cash flow, corporate investment, financing constraints, panel data method

Procedia PDF Downloads 241
6498 Examining Historically Defined Periods in Autobiographical Memories for Transitional Events

Authors: Khadeeja Munawar, Shamsul Haque

Abstract:

We examined the plausibility of transition theory suggesting that memories of transitional events, which give rise to a significant and persistent change in the fabric of daily life, are organized around the historically defined autobiographical periods (H-DAPs). 141 Pakistani older adults retrieved 10 autobiographical memories (AMs) each to 10 cue words. As the history of Pakistan is dominated by various political and nationwide transitional events, it was expected that the participants would recall memories with H-DAPs references. The content analysis revealed that 0.7% of memories had H-DAP references and 0.4% memories mentioned major transitional events such as War/Natural Disaster. There was a vivid reminiscence bump between 10 - 20 years of age in lifespan distribution of AMs. There were 67.9% social-focused AMs. Significantly more self-focused memories were reported by individuals who endorsed themselves as conservatives. Only a few H-DAPs were reported, although the history of Pakistan was dominated by numerous political, historical and nationwide transitional events. Memories within and outside of the bump period were mostly positive. The participants rarely used historical/political or nationwide significant events or periods to date the memories elicited. The intense and nationwide (as well as region-wise) significant historical/political events spawned across decades in the lives of participants of the present study but these events did not produce H-DAPs. The findings contradicted the previous studies on H-DAPs and transition theory. The dominance of social-focused AMs in the present study is in line with the past studies comparing the memories of collectivist and individualist cultures (i.e., European Americans vs. Asian, African and Latin-American cultures). The past empirical evidence shows that conservative values and beliefs are adopted as a coping strategy to feel secure in the face of danger when future is dominated with uncertainty and to connect to likeminded others. In the present study, conservative political ideology is somehow assisting the participants in living a stable life midst of their complex social worlds. The reminiscence bump, as well as dominance of positive memories within and outside the bump period, are in line with the narrative/identity account which states that the events and experiences during adolescence and early adulthood assimilate into a person’s lifelong narratives. Hence these events are used as identity markers and are more easily recalled later in life. Also, according to socioemotional theory and the positivity effect, the participants evaluated past events more positively as they grow up and the intensity of negative emotions decreased with time.

Keywords: autobiographical memory, historically defined autobiographical periods, narrative/identity account, Pakistan, reminiscence bump, SMS framework, transition theory

Procedia PDF Downloads 231
6497 Vibration Control of Hermetic Compressors Using Flexible Multi-Body Dynamics Theory

Authors: Armin Amindari

Abstract:

Hermetic compressors are used widely for refrigeration, heat pump, and air conditioning applications. With the improvement of energy conservation and environmental protection requirements, inverter compressors that operates at different speeds have become increasingly attractive in the industry. Although speed change capability is more efficient, passing through resonant frequencies may lead to excessive vibrations. In this work, an integrated vibration control approach based on flexible multi-body dynamics theory is used for optimizing the vibration amplitudes of the compressor at different operating speeds. To examine the compressor vibrations, all the forces and moments exerted on the cylinder block were clarified and minimized using balancers attached to the upper and lower ends of the motor rotor and crankshaft. The vibration response of the system was simulated using Motionview™ software. In addition, mass-spring optimization was adopted to shift the resonant frequencies out of the operating speeds. The modal shapes of the system were studied using Optistruct™ solver. Using this approach, the vibrations were reduced up to 56% through dynamic simulations. The results were in high agreement with various experimental test data. In addition, the vibration resonance problem observed at low speeds was solved by shifting the resonant frequencies through optimization studies.

Keywords: vibration, MBD, compressor, hermetic

Procedia PDF Downloads 100
6496 Implementation of Lean Manufacturing in Some Companies in Colombia: A Case Study

Authors: Natalia Marulanda, Henry González, Gonzalo León, Alejandro Hincapié

Abstract:

Continuous improvement tools are the result of a set of studies that developed theories and methodologies. These methodologies enable organizations to increase their levels of efficiency, effectiveness, and productivity. Based on these methodologies, lean manufacturing philosophy, which is based on the optimization of resources, waste disposal, and generation of value to products and services, was developed. Lean application has been massive globally, but Colombian companies have been made it incipiently. Therefore, the purpose of this article is to identify the impacts generated by the implementation of lean manufacturing tools in five companies located in Colombia and Medellín metropolitan area. It also seeks to make a comparison of the results obtained from the implementation of lean philosophy and Theory of Constraints. The methodology is qualitative and quantitative, is based on the case study interview from dialogue with the leaders of the processes that used lean tools. The most used tools by research companies are 5's with 100% and TPM with 80%. The less used tool is the synchronous production with 20%. The main reason for the implementation of lean was supply chain management with 83.3%. For the application of lean and TOC, we did not find significant differences between the impact, in terms of methodology, areas of application, staff initiatives, supply chain management, planning, and training.

Keywords: business strategy, lean manufacturing, theory of constraints, supply chain

Procedia PDF Downloads 354
6495 Broadening Attentional Scope by Seeing Happy Faces

Authors: John McDowall, Crysta Derham

Abstract:

Broaden and build theory of emotion describes how experiencing positive emotions, such as happiness, broadens our ‘thought-action repertoire’ leading us to be more likely to go out and act on our positive emotions. This results in the building of new relationships, resources and skills, which we can draw on in times of need throughout life. In contrast, the experience of negative emotion is thought to narrow our ‘thought-action repertoire’, leading to specific actions to aid in survival. Three experiments aimed to explore the effect of briefly presented schematic faces (happy, sad, and neutral) on attentional scope using the flanker task. Based on the broaden and build theory it was hypothesised that there would be an increase in reaction time in trials primed with a happy face due to a broadening of attention, leading to increased flanker interference. A decrease in reaction time was predicted for trials primed with a sad face, due to a narrowing of attention leading to less flanker interference. Results lended partial support to the broaden and build hypothesis, with reaction times being slower following happy primes in incongruent flanker trials. Recent research is discussed in regards to potential mediators of the relationship between emotion and attention.

Keywords: emotion, attention, broaden and build, flanker task

Procedia PDF Downloads 478
6494 Proteomic Evaluation of Sex Differences in the Plasma of Non-human Primates Exposed to Ionizing Radiation for Biomarker Discovery

Authors: Christina Williams, Mehari Weldemariam, Ann M. Farese, Thomas J. MacVittie, Maureen A. Kane

Abstract:

Radiation exposure results in dose-dependent and time-dependent multi-organ damage. Drug development of medical countermeasures (MCM) for radiation-induced injury occurs under the FDA Animal Rule because human efficacy studies are not ethical or feasible. The FDA Animal Rule requires the representation of both sexes and describes several uses for biomarkers in MCM drug development studies. Currently, MCMs are limited and there is no FDA-approved biomarker for any radiation injury. Sex as a variable is essential to identifying biomarkers and developing effective MCMs for acute radiation exposure (ARS) and delayed effects of acute radiation exposure (DEARE). These studies aim to address the death of information on sex differences that have not been determined by studies that included only male, single-sex cohorts. Studies have reported differences in radiosensitivity according to sex. As such, biomarker discovery for radiation-induced damage must consider sex as a variable. This study evaluated the plasma proteomic profile of Rhesus macaque non-human primates after different exposures and doses, as well as time points after radiation. Exposures and doses included total body irradiation between 5-7.5 Gy and partial body irradiation with 5% bone marrow sparing at 9, 9.5 and 10 Gy. Timepoints after irradiation included days 1, 3, 60, and 180, which encompassed both acute radiation syndromes and delayed effects of acute radiation exposure. Bottom-up proteomic analyses of plasma included equal numbers of males and females. In the control animals, few proteomic differences are observed between the sexes. In the irradiated animals, there are a few sex differences, with changes mostly consisting of proteins upregulated in the female animals. Multiple canonical pathways were upregulated in irradiated animals relative to the control animals when subjected to pathway analysis, but differential responses between the sexes are limited. These data provide critical baseline differences according to sex and establish sex differences in non-human primate models relevant to drug development of MCM under the FDA Animal Rule.

Keywords: ionizing radiation, sex differences, plasma proteomics, biomarker discovery

Procedia PDF Downloads 87
6493 Fractal-Wavelet Based Techniques for Improving the Artificial Neural Network Models

Authors: Reza Bazargan lari, Mohammad H. Fattahi

Abstract:

Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for pre-processing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based pre-processing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.

Keywords: wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN

Procedia PDF Downloads 368
6492 Diversability and Diversity: Toward Including Disability/Body-Mind Diversity in Educational Diversity, Equity, and Inclusion

Authors: Jennifer Natalya Fink

Abstract:

Since the racial reckoning of 2020, almost every major educational institution has incorporated diversity, equity, and inclusion (DEI) principles into its administrative, hiring, and pedagogical practices. Yet these DEI principles rarely incorporate explicit language or critical thinking about disability. Despite the fact that according to the World Health Organization, one in five people worldwide is disabled, making disabled people the larger minority group in the world, disability remains the neglected stepchild of DEI. Drawing on disability studies and crip theory frameworks, the underlying causes of this exclusion of disability from DEI, such as stigma, shame, invisible disabilities, institutionalization/segregation/delineation from family, and competing models and definitions of disability are examined. This paper explores both the ideological and practical shifts necessary to include disability in university DEI initiatives. It offers positive examples as well as conceptual frameworks such as 'divers ability' for so doing. Using Georgetown University’s 2020-2022 DEI initiatives as a case study, this paper describes how curricular infusion, accessibility, identity, community, and diversity administration infused one university’s DEI initiatives with concrete disability-inclusive measures. It concludes with a consideration of how the very framework of DEI itself might be challenged and transformed if disability were to be included.

Keywords: diversity, equity, inclusion, disability, crip theory, accessibility

Procedia PDF Downloads 130
6491 Teachers’ Continuance Intention Towards Using Madrasati Platform: A Conceptual Framework

Authors: Fiasal Assiri, Joanna Wincenciak, David Morrison-Love

Abstract:

With the rapid spread of the COVID-19 pandemic, the Saudi government suspended students from going to school to combat the outbreak. As e-learning was not applied at all in schools, online teaching and learning have been revived in Saudi Arabia by providing a new platform called ‘Madrasati.’ Several studies have used the Decomposed Theory of Planned Behaviour (DTPB)to examineindividuals’ intention behavior in many fields. However, there is a lack of studies investigating the determinants of teachers’ continued intention touseMadrasati platform. The purpose of this paper is to present a conceptual model in light of DTPB. To enhance the predictability of the model, the study incorporates other variables, including learning content quality and interactivity as sub-factors under the perceived usefulness, students and government influences under the subjective norms, and technical support and prior e-learning experience under the perceived behavioral control. The model will be further validated using a mixed methods approach. Such findings would help administrators and stakeholders to understand teachers’ needs and develop new methods that might encourage teachers to continue using Madrasati effectively in their teaching.

Keywords: madrasati, decomposed theory of planned behaviour, continuance intention, attitude, subjective norms, perceived behavioural control

Procedia PDF Downloads 103
6490 Autonomous Position Control of an Unmanned Aerial Vehicle Based on Accelerometer Response for Indoor Navigation Using Kalman Filtering

Authors: Syed Misbahuddin, Sagufta Kapadia

Abstract:

Autonomous indoor drone navigation has been posed with various challenges, including the inability to use a Global Positioning System (GPS). As of now, Unmanned Aerial Vehicles (UAVs) either rely on 3D mapping systems or utilize external camera arrays to track the UAV in an enclosed environment. The objective of this paper is to develop an algorithm that utilizes Kalman Filtering to reduce noise, allowing the UAV to be navigated indoors using only the flight controller and an onboard companion computer. In this paper, open-source libraries are used to control the UAV, which will only use the onboard accelerometer on the flight controller to estimate the position through double integration. One of the advantages of such a system is that it allows for low-cost and lightweight UAVs to autonomously navigate indoors without advanced mapping of the environment or the use of expensive high-precision-localization sensors.

Keywords: accelerometer, indoor-navigation, Kalman-filtering, position-control

Procedia PDF Downloads 348
6489 Analyzing Industry-University Collaboration Using Complex Networks and Game Theory

Authors: Elnaz Kanani-Kuchesfehani, Andrea Schiffauerova

Abstract:

Due to the novelty of the nanotechnology science, its highly knowledge intensive content, and its invaluable application in almost all technological fields, the close interaction between university and industry is essential. A possible gap between academic strengths to generate good nanotechnology ideas and industrial capacity to receive them can thus have far-reaching consequences. In order to be able to enhance the collaboration between the two parties, a better understanding of knowledge transfer within the university-industry relationship is needed. The objective of this research is to investigate the research collaboration between academia and industry in Canadian nanotechnology and to propose the best cooperative strategy to maximize the quality of the produced knowledge. First, a network of all Canadian academic and industrial nanotechnology inventors is constructed using the patent data from the USPTO (United States Patent and Trademark Office), and it is analyzed with social network analysis software. The actual level of university-industry collaboration in Canadian nanotechnology is determined and the significance of each group of actors in the network (academic vs. industrial inventors) is assessed. Second, a novel methodology is proposed, in which the network of nanotechnology inventors is assessed from a game theoretic perspective. It involves studying a cooperative game with n players each having at most n-1 decisions to choose from. The equilibrium leads to a strategy for all the players to choose their co-worker in the next period in order to maximize the correlated payoff of the game. The payoffs of the game represent the quality of the produced knowledge based on the citations of the patents. The best suggestion for the next collaborative relationship is provided for each actor from a game theoretic point of view in order to maximize the quality of the produced knowledge. One of the major contributions of this work is the novel approach which combines game theory and social network analysis for the case of large networks. This approach can serve as a powerful tool in the analysis of the strategic interactions of the network actors within the innovation systems and other large scale networks.

Keywords: cooperative strategy, game theory, industry-university collaboration, knowledge production, social network analysis

Procedia PDF Downloads 258
6488 A Hybrid Heuristic for the Team Orienteering Problem

Authors: Adel Bouchakhchoukha, Hakim Akeb

Abstract:

In this work, we propose a hybrid heuristic in order to solve the Team Orienteering Problem (TOP). Given a set of points (or customers), each with associated score (profit or benefit), and a team that has a fixed number of members, the problem to solve is to visit a subset of points in order to maximize the total collected score. Each member performs a tour starting at the start point, visiting distinct customers and the tour terminates at the arrival point. In addition, each point is visited at most once, and the total time in each tour cannot be greater than a given value. The proposed heuristic combines beam search and a local optimization strategy. The algorithm was tested on several sets of instances and encouraging results were obtained.

Keywords: team orienteering problem, vehicle routing, beam search, local search

Procedia PDF Downloads 416
6487 An Appraisal of Mitigation and Adaptation Measures under Paris Agreement 2015: Developing Nations' Pie

Authors: Olubisi Friday Oluduro

Abstract:

The Paris Agreement 2015, the result of negotiations under the United Nations Framework Convention on Climate Change (UNFCCC), after Kyoto Protocol expiration, sets a long-term goal of limiting the increase in the global average temperature to well below 2 degrees Celsius above pre-industrial levels, and of pursuing efforts to limiting this temperature increase to 1.5 degrees Celsius. An advancement on the erstwhile Kyoto Protocol which sets commitments to only a limited number of Parties to reduce their greenhouse gas (GHGs) emissions, it includes the goal to increase the ability to adapt to the adverse impacts of climate change and to make finance flows consistent with a pathway towards low GHGs emissions. For it achieve these goals, the Agreement requires all Parties to undertake efforts towards reaching global peaking of GHG emissions as soon as possible and towards achieving a balance between anthropogenic emissions by sources and removals by sinks in the second half of the twenty-first century. In addition to climate change mitigation, the Agreement aims at enhancing adaptive capacity, strengthening resilience and reducing the vulnerability to climate change in different parts of the world. It acknowledges the importance of addressing loss and damage associated with the adverse of climate change. The Agreement also contains comprehensive provisions on support to be provided to developing countries, which includes finance, technology transfer and capacity building. To ensure that such supports and actions are transparent, the Agreement contains a number reporting provisions, requiring parties to choose the efforts and measures that mostly suit them (Nationally Determined Contributions), providing for a mechanism of assessing progress and increasing global ambition over time by a regular global stocktake. Despite the somewhat global look of the Agreement, it has been fraught with manifold limitations threatening its very existential capability to produce any meaningful result. Considering these obvious limitations some of which were the very cause of the failure of its predecessor—the Kyoto Protocol—such as the non-participation of the United States, non-payment of funds into the various coffers for appropriate strategic purposes, among others. These have left the developing countries largely threatened eve the more, being more vulnerable than the developed countries, which are really responsible for the climate change scourge. The paper seeks to examine the mitigation and adaptation measures under the Paris Agreement 2015, appraise the present situation since the Agreement was concluded and ascertain whether the developing countries have been better or worse off since the Agreement was concluded, and examine why and how, while projecting a way forward in the present circumstance. It would conclude with recommendations towards ameliorating the situation.

Keywords: mitigation, adaptation, climate change, Paris agreement 2015, framework

Procedia PDF Downloads 156
6486 The Effect of Perceived Organizational Support and Leader Member Exchange on Turnover Intention: A Field Study in the Healthcare Industry

Authors: Mehtap Öztürk, Adem Öğüt, Emine Öğüt

Abstract:

Leader member exchange is considered as relationship-based approach to leadership. The focal point of this theory is that effective leadership processes occur when leaders and followers are able to develop mature leadership relationships and thus gain access to a variety of benefits these relationships bring. In this context, it can be claimed that the quality of leader member exchange appears to have a strong affect on perceived organizational support and reduce turnover intention. The purpose of this study is to determine the relationship between the levels of leader member exchange, perceived organizational support and turnover intention on the employees of a health institution operating in the province of Konya. A field study based on survey method on 134 physicians who are employees of a health institution operating in the mentioned sample. In accordance with this purpose, it has been observed that there is a negative and statistically significant relationship between leader member exchange and turnover intention. Furthermore, it has been also realized that there is a negative and statistically significant relationship between perceived organizational support and turnover intention.

Keywords: leader member exchange, perceived organizational support, social exchange theory, turnover intention

Procedia PDF Downloads 357
6485 Scoring System for the Prognosis of Sepsis Patients in Intensive Care Units

Authors: Javier E. García-Gallo, Nelson J. Fonseca-Ruiz, John F. Duitama-Munoz

Abstract:

Sepsis is a syndrome that occurs with physiological and biochemical abnormalities induced by severe infection and carries a high mortality and morbidity, therefore the severity of its condition must be interpreted quickly. After patient admission in an intensive care unit (ICU), it is necessary to synthesize the large volume of information that is collected from patients in a value that represents the severity of their condition. Traditional severity of illness scores seeks to be applicable to all patient populations, and usually assess in-hospital mortality. However, the use of machine learning techniques and the data of a population that shares a common characteristic could lead to the development of customized mortality prediction scores with better performance. This study presents the development of a score for the one-year mortality prediction of the patients that are admitted to an ICU with a sepsis diagnosis. 5650 ICU admissions extracted from the MIMICIII database were evaluated, divided into two groups: 70% to develop the score and 30% to validate it. Comorbidities, demographics and clinical information of the first 24 hours after the ICU admission were used to develop a mortality prediction score. LASSO (least absolute shrinkage and selection operator) and SGB (Stochastic Gradient Boosting) variable importance methodologies were used to select the set of variables that make up the developed score; each of this variables was dichotomized and a cut-off point that divides the population into two groups with different mean mortalities was found; if the patient is in the group that presents a higher mortality a one is assigned to the particular variable, otherwise a zero is assigned. These binary variables are used in a logistic regression (LR) model, and its coefficients were rounded to the nearest integer. The resulting integers are the point values that make up the score when multiplied with each binary variables and summed. The one-year mortality probability was estimated using the score as the only variable in a LR model. Predictive power of the score, was evaluated using the 1695 admissions of the validation subset obtaining an area under the receiver operating characteristic curve of 0.7528, which outperforms the results obtained with Sequential Organ Failure Assessment (SOFA), Oxford Acute Severity of Illness Score (OASIS) and Simplified Acute Physiology Score II (SAPSII) scores on the same validation subset. Observed and predicted mortality rates within estimated probabilities deciles were compared graphically and found to be similar, indicating that the risk estimate obtained with the score is close to the observed mortality, it is also observed that the number of events (deaths) is indeed increasing as the outcome go from the decile with the lowest probabilities to the decile with the highest probabilities. Sepsis is a syndrome that carries a high mortality, 43.3% for the patients included in this study; therefore, tools that help clinicians to quickly and accurately predict a worse prognosis are needed. This work demonstrates the importance of customization of mortality prediction scores since the developed score provides better performance than traditional scoring systems.

Keywords: intensive care, logistic regression model, mortality prediction, sepsis, severity of illness, stochastic gradient boosting

Procedia PDF Downloads 221