Search results for: spatial temporal filter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3849

Search results for: spatial temporal filter

1539 Visuospatial Perspective Taking and Theory of Mind in a Clinical Approach: Development of a Task for Adults

Authors: Britt Erni, Aldara Vazquez Fernandez, Roland Maurer

Abstract:

Visuospatial perspective taking (VSPT) is a process that allows to integrate spatial information from different points of view, and to transform the mental images we have of the environment to properly orient our movements and anticipate the location of landmarks during navigation. VSPT is also related to egocentric perspective transformations (imagined rotations or translations of one's point of view) and to infer the visuospatial experiences of another person (e.g. if and how another person sees objects). This process is deeply related to a wide-ranging capacity called the theory of mind (ToM), an essential cognitive function that allows us to regulate our social behaviour by attributing mental representations to individuals in order to make behavioural predictions. VSPT is often considered in the literature as the starting point of the development of the theory of mind. VSPT and ToM include several levels of knowledge that have to be assessed by specific tasks. Unfortunately, the lack of tasks assessing these functions in clinical neuropsychology leads to underestimate, in brain-damaged patients, deficits of these functions which are essential, in everyday life, to regulate our social behaviour (ToM) and to navigate in known and unknown environments (VSPT). Therefore, this study aims to create and standardize a VSPT task in order to explore the cognitive requirements of VSPT and ToM, and to specify their relationship in healthy adults and thereafter in brain-damaged patients. Two versions of a computerized VSPT task were administered to healthy participants (M = 28.18, SD = 4.8 years). In both versions the environment was a 3D representation of 10 different geometric shapes placed on a circular base. Two sets of eight pictures were generated from this: of the environment with an avatar somewhere on its periphery (locations) and of what the avatar sees from that place (views). Two types of questions were asked: a) identify the location from the view, and b) identify the view from the location. Twenty participants completed version 1 of the task and 20 completed the second version, where the views were offset by ±15° (i.e., clockwise or counterclockwise) and participants were asked to choose the closest location or the closest view. The preliminary findings revealed that version 1 is significantly easier than version 2 for accuracy (with ceiling scores for version 1). In version 2, participants responded significantly slower when they had to infer the avatar's view from the latter's location, probably because they spent more time visually exploring the different views (responses). Furthermore, men significantly performed better than women in version 1 but not in version 2. Most importantly, a sensitive task (version 2) has been created for which the participants do not seem to easily and automatically compute what someone is looking at yet which does not involve more heavily other cognitive functions. This study is further completed by including analysis on non-clinical participants with low and high degrees of schizotypy, different socio-educational status, and with a range of older adults to examine age-related and other differences in VSPT processing.

Keywords: mental transformation, spatial cognition, theory of mind, visuospatial perspective taking

Procedia PDF Downloads 203
1538 Investigating the Chemical Structure of Drinking Water in Domestic Areas of Kuwait by Appling GIS Technology

Authors: H. Al-Jabli

Abstract:

The research on the presence of heavy metals and bromate in drinking water is of immense scientific significance due to the potential risks these substances pose to public health. These contaminants are subject to regulatory limits outlined by the National Primary Drinking Water Regulations. Through a comprehensive analysis involving the compilation of existing data and the collection of new data via water sampling in residential areas of Kuwait, the aim is to create detailed maps illustrating the spatial distribution of these substances. Furthermore, the investigation will utilize GRAPHER software to explore correlations among different chemical parameters. By implementing rigorous scientific methodologies, the research will provide valuable insights for the Ministry of Electricity and Water and the Ministry of Health. These insights can inform evidence-based decision-making, facilitate the implementation of corrective measures, and support strategic planning for future infrastructure activities.

Keywords: heavy metals, bromate, ozonation, GIS

Procedia PDF Downloads 81
1537 Influence of a High-Resolution Land Cover Classification on Air Quality Modelling

Authors: C. Silveira, A. Ascenso, J. Ferreira, A. I. Miranda, P. Tuccella, G. Curci

Abstract:

Poor air quality is one of the main environmental causes of premature deaths worldwide, and mainly in cities, where the majority of the population lives. It is a consequence of successive land cover (LC) and use changes, as a result of the intensification of human activities. Knowing these landscape modifications in a comprehensive spatiotemporal dimension is, therefore, essential for understanding variations in air pollutant concentrations. In this sense, the use of air quality models is very useful to simulate the physical and chemical processes that affect the dispersion and reaction of chemical species into the atmosphere. However, the modelling performance should always be evaluated since the resolution of the input datasets largely dictates the reliability of the air quality outcomes. Among these data, the updated LC is an important parameter to be considered in atmospheric models, since it takes into account the Earth’s surface changes due to natural and anthropic actions, and regulates the exchanges of fluxes (emissions, heat, moisture, etc.) between the soil and the air. This work aims to evaluate the performance of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), when different LC classifications are used as an input. The influence of two LC classifications was tested: i) the 24-classes USGS (United States Geological Survey) LC database included by default in the model, and the ii) CLC (Corine Land Cover) and specific high-resolution LC data for Portugal, reclassified according to the new USGS nomenclature (33-classes). Two distinct WRF-Chem simulations were carried out to assess the influence of the LC on air quality over Europe and Portugal, as a case study, for the year 2015, using the nesting technique over three simulation domains (25 km2, 5 km2 and 1 km2 horizontal resolution). Based on the 33-classes LC approach, particular emphasis was attributed to Portugal, given the detail and higher LC spatial resolution (100 m x 100 m) than the CLC data (5000 m x 5000 m). As regards to the air quality, only the LC impacts on tropospheric ozone concentrations were evaluated, because ozone pollution episodes typically occur in Portugal, in particular during the spring/summer, and there are few research works relating to this pollutant with LC changes. The WRF-Chem results were validated by season and station typology using background measurements from the Portuguese air quality monitoring network. As expected, a better model performance was achieved in rural stations: moderate correlation (0.4 – 0.7), BIAS (10 – 21µg.m-3) and RMSE (20 – 30 µg.m-3), and where higher average ozone concentrations were estimated. Comparing both simulations, small differences grounded on the Leaf Area Index and air temperature values were found, although the high-resolution LC approach shows a slight enhancement in the model evaluation. This highlights the role of the LC on the exchange of atmospheric fluxes, and stresses the need to consider a high-resolution LC characterization combined with other detailed model inputs, such as the emission inventory, to improve air quality assessment.

Keywords: land use, spatial resolution, WRF-Chem, air quality assessment

Procedia PDF Downloads 152
1536 Compassion Fade: Effects of Mass Perception and Intertemporal Choice on Non-Volunteering Behavior

Authors: Mariel L. Alonzo, Patricia Mae T. Chi, Juliana Patrice P. Mayormita, Sanjana A. Sorio

Abstract:

Compassion fade proposes an inverse relationship between the magnitude of stimuli to elicited compassion. This phenomenon is viewed within a framework that integrates a 3-Act Compassion structure with Latané and Darley’s Unresponsive Bystander Model and Prospect Theory of Decision-making under risk. Students (N=211) from Ateneo de Davao were sampled to examine the effects of mass perception (increasing number of needy persons) and intertemporal choice (soon versus later) on volunteering behavior. Collegiate classes in their natural setting were randomly assigned to five different treatment groups and were presented with audiovisual presentations featuring an increasing number of needy persons. The students were deceived to believe that two hypothetical feeding programs for Marawi refugees, taking place in 1 month and 6 months, were in need of volunteers for its preparatory phase. Results show a statistically significant (p=0.000; p=0.013) non-linear trend consistently for both feeding programs. There was a decrease in volunteered time means as identifiable victims increased from 0-47 and an increase as it progressed towards 267 non-identifiable victims. Highest interest was expressed for the 0 needy people shown and least for 47. The 0 hours volunteered was consistently the mode and median in all treatments. There was no statistically significant temporal discounting effect.

Keywords: compassion, group perception, identifiable victim, intertemporal choice, prosocial behavior, unresponsive bystander

Procedia PDF Downloads 208
1535 Two-wavelength High-energy Cr:LiCaAlF6 MOPA Laser System for Medical Multispectral Optoacoustic Tomography

Authors: Radik D. Aglyamov, Alexander K. Naumov, Alexey A. Shavelev, Oleg A. Morozov, Arsenij D. Shishkin, Yury P.Brodnikovsky, Alexander A.Karabutov, Alexander A. Oraevsky, Vadim V. Semashko

Abstract:

The development of medical optoacoustic tomography with the using human blood as endogenic contrast agent is constrained by the lack of reliable, easy-to-use and inexpensive sources of high-power pulsed laser radiation in the spectral region of 750-900 nm [1-2]. Currently used titanium-sapphire, alexandrite lasers or optical parametric light oscillators do not provide the required and stable output characteristics, they are structurally complex, and their cost is up to half the price of diagnostic optoacoustic systems. Here we are developing the lasers based on Cr:LiCaAlF6 crystals which are free of abovementioned disadvantages and provides intensive ten’s ns-range tunable laser radiation at specific absorption bands of oxy- (~840 nm) and -deoxyhemoglobin (~757 nm) in the blood. Cr:LiCAF (с=3 at.%) crystals were grown in Kazan Federal University by the vertical directional crystallization (Bridgman technique) in graphite crucibles in a fluorinating atmosphere at argon overpressure (P=1500 hPa) [3]. The laser elements have cylinder shape with the diameter of 8 mm and 90 mm in length. The direction of the optical axis of the crystal was normal to the cylinder generatrix, which provides the π-polarized laser action correspondent to maximal stimulated emission cross-section. The flat working surfaces of the active elements were polished and parallel to each other with an error less than 10”. No any antireflection coating was applied. The Q-switched master oscillator-power amplifiers laser system (MOPA) with the dual-Xenon flashlamp pumping scheme in diffuse-reflectivity close-coupled head were realized. A specially designed laser cavity, consisting of dielectric highly reflective reflectors with a 2 m-curvature radius, a flat output mirror, a polarizer and Q-switch sell, makes it possible to operate sequentially in a circle (50 ns - laser one pulse after another) at wavelengths of 757 and 840 nm. The programmable pumping system from Tomowave Laser LLC (Russia) provided independent to each pulses (up to 250 J at 180 μs) pumping to equalize the laser radiation intensity at these wavelengths. The MOPA laser operates at 10 Hz pulse repetition rate with the output energy up to 210 mJ. Taking into account the limitations associated with physiological movements and other characteristics of patient tissues, the duration of laser pulses and their energy allows molecular and functional high-contrast imaging to depths of 5-6 cm with a spatial resolution of at least 1 mm. Highly likely the further comprehensive design of laser allows improving the output properties and realizing better spatial resolution of medical multispectral optoacoustic tomography systems.

Keywords: medical optoacoustic, endogenic contrast agent, multiwavelength tunable pulse lasers, MOPA laser system

Procedia PDF Downloads 99
1534 Spatiotemporal Propagation and Pattern of Epileptic Spike Predict Seizure Onset Zone

Authors: Mostafa Mohammadpour, Christoph Kapeller, Christy Li, Josef Scharinger, Christoph Guger

Abstract:

Interictal spikes provide valuable information on electrocorticography (ECoG), which aids in surgical planning for patients who suffer from refractory epilepsy. However, the shape and temporal dynamics of these spikes remain unclear. The purpose of this work was to analyze the shape of interictal spikes and measure their distance to the seizure onset zone (SOZ) to use in epilepsy surgery. Thirteen patients' data from the iEEG portal were retrospectively studied. For analysis, half an hour of ECoG data was used from each patient, with the data being truncated before the onset of a seizure. Spikes were first detected and grouped in a sequence, then clustered into interictal epileptiform discharges (IEDs) and non-IED groups using two-step clustering. The distance of the spikes from IED and non-IED groups to SOZ was quantified and compared using the Wilcoxon rank-sum test. Spikes in the IED group tended to be in SOZ or close to it, while spikes in the non-IED group were in distance of SOZ or non-SOZ area. At the group level, the distribution for sharp wave, positive baseline shift, slow wave, and slow wave to sharp wave ratio was significantly different for IED and non-IED groups. The distance of the IED cluster was 10.00mm and significantly closer to the SOZ than the 17.65mm for non-IEDs. These findings provide insights into the shape and spatiotemporal dynamics of spikes that could influence the network mechanisms underlying refractory epilepsy.

Keywords: spike propagation, spike pattern, clustering, SOZ

Procedia PDF Downloads 61
1533 Predicting Response to Cognitive Behavioral Therapy for Psychosis Using Machine Learning and Functional Magnetic Resonance Imaging

Authors: Eva Tolmeijer, Emmanuelle Peters, Veena Kumari, Liam Mason

Abstract:

Cognitive behavioral therapy for psychosis (CBTp) is effective in many but not all patients, making it important to better understand the factors that determine treatment outcomes. To date, no studies have examined whether neuroimaging can make clinically useful predictions about who will respond to CBTp. To this end, we used machine learning methods that make predictions about symptom improvement at the individual patient level. Prior to receiving CBTp, 22 patients with a diagnosis of schizophrenia completed a social-affective processing task during functional MRI. Multivariate pattern analysis assessed whether treatment response could be predicted by brain activation responses to facial affect that was either socially threatening or prosocial. The resulting models did significantly predict symptom improvement, with distinct multivariate signatures predicting psychotic (r=0.54, p=0.01) and affective (r=0.32, p=0.05) symptoms. Psychotic symptom improvement was accurately predicted from relatively focal threat-related activation across hippocampal, occipital, and temporal regions; affective symptom improvement was predicted by a more dispersed profile of responses to prosocial affect. These findings enrich our understanding of the neurobiological underpinning of treatment response. This study provides a foundation that will hopefully lead to greater precision and tailoring of the interventions offered to patients.

Keywords: cognitive behavioral therapy, machine learning, psychosis, schizophrenia

Procedia PDF Downloads 273
1532 Seafloor and Sea Surface Modelling in the East Coast Region of North America

Authors: Magdalena Idzikowska, Katarzyna Pająk, Kamil Kowalczyk

Abstract:

Seafloor topography is a fundamental issue in geological, geophysical, and oceanographic studies. Single-beam or multibeam sonars attached to the hulls of ships are used to emit a hydroacoustic signal from transducers and reproduce the topography of the seabed. This solution provides relevant accuracy and spatial resolution. Bathymetric data from ships surveys provides National Centers for Environmental Information – National Oceanic and Atmospheric Administration. Unfortunately, most of the seabed is still unidentified, as there are still many gaps to be explored between ship survey tracks. Moreover, such measurements are very expensive and time-consuming. The solution is raster bathymetric models shared by The General Bathymetric Chart of the Oceans. The offered products are a compilation of different sets of data - raw or processed. Indirect data for the development of bathymetric models are also measurements of gravity anomalies. Some forms of seafloor relief (e.g. seamounts) increase the force of the Earth's pull, leading to changes in the sea surface. Based on satellite altimetry data, Sea Surface Height and marine gravity anomalies can be estimated, and based on the anomalies, it’s possible to infer the structure of the seabed. The main goal of the work is to create regional bathymetric models and models of the sea surface in the area of the east coast of North America – a region of seamounts and undulating seafloor. The research includes an analysis of the methods and techniques used, an evaluation of the interpolation algorithms used, model thickening, and the creation of grid models. Obtained data are raster bathymetric models in NetCDF format, survey data from multibeam soundings in MB-System format, and satellite altimetry data from Copernicus Marine Environment Monitoring Service. The methodology includes data extraction, processing, mapping, and spatial analysis. Visualization of the obtained results was carried out with Geographic Information System tools. The result is an extension of the state of the knowledge of the quality and usefulness of the data used for seabed and sea surface modeling and knowledge of the accuracy of the generated models. Sea level is averaged over time and space (excluding waves, tides, etc.). Its changes, along with knowledge of the topography of the ocean floor - inform us indirectly about the volume of the entire water ocean. The true shape of the ocean surface is further varied by such phenomena as tides, differences in atmospheric pressure, wind systems, thermal expansion of water, or phases of ocean circulation. Depending on the location of the point, the higher the depth, the lower the trend of sea level change. Studies show that combining data sets, from different sources, with different accuracies can affect the quality of sea surface and seafloor topography models.

Keywords: seafloor, sea surface height, bathymetry, satellite altimetry

Procedia PDF Downloads 78
1531 Text as Reader Device Improving Subjectivity on the Role of Attestation between Interpretative Semiotics and Discursive Linguistics

Authors: Marco Castagna

Abstract:

Proposed paper is aimed to inquire about the relation between text and reader, focusing on the concept of ‘attestation’. Indeed, despite being widely accepted in semiotic research, even today the concept of text remains uncertainly defined. So, it seems to be undeniable that what is called ‘text’ offers an image of internal cohesion and coherence, that makes it possible to analyze it as an object. Nevertheless, this same object remains problematic when it is pragmatically activated by the act of reading. In fact, as for the T.A.R:D.I.S., that is the unique space-temporal vehicle used by the well-known BBC character Doctor Who in his adventures, every text appears to its own readers not only “bigger inside than outside”, but also offering spaces that change according to the different traveller standing in it. In a few words, as everyone knows, this singular condition raises the questions about the gnosiological relation between text and reader. How can a text be considered the ‘same’, even if it can be read in different ways by different subjects? How can readers can be previously provided with knowledge required for ‘understanding’ a text, but at the same time learning something more from it? In order to explain this singular condition it seems useful to start thinking about text as a device more than an object. In other words, this unique status is more clearly understandable when ‘text’ ceases to be considered as a box designed to move meaning from a sender to a recipient (marking the semiotic priority of the “code”) and it starts to be recognized as performative meaning hypothesis, that is discursively configured by one or more forms and empirically perceivable by means of one or more substances. Thus, a text appears as a “semantic hanger”, potentially offered to the “unending deferral of interpretant", and from time to time fixed as “instance of Discourse”. In this perspective, every reading can be considered as an answer to the continuous request for confirming or denying the meaning configuration (the meaning hypothesis) expressed by text. Finally, ‘attestation’ is exactly what regulates this dynamic of request and answer, through which the reader is able to confirm his previous hypothesis on reality or maybe acquire some new ones.Proposed paper is aimed to inquire about the relation between text and reader, focusing on the concept of ‘attestation’. Indeed, despite being widely accepted in semiotic research, even today the concept of text remains uncertainly defined. So, it seems to be undeniable that what is called ‘text’ offers an image of internal cohesion and coherence, that makes it possible to analyze it as an object. Nevertheless, this same object remains problematic when it is pragmatically activated by the act of reading. In fact, as for the T.A.R:D.I.S., that is the unique space-temporal vehicle used by the well-known BBC character Doctor Who in his adventures, every text appears to its own readers not only “bigger inside than outside”, but also offering spaces that change according to the different traveller standing in it. In a few words, as everyone knows, this singular condition raises the questions about the gnosiological relation between text and reader. How can a text be considered the ‘same’, even if it can be read in different ways by different subjects? How can readers can be previously provided with knowledge required for ‘understanding’ a text, but at the same time learning something more from it? In order to explain this singular condition it seems useful to start thinking about text as a device more than an object. In other words, this unique status is more clearly understandable when ‘text’ ceases to be considered as a box designed to move meaning from a sender to a recipient (marking the semiotic priority of the “code”) and it starts to be recognized as performative meaning hypothesis, that is discursively configured by one or more forms and empirically perceivable by means of one or more substances. Thus, a text appears as a “semantic hanger”, potentially offered to the “unending deferral of interpretant", and from time to time fixed as “instance of Discourse”. In this perspective, every reading can be considered as an answer to the continuous request for confirming or denying the meaning configuration (the meaning hypothesis) expressed by text. Finally, ‘attestation’ is exactly what regulates this dynamic of request and answer, through which the reader is able to confirm his previous hypothesis on reality or maybe acquire some new ones.

Keywords: attestation, meaning, reader, text

Procedia PDF Downloads 236
1530 Real-Time Neuroimaging for Rehabilitation of Stroke Patients

Authors: Gerhard Gritsch, Ana Skupch, Manfred Hartmann, Wolfgang Frühwirt, Hannes Perko, Dieter Grossegger, Tilmann Kluge

Abstract:

Rehabilitation of stroke patients is dominated by classical physiotherapy. Nowadays, a field of research is the application of neurofeedback techniques in order to help stroke patients to get rid of their motor impairments. Especially, if a certain limb is completely paralyzed, neurofeedback is often the last option to cure the patient. Certain exercises, like the imagination of the impaired motor function, have to be performed to stimulate the neuroplasticity of the brain, such that in the neighboring parts of the injured cortex the corresponding activity takes place. During the exercises, it is very important to keep the motivation of the patient at a high level. For this reason, the missing natural feedback due to a movement of the effected limb may be replaced by a synthetic feedback based on the motor-related brain function. To generate such a synthetic feedback a system is needed which measures, detects, localizes and visualizes the motor related µ-rhythm. Fast therapeutic success can only be achieved if the feedback features high specificity, comes in real-time and without large delay. We describe such an approach that offers a 3D visualization of µ-rhythms in real time with a delay of 500ms. This is accomplished by combining smart EEG preprocessing in the frequency domain with source localization techniques. The algorithm first selects the EEG channel featuring the most prominent rhythm in the alpha frequency band from a so-called motor channel set (C4, CZ, C3; CP6, CP4, CP2, CP1, CP3, CP5). If the amplitude in the alpha frequency band of this certain electrode exceeds a threshold, a µ-rhythm is detected. To prevent detection of a mixture of posterior alpha activity and µ-activity, the amplitudes in the alpha band outside the motor channel set are not allowed to be in the same range as the main channel. The EEG signal of the main channel is used as template for calculating the spatial distribution of the µ - rhythm over all electrodes. This spatial distribution is the input for a inverse method which provides the 3D distribution of the µ - activity within the brain which is visualized in 3D as color coded activity map. This approach mitigates the influence of lid artifacts on the localization performance. The first results of several healthy subjects show that the system is capable of detecting and localizing the rarely appearing µ-rhythm. In most cases the results match with findings from visual EEG analysis. Frequent eye-lid artifacts have no influence on the system performance. Furthermore, the system will be able to run in real-time. Due to the design of the frequency transformation the processing delay is 500ms. First results are promising and we plan to extend the test data set to further evaluate the performance of the system. The relevance of the system with respect to the therapy of stroke patients has to be shown in studies with real patients after CE certification of the system. This work was performed within the project ‘LiveSolo’ funded by the Austrian Research Promotion Agency (FFG) (project number: 853263).

Keywords: real-time EEG neuroimaging, neurofeedback, stroke, EEG–signal processing, rehabilitation

Procedia PDF Downloads 385
1529 Capillary Wave Motion and Atomization Induced by Surface Acoustic Waves under the Navier-Slip Condition at the Wall

Authors: Jaime E. Munoz, Jose C. Arcos, Oscar E. Bautista, Ivan E. Campos

Abstract:

The influence of slippage phenomenon over the destabilization and atomization mechanisms induced via surface acoustic waves on a Newtonian, millimeter-sized, drop deposited on a hydrophilic substrate is studied theoretically. By implementing the Navier-slip model and a lubrication-type approach into the equations which govern the dynamic response of a drop exposed to acoustic stress, a highly nonlinear evolution equation for the air-liquid interface is derived in terms of the acoustic capillary number and the slip coefficient. By numerically solving such an evolution equation, the Spatio-temporal deformation of the drop's free surface is obtained; in this context, atomization of the initial drop into micron-sized droplets is predicted at our numerical model once the acoustically-driven capillary waves reach a critical value: the instability length. Our results show slippage phenomenon at systems with partial and complete wetting favors the formation of capillary waves at the free surface, which traduces in a major volume of liquid being atomized in comparison to the no-slip case for a given time interval. In consequence, slippage at the wall possesses the capability to affect and improve the atomization rate for a drop exposed to a high-frequency acoustic field.

Keywords: capillary instability, lubrication theory, navier-slip condition, SAW atomization

Procedia PDF Downloads 155
1528 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 149
1527 Investigation of Flame and Soot Propagation in Non-Air Conditioned Railway Locomotives

Authors: Abhishek Agarwal, Manoj Sarda, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das

Abstract:

Propagation of fire through a non-air conditioned railway compartment is studied by virtue of numerical simulations. Simultaneous computational fire dynamics equations, such as Navier-Stokes, lumped species continuity, overall mass and energy conservation, and heat transfer are solved using finite volume based (for radiation) and finite difference based (for all other equations) solver, Fire Dynamics Simulator (FDS). A single coupe with an eight berth occupancy is used to establish the numerical model, followed by the selection of a three coupe system as the fundamental unit of the locomotive compartment. Heat Release Rate Per Unit Area (HRRPUA) of the initial fire is varied to consider a wide range of compartmental fires. Parameters, such as air inlet velocity relative to the locomotive at the windows, the level of interaction with the ambiance and closure of middle berth are studied through a wide range of numerical simulations. Almost all the loss of lives and properties due to fire breakout can be attributed to the direct or indirect exposure to flames or to the inhalation of toxic gases and resultant suffocation due to smoke and soot. Therefore, the temporal stature of fire and smoke are reported for each of the considered cases which can be used in the present or extended form to develop guidelines to be followed in case of a fire breakout.

Keywords: fire dynamics, flame propagation, locomotive fire, soot flow pattern, non-air-conditioned coaches

Procedia PDF Downloads 291
1526 Temporal Change in Bonding Strength and Antimicrobial Effect of a Zirconia after Nonthermal Atmospheric Pressure Plasma Treatment

Authors: Chan Park, Sang-Won Park, Kwi-Dug Yun, Hyun-Pil Lim

Abstract:

Purpose: Plasma treatment under various conditions has been studied to increase the bonding strength and surface sterilization of dental ceramic materials. We assessed the evolution of the shear bond strength (SBS) and antimicrobial effect of nonthermal atmospheric pressure plasma (NTAPP) treatment over time. Methods: Presintered zirconia specimens were manufactured as discs (diameter: 15 mm, height: 2 mm) after final sintering. The specimens then received a 30-min treatment with argon gas (Ar², 99.999%; 10 L/min) using an NTAPP device. Five post-treatment intervals were evaluated: control (no treatment), P0 (within 1 h), P1 (24 h), P2 (48 h), and P3 (72 h). This study investigated the surface characteristics, SBS of two different resin cement (RelyXTM U200 self-adhesive resin cement, Panavia F2.0 methacryloyloxydecyl dihydrogen phosphate (MDP)-based resin cement), and Streptococcus mutans biofilm formation. Results: The SBS of RelyXTM U200 increased significantly (p < 0.05) within 2 days following plasma treatment (P0, P1, P2). For Panavia F 2.0, a significant decrease (p < 0.05) was detected only in the group that had undergone cementation immediately after plasma treatment (P0). S. mutans adhesion decreased significantly (p < 0.05) within 2 days of plasma treatment (P0, P1, P2) compared to the control group. The P0 group displayed a lower biofilm thickness than the P1 and P2 groups (p < 0.05). Conclusions: After NTAPP treatment of zirconia, the effects on bonding strength and antimicrobial growth persist for a limited duration. The effect of NTAPP treatment on bonding strength depends on the resin cement.

Keywords: NTAPP, SBS, antimicrobial effect, zirconia

Procedia PDF Downloads 242
1525 Laser Welding of Titanium Alloy Ti64 to Polyamide 6.6: Effects of Welding Parameters on Temperature Profile Evolution

Authors: A. Al-Sayyad, P. Lama, J. Bardon, P. Hirchenhahn, L. Houssiau, P. Plapper

Abstract:

Composite metal–polymer materials, in particular titanium alloy (Ti-6Al-4V) to polyamide (PA6.6), fabricated by laser joining, have gained cogent interest among industries and researchers concerned with aerospace and biomedical applications. This work adopts infrared (IR) thermography technique to investigate effects of laser parameters used in the welding process on the three-dimensional temperature profile at the rear-side of titanium, at the region to be welded with polyamide. Cross sectional analysis of welded joints showed correlations between the morphology of titanium and polyamide at the weld zone with the corresponding temperature profile. In particular, spatial temperature profile was found to be correlated with the laser beam energy density, titanium molten pool width and depth, and polyamide heat affected zone depth.

Keywords: laser welding, metals to polymers joining, process monitoring, temperature profile, thermography

Procedia PDF Downloads 133
1524 Immersive and Non-Immersive Virtual Reality Applied to the Cervical Spine Assessment

Authors: Pawel Kiper, Alfonc Baba, Mahmoud Alhelou, Giorgia Pregnolato, Michela Agostini, Andrea Turolla

Abstract:

Impairment of cervical spine mobility is often related to pain triggered by musculoskeletal disorders or direct traumatic injuries of the spine. To date, these disorders are assessed with goniometers and inclinometers, which are the most popular devices used in clinical settings. Nevertheless, these technologies usually allow measurement of no more than two-dimensional range of motion (ROM) quotes in static conditions. Conversely, the wide use of motion tracking systems able to measure 3 to 6 degrees of freedom dynamically, while performing standard ROM assessment, are limited due to technical complexities in preparing the setup and high costs. Thus, motion tracking systems are primarily used in research. These systems are an integral part of virtual reality (VR) technologies, which can be used for measuring spine mobility. To our knowledge, the accuracy of VR measure has not yet been studied within virtual environments. Thus, the aim of this study was to test the reliability of a protocol for the assessment of sensorimotor function of the cervical spine in a population of healthy subjects and to compare whether using immersive or non-immersive VR for visualization affects the performance. Both VR assessments consisted of the same five exercises and random sequence determined which of the environments (i.e. immersive or non-immersive) was used as first assessment. Subjects were asked to perform head rotation (right and left), flexion, extension and lateral flexion (right and left side bending). Each movement was executed five times. Moreover, the participants were invited to perform head reaching movements i.e. head movements toward 8 targets placed along a circular perimeter each 45°, visualized one-by-one in random order. Finally, head repositioning movement was obtained by head movement toward the same 8 targets as for reaching and following reposition to the start point. Thus, each participant performed 46 tasks during assessment. Main measures were: ROM of rotation, flexion, extension, lateral flexion and complete kinematics of the cervical spine (i.e. number of completed targets, time of execution (seconds), spatial length (cm), angle distance (°), jerk). Thirty-five healthy participants (i.e. 14 males and 21 females, mean age 28.4±6.47) were recruited for the cervical spine assessment with immersive and non-immersive VR environments. Comparison analysis demonstrated that: head right rotation (p=0.027), extension (p=0.047), flexion (p=0.000), time (p=0.001), spatial length (p=0.004), jerk target (p=0.032), trajectory repositioning (p=0.003), and jerk target repositioning (p=0.007) were significantly better in immersive than non-immersive VR. A regression model showed that assessment in immersive VR was influenced by height, trajectory repositioning (p<0.05), and handedness (p<0.05), whereas in non-immersive VR performance was influenced by height, jerk target (p=0.002), head extension, jerk target repositioning (p=0.002), and by age, head flex/ext, trajectory repositioning, and weight (p=0.040). The results of this study showed higher accuracy of cervical spine assessment when executed in immersive VR. The assessment of ROM and kinematics of the cervical spine can be affected by independent and dependent variables in both immersive and non-immersive VR settings.

Keywords: virtual reality, cervical spine, motion analysis, range of motion, measurement validity

Procedia PDF Downloads 164
1523 Multiscale Modelization of Multilayered Bi-Dimensional Soils

Authors: I. Hosni, L. Bennaceur Farah, N. Saber, R Bennaceur

Abstract:

Soil moisture content is a key variable in many environmental sciences. Even though it represents a small proportion of the liquid freshwater on Earth, it modulates interactions between the land surface and the atmosphere, thereby influencing climate and weather. Accurate modeling of the above processes depends on the ability to provide a proper spatial characterization of soil moisture. The measurement of soil moisture content allows assessment of soil water resources in the field of hydrology and agronomy. The second parameter in interaction with the radar signal is the geometric structure of the soil. Most traditional electromagnetic models consider natural surfaces as single scale zero mean stationary Gaussian random processes. Roughness behavior is characterized by statistical parameters like the Root Mean Square (RMS) height and the correlation length. Then, the main problem is that the agreement between experimental measurements and theoretical values is usually poor due to the large variability of the correlation function, and as a consequence, backscattering models have often failed to predict correctly backscattering. In this study, surfaces are considered as band-limited fractal random processes corresponding to a superposition of a finite number of one-dimensional Gaussian process each one having a spatial scale. Multiscale roughness is characterized by two parameters, the first one is proportional to the RMS height, and the other one is related to the fractal dimension. Soil moisture is related to the complex dielectric constant. This multiscale description has been adapted to two-dimensional profiles using the bi-dimensional wavelet transform and the Mallat algorithm to describe more correctly natural surfaces. We characterize the soil surfaces and sub-surfaces by a three layers geo-electrical model. The upper layer is described by its dielectric constant, thickness, a multiscale bi-dimensional surface roughness model by using the wavelet transform and the Mallat algorithm, and volume scattering parameters. The lower layer is divided into three fictive layers separated by an assumed plane interface. These three layers were modeled by an effective medium characterized by an apparent effective dielectric constant taking into account the presence of air pockets in the soil. We have adopted the 2D multiscale three layers small perturbations model including, firstly air pockets in the soil sub-structure, and then a vegetable canopy in the soil surface structure, that is to simulate the radar backscattering. A sensitivity analysis of backscattering coefficient dependence on multiscale roughness and new soil moisture has been performed. Later, we proposed to change the dielectric constant of the multilayer medium because it takes into account the different moisture values of each layer in the soil. A sensitivity analysis of the backscattering coefficient, including the air pockets in the volume structure with respect to the multiscale roughness parameters and the apparent dielectric constant, was carried out. Finally, we proposed to study the behavior of the backscattering coefficient of the radar on a soil having a vegetable layer in its surface structure.

Keywords: multiscale, bidimensional, wavelets, backscattering, multilayer, SPM, air pockets

Procedia PDF Downloads 122
1522 A Gradient Orientation Based Efficient Linear Interpolation Method

Authors: S. Khan, A. Khan, Abdul R. Soomrani, Raja F. Zafar, A. Waqas, G. Akbar

Abstract:

This paper proposes a low-complexity image interpolation method. Image interpolation is used to convert a low dimension video/image to high dimension video/image. The objective of a good interpolation method is to upscale an image in such a way that it provides better edge preservation at the cost of very low complexity so that real-time processing of video frames can be made possible. However, low complexity methods tend to provide real-time interpolation at the cost of blurring, jagging and other artifacts due to errors in slope calculation. Non-linear methods, on the other hand, provide better edge preservation, but at the cost of high complexity and hence they can be considered very far from having real-time interpolation. The proposed method is a linear method that uses gradient orientation for slope calculation, unlike conventional linear methods that uses the contrast of nearby pixels. Prewitt edge detection is applied to separate uniform regions and edges. Simple line averaging is applied to unknown uniform regions, whereas unknown edge pixels are interpolated after calculation of slopes using gradient orientations of neighboring known edge pixels. As a post-processing step, bilateral filter is applied to interpolated edge regions in order to enhance the interpolated edges.

Keywords: edge detection, gradient orientation, image upscaling, linear interpolation, slope tracing

Procedia PDF Downloads 258
1521 Courtyard Evolution in Contemporary Sustainable Living

Authors: Yiorgos Hadjichristou

Abstract:

The paper will focus on the strategic development deriving from the evolution of the traditional courtyard spatial organization towards a new, contemporary sustainable way of living. New sustainable approaches that engulf the social issues, the notion of place, the understanding of weather architecture blended together with the bioclimatic behaviour will be seen through a series of experimental case studies in the island of Cyprus, inspired and originated from its traditional wisdom, ranging from small scale of living to urban interventions. Weather and nature will be seen as co-architectural authors with architects as intelligently claimed by Jonathan Hill in his Weather Architecture discourse. Furthermore, following Pallasmaa’s understanding, the building will be seen not as an end itself and the elements of an architectural experience as having a verb form rather than being nouns. This will further enhance the notion of merging the subject-human and the object-building as discussed by Julio Bermudez. This eventually will enable to generate the discussion of the understanding of the building constructed according to the specifics of place and inhabitants, shaped by its physical and human topography as referred by Adam Sharr in relation to Heidegger’s thinking. The specificities of the divided island and the dealing with sites that are in vicinity with the diving Green Line will further trigger explorations dealing with the regeneration issues and the social sustainability offering unprecedented opportunities for innovative sustainable ways of living. The above premises will lead us to develop innovative strategies for a profound, both technical and social sustainability, which fruitfully yields to innovative living built environments, responding to the ever changing environmental and social needs. As a starting point, a case study in Kaimakli in Nicosia a refurbishment with an extension of a traditional house, already engulfs all the traditional/ vernacular wisdom of the bioclimatic architecture. It aims at capturing not only its direct and quite obvious bioclimatic features, but rather to evolve them by adjusting the whole house in a contemporary living environment. In order to succeed this, evolutions of traditional architectural elements and spatial conditions are integrated in a way that does not only respond to some certain weather conditions, but they integrate and blend the weather within the built environment. A series of innovations aiming at maximum flexibility is proposed. The house can finally be transformed into a winter enclosure, while for the most part of the year it turns into a ‘camping’ living environment. Parallel to experimental interventions in existing traditional units, we will proceed examining the implementation of the same developed methodology in designing living units and complexes. Malleable courtyard organizations that attempt to blend the traditional wisdom with the contemporary needs for living, the weather and nature with the built environment will be seen tested in both horizontal and vertical developments. A new social identity of people, directly involved and interacting with the weather and climatic conditions will be seen as the result of balancing the social with the technological sustainability, the immaterial and the material aspects of the built environment.

Keywords: building as a verb, contemporary living, traditional bioclimatic wisdom, weather architecture

Procedia PDF Downloads 415
1520 Design and Simulation of Low Cost Boost-Half- Bridge Microinverter with Grid Connection

Authors: P. Bhavya, P. R. Jayasree

Abstract:

This paper presents a low cost transformer isolated boost half bridge micro-inverter for single phase grid connected PV system. Since the output voltage of a single PV panel is as low as 20~50V, a high voltage gain inverter is required for the PV panel to connect to the single-phase grid. The micro-inverter has two stages, an isolated dc-dc converter stage and an inverter stage with a dc link. To achieve MPPT and to step up the PV voltage to the dc link voltage, a transformer isolated boost half bridge dc-dc converter is used. To output the synchronised sinusoidal current with unity power factor to the grid, a pulse width modulated full bridge inverter with LCL filter is used. Variable step size Maximum Power Point Tracking (MPPT) method is adopted such that fast tracking and high MPPT efficiency are both obtained. AC voltage as per grid requirement is obtained at the output of the inverter. High power factor (>0.99) is obtained at both heavy and light loads. This paper gives the results of computer simulation program of a grid connected solar PV system using MATLAB/Simulink and SIM Power System tool.

Keywords: boost-half-bridge, micro-inverter, maximum power point tracking, grid connection, MATLAB/Simulink

Procedia PDF Downloads 336
1519 Lagrangian Approach for Modeling Marine Litter Transport

Authors: Sarra Zaied, Arthur Bonpain, Pierre Yves Fravallo

Abstract:

The permanent supply of marine litter implies their accumulation in the oceans, which causes the presence of more compact wastes layers. Their Spatio-temporal distribution is never homogeneous and depends mainly on the hydrodynamic characteristics of the environment and the size and location of the wastes. As part of optimizing collect of marine plastic wastes, it is important to measure and monitor their evolution over time. For this, many research studies have been dedicated to describing the wastes behavior in order to identify their accumulation in oceans areas. Several models are therefore developed to understand the mechanisms that allow the accumulation and the displacements of marine litter. These models are able to accurately simulate the drift of wastes to study their behavior and stranding. However, these works aim to study the wastes behavior over a long period of time and not at the time of waste collection. This work investigates the transport of floating marine litter (FML) to provide basic information that can help in optimizing wastes collection by proposing a model for predicting their behavior during collection. The proposed study is based on a Lagrangian modeling approach that uses the main factors influencing the dynamics of the waste. The performance of the proposed method was assessed on real data collected from the Copernicus Marine Environment Monitoring Service (CMEMS). Evaluation results in the Java Sea (Indonesia) prove that the proposed model can effectively predict the position and the velocity of marine wastes during collection.

Keywords: floating marine litter, lagrangian transport, particle-tracking model, wastes drift

Procedia PDF Downloads 190
1518 A Convolutional Neural Network-Based Model for Lassa fever Virus Prediction Using Patient Blood Smear Image

Authors: A. M. John-Otumu, M. M. Rahman, M. C. Onuoha, E. P. Ojonugwa

Abstract:

A Convolutional Neural Network (CNN) model for predicting Lassa fever was built using Python 3.8.0 programming language, alongside Keras 2.2.4 and TensorFlow 2.6.1 libraries as the development environment in order to reduce the current high risk of Lassa fever in West Africa, particularly in Nigeria. The study was prompted by some major flaws in existing conventional laboratory equipment for diagnosing Lassa fever (RT-PCR), as well as flaws in AI-based techniques that have been used for probing and prognosis of Lassa fever based on literature. There were 15,679 blood smear microscopic image datasets collected in total. The proposed model was trained on 70% of the dataset and tested on 30% of the microscopic images in avoid overfitting. A 3x3x3 convolution filter was also used in the proposed system to extract features from microscopic images. The proposed CNN-based model had a recall value of 96%, a precision value of 93%, an F1 score of 95%, and an accuracy of 94% in predicting and accurately classifying the images into clean or infected samples. Based on empirical evidence from the results of the literature consulted, the proposed model outperformed other existing AI-based techniques evaluated. If properly deployed, the model will assist physicians, medical laboratory scientists, and patients in making accurate diagnoses for Lassa fever cases, allowing the mortality rate due to the Lassa fever virus to be reduced through sound decision-making.

Keywords: artificial intelligence, ANN, blood smear, CNN, deep learning, Lassa fever

Procedia PDF Downloads 119
1517 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area

Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya

Abstract:

In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.

Keywords: brain-computer interface, speech recognition, artificial neural network, electroencephalography, EEG, wernicke area

Procedia PDF Downloads 269
1516 Examining the Relational Approach Elements in City Development Strategy of Qazvin 2031

Authors: Majid Etaati, Hamid Majedi

Abstract:

Relational planning approach proposed by Patsy Healey goes beyond the physical proximity and emphasizes social proximity. This approach stresses the importance of nodes and flows between nodes. Current plans in European cities have incrementally incorporated this approach, but urban plans in Iran have still stayed very detailed and rigid. In response to the weak evaluation results of the comprehensive planning approach in Qazvin, the local authorities applied the City Development Strategy (CDS) to cope with new urban challenges. The paper begins with an explanation of relational planning and suggests that Healey gives urban planners about spatial strategies and then it surveys relational factors in CDS of Qazvin. This study analyzes the extent which CDS of Qazvin have highlighted nodes, flows, and dynamics. In the end, the study concludes that there is a relational understanding of urban dynamics in the plan, but it is weak.

Keywords: relational, dynamics, city development strategy, urban planning, Qazvin

Procedia PDF Downloads 139
1515 Evaluation of Urban Parks Based on POI Data: Taking Futian District of Shenzhen as an Example

Authors: Juanling Lin

Abstract:

The construction of urban parks is an important part of eco-city construction, and the intervention of big data provides a more scientific and rational platform for the assessment of urban parks by identifying and correcting the irrationality of urban park planning from the macroscopic level and then promoting the rational planning of urban parks. The study builds an urban park assessment system based on urban road network data and POI data, taking Futian District of Shenzhen as the research object, and utilizes the GIS geographic information system to assess the park system of Futian District in five aspects: park spatial distribution, accessibility, service capacity, demand, and supply-demand relationship. The urban park assessment system can effectively reflect the current situation of urban park construction and provide a useful exploration for realizing the rationality and fairness of urban park planning.

Keywords: urban parks, assessment system, POI, supply and demand

Procedia PDF Downloads 41
1514 Noise Pollution in Nigerian Cities: Case Study of Bida, Nigeria

Authors: Funke Morenike Jiyah, Joshua Jiyah

Abstract:

The occurrence of various health issues have been linked to excessive noise pollution in all works of life as evident in many research efforts. This study provides empirical analysis of the effects of noise pollution on the well-being of the residents of Bida Local Government Area, Niger State, Nigeria. The study adopted a case study research design, involving cross-sectional procedure. Field observations and medical reports were obtained to support the respondents’ perception on the state of their well-being. The sample size for the study was selected using the housing stock in the various wards. One major street in each ward was selected. A total of 1,833 buildings were counted along the sampled streets and 10% of this was selected for the administration of structured questionnaire.The environmental quality of the wards was determined by measuring the noise level using Testo 815 noise meters. The result revealed that Bariki ward which houses the GRA has the lowest noise level of 37.8 dB(A)while the noise pollution levels recorded in the other thirteen wards were all above the recommended levels. The average ambient noise level in sawmills, commercial centres, road junctions and industrial areas were above 90 dB(A). The temporal record from the Federal Medical Centre, Bida revealed that, apart from malaria, hypertension (5,614 outpatients) was the most prevalent health issue in 2013 alone. The paper emphasised the need for compatibility consideration in the choice of residential location, the use of ear muffler and effective enforcement of zoning regulations.

Keywords: bida, decibels, environmental quality, noise, well-being

Procedia PDF Downloads 132
1513 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India

Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit

Abstract:

Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.

Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique

Procedia PDF Downloads 127
1512 Anomaly Detection in Financial Markets Using Tucker Decomposition

Authors: Salma Krafessi

Abstract:

The financial markets have a multifaceted, intricate environment, and enormous volumes of data are produced every day. To find investment possibilities, possible fraudulent activity, and market oddities, accurate anomaly identification in this data is essential. Conventional methods for detecting anomalies frequently fail to capture the complex organization of financial data. In order to improve the identification of abnormalities in financial time series data, this study presents Tucker Decomposition as a reliable multi-way analysis approach. We start by gathering closing prices for the S&P 500 index across a number of decades. The information is converted to a three-dimensional tensor format, which contains internal characteristics and temporal sequences in a sliding window structure. The tensor is then broken down using Tucker Decomposition into a core tensor and matching factor matrices, allowing latent patterns and relationships in the data to be captured. A possible sign of abnormalities is the reconstruction error from Tucker's Decomposition. We are able to identify large deviations that indicate unusual behavior by setting a statistical threshold. A thorough examination that contrasts the Tucker-based method with traditional anomaly detection approaches validates our methodology. The outcomes demonstrate the superiority of Tucker's Decomposition in identifying intricate and subtle abnormalities that are otherwise missed. This work opens the door for more research into multi-way data analysis approaches across a range of disciplines and emphasizes the value of tensor-based methods in financial analysis.

Keywords: tucker decomposition, financial markets, financial engineering, artificial intelligence, decomposition models

Procedia PDF Downloads 68
1511 Streamlines: Paths of Fluid Flow through Sandstone Samples Based on Computed Microtomography

Authors: Ł. Kaczmarek, T. Wejrzanowski, M. Maksimczuk

Abstract:

The study presents the use of the numerical calculations based on high-resolution computed microtomography in analysis of fluid flow through Miocene sandstones. Therefore, the permeability studies of rocks were performed. Miocene samples were taken from well S-3, located in the eastern part of the Carpathian Foredeep. For aforementioned analysis, two series of X-ray irradiation were performed. The first set of samples was selected to obtain the spatial distribution of grains and pores. At this stage of the study length of voxel side amounted 27 microns. The next set of X-ray irradation enabled recognition of microstructural components as well as petrophysical features. The length of voxel side in this stage was up to 2 µm. Based on this study, the samples were broken down into two distinct groups. The first one represents conventional reservoir deposits, in opposite to second one - unconventional type. Appropriate identification of petrophysical parameters such as porosity and permeability of the formation is a key element for optimization of the reservoir development.

Keywords: grains, permeability, pores, pressure distribution

Procedia PDF Downloads 251
1510 Classification Earthquake Distribution in the Banda Sea Collision Zone with Point Process Approach

Authors: H. J. Wattimanela, U. S. Passaribu, N. T. Puspito, S. W. Indratno

Abstract:

Banda Sea collision zone (BSCZ) of is the result of the interaction and convergence of Indo-Australian plate, Eurasian plate and Pacific plate. This location in the eastern part of Indonesia. This zone has a very high seismic activity. In this research, we will be calculated rate (λ) and Mean Square Eror (MSE). By this result, we will identification of Poisson distribution of earthquakes in the BSCZ with the point process approach. Chi-square test approach and test Anscombe made in the process of identifying a Poisson distribution in the partition area. The data used are earthquakes with Magnitude ≥ 6 SR and its period 1964-2013 and sourced from BMKG Jakarta. This research is expected to contribute to the Moluccas Province and surrounding local governments in performing spatial plan document related to disaster management.

Keywords: molluca banda sea collision zone, earthquakes, mean square error, poisson distribution, chi-square test, anscombe test

Procedia PDF Downloads 299